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Abstract

The scarcity of non-English language data in
specialized domains significantly limits the
development of effective Natural Language
Processing (NLP) tools. We present Trans-
BERT, a novel framework for pre-training lan-
guage models using exclusively synthetically
translated text, and introduce TransCorpus, a
scalable translation toolkit. Focusing on the
life sciences domain in French, our approach
demonstrates that state-of-the-art performance
on various downstream tasks can be achieved
solely by leveraging synthetically translated
data. We release the TransCorpus toolkit, the
TransCorpus-bio-fr corpus (36.4GB of French
life sciences text), TransBERT-bio-fr, its as-
sociated pre-trained language model-and re-
producible code for both pre-training and fine-
tuning. Our results highlight the viability of
synthetic translation for building high-quality
NLP resources in low-resource language/do-
main pairs.

1 Introduction

Pre-trained Language Models (PLMs) have revo-
lutionized the field of Natural Language Process-
ing (NLP) by leveraging large-scale datasets and
powerful neural network architectures to learn rich
linguistic representations. These models, such as
BERT (Devlin et al., 2019), GPT (Radford et al.,
2018), and TS5 (Raffel et al., 2019), are pre-trained
on vast amounts of text data in an unsupervised
manner, enabling them to capture intricate patterns
and nuances of human language. PLLMs can be fine-
tuned for specific tasks, such as text classification,
Named Entity Recognition (NER), and Question
Answering (QA), by training them on smaller la-
beled datasets. This transfer learning approach has
significantly improved the performance of NLP
models across various languages and domains.
Unfortunately, the success of PLMs has not been
equally distributed across all languages. While

high-resource languages like English, Chinese, and
French have seen significant advancements in NLP
applications, many low-resource languages still
lack the necessary data and resources to develop
effective models. This disparity is particularly evi-
dent in specialized domains such as life sciences,
where the availability of high-quality datasets is
crucial for training accurate models. For exam-
ple, Hindi, which is spoken by over 600M people,
has no available PLM for the life sciences domain.
Although BioBERT (Lee et al., 2019), the first pre-
trained language model for the life sciences, was
released in 2019, significant efforts to gather suf-
ficient Domain-Specific (DS) data for training life
sciences models in other high-resource languages
have begun to emerge in recent years. Since 2023,
life sciences models have emerged for German
(Bressem et al., 2024), Italian (Buonocore et al.,
2023), and French (Labrak et al., 2023; Touchent
et al., 2023). Life sciences is only an example of
a domain where the lack of data is a significant
barrier to the development of NLP tools. Other
domains, such as legal, finance, and patent, also
face similar challenges.

In this paper, we introduce TransCorpus, an
open-source toolkit leveraging the fairseq transla-
tion framework (Ott et al., 2019) to generate exten-
sive synthetic DS corpora in up to 100 languages,
featuring a production-level API/CLI setup with
multi-GPU and multi-processing capabilities, and
reliable checkpoint recovery for scalable corpus
management. We demonstrate that a Language
Model (LM) trained on TransCorpus output can
achieve state-of-the-art performance on various
downstream tasks which leverage DrBenchmark,
a French life sciences benchmark (Labrak et al.,
2024b).

Our contributions are threefold with (1) the re-
lease of an open-source toolkit for scalable multilin-
gual corpus translation, (2) a French life sciences
corpus synthetically translated of 36.4GB along



with a tokenizer, and a PLM released on Hugging
Face, and (3) reproducible code for the pre-training
and fine-tuning of the French life sciences PLM
made publicly available on GitHub.

2 Related Work

The paradigm of training LMs on massive datasets
is relatively recent, gaining prominence after the
introduction of BERT (Devlin et al., 2018), and as
a result, there is still limited research leveraging
translation for training such models, especially in
low-resource settings.

In Isbister et al. (2021), sentiment analysis in
four low-resource Scandinavian languages is ex-
plored using three strategies: fine-tuning a native
monolingual PLM, translating the data into English
and fine-tuning an English PLM, and fine-tuning
a multilingual PLM on the native data. Results
generally favor the multilingual approach, though
fine-tuning an English model on translated data of-
ten outperforms using a monolingual low-resource
PLM.

For Luxembourgish, Lothritz et al. (2022) tackle
data scarcity by partially translating unambiguous
words from a related high-resource language, eval-
uating several models including a Luxembourgish-
only BERT, a Luxembourgish-German Bidirec-
tional Encoder Representations from Transform-
ers (BERT), and LuxemBERT, which is trained on
mixed corpora. LuxemBERT shows improved per-
formance over mBERT, though not to a statistically
significant extent.

In the Basque context, following the introduction
of EIhBERTeu (Urbizu et al., 2022), Urbizu et al.
(2023) use synthetic translated data from Spanish
to enlarge the Basque corpus, finding that while a
PLM trained solely on synthetic data is competitive,
it does not outperform one trained only on native
data; however, supplementing native data with syn-
thetic translations does enhance performance.

Finally, Phan et al. (2023) improve the English-
to-Vietnamese Machine Translation (MT) model
Mtet by injecting synthetic biomedical parallel text
via self-training (He et al., 2019), resulting in a sys-
tem that outperforms strong baselines and enables
the creation of ViPubmed and ViMedNLI datasets.
Continued pre-training and fine-tuning on these
resources lead to ViPubMedT5, which achieves
state-of-the-art results in several biomedical NLP
tasks, further demonstrating the potential of syn-
thetic translation data for advancing low-resource

language modeling.

3 TransCorpus: A Scalable Translation
Framework

In this section, we present TransCorpus, a frame-
work designed to facilitate the translation of large-
scale corpora into multiple languages. First, the
selection of the MT toolkit along with its model
will be presented, then the model size and context
length will be discussed, and finally, the proposed
translation workflow will be illustrated.

3.1 Machine Translation Framework &
Model Selection

To achieve our goal of translating large volumes of
text between any two languages, we selected M2M-
100 (Fan et al., 2020) in conjunction with fairseq
as a versatile tool for implementation. Fairseq of-
fers broad support for multilingual tasks and facili-
tates rapid deployment with multi-GPU processing
capabilities. Facebook AI’s M2M-100 enables di-
rect translation between languages without using
English as an intermediary, making it perfect for
converting text from any one of 100 languages to
another. Moreover, fairseq’s modular framework
allows for easy model swapping and the integration
of new or specialized translation models. This flex-
ibility customizes the translation process to meet
specific needs, such as domain adaptation or the
incorporation of additional languages.

The M2M-100 model is available in three sizes:
418M, 1.2B, and 12B parameters. The small-
est model is faster and uses less memory, while
the largest requires multiple Graphics Processing
Units (GPUs) for deployment. Because translation
quality improvements come at a quadratic increase
in computational cost, we did not consider the 12B
model for our experiments. However, since the
418M and 1.2B models differ substantially in trans-
lation quality but not as much in computational
cost, the next section will compare these two mod-
els, focusing primarily on computation time.

3.2 Model Size & Context Length

The context length relationship with model com-
plexity is quadratic due to the way attention mech-
anisms operate in transformers. As context length
increases, the number of interactions that the model
must account for grows quadratically because ev-
ery token attends to every other token in the se-
quence. This means that computational resources,



such as time and memory, increase significantly
with longer sequences. Overlooking this relation-
ship can lead to inefficient computation times and
resource usage, particularly with large datasets or
models, resulting in slower processing speeds and
potentially prohibitive resource demands. More-
over, MT models such as M2M-100 typically
trained on sentence pairs might exhibit unexpected
behavior if used otherwise. Conversely, having
no context would reduce translation to a word-by-
word level, resulting in nonsensical outcomes. The
following analysis explores document-based and
sentence-based translation methods while consid-
ering both models sizes on a sample of 1000 life
sciences abstracts.
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Figure 1: Translation Method Analysis on a 1000-
Abstracts Sample - (a) Box plot comparing the number
of tokens per sentence and abstract, with a red line at
512 tokens representing the maximum token limit that
M2M-100 can handle. (b) The average time to translate
each abstract using the 418M and 1.2B model versions,
comparing sentence-based and document-based transla-
tion. (c) Distribution of word count per abstract for both
model sizes, displayed with the original English abstract
at the bottom when translating by abstract (middle) and
by sentence (top). All distributions are normalized to
the same scale, so their areas add up to 1.

Figure 1a clearly demonstrates that when trans-
lations are performed by sentence, the distribution
tends to favor parallelization because larger dif-
ferences in sequence length require more padding,
leading to wasted computation. Figure 1b shows
that sentence-based translation consistently results
in faster processing for any given model size, with
the speed advantage becoming more pronounced as
the model size increases. It is important to note that
the sentence-based approach will tend to scale lin-
early with the amount of data to be translated, while

the document-based approach will highly depend
on the document length distribution of a given do-
main. Finally, the sentence-based approach seems
to mimic the original distribution of words per
translated document, while the disparity observed
in Figure 1c for the document-based approach was
qualitatively reviewed and appears to be partially
attributed to a’repetition’” problem. Appendix A.3
shows an observed example. As already mentioned,
M2M-100 was trained on sentences pairs, which
might explain this behavior.

While maintaining translation consistency, the
sentence-based strategy is adaptable and scalable
to various types of documents. Regarding the size
of the model, the difference in the translation time
in sentence length is negligible compared to the
gains reported in quality. This observation led to
the decision to adopt the 1.2B model along with a
sentence-based translation approach.

3.3 Framework Translation Workflow

Figure 2 depicts TransCorpus toolkit applied to an
English life sciences corpus consisting of 22M ab-
stracts. First, the corpus is divided and distributed
among different machines to parallelize the transla-
tion process. Each abstract is then divided into sen-
tences with fairseq handling tokenization as shown
in Appendix A.4. By grouping sentences of the
same length, bucketing is employed to minimize
padding, thereby avoiding the computational in-
efficiency that results from juxtaposing long and
short sentences. Although it may seem counterintu-
itive, there is a considerable increase in speed when
translating sentences of the same length simulta-
neously. Once the sentences are translated, they
are matched with their respective abstracts and sen-
tence numbers, and the entire corpus is reconciled
by concatenating each output of each subprocess.
Appendix A.5 shows an abstract translation exam-
ple. To avoid too short context issues, sentences
that contain fewer than 10 characters are concate-
nated to the following or preceding sentence.

The TransCorpus toolkit includes a Command
Line Interface (CLI) that features four primary
commands: (1) transcorpus download-corpus
[domain] allows users to fetch a corpus from
specified domains, (2) transcorpus preprocess
[domain] [target-language] [num-splits] al-
lows users to optionally preprocess the cor-
pus before translating, and (3) transcorpus
translate [domain] [target-language] [num-
splits] handles both preprocessing (if not previ-
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Figure 2: TransCorpus Translation Workflow - Illus-
tration of the deployment of TransCorpus on a machine
with 32 GPUs.

ously completed) and translating the corpus. Users
can perform preprocessing and translation concur-
rently across numerous GPUs and processes. A
checkpoint recovery feature enables users to re-
sume preprocessing or translation from where it
last stopped, which is especially beneficial for aca-
demics facing GPUs usage time limits. Lastly, (4)
transcorpus preview [domain] [languagel]
[language2] provides a side-by-side document
preview of the corpus in two languages. Currently,
only the life sciences corpus is ready for download,
but by updating the domains. json file on GitHub
with a new corpus URL, additional corpus domains
can be quickly integrated into the toolkit. For fur-
ther details, please check the GitHub repository at
Anonymous.

4 TransCorpus-bio-fr: A French Life
Sciences Corpus

As already highlighted, the limited availability
of DS PLMs for certain language/domain pairs
presents a notable challenge to the progression of
NLP tools. Evaluating our framework in a real-
world context is complex for several reasons: (1) it
is uncommon to find sufficient DS for low-resource
language/domain pairs that also have datasets for
model evaluation, and (2) even when such bench-
marks exist, an appropriate PLM for comparison
might not be available. Fortunately, in the domain
of French life sciences, two important papers have

recently been published. The first is DrBench-
mark (Labrak et al., 2024b) a life sciences bench-
mark that includes multiple datasets supporting the
evaluation of in-domain models. The second is Dr-
BERT (Labrak et al., 2023), a French life sciences
PLM. Comparing our model against DrBERT on
life sciences tasks allows us to assess the practi-
cal effectiveness of our framework. Indeed, as
DrBERT is pre-trained from scratch, it does not
rely on an advanced general domain PLM such
as CamemBERT (CmBERT) (Martin et al., 2020),
which is also the case for most languages.

4.1 MEDLINE/PubMed Abstracts Collection

For the building of this life sciences corpus, the
2021 MEDLINE/PubMed Baseline Repository
(MBR), encompassing 31M citations, and updates
up until April 2021 was downloaded. Then, each
citation in the dataset that includes a PMID, a title,
and an abstract is kept, subsequently, its raw text
is modified by substituting any sequence of one or
more whitespace characters with a single space. An
example of a title and abstract after modification,
as it would appear prior to translation can be found
in Appendix A.1.

A considerable amount of citations lacks one of
the three essential attributes, i.e. title, abstract, or
PMID. Consequently, after filtering the complete
dataset, our corpus comprises about 22M abstracts.
Despite a few missing unknown values, a compre-
hensive comparison of our corpus statistics against
several models can be found in Appendix A.2. De-
spite both BioBERT and PubMedBERT (Gu et al.,
2020) have a version that also includes PubMed
Central (PMC) full-text articles, only those that
use PubMed are displayed for a better comparison.
This juxtaposition is crucial for understanding the
scale of data that similar models have been trained
on, which directly impacts their performance and
applicability in various NLP tasks.

4.2 Translated Corpus Statistics

The complete translation process was executed us-
ing 32 NVIDIA Tesla V100 GPUs with 32Go of
memory each, taking roughly 15 days, which trans-
lates to approximately 11,520 GPU hours!. After
translation, the resultant raw text file is 36.4GB,
containing 221M sentences and 5.25B words. Ta-
ble 1 compares TransCorpus with the only two

'These figures derive from an early version of TransCor-
pus; the latest version appears faster with the NVIDIA A100,
and these numbers will probably be updated soon



French life sciences corpora leveraged for pre-
training. The comparison reveals that DrBERT
the State-of-the-Art (SOTA) life sciences LM in
French, despite it utilizes the largest corpus until
now, is about five times smaller than TransCorpus.

TransCorpus DrBERT | CmBERT
pu Corpus | Bio Corpus
Size 36.4GB 7.5GB 2.7GB
Sentences 221M 54M -
Words 5.25B 1.1B 413M

Table 1: Translated Corpus Statistics Compared to
French Life Science Corpora - ’-’: Unknown value

Even if the corpus size is important, its quality
must also be closely monitored. While MBR is
already considered a benchmark of quality in En-
glish as it is used for pre-training models such as
BioBERT and PubMedBERT, it is crucial to assess
the quality of our translations to make sure that
everything has been conducted properly. As de-
picted in Figure lc, a comparable density check of
the entire translated corpus reveals a density pro-
file similar to the original corpus. After manually
reviewing a randomly chosen set of abstracts, no ir-
regular translation events, such as repetitions, were
detected. A few translated abstracts alongside their
counterparts originally written in French can be
found in Appendix A.6. The translated corpus is
available on Hugging Face at Anonymous.

5 TransBERT Pre-Training

The reasons for pre-training a LM from scratch are
twofold. Firstly, it enables us to project the usage
of our framework on languages that might lack a
general domain PLM. Secondly, it allows the use
of our custom tokenizer, which typically provides
enhanced performance for DS LMs.

5.1 TransTokenizer Training

Subword segmentation algorithms aim to split
words optimally using probability. Considering
the potential addition of more languages in future
works, choosing a tokenizer capable of handling
specific linguistic features could prove beneficial.
In that context, SentencePiece treats whitespaces
as regular characters rather than relying on them,
which means that it is suited for all kinds of lan-
guages. The original SentencePiece implementa-
tion” (Kudo and Richardson, 2018) is used to train

Zhttps://github.com/google/sentencepiece

an Unigram tokenizer with a vocabulary size of
32k and a character coverage set to 0.9995 (default
values).

5.2 Pre-training Hyperparameters

A BERT architecture i.e. a Transformer encoder
with 12 hidden layers, each with 12 attention heads
of dimension 768, is pre-trained on TransCor-
pus following Robustly optimized BERT approach
(RoBERTa) (Liu et al., 2019) with an extensive
batch size of 8k, an Adam Optimizer (Kingma and
Ba, 2017), along with 24k warm-up steps and a
learning rate of 6e-4. The model was updated for
500k steps on a Masked Language Model (MLM)
objective function.

6 TransBERT-bio-fr: Application to Life
Sciences in French

This section details the pre-training of TransBERT-
bio-fr and compares it with other French PLMs.

6.1 TransTokenizer-bio-fr Training

The tokenizer training on TransCorpus-bio-fr took
approximately 12 hours on a single machine. As
SentencePiece tokenizers require a considerable
amount of RAM, a cut-off at 10M translated ab-
stracts were randomly selected in order to train
a DS tokenizer based on our synthetic translated
corpus. An example showcasing the difference be-
tween the tokenization of TransTokenizer (ours)
and CmBERT’s tokenizer can be found in Ap-
pendix A.7.

6.2 CmTransBERT: Tokenizer Ablation

To evaluate the impact of the tokenizer, TransBERT-
bio-fr is pre-trained using TransTokenizer-bio-
fr while CmTransBERT is combined using
CmBERT’s tokenizer. Both models are trained
on the TransCorpus-bio-fr, with the same hyper-
parameters. Prior to fine-tuning our models, the
Pseudo-Perplexity (PPPL) (Salazar et al., 2020) per
token and word for each model was computed on a
50 authentic French abstracts. This step confirms
the success of the pre-training and provides the
go-ahead for the experimental phase. For further
details, the results are presented in Appendix A.8.

6.3 Pre-training Statistics

Both TransBERT-bio-fr and CmTransBERT were
pre-trained for approximately three months using
a machine with 3 NVIDIA A100 GPUs, each with
80GB of memory. To ensure a fair pre-training
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comparison, TransBERT adopted RoBERTa’s train-
ing methodology, processing 4B sequences over
500k steps with a batch size of 8k. In contrast, Dr-
BERT was pre-trained on 310M sequences over
78k steps with a batch size of 4k. Although
TransCorpus-bio-fr’s corpus is about five times
larger than DrBERT’s, TransBERT-bio-fr’s overall
training data updates is thirteen times larger com-
pared to DrBERT. CmBERT bio undergoes even
less training update, but as it is based on CmBERT
the comparison is not relevant. TransCorpus-bio-fr
is available on Hugging Face at Anonymous.

7 Experimental Setup

To compare TransBERT-bio-fr with other PLMs,
we leveraged DrBenchmark which is composed of
multiple datasets and tasks. This section describes
the experimental setup under which each model
was evaluated.

7.1 Baseline Models

To evaluate our method against strong base-
lines, we selected the state-of-the-art French PLM,
CmBERT as well as DrBERT the only PLM pre-
trained from scratch in French. As previously
noted, CmBERT bio was excluded from compari-
son because it is derived from CmBERT rather than
being trained from scratch, whereas our framework
is specifically designed for scenarios where DS
data are available in one language, but resources in
the target language are lacking.

7.2 DrBenchmark: An Adaptation

Common LM benchmarks in life sciences are pre-
dominantly biomedical or clinical, such as Biomed-
ical Language Understanding & Reasoning Bench-
mark (BLURB) (Gu et al., 2021) and Biomedi-
cal Language Understanding Evaluation (BLUE)
(Peng et al., 2019) in English. In French, only
one option was recently published DrBenchmark.
Available in our GitHub, an adaptation of the bench-
mark containing a few additions such as Hyperpa-
rameter Optimization (HPO) implementation in-
stead of fixed hyperparameters setting, a few data
cleaning steps to avoid duplicates, datasets merg-
ing to avoid unnecessary small datasets and the
implementation of a k-fold cross-validation strat-
egy with multiple iterations to allow for a more ro-
bust evaluation. Appendix A.9 shows the adapted
benchmark datasets statistics, which includes 15
tasks, five of which are classification, six NER, two

Part-Of-Speech (POS), and two Semantic Textual
Similarity (STS).

7.3 Statistical Testing

Once a metric is computed for each label/class/en-
tity/tag/regression, a statistical test is performed
to assess if there is a significant difference be-
tween models (1) at the dataset level comparing
labels performance across labels and folds and (2)
at the task level comparing performances across
labels, folds and datasets. For comparisons involv-
ing more than two models, the Friedman test is
employed, followed by the Nemenyi test. When
comparing two models, the Wilcoxon test is used.
Appendix A.10 shows the statistical testing process
following (DemsSar, 2006) recommended practice
for comparing metrics rankings to assess model
difference for one or multiple datasets.

8 Results & Discussion

Datasets | CmBERT | DrBERT |TransBERT
DEFT-2020/T2 9891 (1) | 97.55(1) | 98.82 (4)
» DiaMed 64.70 (22) | 68.89 (27) | 75.32°(55)
d FrMedMCQA 56.95 (14) | 56.01 (9) | 57.25 (10)
MorFITT 73.16 (14) | 72.74 (8) | 75.36°(38)
PxCorpus/T2 96.31 (11) | 95.34 (8) | 95.34 (7)
E3C/Clinical 74.88 (0) | 7544 (1) | 76.83 (4)
E3C/Temporal 85.44 (12) | 83.92(2) | 85.73 (12)
& MantraGSC 60.56 (12) | 57.80 (8) | 62.83 (16)
Z PxCorpus/T1 92.86 (40) | 92.56 (66) 95.17*(96)
QUAERO/EMEA | 84.70 (12) | 84.74 (13) | 85.67"(26)
QUAERO/MdL 62.22 (17) | 60.71 (5) | 64.06 (29)
L2 CAS 97.66 (74) | 97.56 (50) | 97.74 (75)
A& ESSAI 98.66*(107) 98.53 (53) | 98.64 (71)
»2 CLISTER 82.80 (2) | 75.44 (0) | 82.62(3)
@ DEFT-2020/T1 | 83.95(3) | 71.69 (0) | 83.46(2)

* Significant at 0.05 level (Friedman & Nemenyi test).

Table 2: Performance Evaluation on the French Life
Science Datasets - Table compares the main metrics
for each dataset for Classification, Named Entity Recog-
nition, Part-of-Speech Tagging, and Semantic Textual
Similarity tasks. F;-score is used for each task as the
main metric aside STS which uses R2. In (parenthe-
ses) is the count of class/label/entity/tag across all the
folds where a model achieved the highest metric. In
bold is the highest metric/count while underlined text
represents the second.

Table 2 presents models performances across all
folds for each dataset with the weighted F;-score
for each task except STS, which utilizes the R? met-
ric. Among the 15 datasets evaluated, TransBERT-
bio-fr (TransBERT) outperforms the other models



in 10 cases, with statistical significance noted on
four occasions. CmBERT ranks first in five cases,
with one statistically significant result. DrBERT
fails to achieve the top metric in any dataset and
ranks lowest in 11 datasets. In parentheses are the
highest labels metric count across all the folds. For
instance, in DiaMed, TransBERT secures the high-
est F;-score for 55 labels over five folds, whereas
CmBERT and DrBERT attain the highest Fy-score
for 22 and 27 labels, respectively.

In classification tasks, even though CmBERT
achieves the top performance on two datasets, the
differences in metrics and ranking between the
models on these datasets are not significant. Con-
versely, on the DiaMed and MorFITT datasets
where TransBERT outperforms, the distinction in
metrics and ranking is notable and statistically sig-
nificant.

In NER, TransBERT leads across all datasets
in both metrics and rankings, achieving statistical
significance in two instances. In POS tasks, the
models demonstrate high and closely matched per-
formances, with the lowest-scoring model achiev-
ing a weighted Fi-score of 97.56. Despite this
narrow margin, CmBERT secures top results for
one dataset, showing statistical significance and
attaining the highest F;-score across 107 tags in
all five folds. In STS, CmBERT and TransBERT
perform similarly, with minor differences, obtain-
ing three and two top results, respectively. How-
ever, DIBERT performs poorly in this task, particu-
larly with a margin exceeding 10 points in DEFT-
2020/T1.

8.1 Aggregated Results by Task

Table 3 presents the weighted precision, recall, and
F;-score across each task, except for STS, which
utilizes the R? metric. TransBERT achieves the
best performance for both classification and NER,
with statistically significant results at the 0.01 level
for every metric. CmBERT secures second place in
weighted recall for the NER task, also with statisti-
cal significance. The difference between CmBERT
and TransBERT in the POS task is minimal; though
TransBERT leads in terms of the three metrics, the
margin between them is slight. In the STS task,
both CmBERT and TransBERT do not show statis-
tical significance, while DrBERT comes last with
statistical significance.

With the second more precise classifier, DIBERT
ends up having the poorest results in 9 of the 10
metrics. It is worth noting that despite DrBERT is

pre-trained on a native French corpus, its sources
are quite varied, which could lead to confusion
during the pre-training stage for a LM. Specifically,
it draws from 24 diverse sources such as disease
and condition descriptions, clinical cases, meeting
reports, health courses, or even optical character
recognition data. Beyond this diversity factor, if
a provided sequence is too short for the model to
deduce a context helping it identify the kind of
document it is receiving, this may cause confusion,
potentially resulting in ineffective learning. As
already mentioned, even if TransBERT corpus is
made of synthetic data, it has already been proved
that using MBR worked in English for pre-training
of BioBERT and PubMedBERT.

8.2 Tokenizer Ablation Study

Although prior work by Labrak et al. (2024a) ex-
plored similar analyses, we identify methodologi-
cal inconsistencies in their pre-training of 16 PLMs.
Specifically, the use of a fixed time-based stop-
ping criterion resulted in unequal training durations
across models, potentially biasing outcomes. Fur-
thermore, the justification for employing reduced
batch sizes remains unclear, although computa-
tional constraints may have been a contributing
factor. To address these limitations, we performed
systematic replication under controlled experimen-
tal conditions. To our knowledge, this study is the
first rigorous examination of how tokenizer impacts
DS PLMs, offering insights for optimizing archi-
tecture decisions in resource-constrained scenarios.

Table 4 presents the comprehensive set of
weighted main metrics for both models. The re-
sults indicate that TransBERT generally outper-
forms CmTransBERT in almost all tasks, with sta-
tistical significance achieved solely in NER. This
implies that NER is more influenced by tokeniza-
tion compared to other tasks, which seems trivial
as NER is basically token-based.

9 Conclusion & Contributions

This work establishes a rigorous framework for
assessing LMs on DS for non-English dataset. It
builds upon prior research and extends it to a more
comprehensive benchmark that includes a more
robust way of evaluating the models by applying
HPO, multiple training repetition, 5-folds cross-
validation, and statistical testing on 15 datasets
along with their aggregation by task. It illus-
trates that employing translated synthetic data for



| CmBERT DrBERT | TransBERT

| po RY F, | P, RY F, | P, RZ P,
Classification 7465 7554 7417 | 7481 7342 7373 | 75827 76.69 7571
Named Entity Recognition | 8123 8213 8155 | 80.74 8127  80.88 | 83.03" 8346  83.15"
Part-Of-Speech 9831 9829 9829 | 98207 9818 98187 | 9833 9830  98.31
Semantic Textual Similarity - 83.38 - - 73.56" - - 83.04 -

™ Significant at 0.01 level (Friedman & Nemenyi test)

Table 3: Performance Evaluation on the French Life Science by Task - Weighted Precision, Recall, and F;-scores
for each task taking into account each class/label/entity/tag and weighted across all folds and datasets. For Semantic
Textual Similarity, the weighted R? is reported. In bold is highest metric/count while underlined text represents the

second.

| TransBERT | CmTransBERT

| P, R F. | P, Ry Fy
Classification 75.82 76.69 75.71 75.10 76.05 74.70
Named Entity Recognition 83.03" 83.46" 83.15" 81.02" 82.13™ 81.44™
Part-Of-Speech 98.33 98.30 98.31 98.31 98.29 98.29
Semantic Textual Similarity - 83.04 - - 84.36 -

- Significant at 0.01 level (Wilcoxon test)

Table 4: Ablation study comparing TransBERT and CmTransBERT - Weighted Precision, Recall, and F; -scores
for each task taking into account each class/label/entity/tag and weighted across all folds and datasets. For STS, the
weighted R? is reported. In bold is the highest metric/count while underlined text represents the second.

training DS LMs is a viable approach to address
the lack of native language data. Our proposed
model, TransBERT-bio-fr, outperforms existing
SOTA models in various life sciences tasks, in-
cluding classification, NER, POS, and STS.

In addition to offering a viable methodology
to address data scarcity, we release to the public
TransCorpus, an adaptative toolkit designed to facil-
itate the translation of large-scale corpora into mul-
tiple languages. The resources generated from this
work, including TransCorpus-bio-fr, TransBERT-
bio-fr and the code for the pre-training and fine-
tuning of the models are also made available on
GitHub.

10 Future Work

One encouraging direction for future research is to
expand our approach to encompass a wider array
of languages, especially those that are underrep-
resented in the life sciences field. Applying our
methodology across various linguistic settings will
help us better understand its generalizability and
any possible constraints. Additionally, creating
multilingual models capable of managing several
languages within the life sciences sector poses a
fascinating challenge. These models might exploit
cross-lingual knowledge transfer, allowing for a
more efficient use of scarce data resources and pro-

moting a more inclusive global scientific commu-
nity. Exploring other domains via our toolkit could
also yield valuable insights into the adaptability of
our approach.

Another path for future research is an extensive
comparison between our method and the latest gen-
erative Large Language Models (LLMs) on identi-
cal datasets. Such a comparison would yield valu-
able understanding of the trade-offs between spe-
cialized, domain-focused models and more general,
resource-heavy models LLMs. Assessing perfor-
mance, efficiency, and cost-effectiveness across
different life sciences tasks would help researchers
and practitioners in making informed decisions.
Furthermore, this analysis could highlight the pos-
sibility of integrating the strengths of both ap-
proaches.

A promising direction for upcoming research
involves exploring the use of generative LLMs to
create synthetic data for training DS models, as an
alternative to our translation-based method. This
approach could yield more varied and nuanced
datasets, encapsulating intricate DS knowledge and
linguistic patterns. Assessing the quality, reliabil-
ity, and possible biases of LMs-generated synthetic
data in comparison to translated data could offer
valuable insights into data augmentation strategies
for low-resource domains and languages.



Limitations

10.1 Baseline Model

While TransBERT-bio-fr got better results than
CmBERT, it would be interesting to see if DrBERT,
the DS baseline PLM would have had better results
if it had undergone a proper pre-training process
(e.g., 500k steps, 8k batch size, etc.). Also, in order
to extend our approach to languages where high
qualityPL.Ms are available, it would have been in-
teresting to compare a pre-training continuation of
CmBERT on TransCorpus-bio-fr with CmBERT
bio.

10.2 In-Domain/Language Generalization

Even though our benchmark includes a broad range
of datasets and tasks, it is impossible to cover ev-
ery potential application or future development in
the field. The performance of our model, while
impressive within the scope of our study, may not
necessarily be consistent across all possible tasks
or datasets in the life sciences domain. Addition-
ally, the idea of a universally ’best’ model is inher-
ently flawed in the realm of NLP. Different models
might excel in particular contexts or specific types
of tasks, and their performance can be affected by
factors such as domain specificity, data distribu-
tion, and the nuances of individual use cases. What
works optimally in one scenario may not be the
best choice in another, emphasizing the need for
context-specific model evaluation and selection. It
is also important to recognize that the fast-paced ad-
vancements in NLP research could lead to new ar-
chitectures, pre-training techniques, or fine-tuning
strategies that may surpass our current model in
certain aspects. The dynamic nature of the field re-
quires ongoing evaluation and comparison against
new innovations.

10.3 Other Domains Generalization

Although our model, which was trained on trans-
lated synthetic data within the life sciences corpus,
shows encouraging generalization towards other do-
mains, it is important to recognize the constraints
when extrapolating these results to other areas. The
success of our method in addressing the lack of
native language data in life sciences should not be
automatically expected to apply to other special-
ized sectors such as finance, law, or engineering.
Each field presents its own unique linguistic hur-
dles, specialized terminologies, and DS concep-
tual frameworks that general-purpose MT systems

might not handle effectively. The quality and rele-
vance of translated synthetic data can differ greatly
between domains, possibly affecting the model’s
performance. Moreover, the subtleties of DS lan-
guage use, such as idiomatic phrases, technical
lingo, and context-dependent meanings, may not
be accurately preserved in translated data, which
could lead to misunderstandings or errors in other
fields. Additionally, the success of our approach
may depend on the degree to which translatable
concepts are within a given domain, which can
vary greatly. For example, concepts that are highly
specific to a culture or legally bound in sectors
like law or social sciences might pose particular
difficulties for this approach. Hence, even if our
results suggest a promising avenue for mitigating
language resource shortages in specialized fields,
further research is essential to confirm the broad ap-
plicability of this method across various domains,
each with its own distinct linguistic and conceptual
challenges.

10.4 Other Languages Generalization

While our study highlights the effectiveness of em-
ploying synthetic translated data for training LMs
in the field of life sciences in French, caution is
warranted when applying these findings to other
languages, especially those with limited resources.
We believe that the success of our method is highly
dependent on the quality and availability of MT
systems for the target language, which can dif-
fer greatly among various language pairs. Even if
M2M-100 has a great potential to secure relatively
great results in low-resource languages compared
to other models, some language pairs often lack
strong machine translation models, which can un-
dermine the quality of the translated synthetic data.
Additionally, the linguistic gap between the source
language and the target language can greatly af-
fect the effectiveness of the approach. Languages
with different syntactic frameworks, morphological
structures, or writing systems might pose additional
difficulties in maintaining semantic subtleties and
DS language during translation. Furthermore, the
cultural and scientific context embedded in the orig-
inal material might not always have direct counter-
parts in the target language or culture, which could
result in meaning loss or the introduction of biases.
Although our findings indicate a potential solution
for addressing the deficit of scientific corpora in
some languages, the method’s suitability across
different linguistic contexts requires thorough eval-



uation and additional investigation.
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A Appendix
A.1 Example of an English Abstract

PMID: 44
Title: The origin of the alkaline inactivation of pepsinogen.

Abstract: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin
on exposure to low pH. Intermediate exposure to neutral pH, however, returns the protein to a form
which can be activated. Evidence is presented for a reversible, small conformational change in the
molecule, distinct from the unfolding of the protein. At the same time, the molecule is converted
to a form of limited solubility, which is precipitated at low pH, where activation is normally seen.
The results are interpreted in terms of the peculiar structure of the pepsinogen molecule. Titration
of the basic NH2-terminal region produced an open form, which can return to the native form
at neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in the
pepsin portion.

Figure 3: Example of a Citation From the MBR Database

A.2 Corpus Statistics

C%gl‘::lft‘i’f)‘fe BERT BioBERT PubMedBERT
Abstracts 22M N/A - 14M
Size 30.2GB 16GB - 21GB
Sentences 202M - - -
Words 4.4B 3.3B 4.5B 3.1B
Tokens 6.7B - - -

-: Unknown value
N/A: Not Applicable

Table 5: Statistics of English Life Science Corpora Used to Pre-Train Different Models - Tokens number is
computed using a BERT cased tokenizer.

A.3 Example of a Translation with Repetition

Model Size: 418M
Translation Approach: By abstract

Abstract: Des modifications structurelles et fonctionnelles dans les ovaries de I’ovaire de controle
des ovaries des ovaries de controle des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries.

Figure 4: Example of a Translation: 418M, By Abstract (With Repetition)
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A.4 Example of a Tokenized Abstract

PMID: 44

Sentence 1: The origin of the alkaline inactivation of pepsinogen.

[’_The’,’_origin’,’_of’, ’_the’, ’_alkal’, ’ine’, ’_in’, ’activ’, "ation’, ’_of’, ’_pep’, ’sin’, ogen’, *.’]

Sentence 2: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin on exposure to low
pH.

[’_Ab’, ’ove’,’_pH’,’_8",’5,, ’_pep’, ’sin’, ogen’, ’_is’, ’_convert’, ’ed’, ’_into’, ’_a’, ’_form’, ’_which’, ’_cannot’,
’_be’,’_activ’, ’ated’, ’_to’,’_pep’, ’sin’, ’_on’, ’_expos’, ‘ure’,’_to’,’_low’,’_pH’, ]

Sentence 3: Intermediate exposure to neutral pH, however, returns the protein to a form which can be activated.
[_Inter’, medi’, ’ate’, ’_expos’, ‘ure’, ’_to’, *_neutral’, ’_pH’, ’,’, ’_however’, ’,’, ’_retur’, 'ns’, ’_the’, ’_protein’,
’_to’,’_a’,’_form’,’_which’,’_can’,’_be’, ’_activ’, ’ated’, ’.’]

Sentence 4: Evidence is presented for a reversible, small conformational change in the molecule, distinct from the
unfolding of the protein.

[’_Ev’, ’idence’, ’_is’, ’_present’, ’ed’, ’_for’, ’_a’, ’_re’, vers’, ’ible’, ’,’, ’_small’, ’_conform’, ’ational’, ’_change’,

9 29 9 LRI s 9

_in’,’_the’,’_mol’, ’ec’, ’ule’, ’,’, ’_distin’, 'ct’, ’_from’, ’_the’,’_un’, 'fold’, ’ing’, ’_of’, ’_the’, ’_protein’, *.’]

)

Sentence 5: At the same time, the molecule is converted to a form of limited solubility, which is precipitated at low pH,
where activation is normally seen.

[_At’, ’_the’, ’_same’, ’_time’, ’,’, ’_the’, ’_mol’, ’ec’, 'ule’, ’_is’, ’_convert’, ’ed’, ’_to’, ’_a’, ’_form’, ’_of’,
’_limited’, ’_sol’, *ub’, ’ility’, °,’, °_which’, ’_is’, °_precip’, ’itat’, ’ed’, ’_at’, ’_low’, ’_pH’, ’,’, ’_where’, ’_activ’,
’ation’, ’_is’, ’_norm’, ’ally’, ’_seen’, ’.’]

Sentence 6: The results are interpreted in terms of the peculiar structure of the pepsinogen molecule.
[’_The’,’_results’, ’_are’, ’_interpret’, ’ed’, ’_in’, ’_terms’, ’_of’, ’_the’, ’_pec’, 'uliar’, ’_structure’, ’_of’, ’_the’,

’_pep’, ’sin’, ’ogen’, ’_mol’, ’ec’, "ule’, ’.’]

Sentence 7: Titration of the basic NH2-terminal region produced an open form, which can return to the native form at
neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in the pepsin portion.

[_T,itr’, "ation’, ’_of’, ’_the’, ’_basic’, ’_NH’, ’2-’, ’termin’, ’al’, ’_region’, ’_produc’, ’ed’, ’_an’,’_open’, ’_form’,
>, _which’, ’_can’, ’_return’,’_to’, ’_the’,’_n’ ’

’ , ative’,’_form’, ’_at’, ’_neutral’, ’_pH’, ’;’,’_but’, ’_which’, ’_is’,
’_mainta’, ‘ined’, ’_at’,’_low’,’_pH’,’_by’, ’_neutr’, ’aliz’, ’ation’, ’_of’, ’_car’, 'box’, ’yl’, ’ate’, ’_groups’, ’_in’,
5 : 5

_the’,’_pep’, ’sin’, ’_por’, ’tion’, *.’]

Figure 5: Example of Sentence & Word Tokenization

A.5 Example of a Translated Citation

PMID: 44
Title: L’origine de I’inactivation alcaline du pepsinogene.

Abstract: Au-dessus du pH de 8,5, le pepsinogene est converti en une forme qui ne peut pas
étre activée en pepsine en cas d’exposition a un pH bas. L’exposition intermédiaire au pH neutre,
cependant, renvoie la protéine a une forme qui peut €tre activée. Des preuves sont présentées pour
un changement réversible, de petite conformation dans la molécule, distinct du déploiement de la
protéine. Dans le méme temps, la molécule est convertie en une forme de solubilité limitée, qui
est précipitée a faible pH, ol I’activation est normalement observée. Les résultats sont interprétés
en termes de la structure particuliere de la molécule de pepsinogene. La titration de la région
terminale de base NH2 produit une forme ouverte, qui peut revenir a la forme native a pH neutre,
mais qui est maintenue a un pH bas par la neutralisation des groupes carboxylés dans la portion de
pepsine.

Figure 6: Example of Title and Abstract Citation From the MBR Database Translated in French (McPhie,
1975)
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A.6 Translation Examples Compared to True French Abstracts

Original (PMID:33739270)

Le foie assure une grande partie du métabolisme des xénobiotiques. Ses particularités en font pourtant une cible
privilégiée pour des composés toxiques. Les hépatotoxicités des xénobiotiques, ces molécules étrangeres a notre
organisme, constituent un vrai défi pour les cliniciens, 1’industrie pharmaceutique, et les agences de santé. a la différence
des hépatotoxicités intrinseques, prévisibles et reproductibles, les hépatotoxicités idiosyncrasiques surviennent de
maniere non prévisible. La physiopathologie des hépatotoxicités idiosyncrasiques a médiation immune reste la moins
bien connue. Le développement d’outils qui permettent désormais d’améliorer la prédiction et la compréhension de
ces atteintes hépatiques parait étre une approche prometteuse pour identifier des facteurs de risque, et de nouveaux
mécanismes de toxicité.

Translated (PMID:33739270)

Le foie assure une grande partie du métabolisme des xénobiotiques grice a son équipement enzymatique considérable,
a sa localisation anatomique et a sa vascularisation abondante. Cependant, ces différentes caractéristiques en font
également une cible privilégiée pour les composés toxiques, en particulier dans le cas d’un métabolisme toxique.
L’hépatotoxicité induite par les xénobiotiques est une cause majeure de 1ésions hépatiques et un véritable défi pour
les cliniciens, I’industrie pharmaceutique et les agences de santé. Les hépatotoxicités intrinseques, c’est-a-dire les
hépatotoxicités prévisibles et reproductibles qui se produisent a des doses limites, sont distinguées des hépatotoxicités
idiosyncratiques, qui se produisent de maniére imprévisible chez les personnes présentant des sensibilités individuelles.
Parmi eux, la pathophysiologie de I’hépatotoxicité immunomédiée idiosyncratique n’est toujours pas claire. Cependant,
le développement d’outils visant a améliorer la prévision et la compréhension de ces troubles peut ouvrir des voies pour
I’identification de facteurs de risque et de nouveaux mécanismes de toxicité.

Original (PMID:32334967)

La tuberculose est due au complexe M. tuberculosis, dont la croissance lente entraine un long délai de rendu des tests
phénotypiques utilisés pour le diagnostic bactériologique. La biologie moléculaire a réduit considérablement ce délai,
notamment grace au déploiement de la méthode Xpert® MTB/RIF (Cepheid) qui permet de détecter le complexe M.
tuberculosis et la résistance a la rifampicine en 2 heures. D’autres tests détectant en plus la résistance a I’isoniazide et
aux antituberculeux de seconde ligne ont été€ développés. Cependant, les performances de ces tests sont nettement moins
bonnes si I’examen microscopique est négatif. Il est donc crucial de restreindre leur indication aux fortes suspicions
cliniques. Les tests de détection de la résistance n’explorent que certaines positions caractérisées ; or, toutes les
mutations responsables de I’acquisition de résistance ne sont pas connues. De plus, les performances sont variables pour
les différents antituberculeux. L’avenement du séquencage génomique est une perspective prometteuse. La faisabilité
en routine doit encore étre évaluée et 1’analyse des données reste a standardiser. L’essor des techniques de biologie
moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance. Cependant, elles restent des tests de
dépistage dont les résultats doivent étre confrontés aux méthodes phénotypiques de référence.

Translated (PMID:32334967)

La tuberculose est causée par le complexe M. tuberculosis. Sa croissance lente retarde le diagnostic bactériologique
basé sur des tests phénotypiques. La biologie moléculaire a considérablement réduit ce retard, notamment grace au
déploiement du test Xpert® MTB/RIF (Cepheid), qui détecte le complexe de M. tuberculose et la résistance a la
rifampicine en 2 heures. D’autres tests détectant la résistance a I’isoniazide et aux médicaments antituberculeux de
deuxieme ligne ont été développés. Cependant, les performances des tests moléculaires sont considérablement réduites
si le dépistage de la microscopie de bacille acide rapide est négatif. Il est donc crucial de limiter leur indication a de
fortes suspicions cliniques. Les tests de détection de la résistance n’explorent que certaines positions caractérisées;
cependant, toutes les mutations de résistance aux médicaments ne sont pas connues. En outre, les performances varient
pour différents médicaments antituberculeux. L’avenement de la séquengage génomique est prometteur. Son intégration
dans le flux de travail de routine doit encore étre évaluée et I’analyse des données doit encore étre normalisée. La
montée des techniques de biologie moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance aux
médicaments. Cependant, ils restent des tests de dépistage; les résultats doivent encore étre confirmés par des méthodes
de référence phénotypiques.

Original (PMID: 33742585)

Dans un souci d’amélioration de la qualité de vie des personnes atteintes de maladie chronique, les pratiques de soins se
sont enrichies de 1’éducation thérapeutique du patient (ETP). Celle-ci vise 1’acquisition de savoirs et de compétences
plurielles par les malades pour favoriser une gestion optimale de la pathologie au quotidien et des changements qui en
découlent, en limitant les répercussions négatives sur leur autonomie et leur bien-étre. Le sujet est placé au coeur de
son dispositif, en position de décision et de responsabilité, et collabore activement avec les différents acteurs de soins.
L’ETP implique donc la prise en compte de la dimension psychique du patient, en s’appuyant sur la psychologie et des
concepts fondamentaux pour sa mise en ceuvre.
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Translated (PMID: 33742585)

Dans un effort pour améliorer la qualité de vie des personnes atteintes de maladies chroniques, les pratiques de soins
ont été enrichis par I’éducation thérapeutique des patients (TPE). Cela vise a 1’acquisition de connaissances et de
compétences plurielles par les patients, ce qui favorise une gestion optimale de la maladie sur une base quotidienne et
des changements qui en découlent, en limitant leurs répercussions négatives sur leur autonomie et leur bien-étre. Le
sujet est placé au cceur du systeme, dans une position de décision et de responsabilité, et collabore activement avec les
différents acteurs de la santé. Le TPE implique donc la prise en compte de la dimension psychologique du patient, en
utilisant la psychologie et les concepts fondamentaux pour sa mise en ceuvre.

A.7 Tokenizers Comparison Example

Entity: [’infarctus’, ’du’, *'myocarde,’] (3 words)
TransTokenizer: ['__infarctus’,’__du’,’_ _myocarde’, ’,’] (4 tokens)
CamemBERT: [’__inf’, ’arc’, ’tu’,’s’,’__du’,’__my’, oc’, ’arde’, ’,’] (A+5)

Figure 7: CamemBERT Vs TransTokenizer Sample - An example of tokenization shows that the tokenizer of
TransBERT (i.e., TransTokenizer) requires less tokens than the tokenizer of CamemBERT to encode the same
sequence.

A.8 Pseudo-Perplexity Comparison Across Models

| TransBERT | CmTransBERT |  CmBERT | DrBERT
PPPLyoken 6.00 4.14 174.42 8.30
PPPL 0rq 11.71 8.59 2474.88 17.55
Nsentence ‘ 376
Nword | 9204
Ntoken | 12640 13934 13934 12459

Table 7: Pseudo-Perplexity Comparison Across Models - Pseudo-Perplexity across models, with the highest
uncertainty highlighted in bold.

A.10 Statistical Testing

________________

Al
: Pred(dataset{aldJ ,Modely,) ] True(dataset{ald’ )
________ l_ L }/ K> ﬂ ¥m € {Precision, Recall, F';-score} \ K =2

[ Metrics(f/, Y) — (Precision;, Recall;, F-score;)

Modely, Modely+1 Model i Modely, Modely
metric,, | metric,, metric,, | metric,, ; metric,, ;
metric,, 111 metr 14+1 ©7 |metric,,, 141 metric,, 141 metric,, 111

. . . . metric metric metric metric metric =
Friedman(metric,, j, metric,, j+1, ..., metric,, k) mL mL mL m.L m.L Wilcoxon(Modely, Modely)

Figure 8: Statistical Testing - In order to compare more than two models, the Friedman test is used to determine if
there is a significant difference between models, if so, the Nemenyi post-hoc test is used to determine which models
are significantly different. For two models, the Wilcoxon test is used.
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A.9 Downstream Tasks Summary

Name ‘ Task ‘ Instance ‘ Label ‘ Source
CAS | POS | 86805 | 30T | cC
CLISTER | STS | 1000 | 0w5 |cCC
DEFT-2020 ‘ STS ‘ 1009 ‘ Oto5 ‘ CC, encyclopedia &
| cs | 100 | 3¢ | dme
DiaMed | CLS | 726 | 15C | cC
E3C/Clinical | Ner 3270 1E | cc
E3C/Temporal ‘ ‘ 5756 ‘ S5E ‘
ESSAI POS 150 269 20T Clinical Trial Protocols
FrenchMedMCQA ‘ CLS ‘ 3102 ‘ 5C ‘ Pharmacy Exam
MantraGSC NER 879 7B Biomedical, Drug & Patent
MorFITT | CLS | 5115 | 12L | Biomedical
PxCorpus | NER | 11465 | 30E | Drug
| CLS 1T 4C |
QUAERG/EMEA ‘ NER ‘ 6001 ‘ 10E ‘ Drug & Biomedical
QUAERO/Medline | | 6765 |

Table 8: DrBenchmark Adaptation: Data & Tasks Summary - By alphabetical order - Overall, every model
tested will be evaluated using cross-validation on 15 distinct datasets covering a broad range of tasks. In the Label
column, C indicates a class within a multi-class framework, while L denotes the count of potential labels in a
multi-label classification, T tag and E entity. The instance count reflects the number of positive C, L, T or E. In the
source column CC stands for Clinical Cases.

16



	Introduction
	Related Work
	TransCorpus: A Scalable Translation Framework
	Machine Translation Framework & Model Selection
	Model Size & Context Length
	Framework Translation Workflow

	TransCorpus-bio-fr: A French Life Sciences Corpus
	MEDLINE/PubMed Abstracts Collection
	Translated Corpus Statistics

	TransBERT Pre-Training
	TransTokenizer Training
	Pre-training Hyperparameters

	TransBERT-bio-fr: Application to Life Sciences in French
	TransTokenizer-bio-fr Training
	CmTransBERT: Tokenizer Ablation
	Pre-training Statistics

	Experimental Setup
	Baseline Models
	DrBenchmark: An Adaptation
	Statistical Testing

	Results & Discussion
	Aggregated Results by Task
	Tokenizer Ablation Study

	Conclusion & Contributions
	Future Work
	Baseline Model
	In-Domain/Language Generalization
	Other Domains Generalization
	Other Languages Generalization

	Appendix
	Example of an English Abstract
	Corpus Statistics
	Example of a Translation with Repetition
	Example of a Tokenized Abstract
	Example of a Translated Citation
	Translation Examples Compared to True French Abstracts
	Tokenizers Comparison Example
	Pseudo-Perplexity Comparison Across Models
	Statistical Testing
	Downstream Tasks Summary


