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Abstract

Weakly electric fish, such as Gnathonemus petersii, generate pulsatile electric or-
gan discharges (EODs) that enable them to sense their environment through active
electrolocation. This plays a crucial role in several key behaviors, such as navi-
gation, foraging, and avoiding predators. While the anatomical and physiological
organization of the active electrosensory system has been extensively studied, the
contribution of active electrolocation to adaptive behavior in naturalistic settings
remains relatively underexplored. Here we present a preliminary in silico model of
active sensing in electric fish, using a neural network-based artificial agent trained
by deep reinforcement learning to perform an analogous active sensing task in a
2D environment. The trained agent recapitulates key features of natural EOD
statistics, shows emergent behavioral modularity, and provides intuitions about the
representation of key latent variables governing agent behavior, such as energy levels
(satiety).

1 Introduction

Weakly electric fishes like Gnathonemus petersii use electric pulses, or electric organ discharges
(EODs), to actively sense their environment, communicate with each other, and sense their envi-
ronment based on the EODs of nearby fish (Von der Emde, 1999; Sawtell et al., 2005; Pedraja &
Sawtell, 2024). The role that active electrolocation plays in the goal-oriented behaviors of fish is
less well understood compared to our extensive knowledge of the physiology of the neural mech-
anisms responsible for EOD generation. This knowledge gap is due to the difficulty of designing
naturalistic yet well-controlled studies that capture the complexity of the animals’ sensory ecology
and behavioral repertoire.

In recent years, neural network-based artificial agents trained to perform different tasks have emerged
as powerful tools to model animal behaviors and neural computations (Haesemeyer et al., 2019; Singh
et al., 2023). By transforming sensory inputs into motor outputs similar to those of real animals,
such models offer insight into the neural and cognitive processes underlying animal behaviors. They
also enable flexible in silico experimentation while being fully observable, allowing hypothesis testing
where experimental data collection is challenging.

Here, we present preliminary results from a biologically-constrained artificial agent trained by deep
reinforcement learning (DRL) to perform an active-sensing foraging task in a 2D environment,
analogous to weakly electric fish behavior.

2 Environment and Agent

2.1 Overview

Inspired by lab experiments on Gnathonemus petersii, we train our agents in simulated 2D tanks
of size 60 cm x 60 cm (Fig 1a). Simulations are initialized with n food items placed uniformly at
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Figure 1: (a) The agent works in tandem with the tank simulation environment to learn
an efficient foraging policy (billycorgan84, 2009). At each timestep, the agent receives sensory
observations and rewards from the environment and then selects its actions. If the agent emitted
an EOD in the previous timestep, it can observe the location of the nearest food and wall within
its sensing range. The agent uses a recurrent neural network (RNN) to infer the environmental
(‘belief’) state, selects an action using an Actor multilayer perceptron (MLP), and estimates the
action’s value with a Critic MLP. (b) Example trajectory from a trained agent. Food is
distributed uniformly at random throughout the 60cm x 60cm tank. The agent can sense food
within its sensing range (radius=14cm).

random. The position and orientation of a single agent are also initialized uniformly at random. At
each timestep, the agent observes the egocentric vector distance of the nearest food item and the
nearest wall within its sensing range. It can also observe its internal energy levels (e € [0, 1]), which
increase every time it eats food, but otherwise decrease linearly with time and activity levels. At
each timestep, it decides how much to move forward, how much to turn, and whether or not to emit
an EOD. The agent is rewarded for eating food, penalized for both starvation and overeating, and
has a baseline metabolic cost associated with staying alive. The agent (Fig la, right) consists of a
recurrent neural network (RNN) (Rajan et al., 2016) followed by parallel two-layer Actor and Critic
Multi-Layer Perceptrons (MLPs). The former selects the agent’s actions, and the latter estimates
the value of actions during training using policy gradients (Ni et al., 2021). All layers are 64-units
wide, with tanh nonlinearities. We constrain the agent’s maximum linear and angular velocities
and accelerations to match experimental data collected from an electric fish in an identically-sized
tank. Simulations are run at ~ 83 FPS to enable a minimum SPI of 12ms, as is observed in lab
experiments. For simplicity, here, the agent actions and observations are deterministic.

2.2 Environment

The environment is modeled as a Partially Observable Markov Decision Process (POMDP), a frame-
work that models scenarios where the agent has incomplete information about the true state of the
environment. The POMDP is specified as a collection of possible states S, actions A, observations
Q, transition probabilities 7, observation probabilities O, and rewards R : S x A — R. In the
tank environment, the state s; is a vector of the agent’s position and orientation in continuous x,y
space, the agent’s linear and angular velocities, the agent’s energy level e € [0,1], and the locations
of all uneaten food items. At each time step, the agent chooses an action a; composed of linear
acceleration, angular acceleration, and whether or not to emit an electric pulse. While the agent
is allowed to observe its energy level at every time step, the other observations (Fig 1la, top) are
conditional on several factors. If the agent has emitted an electric pulse in the previous time step,
then it has the opportunity to observe the location of the nearest food item and the nearest wall,
if these fall within the agent’s sensing radius (14 cm). The locations are observed as an egocentric
angle and a normalized proximity (proximity = 1 — —-distance__y fo; hoth the nearest food and the

sensing radius
nearest point on the wall. If the items do not fall within the sensing radius, or if the agent did not
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Figure 2: (a) Example sequential pulse intervals (SPIs) and energy of a trained agent over
a 1500-timestep episode. A sequential pulse interval is the length of time between two EODs.
Periods of repeated low SPIs (frequent EODs) correlate with vigorous foraging behavior, seen in the
step-wise increases in energy between 0-5000ms. High energy (satiated) behavior correlates with
higher SPIs (infrequent EODs) after 5000ms. (b) Distribution of SPIs when the agent has
high energy vs. low energy, from 30 episodes of 1500 timesteps each. When the agent’s energy
is high, its discharge patterns show a wide range of SPIs, including high SPIs (infrequent EODs).
When the agent’s energy (satiety) is low, its SPIs are low because it is actively foraging with more
frequent EOD discharges. Each SPI incurs a metabolic cost, so it is notable that the low-energy
agent pulses frequently. This indicates that the low-energy agent prioritizes finding food to avoid
starvation, rather than conserving energy. (c) Distribution of agent energy levels and linear
velocities (in cm/timestep) across 30 episodes of 1500 timesteps each. The agent tends to maintain
its energy at a “set point” close to full. Above this set point, the agent is penalized for overeating.
The agent’s linear velocity is bimodal (not swimming vs. swimming vigorously). High energy
levels (high satiety) correlate with low velocity, and conversely, low energy levels correlate with high
velocity. The agent’s energy level appears to influence its locomotion strategy. When the agent’s
energy level (satiety) is high, it does not need to eat more food and swims slowly. High velocity often
corresponds to an agent motivated to eat more food and gain energy. (d) Feature importance
from a 100-tree random forest predicting EOD rate. Agent energy, followed by proximity to
food, is the most important predictor of EOD rate. (e) Principal component analysis (PCA)
of the RNN’s hidden states, from 30 episodes of 3000 timesteps each. The hidden state output
by the RNN at each timestep can be interpreted as a low-dimensional “summary” of the agent’s
belief about the state of the environment. We observe a transition along the 2*¢ principal component
between the hidden states corresponding to a low-energy agent vs. those of a high-energy agent.
This indicates that energy may be a latent variable that plays an important role in determining the
agent’s actions.
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emit a pulse in the previous timestep, the agent observes a vector of zeros. The transitions of the
environment are deterministic and the observation probabilities are 1. Lastly, the agent’s goal is eat
a sufficient amount of food and thereby avoid starvation. The agent’s reward for each timestep is
specified as such:

Tt = Tfood eaten — rmetabolism(at) — Tovereat — Tstarvation
where rmetabolism (a€Celjin, accelyng, pulse) = a - accely;, + b - accelang + ¢ - pulse + d, and a, b, ¢, d are
tunable hyperparameters.

This reward function incentivizes the agent to forage for food items efficiently without “overeating,”
or going above the allowed energy level.

The simulated tank environment, pictured in Fig 1b, built on OpenAI’s Gym module, is 60 cm x 60
cm and is initialized with n = 40 food items located uniformly at random throughout the tank.

2.3 Agent

The agent learns via PPO, gradient-based algorithm to learn a policy, which can be challenging
when state, action, observation, and reward spaces are all continuous. At each timestep ¢, the agent
receives sensory observations x; and rewards r; from the environment. The agent’s architecture (Fig
la, right) is composed of a recurrent neural network (RNN) (Rajan et al., 2016) with a 64-unit
hidden layer, which is used to infer the state from the observation z;. The RNN’s hidden state is
then passed both to an Actor Multi-Layer Perceptron (MLP), which outputs an action a;, and to a
Critic MLP, which outputs an estimate of the expected returns from the given state v;. During the
process of training, v; is used to update the PPO algorithm by comparing the predicted and actual
returns.

2.3.1 Biological Constraints

We impose biological constraints on the agent and environment in order to make the agent’s learned
policy more realistic. For example, each timestep is equivalent to 12 ms, the minimum latency for
consecutive pulses in Gnathonemus petersii. Additionally, the agent’s maximum linear and angular
velocities and accelerations were learned from the trajectory data of a single elephantfish in a 60 cm
x 60 cm tank.

3 Results

Trained agents successfully electrolocate food items while producing movement trajectories (Fig.
1b) and EOD transcripts (Fig. 2a) that resemble experimental data from real fish. Two behavior
modes (Fig 2b), namely “resting” and “active foraging”, are also observed, similar to those observed
in real fish (von der Emde, 1992). We also observe that the trained agent learns a “homeostatic
drive” to maintain its energy levels slightly below the maximum possible (Fig. 2c¢). Additionally,
we find that the high energy (satiated) state is correlated with low linear velocity and vice versa
(Fig. 2¢). Furthermore, the low- and high- energy modes are observable in the RNN’s hidden state
activities (Fig. 2e).

4 Conclusions

In summary, our in silico artificial neural-network agent model recapitulated key features of active
sensing behavior in electric fish, including similar EOD statistics and emergent ’active’ and ’rest’
behavioral states. Our preliminary analysis of the neural activity underlying the learned policy
revealed a potential latent variable, i.e. energy level (satiety), that seems to govern agent behavior.
In the future, we hope to cross-pollinate interpretability techniques being developed in Computer
Science and Computational Neuroscience to further analyze agent behavior and neural-activity. We
also plan to explore the role of EODs in more complex tasks involving cooperation and competition
between multiple identical and diverse agents.
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5 Others

Broader Impact Statement

Our research contributes to the acceleration of hypothesis generation in neuroscience by leveraging
in-silico experimentation, paving the way for a deeper understanding of neural processes in biolog-
ical systems. Furthermore, techniques developed in Computational Neuroscience might potentially
inspire new methods for agent interpretability in Computer Science.
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