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Abstract

We have recently witnessed that “Intelligence” and “ Compression” are the two
sides of the same coin, where the language large model (LLM) with unprecedented
intelligence is a general-purpose lossless compressor for various data modalities.
This attribute particularly appeals to the lossless image compression community,
given the increasing need to compress high-resolution images in the current stream-
ing media era. Consequently, a spontaneous envision emerges: Can the compres-
sion performance of the LLM elevate lossless image compression to new heights?
However, our findings indicate that the naive application of LLM-based lossless
image compressors suffers from a considerable performance gap compared with
existing state-of-the-art (SOTA) codecs on common benchmark datasets. In light
of this, we are dedicated to fulfilling the unprecedented intelligence (compression)
capacity of the LLM for lossless image compression tasks, thereby bridging the
gap between theoretical and practical compression performance. Specifically, we
propose P2-LLM, a next-pixel prediction-based LLM, which integrates various
elaborated insights and methodologies, e.g., pixel-level priors, the in-context ability
of LLM, and a pixel-level semantic preservation strategy, to enhance the under-
standing capacity of pixel sequences for better next-pixel predictions. Extensive
experiments on benchmark datasets demonstrate that P2-LLM can beat SOTA
classical and learned codecs.

1 Introduction

Recently, Delétang et al. (2024) have uncovered that a large language model (LLM), pre-trained
on massive text corpora, can achieve competitive lossless compression rates across text, audio,
and image modalities. This perspective derives from the so-called philosophy, “Intelligence” and

“Compression” are two sides of the same coin (MacKay, 2003). Theoretically, minimizing log-loss
for next-token prediction in the LLM is equivalent to optimizing a lossless compression objec-
tive, positioning the LLM as a general-purpose compressor for any modality (Heurtel-Depeiges
et al., 2024). This insight is particularly compelling for the lossless image compression commu-
nity, where the need for more effective compression methods has become increasingly critical
in the era of streaming media (Rahman and Hamada, 2019). As advanced LLMs’ intelligence
gradually outperforms humans in various applications (Hu et al., 2024), a spontaneous envision
emerges, i.e., Can the compression performance of the LLM elevate lossless image compression
to new heights? If the answer is affirmative, the lossless image compression community will
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benefit steadily from the progress in LLM techniques since Huang et al. (2024) revealed that
a linear growth relationship between LLM’s compression performance and intelligence holds.
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Figure 1: Comparison of different
lossless image compressors for bit-per-
subpixel (bpsp↓) on CLIC.m dataset.
Classical compressors include PNG,
WebP, FLIF, and JPEG-XL.

However, achieving this roadmap is not straightforward.
The current LLM-based compressor (Delétang et al., 2024)
primarily showcases the methodology and corresponding
compression results on grayscale images, leaving it unclear
how to extend the lossless image compression capabilities
of the LLM to more widely used images, e.g., RGB im-
ages. As depicted in Figure 1, the direct application of the
existing LLM-based compressor to benchmark datasets
comprising RGB images reveals a significant performance
disparity compared with state-of-the-art (SOTA) classical
lossless codecs.

To unlock the potentially unprecedented intelligence (com-
pression) capacity of the LLM and bridge the gap between
theoretical and practical compression performance, we
carefully analyze three potential limitations of existing LLM-based lossless image compressor (Delé-
tang et al., 2024) when applied to widely-used images. First, compared with next-token (pixel)
prediction for grayscale images, modeling the highly nonlinear and long-range correlations of RGB
images, where each pixel comprises three subpixels, is more sophisticated. The existing method (Delé-
tang et al., 2024) lacks an effective mechanism to address this challenge. Second, Delétang et al.
(2024) impose proxy tokens (i.e., ASCII characters) to represent each pixel value in language space,
which would discard the original pixel-level semantic context, impairing the LLM’s ability to under-
stand images through their numerical pixel values in language space. Third, Delétang et al. (2024)
investigate the general-purpose compression capabilities. Instead, we focus specifically on the image
modality, which compels us to develop strategies that enhance the ability for next-pixel predictions.

To address these challenges, we aim to reformulate the overall framework of LLM-based lossless
image compression into a new one, which can unlock the inherent intelligence (compression) ability
of the LLM to achieve comparative or better compression performance compared with SOTA lossless
image codecs. With this goal in mind, our primary motivation is to boost LLM’s capacity to compre-
hend highly complex and long-range correlated pixel sequences in language space, thereby improving
next-pixel prediction accuracy, which directly correlates with a better compression ratio (Zhu et al.,
2024a). Specifically, we first propose to leverage pixel-level priors (e.g., intra-pixel inter-channel
correlation and local self-similarity) and the in-context ability of the LLM to facilitate the under-
standing of complex RGB pixel sequences. To this end, we integrate these functionalities into a pixel
prediction chat template. Second, instead of using proxy tokens, we propose a two-step lossless pixel
tokenization strategy that maximizes pixel-level semantic preservation for LLM context understand-
ing, where each subpixel is treated as a “word” that corresponds to a numerical representation in the
token dictionary. Finally, we employ a low-rank adaptation (LoRA)-based fine-tuning strategy (Hu
et al., 2021), which efficiently and effectively enhances the LLM’s understanding capacity of LLM
for this customized pixel prediction task. The overall framework is termed as P2-LLM, i.e., next-pixel
prediction-based LLM. Our contributions can be summarized as four-fold:

• We aim to fully unlock LLM’s unprecedented intelligence (compression) capacity for the
lossless image compression task. This perspective bridges the gap between theoretical and
practical compression performance for LLM, potentially opening new avenues as LLM
intelligence continues to evolve in the future.

• We propose P2-LLM, which integrates various elaborated methodologies, e.g., pixel-level
priors, the in-context ability of LLM, and pixel-level semantic preservation strategy. These
elements collaboratively enhance the LLM’s capacity to comprehend pixel sequences for
next-pixel predictions.

• P2-LLM enhances lossless compression rates of LLM-based compressors without extra
inference cost. Meanwhile, P2-LLM may be suitable for many offline stream and bandwidth-
constrained storage scenarios (e.g., large-scale scientific imaging in astronomy), where data
is decoded several months/years after collection in a non-real-time way.

• Extensive experiments demonstrate that (1) Although P2-LLM has no visual-perception
architecture, it can achieve competitive performance compared with existing learned codecs

2



Large Language 
Models

Pixel Prediction Chat Template

255 20 2  255 3 25 255 …

232 25 20  35 35 16 125 …

First Pixel 

Every three values denote an 
RGB pixel of a flattened image. 

Predict the next RGB pixel 
based on the previous pixels

𝒫

Patch 1

Patch 2

Patch n

𝒫 ⊕

𝒫 ⊕

𝒫 ⊕
…

Prompt 

2
1

2
 2

2
 1

9
  3

2
 1

5
 1

2
 1

2
3

 …

Two-step Lossless Pixel Tokenization

LLM Token Dictionary 𝒟 Digital Token 
Dictionary 𝑑

"!": 0,      
"\"": 1,      
"#": 2,      
"$": 3,      
"%": 4,      

"balance": 40178,     
"cycle":  40179,      
"Time":  40180,      
"LOCAL": 40181,      
"ĠEFI": 40182,      

Second Pixel 

… …  

“0” :  15   
“1” :  16
“2” :  17

“255”: 3192 

…

𝒫⊕

𝒫⊕

𝒫⊕
…

𝐗1
′

𝐗2
′

𝐗𝑛
′

Tokenized Sequences

…

Tokenize

128000 625 256 95 
35 … 3521 3138 3192

128000 625 256 95 
35 … 3234 3234 237

128000 625 256 95 
35 … 334 3173 2237

Tokenize
Template

Predictive Distribution Sampling

128000 625 256 95 
35 … 914  3192  16

𝒮1𝒫⊕

Detokenize
16 “1”

Predicted Token

… …
Logits 

Sampling using  𝑑
Logits 

…

“0” “3”… “120” “123”… “252” “255”…

…

“0” “3”… “120” “123”… “252” “255”…

Density Softmax

Arithmetic 
Coding

PDF

Symbol

Query

Response

Extract

❷❶

Fine-tuning 

𝐗2
′

𝐗1
′

𝐗𝑛
′

𝐗1
′

𝐗2
′

𝐗𝑛
′

Figure 2: The framework of the proposed P2-LLM, including Pixel Prediction Chat Template for the
pixel-level priors and in-context integration in sec. 3.1, Two-step Lossless Pixel Tokenization for
pixel-level semantic preservation in sec. 3.2, Predictive Distribution Sampling for scalable probability
representation of encoded symbols in sec. 3.3, and Fine-tuning to boost the understanding capacity
of pixel sequences in sec. 3.4. You may zoom in for a better view.

for in-domain datasets. (2) P2-LLM exhibits significantly better cross-domain generalization
capacity for out-of-distribution datasets compared with classifical and learned codes.

2 Related works

Lossless Image Compression. Traditional lossless image codecs, such as PNG (Boutell, 1997)
and JPEG-XL (Alakuijala et al., 2019), operate by employing manual pipelines to diminish the
redundancy of images for compression. However, due to the optimized difficulty of traditional
codes, the performance gradually bounds with little increase. Thus, the learned image compression
(LIC) approaches aim to mitigate such issues by an end-to-end learning framework (Bai et al.,
2024). Usually, LIC methods encompass two steps, including 1) statistical modeling of a given
image using deep generative models and 2) encoding the given image into the bitstreams using
arithmetic coding. Herein, modeling accurate and generalizable statistics of the given image is the
key component, where various generative models are used as follows. 1) Autoregressive models, such
as PixelRNN and PixelCNN (Van Den Oord et al., 2016), which forecast pixel distributions based on
conditional dependencies with previously acquired pixels via masked convolutions. 2) Flow models,
e.g., iVPF (Zhang et al., 2021b) and iFlow (Zhang et al., 2021a), leverage invertible transforms to
simplify latent distributions for efficient entropy coding. 3) Variational Auto-Encoder models, such
as L3C (Mentzer et al., 2019), which utilize variational architectures to model image distributions.

LLM-based compressors belong to autoregressive models, but there are no visual-perception compo-
nents (e.g., masked convolutions). Instead of perceiving images directly, LLM-based compressors
model the statistics of the image in the language space by discretizing each pixel to language tokens.

Large Language Models for Compression. The large language model (LLM) has performed
surprisingly well in natural language processing (Wu et al., 2023) and computer vision tasks (Yao
et al., 2024), due to its accurate next-token prediction capacity. For example, many challenging
applications, e.g., machine translation (Feng et al., 2024) and language understanding (Jiang and Li,
2024), are intensively solved by LLM.

Recently, Delétang et al. (2024) demonstrated that language modeling is compression, as log-loss
minimization for the next-token prediction of LLM is equivalent to optimizing a lossless compression
objective, which enables the LLM as a general-purpose compressor for any modality (Heurtel-
Depeiges et al., 2024). They showcased that LLM-based compressors can beat some classical codecs
(e.g., PNG) for grayscale images. Moreover, recent literature also implies the linear growth relation
between compression performance and LLM’s intelligence (Huang et al., 2024). These insights
motivate the lossless image compression community to investigate the unprecedented intelligence
of LLM in more common images, e.g., RGB images. Although it is straightforward to extend
Delétang et al. (2024)’ approach to RGB images in a channel-independent manner, such a strategy
suffers from many limitations. Thus, we are dedicated to fulfilling LLM’s unprecedented intelligence
(compression) capacity for the lossless image compression task.
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3 Methodology

Overall. From a lossless compression perspective, the proposed P2-LLM (as depicted in Figure 6)
aims to render an accurate probability representation of each encoded symbol (i.e., the (sub)pixel) for
arithmetic coding. Note that arithmetic coding is acknowledged to be optimal for coding length, where
the overall compression performance depends on the abilities of the probabilistic model (Delétang
et al., 2024). To this end, we focus on unlocking the unprecedented reasoning capacity of LLM to
understand pixel sequence for better next-pixel predictions with accurate probability representations.

3.1 Pixel-level Prior and In-context Integration

patch Unfolding 
0 0 255 1 2 245 2 5 255 …… 

Channel Correlation and 
Task Prompt 
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Jointly
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Figure 3: Comparison of different input sequences
for pixel prediction. Existing approach is from
Delétang et al. (2024). We process each patch of
RGB images in a channel-joint manner.

Assume LLMs can capture implicit structured
information and patterns to conduct next-pixel
prediction. Such capacity derives from the un-
precedented intelligence of the LLM learned
from the massive text corpus. However, exist-
ing results on benchmark datasets demonstrate
that the pre-trained LLM is still behind SOTA
codecs with a significant gap.

We argue that this phenomenon may derive from
two factors: (1) Without Pixel-level Priors:
Previous literature realizes accurate next-pixel
prediction based on fruitful pixel-level priors,
e.g., intra-pixel inter-channel correlation (Van Den Oord et al., 2016; Salimans et al., 2017) and
local self-similarity (Zhang et al., 2023; Wewer et al., 2023) between pixels. However, existing
LLM-based compressors fail to leverage these pixel-level priors to reason the next prediction, as they
either neglect the inter-channel correlation (Li et al., 2024) by channel-independent processing or
discard channel information by graying (Delétang et al., 2024). (2) Without Leveraging In-context
Learning of LLMs: Many works (Dong et al., 2024) demonstrate that in-context learning with
well-supported prompts can help the LLM understand specific tasks for more accurate predictions.
Existing LLM-based compressors simply input the pixel sequence without motivating potential
next-pixel prediction ability under a specific context.

To address the aforementioned limitations, we propose to integrate pixel-level priors and the in-
context ability of LLM to enhance the ability to reason the next pixel. To this end, we design a
customized pixel prediction chat template to integrate these functions into one. Specifically, given an
RGB image X ∈ RW×H×3 where W and H denotes the spatial resolution, X is first flattened into a
1D sequence with W ×H pixels, i.e.,

X
′
= flatten(X) = [x1,x2, · · · ,xW×H ],xi = {xR

i , x
G
i , x

B
i }, (1)

where xi denotes a pixel that consists of three subpixels xR
i , x

G
i , x

B
i for red, green, and blue channels.

As illustrated in Figure 3, sequential pixels with inter-channel correlation can potentially boost the
understanding ability of LLM for spatial relationships, e.g., local self-similarity between continues
pixels and color consistency in a specific range. Instead, the relationship between subpixels in a
channel-independent manner can be easily disturbed by various interferences, e.g., the noise and the
downsampling.

Meanwhile, we introduce a task prompt P to motivate the in-context understanding ability of LLM.
An example task prompt P can be presented as follows:

:::::
Every

::::
three

::::::
values

::::::
denote

::
an

:::::
RGB

::::
pixela of

:
a
:::::::
flattened

::::::
imageb.

:::::
Predict

:::
the

::::
next

:::::
RGB

::::
pixel

:::::
based

::
on

:::
the

:::::::
previous

::::::
pixels.c /////// a: Instruct the relationship between sequential values; b:

Clarify the data format; c: Clarify the reasoning task.

We can observe from the task prompt that effective instructions, e.g., the relationship between
sequential values and the reasoning task, are provided to potentially enhance the reasoning capacity
of LLM for next-pixel predictions.
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Formally, our proposed pixel prediction chat template can be represented as S = P ⊕X
′
, where ⊕

denotes the concatenation operation. Thus, the conditional probability of a symbol x3i+k (k is 1, 2,
and 3 for R, G, and B channel, respectively) given previous i pixels x1:i = x1:3i and task prompt P is

ρ(x3i+k|x1:3i,P) = ρ(x1:3i+k|P)/ρ(x1:3i|P). (2)

Theoretical Analysis. Different from channel-independent prediction, we use the LLM to conduct
a sequential prediction of three channels of a pixel by leveraging inter-channel correlation. To
demonstrate the rationality of such a strategy, we first provide the universally-defined prediction
theory by neural network-based amortization of Solomonoff induction (Salimans et al., 2017),
Theorem 1. (Li et al., 2024; Grau-Moya et al., 2024) For any parametric meta-learning model fθ
like the decoder-only large models, if fθ is fully trained by log-loss function and consider an infinite
sequence ω of events over a finite alphabet, the optimum posterior distribution µ of ωi+1 given ω1:i

can be obtained, i.e.,
lim
i→∞

(fθ(ωi+1|ω1:i)− µ(ωi+1|ω1:i)) = 0. (3)

We extend the result in Theorem 1 to our setting, i.e., a sequential prediction of three subpixels of a
pixel, to clarify a similar optimum posterior distribution:

Corollary 1. The optimum posterior distribution µ of xR
i+1,xG

i+1, and xB
i+1 from a perspective of

joint distribution, given previous i pixels x1:i, can be obtained as follows

lim
i→∞

(fθ(x
R
i+1, x

G
i+1, x

B
i+1|x1:i)− µ(xR

i+1, x
G
i+1, x

B
i+1|x1:i)) = 0, (4)

where optimum posterior distribution results in the smallest coding length for arithmetic coding.

Proof. First, we can decompose the joint distribution µ(xR
i+1, x

G
i+1, x

B
i+1|x1:i)) using chain rule:

µ(xR
i+1|x1:i) · µ(xG

i+1|x1:i, x
R
i+1) · µ(xB

i+1|x1:i, x
R
i+1, x

G
i+1). (5)

Similar decomposition can be conducted by fθ. By recalling Theorem 1, if each pair of conditional
distribution converges independently, a fully trained fθ is a must. This means fθ has to capture
correlations using previous subpixels of the current pixel and previous pixels as the condition,
ensuring accurate predictions. However, such domain-specific capacity cannot be guaranteed strictly
by pre-trained fθ. Thus, we assume that such a fully trained decoder-only model can be obtained by
fine-tuning pre-trained fθ to f̂θ. Then,

lim
i→∞

(f̂θ(x
R
i+1|x1:i)− µ(xR

i+1|x1:i) = 0 (6)

lim
i→∞

(f̂θ(x
G
i+1|x1:i, x

R
i+1)− µ(xG

i+1|x1:i, x
R
i+1)) = 0 (7)

lim
i→∞

(f̂θ(x
B
i+1|x1:i, x

R
i+1, x

G
i+1)− µ(xB

i+1|x1:i, x
R
i+1, x

G
i+1)) = 0. (8)

As the convergence for each component implies the convergence of the product of these components
due to the properties of limits and continuity, Cor. 1 holds. However, fine-tuning fθ to model
conditional distributions and related correlations is necessary. Otherwise, suboptimal posterior
distributions will be due to suboptimal convergence. Proof ends.

Overall, Cor. 1 implies that our channel-joint training can encourage the LLM to implicitly learn a
joint distribution over subpixels of a pixel and capture correlations of conditional distributions for
optimum posterior distribution. Such modeling will result in more robust and accurate representations,
as discussed by Salimans et al. (2017) (which rely on explicitly parameterized modeling). Meanwhile,
fine-tuning (as described in sec. 3.4) is indispensable to realize optimum posterior distribution.

3.2 Two-step Lossless Pixel Tokenization

The tokenizer is an important component in bridging the original semantic space and discrete language
representation used by LLMs. Recent progresses (Ali et al., 2023) highlight the tokenizer choice and
corresponding token representations can significantly impact the LLM’s downstream performance
and reasoning ability. Motivated by this, existing LLM-based compressors may be suboptimal.
(1) Without One-to-One Mapping: To ensure lossless compression, the tokenizer must enable a
one-to-one mapping between the pixel (subpixel for RGB images) value and the token representation.
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Figure 4: Visualization of predictive distribution sampling for reasoning three subpixels using LLM.
Zoom in for a better view.

However, Delétang et al. (2024) conduct a data mapping from the original pixel representation to
the range [0,127], as ASCII charterers are encoded in this range. Thus, such preprocessing results
in one-to-two mapping with information loss. Although they append lost bits to the end of the
compressed sequence, the compression ratio decreases. (2)Without Pixel-level Semantic Context:
Intuitively, if the discrete token representation maintains the original pixel-level semantic context,
those pixel-level priors will still be utilized by LLMs. However, existing approaches (Delétang et al.,
2024) use the customized tokenizer with ASCII characters but fail to do so, e.g., the pixel values 126,
127, and 0 are represented as “˜”, “DEL”, and “NUL”, respectively. The closer relationship between
126 and 127 violates.

To tackle the aforementioned limitations, we propose a two-step lossless pixel tokenization strategy.
In a nutshell, our solution derives from the on-hand numerical understanding ability of LLM (e.g.,
one number is smaller or larger than another) as discussed by Zhu et al. (2024b). Motivated by this
finding, we propose to treat each subpixel as a word that corresponds to a numerical representation in
the token dictionary, i.e., 127→ “127”. By doing so, we can achieve a one-to-one mapping from the
pixel value to the token representation, as each digital word from “0” to “255” has a unique token ID.
More importantly, due to the preservation of pixel-level semantic context, LLM can understand the
sequential pixel values for better next-pixel prediction.

Specifically, the two-step lossless pixel tokenization framework includes 1) a widely used tokenization
process and 2) a one-to-one matching process between digital words and digital tokens. Formally,
given the tokenization function as T (·) and the corresponding token dictionary as D, we first extract
the digital words in the range of 0 to 255 and the corresponding token ID,

d = {str(z) : T (str(z),D) | z ∈ {0, 1, 2, . . . , 255}}, (9)

where d denotes the digital token dictionary and str(·) denotes a number-to-string conversion
operator for each pixel value z. Furthermore, the task prompt P and input pixel sequence X

′
are

tokenized by two steps as follows:

S
′
= T (P,D)⊕ {d(str(zj))}W×H×3

j=1 , (10)

where we look up the token representation of each pixel using the obtained digital token dictionary d,
which ensures the one-to-one mapping to avoid potential word splitting using tokenizer T (·).

3.3 Predictive Distribution Sampling

LLM can conduct next-token predictions to output the predictive softmax probability. However,
only the pixel value prediction is required for lossless image compression. We therefore propose to
sample the predictive logits before the softmax layer, based on the digital token dictionary d. Then,
these sampled logits will be normalized to a probability distribution consisting of 256 probabilities
proportional to the exponentials of the input numbers. Such probability distribution can be used
for arithmetic coding. Compared with previous works, e.g., Bai et al. (2024) that need to learn
parameterized distributions (e.g., Gaussian mixture models), our sampled predictive distribution is
parameter-free with maximal scalability and robustness in complex scenarios (Broom et al., 2007).
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Formally, given the LLM as a next-token prediction function LLM(·) without the softmax layer,
the prediction is represented as y = LLM(S

′
), where y ∈ R1×|D| consists of |D| predictive logits

{yn}|D|
n=1 for each token ID, i.e., n. By using the digital token dictionary d, the pixel-related predictive

vector yc can be represented as

yc = {yz
c = yn | n = d(str(z)), z ∈ {0, 1, 2, . . . , 255}}, (11)

where yc ∈ R1×256. As shown in Figure 4, the predictive logtis between 0 and 255 are presented in
the middle column. For each prediction, the peak of those logits is roughly around the encoded pixel
value, which showcases that LLM can effectively predict the next pixel. Meanwhile, the visualized
logits in Figure 4 demonstrate that LLMs can naturally assign more mass to most possible pixel
values. Instead, previous methods (Salimans et al., 2017) need to assign a higher probability to the
edge values 0 and 255 in a handcrafted manner.

Finally, the softmax function σ(·) is utilized to normalize these logits into a probability distribution,
which equals a generalization of the logistic function:

p(yc) = σ(yc) =
ey

z
c∑255

z=0 e
yz
c

. (12)

We can use encoded pixel values and probability density functions to conduct arithmetic coding.

3.4 Fine-tuning and Practicability

Fine-tuning. To enhance the ability of next-pixel prediction of LLM and obtain optimum posterior
distribution (as discussed in Cor. 1), it is necessary to fine-tune the LLM using low-rank adaptation
(LoRA) (Hu et al., 2021). LoRA enables the LLM to adapt to a customized task in a computationally
efficient manner (Li et al., 2023). By following Delétang et al. (2024), we mainly explore the effec-
tiveness of language models for lossless image compression. To this end, the Llama 3 series (Dubey
et al., 2024), open-source LLMs released by Meta, are used. We utilize the pre-trained Llama 3 series
8B base model (The effect of other model sizes is presented in Appendix) provided by Huggingface.
By following Delétang et al. (2024), we split the overall image into sequential non-overlapped patches
for compression. Meanwhile, different patches can be independently processed in a batch manner,
which enables parallel acceleration. For the training set, we split 10K and 4,000K patches as the
validation and fine-tuning sets, respectively. We set the epoch as 2 and choose the best checkpoint
by computing the average cross-entropy loss on the validation set (per 2k iterations). Many LLM-
accelerating and GPU-efficient strategies are used for fine-tuning, including DeepSpeed Stage-2,
FP16 mixed-precision training, and Flash Attention.
Practicability of P2-LLM. Many offline stream and bandwidth-constrained storage scenarios can
use the P2-LLM. For example, upon large-scale scientific imaging in astronomy, the massive data
may be decoded for months/years after collection in a non-real-time manner. Meanwhile, with the
rapid development of LLMs’ quantization and inference accelerating, a more lightweight and efficient
LLM-based codec with competitive intelligence may be developed for efficient coding.

4 Experiments

Datasets. Five commonly-used natural image datasets are imposed to evaluate the lossless com-
pression performance of different approaches, including DIV2K validation set, CLIC.p, CLIC.m,
Kodak. Meanwhile, two out-of-distribution datasets are used for generalization evaluation, includ-
ing SCID and BRACS24. We follow Bai et al. (2024) to use the DIV2K high-resolution training
dataset (Agustsson and Timofte, 2017) for fine-tuning the LLM, where each image is cropped into
non-overlapped patches. The details of adopted datasets can be found in Appendix.

Training Details. As the rationale of LoRA is to approximate a large matrix by two low-rank
decomposed matrices, the rank and corresponding alpha coefficient in LoRA would significantly
affect the performance. We ablate the rank in some predefined values, and the alpha coefficient is
twice as much as the rank for a default setting. After ablation analysis (in Appendix), the rank and
alpha coefficient are set to 64, and 128, respectively. The target modules of LoRA include query, key,
value, and output projections. The patch size determines the length of context information for LLM.
We ablate different patch sizes in predefined values and choose the size of 16× 16. The task prompt
of LLM is used as described in sec. 3.1 (The effect of other task prompts is presented in Appendix).
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Table 1: Lossless image compression performance of different lossless image codecs in terms of
bpsp↓. We use official checkpoints provided by L3C and DLPR for testing on SCID and BRACS24.
Other results are reported from DLPR’s paper. Classical codecs are based on imagecodecs library.

Category Codec In-distribution
DIV2K CLIC.p CLIC.m Kodak

Classical JPEG-XL (Alakuijala et al., 2019) 2.88 2.63 2.36 2.87

LIC L3C (Mentzer et al., 2019)
DLPR (Bai et al., 2024)

3.09
2.55

2.94
2.38

2.64
2.16

3.26
2.86

LLM
Delétang et al. (2024)
P2LLM

4.17
2.51

3.89
2.35

3.76
2.08

3.96
2.83

Table 2: Lossless image compression performance of different lossless image codecs in terms of
bpsp↓. We use official checkpoints provided by L3C and DLPR for testing on SCID and BRACS24.
Other results are reported from DLPR’s paper. Classical codecs are based on imagecodecs library.

Category Codec Venue In-distribution Out-of-distribution
DIV2K CLIC.p CLIC.m Kodak SCID BRACS24

Classical

PNG (Boutell, 1997)
JPEG-LS (Weinberger et al., 2000)
CALIC (Wu and Memon, 1997)
JPEG2000 (Skodras et al., 2001)
WebP (Si and Shen, 2016)
BPG (Yee et al., 2017)
FLIF (Sneyers and Wuille, 2016)
JPEG-XL (Alakuijala et al., 2019)

−
TIP-2000
TIP-1997

−
−
−

ICIP-2016
−

4.23
2.99
3.07
3.12
3.11
3.28
2.91
2.88

3.93
2.82
2.87
2.93
2.90
3.08
2.72
2.63

3.93
2.53
2.59
2.71
2.73
2.84
2.48
2.36

4.35
3.16
3.18
3.19
3.18
3.38
2.90
2.87

1.79
2.11
−

2.15
1.24
1.57
−

1.26

4.99
4.04
−

3.83
3.94
−
−

3.67

LIC

L3C (Mentzer et al., 2019)
RC (Mentzer et al., 2020)
iVPF (Zhang et al., 2021b)
iFlow (Zhang et al., 2021a)
LLICTI (Kamisli, 2023)
ArIB-BPS (Zhang et al., 2024)
DLPR (Bai et al., 2024)

CVPR-2019
CVPR-2020
CVPR-2021
NeurIPS-2021
TCSVT-2024
CVPR-2024
TPAMI-2024

3.09
3.08
2.68
2.57
2.77
2.55
2.55

2.94
2.93
2.54
2.44
2.79
−

2.38

2.64
2.54
2.39
2.26
−
−

2.16

3.26
−
−
−

2.99
−

2.86

2.67
−
−
−
−
−

1.58

3.98
−
−
−
−
−

3.61

LLM
Delétang et al. (2024)
P2LLM

ICLR-2024
This paper

4.17
2.51

3.89
2.35

3.76
2.08

3.96
2.83

1.67
1.21

4.12
3.33

The initial rate of the cosine decay learning scheduler is set to 1× 10−4 with a warming-up of 1000
steps. We use 4 NVIDIA A800 GPUs for fine-tuning with a batch size of 8 per GPU.

Baselines. To evaluate the effectiveness of our proposed method, various baseline codes are intro-
duced as follows: 1) Classical Codes. Classical codes usually compress the image using handcrafted
priors and elaborate framework designs. Here, we use some widely adopted classical codes, including
PNG, JPEG-LS, CALIC, JPEG2000, WebP, BPG, FLIF, and JPEG-XL. 2) Learned Image Com-
pression (LIC). LIC models usually directly minimize the rate cost by deep neural networks. In
this branch, residual coding-based pipelines have achieved SOTA compression performance, where
the residual information of lossy compression is compressed by arithmetic coding. We utilize some
SOTA LIC models for comparison, including L3C, RC, iVPF, iFlow, LLICTI, ArIB-BPS, and DLPR.
3) LLM-based Compressor. We mainly reproduce Delétang et al. (2024)’ method to compress the
RGB images by maintaining their key components, including using a pre-trained LLM, proxy tokens,
and a channel-independent manner. Practically, we discard the proxy tokens to use our tokenization
strategy, as appending lost bits to the end of the compressed sequence is sophisticated. Note that
online training-based codecs e.g., NNCP (Bellard, 2021) and CMIX (Knoll et al., 2008) are not
compared as all LIC/LLM-based baselines perform offline training and their runtime is huge.

Main Results. We evaluate the lossless compression performance of different codes using bit-per-
subpixel (bpsp). As illustrated in Table 2, our proposed P2-LLM achieves the best performance in all
datasets, compared all classical and LIC baselines with an obvious margin. For example, P2-LLM
achieves 2.08 and 2.83 bpsp, suppressing the best LIC approach (DLPR) with 2.16 and 2.86 bpsp.
Meanwhile, P2-LLM beats the best classical compressor, JPEG-XL. Note that Delétang et al. (2024)
approach only outperforms the PNG, which is reasonable as they cannot generalize to widely-used
images (e.g., RGB images) due to the lack of effective pixel-level semantic context and the fine-tuning.
Last but not least, P2-LLM exhibits significantly better generalization than learned codes.
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Table 3: Ablation Study. Channel-Indep. means RGB images are compressed in a channel-
independent manner for LLM. Channel-Corre. means RGB images are compressed by next-pixel
prediction, as proposed in sec. 3.1. FT denotes the fine-tuning. w/: With and w/o: Without.

Pixel Prediction Chat Template
bpsp↓Pixel-level Prior In-context Learning

Channel-Indep. Channel-Corre. w/o Task Prompt w/ Task Prompt

w/o FT

✓ × ✓ × 4.55
✓ × × ✓ 4.46
× ✓ ✓ × 3.96
× ✓ × ✓ 3.83

w/ FT

✓ × ✓ × 3.95
✓ × × ✓ 3.76
× ✓ ✓ × 2.99
× ✓ × ✓ 2.83

60 40 20 0 20 40 60

40

20

0

20

40

0-19

20-39

40-59

60-79

80-99

100-127

(a) ASCII Tokens
15 10 5 0 5 10 15

15

10

5

0

5

10

0-49

50-99

100-149

150-199

200-249

250-255

(b) Numerical Tokens

Codec Encoding Time Decoding Time
JPEG-XL 0.73 0.08

BPG 2.38 0.13
L3C 8.17 7.89

DLPR 1.26 1.80
Delétang et al. (2024) 15.13 272.05

P2-LLM 14.89 273.11

(c) Runtime comparison (second/image)

Figure 5: (a)-(b) Token embedding visualization of pixel values using t-SNE (dimension of each
token embedding is 4096 in Llama 3). (a) Pixel values tokenized by proxy tokens as in Delétang
et al. (2024) (with data remapping from [0,255] to [0,127]). (b) Using digital token dictionary. (c)
Comparison of runtime on Kodak dataset using 8 A800 GPUs (batch size: 16, subprogress: 2 per
GPU). P2-LLM and Delétang et al. (2024) adopt the same context, leading to similar runtime.

4.1 Detailed Analysis of Each Key Component

We carefully analyze the effectiveness of each key component using the ablation study on the Kodak
testing dataset. Some conclusions can be presented as follows.

– Fine-tuning (as discussed in sec. 3.4) cannot fully awake LLM’s compression ability. As
illustrated in Table 3, it can be observed that the fine-tuning can significantly improve the compression
performance under the same setting, which is reasonable as the LLM’s understanding ability increases
a lot for pixel sequences, resulting in more accurate next-pixel predictions. However, it should be
noted that simply fine-tuning LLM cannot result in SOTA compression performance. For example, a
3.76 bpsp score (last-third row) is achieved with channel-independent and task prompt settings. Such
performance still has a significant downside compared SOTA models as in Table 2.

– Pixel-level priors and In-context learning (as discussed in sec. 3.1) are important catalysts,
especially the former. As illustrated in Table 3, pixel-level priors and in-context learning can improve
the compression performance, regardless of with or without fine-tuning settings. Especially, without
fine-tuning, we can observe that simple usage of channel correlations can intensively increase the
performance, i.e., from 4.55 (first row) to 3.96 (third row) bpsp. This is reasonable as the LLM can
leverage the intra-pixel inter-channel correlations for more accurate next-pixel reasoning. Meanwhile,
the task prompt can moderately enhance the understanding of LLM for pixel sequence with better
compression performance using the context, e.g., from 3.96 (third row) to 3.83 (fourth row) bpsp.
– Two-step lossless pixel tokenization (as discussed in sec. 3.2) can maintain pixel-level semantic
context with more compact representations. As shown in Figures 5(a) and 5(b), we visualize
the token embeddings of pixel values from 0 to 255. These embeddings are queried from the
embed_tokens layer of LLM. We can observe that the pixels with closer values are roughly closer
in feature space when our numerical tokens are adopted, thus pixel-level semantic context can be
preserved in language space. This aids LLM in understanding the relationship between pixels better.

– Predictive distribution sampling (as discussed in sec. 3.3) results in accurate and compact
probability representation. As shown in Figure 4, predictive logits between 0 and 255 are presented
in the middle column. For each prediction, the peak of those logits is roughly around the encoded
pixel value, which showcases that LLMs can effectively predict the next pixel by understanding
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the relationship between pixel values. After the softmax function, the probability representation is
extremely compact, which can benefit the AC with better compression performance.

– Computational Complexity. From Table 5c, our proposed method has no extra inference cost
compared with Delétang et al. (2024). Although the current decoding time is slower than other
baselines due to the inherent downside of autoregressive models (Kizhakkumkara Muhamad et al.,
2023), we argue that it is feasible to achieve better efficiency with the development of LLM-based
inference acceleration and computationally efficient pixel prediction strategies in the future.

5 Limitation and Conclusion
Although we have observed that the LLM-based compressor can beat classical and LIC-based codes,
especially in its cross-domain generalization capacity, its decoding time is slower than other baselines
and similar to autoregressive counterparts. More investigations about balancing effectiveness and
efficiency will be explored in the future.

In this paper, to fully utilize LLMs’ intelligence for lossless image compression, we introduce P2-
LLM to improve lossless image compression performance in the language space. This mitigates the
gap between theoretical and practical compression performance for LLM. Extensive experiments
show that P2-LLM can beat SOTA classical and learned lossless compressors with obvious gains.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have provided accurate contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have provided the limitation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed experiment settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code will be released upon the acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have revealed detailed experiment settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the average of three runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the content of computing resources in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work can contribute to broader positive impact for better test-time infer-
ence.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: CC-BY 4.0

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 4: The datasets for evaluation. The symbols ∗ and † denote fine-tuning and testing datasets,
respectively.

Dataset Description # Num. Avg. Resolution
DIV2K-Training∗ Natural 800 1080×2048

Kodak† Natural 24 576×704
DIV2K-Validation† Natural 100 1080×2048

SCID† Screen Content 40 720×1080
CLIC.p† Natural 41 1080×2048

BRACS24† Medical 24 1526×2897
CLIC.m† Natural 61 1080×2048

Kodak

BRACS24

DIV2K-Training DIV2K-Validation

SCIDCLIC.m

CLIC.p

Figure 6: Visualization of used datasets in this paper.

A Technical Appendices and Supplementary Material

A.1 Details of Datasets

By following previous works (Bai et al., 2024), seven different datasets with three types of image styles
are imposed to evaluate the lossless compression performance of different approaches. As illustrated
in Table 1, we follow Bai et al. (2024) to use the DIV2K high-resolution training dataset (Agustsson
and Timofte, 2017) for fine-tuning the LLMs, where each image is cropped into around 4,000,000 non-
overlapped patches with a size of 16× 16. The testing datasets include Kodak dataset2, DIV2K high-
resolution validation dataset (Agustsson and Timofte, 2017), SCID dataset (Ni et al., 2017), CLIC.p
dataset (Toderici et al., 2020), BRACS24 dataset (Niazi et al., 2019), and CLIC.m dataset (Toderici
et al., 2020). These datasets have different image styles, including natural images, medical images,
and screen content images.

A.2 Ablation Study of LoRA-based Fine-tuning Hyperparameters

Table 5: Performance comparison of different rank and alpha coefficients on different datasets in
terms of bpsp (↓).

Rank Alpha Kodak DIV2K-Validation SCID

16 32 2.83 2.54 1.23
32 64 2.84 2.53 1.25
64 128 2.83 2.51 1.21

128 256 2.87 2.51 1.25

In this section, we aim to investigate the effect of different ranks and alpha coefficients in LoRA-based
fine-tuning. As illustrated in Table 5, we can observe that a moderate value in terms of the rank

2https://r0k.us/graphics/kodak/
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and alpha coefficient can achieve a more balanced performance among different datasets. Thus, we
choose the rank as 64 and the alpha coefficient as 128.

A.3 Ablation Study of Different Task Prompts
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(a) Fine-tuning task prompt.
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(b) Testing task prompt for medical images.
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(c) Testing task prompt for screen content images.

Table 6: Performance comparison of different task prompts in terms of bpsp (↓).

Dataset Description Fine-tuning task prompt Customized task prompt

BRACS24 Medical 0.96 0.95
SCID Screen content 2.82 2.81

In this section, we aim to investigate the effect of different task prompts for different datasets
(BRACS24 and SCID). To this end, we add the image type of coding image into the fine-tuning task
prompt as shown in (b) and (c). We randomly choose an image from these two datasets. As illustrated
in Table 6, the customized task prompt can mildly improve the compression performance, which is
reasonable as the customized task prompt can enhance the understanding capacity of pixel sequence
for LLM using the given context. However, such improvement may be explored by other effective
task prompts to do so, in the future.

Table 7: Performance comparison of different model sizes on different datasets in terms of bpsp (↓).

Model Size Kodak CLIC.p SCID CLIC.m

Llama 3.2 base 1B 2.87 2.41 1.25 2.15
Llama 3.2 base 3B 2.84 2.38 1.22 2.11
Llama 3.1 base 8B 2.83 2.35 1.21 2.08

Note: Llama 3.2 series is the newest version.
Since only 1B and 3B are available for Llama
3.2 series, Llama 3.1 8B is chosen. The slight
performance difference of different versions is
ignored.
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Figure 7: Visualization of bit consumption of example images in Kodak datasets.

A.4 Ablation study of different sizes of LLM

As illustrated in Table 7, we have observed that the compression performance will significantly
benefit from increased model size. This finding would motivate us to investigate more powerful usage
of LLMs in the future.

A.5 Visualization of bit consumption of case images

As we can see, there is less bit consumption in the smooth region with less color change, which is
reasonable as the next-pixel prediction is relatively easy in these regions. Instead, in the region of
more color change, it is more challenging to predict next pixels, leading to more bit consumption.
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