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ABSTRACT

Large-vocabulary object detectors (LVDs) aim to detect objects of many cate-
gories, which learn super objectness features and can locate objects accurately
while applied to various downstream data. However, LVDs often struggle in rec-
ognizing the located objects due to domain discrepancy in data distribution and
object vocabulary. At the other end, recent vision-language foundation models
such as CLIP demonstrate superior open-vocabulary recognition capability. This
paper presents KGD, a Knowledge Graph Distillation technique that exploits the
implicit knowledge graphs (KG) in CLIP for effectively adapting LVDs to various
downstream domains. KGD consists of two consecutive stages: 1) KG extraction
that employs CLIP to encode downstream domain data as nodes and their fea-
ture distances as edges, constructing KG that inherits the rich semantic relations
in CLIP explicitly; and 2) KG encapsulation that transfers the extracted KG into
LVDs to enable accurate cross-domain object classification. In addition, KGD
can extract both visual and textual KG independently, providing complementary
vision and language knowledge for object localization and object classification
in detection tasks over various downstream domains. Experiments over multiple
widely adopted detection benchmarks show that KGD outperforms the state-of-
the-art consistently by large margins.

1 INTRODUCTION

Object detection aims to locate and classify objects in images, which conveys critical information
about “what and where objects are” in scenes. It is very important in various visual perception tasks
in autonomous driving, visual surveillance, object tracking, etc. Unlike traditional object detection,
large-vocabulary object detection |Li et al.| (2022b); Yao et al.| (2022); Zhou et al.| (2022)) aims to
detect objects of a much larger number of categories, e.g., 20k object categories in [Zhou et al.
(2022). It has achieved very impressive progress recently thanks to the availability of large-scale
training data. On the other hand, large-vocabulary object detectors (LVDs) often struggle while
applied to various downstream tasks as their training data often have different distributions and
vocabularies as compared with the downstream data, i.e., due to domain discrepancies.

In this work, we study unsupervised domain adaptation of LVDs, i.e., how to adapt LVDs various
downstream tasks with abundant unlabelled data available. Specifically, we observe that LVDs learn
superb generalizable objectness knowledge from massive object boxes, being able to locate objects
in various downstream images accurately |Zhou et al.| (2022)). However, LVDs often fail to classify
the located object due to two major factors: 1) the classic dataset-specific class-imbalance and the
resultant distribution bias across domains; and 2) different vocabularies across domains [Oksuz et al.
(2020); You et al.|(2019). At the other end, vision-language models (VLMs)|Zhang et al.|(2023)) such
as CLIP Radford et al.| (2021) learn from web-scale images and text of arbitrary categories, which
achieve significant generalization performance in various downstream tasks with severe domain
shifts. Hence, effective adaptation of LVDs towards various unlabelled downstream domains could
be facilitated by combining the superior object localization capability from LVDs and the super-rich
object classification knowledge from CLIP.

We design Knowledge Graph Distillation (KGD) that explicitly retrieves the classification knowl-
edge of CLIP to adapt LVDs while handling various unlabelled downstream domains. KGD works
with one underling hypothesis, i.e., the generalizable classification ability of CLIP largely comes
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from its comprehensive knowledge graph learnt over billions of image-text pairs, which enables it
to classify objects of various categories accurately. In addition, the knowledge graph in CLIP is im-
plicitly encoded in its learnt parameters which can be exploited in two steps: 1) Knowledge Graph
Extraction (KGExtract) that employs CLIP to encode downstream data as nodes and computes their
feature distances as edges, constructing an explicit CLIP knowledge graph that captures inherent se-
mantic relations as learnt from web-scale image-text pairs; and 2) Knowledge Graph Encapsulation
(KGEncap) that encapsulates the extracted knowledge graph into object detectors to enable accurate
object classification by leveraging relevant nodes in the CLIP knowledge graph.

The proposed KGD allow multi-modal knowledge distillation including Language Knowledge
Graph Distillation (KGD-L) and Vision Knowledge Graph Distillation (KDG-V). Specifically,
KGD-L considers texts as nodes and the distances among text embeddings as edges, enabling detec-
tors to reason whether a visual object matches a text by leveraging other relevant text nodes. KGD-V
takes a category of images as a node and the distances among image embeddings as edges, which
enhances detection by conditioning on other related visual nodes. Hence, KGD-L and KGD-V com-
plement each other by providing orthogonal knowledge from language and vision perspectives. In
this way, KGD allows to explicitly distill generalizable knowledge from CLIP to facilitate unsuper-
vised adaptation of large-vocabulary object detectors towards distinctive downstream datasets.

In summary, the major contributions of this work are threefold. First, we propose a knowledge
transfer framework that exploits CLIP for effective adaptation of large-vocabulary object detectors
towards various unlabelled downstream data. To the best of our knowledge, this is the first work
that studies distilling CLIP knowledge graphs for the object detection task. Second, we design
novel knowledge graph distillation techniques that extracts visual and textual knowledge graphs
from CLIP and encapsulates them into object detection networks successfully. Third, extensive
experiments show that KGD outperforms the state-of-the-art consistently across 10 widely studied
detection datasets.

2 RELATED WORKS

Large-vocabulary Object Detection Dave et al.| (2021)); |Gupta et al.| (2019); Redmon & Farhadi
(2017); [Yang et al.[| (2019b)) aims to detect objects of thousands of classes. Most existing studies
tackle this challenge by designing various class-balanced loss functions Dave et al.| (2021) for effec-
tive learning from large-vocabulary training data and handling the long-tail distribution problem |Li
et al. (2020); [Feng et al.[(2021); ' Wu et al.| (2020); |[Zhang et al.| (2021b). Specifically, several losses
have been proposed, such as Equalization losses Tan et al.| (2020; 2021]), SeeSaw loss Wang et al.
(2021)), and Federated loss|Zhou et al.|(2021). On the other hand,|Yang et al.|(2019a) and Detic|{Zhou
et al.|(2022) attempt to introduce additional image-level datasets with large-scale fine-grained classes
for training large-vocabulary object detector (LVD), aiming to expand the detector vocabulary to
tens of thousands of categories. These LVDs learn superb generalizable objectness knowledge from
object boxes of massive categories and are able to locate objects in various downstream images accu-
rately|Zhou et al.|(2022). However, they often fail to classify the located objects Oksuz et al.|(2020);
You et al.[|(2019) accurately. In this work, we focus on adapting LVDs towards various unlabelled
downstream data by utilizing the super-rich object classification knowledge from CLIP.

Domain Adaptation aims to adapt source-trained models towards various target domains. Previous
work largely focuses on unsupervised domain adaptation (UDA), which minimizes the domain dis-
crepancy by discrepancy minimization|Long et al.|(2015); Vu et al.|(2019)), adversarial training|Gong
et al.| (2019); [Vu et al.| (2019); |[Luo et al| (2021])), or self-training [Lee| (2013); [Zhang et al.| (2019
2021a). Recently, source-free domain adaptation (SFDA) generates pseudo labels for target data
without accessing source data, which performs domain adaptation with entropy minimization |Liang
et al.[(2020), self training Tarvainen & Valpolal (2017); |Li et al.| (2021)), contrastive learning Huang
et al.| (2021); VS et al.|(2022), etc. However, most existing domain adaptation methods struggle
while adapting LVDs toward downstream domains, largely due to the low-quality pseudo labels
resulting from the discrepancy in both data distributions and object vocabulary.

Vision-Language Models (VLMs) have achieved great success in various vision tasks|Zhang et al.
(2023). They are usually pretrained on web-crawled text-image pairs with a contrastive learning
objective. Representative methods such as CLIP |[Radford et al.| (2021)) and ALIGN [Jia et al.| (2021)
have demonstrated very impressive generalization performance in many downstream vision tasks.
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Figure 1: Overview of the proposed Knowledge Graph Distillation (KGD). KGD comprises two
consecutive stages including Knowledge Graph Extraction (KGExtract) and Knowledge Graph En-
capsulation (KGEncap). KGExtract employs CLIP to encode downstream data as nodes and con-
siders their feature distances as edges, explicitly constructing KGs that inherit the rich semantic
relations in CLIP. KGEncap transfers the extracted KGs into the large-vocabulary object detector
to enable accurate object classification over downstream data. Besides, KGD works for both image
and text data and allow extracting and transferring vision KG and language KG, providing comple-
mentary knowledge for adapting large-vocabulary object detectors for handling various unlabelled
downstream domains.

Following Radford et al.| (2021)); Jia et al.[(2021)), several studies Jia et al.|(2021)); |[Kim et al.|(2021);
Yao et al.|(2021)); [Li et al.| (2022a) incorporate cross-attention layers and self-supervised objectives
for better cross-modality modelling of noisy data. In addition, several studies |Fiirst et al.| (2022));
Doveh et al.| (2022)); [Pei et al.[(2022)); |Gao et al.| (2022) learn fine-grained and structural alignment
and relations between image and text. In this work, we aim to leverage the generalizable knowledge
learnt by VLMs to help adapt LVDs while handling various unlabelled downstream data. How-
ever, the aforementioned methods exhibit limited performance when dealing with the downstream
domains with

Knowledge Graph (KG) |Peng et al.| (2023)) is a semantic network that considers real-world en-
tities or concepts as nodes and treats the semantic relations among them as edges. Multi-modal
knowledge graph |Alberts et al.| (2020); Zhu et al.| (2022) extends knowledge from text to the vi-
sual domain, enhancing machines’ ability to describe and comprehend the real world. These KGs
have proven great effectiveness in storing and representing factual knowledge, leading to successful
applications in various fields such as entity recognition [Zhang et al.| (2018); |Wilcke et al.| (2020),
question-answering Marino et al. (2021)), and information retrieval |Deng et al.| (2021). Different
from the aforementioned KGs and MMKGs that are often handcrafted by domain experts, we de-
sign knowledge graph distillation that builds a LKG and a VKG by explicitly retrieving VLM’s
generalizable knowledge learnt from web-scale image-text pairs, which effectively uncover the se-
mantic relations across various textual and visual concepts in different downstream tasks, ultimately
benefiting the adaptation of LVDs.

3 METHOD

Task Definition. This paper focuses on unsupervised adaptation of large-vocabulary object detectors
(LVDs). We are provided with a set of unlabeled downstream domain data D, = {xf}ZN:t1 and an
LVD pre-trained on labeled source domain detection dataset D, = {x?, yf}f\fl x; and y; =
{(p;, tj)}jj‘/il are the image and M instance annotations of ¢-th sample, where p; and t; denote

the ground-truth category and box coordinate of j-th instance. N, and NNV, refer to the number of
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samples in D, and D;. The goal is to adapt the pretrained LVD towards the downstream domain D;
by using the unlabelled images.

Naive Solution with Mean Teacher Method (MT)|Tarvainen & Valpola|(2017). In this paper, we
adopt Detic Zhou et al|(2022) as the pretrained LVD, which utilizes CLIP text embeddings as the
classifier. We employ mean teacher [Tarvainen & Valpolal (2017) as the preliminary solution, which
involves a teacher detector and a student detector where the former generates pseudo labels to train
the latter while the latter updates the former in a momentum manner. Given a batch of B unlabeled
target samples, the teacher detector @, first produces detection predictions on them, which are then
filtered with a predefined threshold 7 to generate detection pseudo label ¥; (consisting of classes
and bounding boxes). With y;, the unsupervised training of student detector ®4 on the unlabeled
downstream data can be formulated as the following:

1< .
Loss = E Lzzlc (‘I)s(xﬁ)aYZ) ) (1)

where L£(-) = Lypn(-) + Lreg(+) + Les(+) is the detection loss function in which L, (+), Lreg(+),
and L. (+) denote the loss for region proposal network, regression, and classification, respectively.
Note both teacher detector ®; and student detector ® are initialized with the pretrained LVD.

Motivation. On the other hand, although the LVD is able to locate objects in various downstream-
domain images accurately [Zhou et al.| (2022), it often fails to classify the located objects, lead-
ing to very noisy detection pseudo labels when serving as the teacher detector. At the other end,
vision-language models (VLMs) Zhang et al.| (2023)) such as CLIP|Radford et al.|(2021) learns from
web-scale images-text pairs of arbitrary categories, which possesses the ability to classify objects
accurately in various downstream data. Thus, we argue that effective adaptation of LVDs towards
various unlabelled downstream data could be facilitated by combining the superior object local-
ization capability from LVDs and the super-rich object classification knowledge from CLIP. To this
end, we design Knowledge Graph Distillation (KGD) with Language KGD and Vision KGD, aiming
to explicitly retrieves the classification knowledge of CLIP to adapt LVDs while handling various
unlabelled downstream data. The overview of our proposed KGD is shown in Figure[l}

3.1 LANGUAGE KNOWLEDGE GRAPH DISTILLATION

The proposed language knowledge graph distillation (KGD-L) aims on distilling knowledge graph
from the perspective of text modality. KGD-L works in a two-step manner. The first step is Lan-
guage Knowledge Graph (LKG) Extraction with Large Language Model Zhao et al.|(2023)); Ye et al.
(2023); Brown et al.|(2020) that aims to uncover the implicitly encoded language knowledge in CLIP.
With the guidance from the LLM that stores a wide range of knowledge sources from the Internet,
LKG Extraction builds a category-discriminative and domain-generalizable LKG. The second step
is LKG encapsulation that encapsulates the extracted LKG into the teacher detector, enabling the
detector to reason whether a visual object matches a text by leveraging other relevant text nodes and
ultimately generate more accurate detection pseudo labels.

LKG Extraction with LLM. We first generate domain-generalizable prompts for each object cate-
gory by leveraging a pretrained LLM. Specifically, given the category set C = {c;|i = 1..., N.} of
a downstream domain , we first obtain the WordNet Miller| (1995) Synset definition of category c;
as follows:

d; = WNRetrieve(c;), 2)

where WNRetrieve(-) retrieves the WordNet database [Miller| (1995) and returns the definition of
its input. In this way, a category name c; can be better defined and described with the informative
yet accurate category definition from WordNet. Given a category name c; and its definition d;, we
query the LLM with the following prompt template:

Generate brief descriptions for the appearance of [m] types of [c;], [d;], in the context of [context].

where [context] is a dataset description phrase (e.g., street scenes for Cityscapes Dataset) and m
is fixed as 5 for all categories. With the given prompt template, we let LLM generate m domain-
generalizable prompts for category c; conditioned on its WordNet Synset definition and context:

Si = {s;}jL1 = LLM(c;, d;, m, context), 3
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which is then combined with d; as a set of domain generalizable prompts for category c;:

S =8;u{d;}, 4)
and the domain generalizable prompt set of category set C can be constructed as the following:
~ N. ~
S= Y S;. %)

With the category-discriminative and domain-generalizable information contained in S, we formu-
late the proposed LKG as a weighted undirected graph G, = (V,, Uy,), which is capable of captur-
ing semantic relationships and associations between different category concepts. V;, = {éi}ﬁv:“fmﬂ)

is the vertex set in which each node §; refers to a description in S. And U, = {u;;} is the edge set
where each edge u;; denotes the feature cosine similarity between the nodes s; and s;:

_ 0-T(E)TT(SE))
TG IT )]

where T'(-) refers to the text encoder of CLIP, and § is the temperature parameter set as [Radford
et al.[(2021)).

uz; = cos (T'(8:), T(s;)) (6)

LKG Encapsulation encapsulates the comprehensive knowledge in the extracted LKG into the
teacher detector to facilitate detection pseudo label generation. Specifically, we first employ CLIP
to encode the regions cropped by the teacher detector and then generate pseudo labels for each region
feature conditioned on LKG. Given the image x* € D;, we feed it into the teacher detector ®; to
acquire the prediction as the following:

y = ®(x"), (7)

where y = {(p;, t i)} ;‘il, P, denotes the probability vector of the predicted bounding box t ; after
Softmax activation function. M denotes the number of predicted proposals after the thresholding
with 7, i.e., a predicted proposal will be discarded if its confidence score is less than 7.

Next, we employ CLIP to encode the predicted object proposals in ¥ as follows:
F=V (C’rop (xt, y)) , ®)

where Crop(-) crops square regions from image x based on the longer edges of bounding boxes in
¥, V(-) is the image encoder of CLIP, and the j-th column vector f; of matrix I is the feature of
j-th proposal in y.

With the extracted LKG G, and the features of objects (or object proposals) F’, we encapsulate the
extracted LKG into ®; by reasoning the class of each object conditioned on G, as follows:

pé-i =p,i- N (cos (£;,T(c;)) + mag (cos <fj,T(sk)>)> , 9)
Sk i

where N(-) refers to normalize data to range [0, 1]. P;; is the i-th element in probability vector

p;, which denotes the predicted category probability of c;. The first term in Eq. [9] denotes the

original prediction probability from the teacher model while the second term in Eq.[9[stands for the

prediction probability from LKG. pé-i denotes the prediction probability calibrated by LKG.

In this way, KGD-L extracts and encapsulates LKG from CLIP into the teacher detector, enabling
it to reason whether an object matches a category conditioned on the relevant nodes in LKG and
ultimately refining the original detection pseudo labels.

3.2  VISION KNOWLEDGE GRAPH DISTILLATION

As LKG captures language knowledge only, we further design vision knowledge graph distillation
(KGD-V) that extracts a vision knowledge graph (VKG) and encapsulates it into the teacher detector
to improve pseudo label generation. Specifically, VKG captures vision knowledge dynamically
along the training process, which complement LKG by providing orthogonal and update-to-date
vision information.
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Dynamic VKG Extraction. We first initialize VKG with the CLIP text embedding and then
employ the update-to-date object features to update it using manifold smoothing. Specifically, we
initialize VKG as a weighted undirected graph Gy = (Vy,, Uy ), in which each node v; € Vi is
initialized with the CLIP text embedding of category c;:

Vi :T(Ci)a (10)

and the graph edge u;; € Uy is defined as the cosine similarity between nodes v; and v;. Given a
batch of {x}}2 | C D, and the corresponding pseudo labels {y,}2_, and CLIP features {F},}Z |
the visual embedding centroid of category cj, can be obtained as the following:

v D.: (7 A max
g, _ 2=t 2er, b 1005 (1) == B7)
25:1 ijer I(p;(i) == If);nam)

where p7*** is the maximum element in probability vector p;, I is the indicator function. And an
affinity matrix A can be calculated as A;; = exp(—r3;/0?) and A;; = 0, where 735 = [|0; — 6|2
and 0% = Var(rfj). In each iteration, the node of VKG is preliminarily updated as:

Y

In order to incorporate the downstream visual graph knowledge into VKG, we perform additional
steps to smooth the node of VKG, using the affinity matrix A from the current batch as a guide:

vi=> Wiv;, (13)
J

where W = (I —aL)™}, L = D~ 3AD~%, D;; = Zj A;j, a is a scaling factor set as |Velazquez
et al.| (2022), and [ is the identity matrix.

VKG Encapsulation encapsulate the orthogonal and update-to-date vision knowledge in the ex-
tracted VKG into the teacher detector, which complements LKG and further improves pseudo label
generation. With the extracted dynamic VKG Gy and the object features F' in image x¢, we encap-
sulate the extracted VKG into ®; in a similar way as the LKG Encapsulation as follows:

. exp(cos (£, v;))
Pji = Pji > exp(cos (£, vir))’

where pj; is the i-th element in vector p;, denoting the predicted probability of category c;. The
first term in Eq. [T4]is the prediction probability from the teacher model while the second term in
Eq. is the prediction probability from VKG. pj; is the prediction probability calibrated by VKG.

In this way, KGD-V extracts and encapsulates the VKG from CLIP into the teacher detector, further
refining the detection pseudo labels of visual objects by conditioning on related visual nodes in
VKG.

(14)

3.3 OVERALL OBJECTIVE

Finally, with the pseudo labels pé- and p generated from KGD-L and KGD-V respectively, the
unsupervised training loss of KGD can be formulated as the following:

Lrxep= Y L(®(x"),5), (15)
xteDy
where y = {(p;,t;)}}L,, and p; = N(p’; + pY).

4 EXPERIMENTS

This section presents experimental results. Sections [4.1]and .2] describe the dataset and implemen-
tation details. Section [£.3] presents the experiments across various downstream domain datasets.
Section4.4] and Section[4.5] provide ablation studies and discuss different features of KGD.
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Table 1: Benchmarking over autonomous driving datasets under various weather and time condi-
tions. T signifies that the methods employ LLM to generate category descriptions given category
names, and CLIP to predict classification pseudo labels for objects. We adopt AP50 in evaluations.

Method Cityscapes | Vistas | BDD100K-weather BDD100K-time-of-day

| | rainy snowy overcast  cloudy foggy | daytime dawn&dusk night
Detic (Source only) 46.5 | 350 | 343 335 39.1 42.0 284 | 392 353 28.5
MT 49.1 35.7 34.3 34.2 39.9 41.7 28.9 40.0 36.3 28.5
MT¥ 50.0 36.6 35.0 353 40.9 43.0 29.8 42.1 38.4 29.1
SHOT 49.9 36.5 34.9 34.5 40.2 42.0 34.7 40.5 36.1 26.7
SHOT+¥ 50.8 374 36.1 35.7 41.8 44.1 35.6 424 38.1 28.0
SFOD 49.3 35.6 32.5 33.0 40.5 433 33.8 40.8 36.0 28.9
SFOD¥ 50.3 36.6 33.6 33.8 42.8 45.6 34.7 434 37.9 30.1
HCL 49.5 36.0 34.7 34.5 404 422 30.8 40.6 36.7 28.2
HCL¥ 50.7 37.0 35.6 35.7 422 443 31.9 429 38.6 29.5
IRG-SFDA 50.6 36.4 35.0 353 40.7 42.6 36.4 40.8 36.4 27.8
IRG-SFDAY 51.7 375 359 36.4 42.6 44.8 36.7 43.0 38.3 28.9
KGD (Ours) 53.6 40.3 37.3 37.1 44.6 48.2 38.0 46.6 41.0 31.2

4.1 DATASETS

We perform experiments on 11 object detection datasets that span different downstream domains
including the object detection for autonomous driving (Cordts et al| (2016); Neuhold et al.| (2017),
autonomous driving under different weather and time-of-day conditions |[Yu et al.|(2018)), intelligent
surveillance Luo et al.|(2018)); Yongqgiang et al.| (2021)); Zhu et al.| (2021]), common objects |[Evering-
ham et al.|(2015));/Shao et al.|(2019), and artistic illustration Inoue et al.|(2018)). More dataset details
can be found in the Appendix.

4.2 IMPLEMENTATION DETAILS

We adopt Detic |Zhou et al.| (2022) as LVD, where CenterNet2 Zhou et al.[(2021) with Swin-B [Liu
et al.[(2021) is pre-trained on LVIS |Gupta et al.| (2019) for object localization and ImageNet-21K
Deng et al.| (2009) for object classification. During adaption, the updating rate of EMA detector
is set as 0.9999. The pseudo labels generated by the teacher detector with confidence greater than
the threshold 7 = 0.25 are selected for adaptation. We use AdamW |Loshchilov & Hutter| (2017)
optimizer with initial learning rate 5 x 10~% and weight decay 10—, and adopt a cosine learning
rate schedule without warm-up iterations. The batch size is 2 and the image’s shorter side is set to
640 while maintaining the aspect ratio unchanged.

4.3 RESULTS

Tables show the benchmarking of our methods with state-of-the-art domain adaptive detection
methods. As there are few prior studies on LVD adaptation, we compare our proposed method with
state-of-the-art source-free domain adaptation methods for benchmarking, including Mean Teacher
(MT) |Tarvainen & Valpolal (2017), SHOT |Liang et al.| (2020), SFOD |Li et al.| (2021), HCL |Huang
et al.| (2021), and IRG-SFDA |VS et al.| (2022). For fair comparison, we incorporate CLIP Radford
et al.|(2021)) and LLM Brown et al.|(2020) into the compared methods (marked with ). Specifically,
we employ LLM |Brown et al.| (2020) to generate category descriptions given category names, and
CLIP |Radford et al.| (2021)) to predict pseudo labels for object classification.

Object detection for autonomous driving. As Table|l|shows, the proposed KGD outperforms the
baseline substantially over the general autonomous driving datasets Cityscapes and Vistas (with an
average improvement of 6.20 in AP50). KGD also outperforms the state-of-the-art by 2.35 on aver-
age, demonstrating the superiority of KGD in adapting pretrained LVDs toward autonomous driving
scenarios with substantial inter-domain discrepancy. In addition, Table [I| shows experiments on au-
tonomous driving data under various weather and time conditions. We can observe that KGD still
achieves superior detection performance even though the unlabeled target data experience large style
variation and severe quality degradation. Further, the experiments show that KGD still outperforms
the state-of-the-art clearly when CLIP and LLM are incorporated, validating that the performance
gain largely comes from our novel knowledge graph distillation instead of merely using CLIP and
LLM.
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Table 2: Benchmarking over intelligent surveillance datasets. § signifies that the methods employ
LLM to generate category descriptions given category names, and CLIP to predict classification
pseudo labels for objects. We adopt AP50 in evaluations.

Method MIO-TCD BAAI-VANJEE VisDrone
Detic (Source only) 20.6 20.6 19.0
MT 20.0 23.4 18.9
MT+ 20.9 23.9 20.4
SHOT 21.2 22.5 19.4
SHOT+ 22.3 233 20.9
SFOD 19.8 22.8 18.8
SFOD+} 21.0 23.1 20.2
HCL 20.5 23.6 18.8
HCL¥ 21.1 24.1 19.6
IRG-SFDA 20.7 22.8 18.8
IRG-SFDAT 21.6 23.7 20.0
KGD (Ours) 24.6 24.3 23.7

Table 3: Benchmarking over common objects and artistic illustration datasets. 1 signifies that the
methods employ LLM to generate category descriptions given category names, and CLIP to predict
classification pseudo labels for objects. We adopt AP50 in evaluations.

Method Common objects Artistic illustration
Pascal VOC Objects365 | Clipartlk Watercolor2k Comic2k

Detic (Source only) 83.9 29.4 | 61.0 58.9 51.2
MT 85.6 31.0 62.7 584 49.8
MT+} 86.2 314 63.4 59.6 51.1
SHOT 84.0 30.7 61.3 58.3 50.4
SHOT+ 84.5 31.2 62.3 59.8 52.1
SFOD 85.5 31.6 63.4 58.2 50.1
SFOD+} 86.2 32.0 64.6 59.3 51.8
HCL 85.8 31.8 63.1 583 52.3
HCL¥ 86.5 323 64.7 59.7 53.7
IRG-SFDA 86.0 32.0 63.3 60.8 50.4
IRG-SFDAY 86.3 323 65.0 61.5 52.0
KGD (Ours) 86.9 34.4 69.1 63.5 55.6

Object detection for intelligent surveillance. The detection results on intelligent surveillance
datasets are presented in Table[2] Notably, the proposed KGD surpasses all other methods by signif-
icant margins, which underscores the effectiveness of KGD in adapting the pretrained LVD towards
the challenging surveillance scenarios with considerable variations in camera lenses and angles.
The performance improvements achieved by KGD in this context demonstrate its effectiveness in
exploring the unlabeled surveillance datasets by retrieving the classification knowledge of CLIP.

Object detection for common objects. We evaluate the effectiveness of our KGD on the com-
mon object detection task using Pascal VOC and Objects365. Table [3]reports the detection results,
showecasing significant improvements over the baseline and outperforming state-of-the-arts, thereby
highlighting the superiority of KGD. Besides, we can observe that the performance improvements
on the Pascal VOC dataset and Objects365 dataset are not as significant as those in autonomous driv-
ing. This discrepancy is attributed to the relatively smaller domain gap between common objects
and the pretraining dataset of LVD.

Object detection for artistic illustration. Table[3|reports the detection results on artistic illustration
datasets. The proposed KGD outperforms all other methods by substantial margins, which highlights
the effectiveness of KGD in adapting the pretrained large-vocabulary object detector towards artistic
images that exhibit distinct domain gaps with natural images.

4.4 ABLATION STUDIES

In Table 4] we conducted ablation studies to assess the individual contribution of our proposed
KGD-L and KGD-V on the task of LVD adaptation. The pretrained LVD (i.e., Detic [Zhou et al.
(2022) without adaptation) does not perform well due to the significant variations between its pre-
training data and the downstream data, As a comparison, either KGD-L or KGD-V brings significant
performance improvements (i.e., +6.3 of AP50 and +6.2 of AP50 over the baseline), demonstrating
both language and vision knowledge graphs built from CLIP can clearly facilitate the unsupervised
adaptation of large-vocabulary object detectors. The combination of KGD-L and KGD-V performs
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Table 4: Ablation studies of KGD with KGD-L and KGD-V. The experiments are conducted on the
Cityscapes dataset.

Method | Language Knowledge Graph Distillation Vision Knowledge Graph Distillation AP50
Detic (Source only) | 46.5
v 52.8

v 52.7

KGD (Ours) v v 53.6

the best clearly, showing that our KGD-L and KGD-V are complementary by providing orthogonal
language and vision knowledge for regularizing the unsupervised adaptation of LVDs.

4.5 DISCUSSION

Comparisons with existing CLIP knowledge distillation methods for detection. We compared
our KGD with existing CLIP knowledge distillation methods designed for detection tasks. Most
existing methods achieve CLIP knowledge distillation by mimicking its feature space, such as
VILD |Gu et al.| (2021), RegionKD |Rasheed et al.| (2022), and OADP [Wang et al.| (2023)). Table
[ reports the experimental results over the Cityscapes dataset, which shows existing CLIP knowl-
edge distillation methods do not perform well in adapting LVDs to downstream tasks. The main
reason is that they merely align the feature space between LVDs and CLIP without considering
the inherent semantic relationships between different object categories. KGD also performs knowl-
edge distillation but works for LVDs adaption effectively, largely because it works by extracting and
encapsulating knowledge CLIP knowledge graphs which enables accurate object classification by
leveraging relevant nodes in the knowledge graphs.

Table 5: Comparisons with existing CLIP knowledge distillation methods on LVD adaptation. For

a fair comparison, we incorporate them with Mean Teacher Method (the columns with ‘MT+’).
Method |  Detic (Source only) MT MT+VILD MT+RegionKD MT+OADP KGD (Ours)
AP0 | 46.5 49.1 50.6 502 502 53.6

Qualitative experimental results. We present qualitative results of KGD over diverse downstream
domain detection datasets in the Appendix. The qualitative results illustrate the effectiveness of
KGD in producing accurate detection results across various domains, thereby qualitatively demon-
strating its capability to adapt LVDs to unlabelled downstream domains with significant discrepancy
in data distribution and vocabulary.

Parameter studies. In the pseudo label generation in KGD, the reliable pseudo labels are acquired
with a pre-defined confidence threshold 7. We studied 7 by changing it from 0.15 to 0.35 with a
step of 0.05. Table[6] reports the experiments over the Cityscapes dataset. It shows that 7 does not
affect KGD clearly, demonstrating the proposed KGD is tolerant to hyper-parameters.

Table 6: Parameter analysis of KGD for the pseudo label generation threshold 7.
T \ 0.15 0.2 0.25 03 035
AP50 | 53.4 53.2 53.6 53.9 53.5

5 CONCLUSION

This paper presents KGD, a novel knowledge distillation technique that exploits the implicit KG
of CLIP to adapt large-vocabulary object detectors for handling various unlabelled downstream
data. KGD consists of two consecutive stages including KG extraction and KG encapsulation
which extract and encapsulate visual and textual KGs simultaneously, thereby providing comple-
mentary vision and language knowledge to facilitate unsupervised adaptation of large-vocabulary
object detectors towards various downstream detection tasks. Extensive experiments on multiple
widely-adopted detection datasets demonstrate that KGD consistently outperforms state-of-the-art
techniques by clear margins.
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A APPENDIX

A.1 DATASETS

Cityscapes Cordts et al.|(2016) is a dataset designed for the purpose of understanding street scenes.
It comprises images captured in 50 different cities, encompassing a total of 2975 training images and
500 validation images. These images are captured under normal weather conditions with pixel-wise
instance annotations of § categories.

Vistas Neuhold et al.| (2017) is an autonomous driving dataset collected for street scene under-
standing. It comprises a vast collection of high-resolution images that encompass diverse urban
environments from various locations worldwide. The dataset consists of 18000 training images and
2000 validation images with pixel-wise instance annotations.

BDD100k Yu et al. (2018) is a large-scale driving video dataset with a wide range of diverse driving
scenarios. It comprises various weather conditions such as clear, cloudy, overcast, rainy, snowy, and
foggy, as well as different times of the day including dawn, daytime, and night. The dataset contains
70000 training videos and 10000 validation videos. Each video is annotated with bounding boxes
for objects of 10 distinct categories.

MIO-TCD Luo et al. (2018) is an intelligent surveillance dataset collected for traffic analysis. It
comprises 137743 images captured at different times of the day and various periods throughout the
year. The images are captured from diverse viewing angles. Each image in the dataset is annotated
with bounding boxes, providing precise spatial locations of objects of 11 categories.

BAAI-VANJEE Yonggiang et al.| (2021) is a dataset collected for surveillance applications. It
comprises 5000 high-quality images captured by the VANJEE smart base station positioned at a
height of 4.5 meters. Each image in the dataset is annotated with bounding boxes, providing spatial
locations of objects of 12 categories.

VisDrone Zhu et al. (2021) is a surveillance dataset captured using drone-mounted cameras in
different scenarios, and under various weather and lighting conditions. It comprises 288 video clips
with 261908 frames, as well as an additional set of 10209 static images. These frames and images
are annotated with more than 2.6 million bounding boxes of objects of 10 categories.

Pascal VOC |[Everingham et al.|(2015) consists of two distinct sub-datasets: Pascal VOC 2007 and
Pascal VOC 2012. The former comprises a total of 2501 training images and 2510 validation images,
while the latter encompasses a larger set of 5717 training images and 5823 validation images. This
dataset includes bounding box annotations of 20 object categories.

Objects365 [Shao et al.| (2019) is a large-scale object detection dataset with 2 million images, 30
million bounding boxes, and 365 categories, which is designed for detecting diverse objects in the
wild.
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Clipartlk Inoue et al.| (2018) is a prominent dataset employed in cross-domain object detection,
comprising 1000 clipart images collected from one dataset (CMPlaces |Castrejon et al.[(2016)) and
two image search engines (Openclipar and Pixaba. Each image in the dataset is annotated with
bounding boxes for objects that share 20 categories with Pascal VOC [Everingham et al.| (2015)).

Watercolor2k Inoue et al.|(2018) comprises a collection of 2000 watercolor images with image and
instance-level annotations of 6 categories. It is also a prominent dataset employed in cross-domain
object detection.

Comic2k Inoue et al. (2018) contains 2000 comic images with image and instance-level annota-
tions, sharing 6 categories with Pascal VOC Everingham et al.| (2015)).

A.2 ALGORITHM OF KGD

We describe the detailed algorithm of our proposed KGD in Algorithm ]

Algorithm 1: Adapting Open-Vocabulary Detectors via Knowledge Graph Distillation

Input: unlabeled downstream data Dy, pretrained LVD &, CLIP image encoder V', CLIP text
encoder 1", WordNet database retrieval function WNDefRetrieve;

Output: domain adaptive detector P;

Initialization: teacher detector ®; <— ®, student detector , < $, maximum iteration [,
momentum updating frequency ¢, momentum updating rate p;

Extract LKG by Eq.@;

Extract VKG by Eq.(10);

fort < Otoldo

Sample a batch of B targe domain samples: {x!}Z | C D;;

Generate pseudo label set {y,}2_; by Eq.;

Generate CLIP feature matrix set { F},} 2, with Eq.;

Encapsulate LKG by Eq.(9);

Encapsulate VKG by Eq.;

Minimize overall objective function Eq. by updating ®;

Update VKG by Eq.(12) and (13);

if t % t,om == 0 then
| Update EMA detector: ®; < pu®; + (1 — p)®s;

A.3 ADDITIONAL DISCUSSION

Language Knowledge Graph Distillation Strategies Our proposed Language Knowledge Graph
Distillation(KGD-L) introduces Large Language Model (LLM) [Zhao et al.|(2023)); |Ye et al.| (2023);
Brown et al.[(2020) to uncover the implicitly encoded language knowledge in CLIP Radford et al.
(2021) and accordingly enables to build a category-discriminative and domain-generalizable Lan-
guage Knowledge Graph (LKG) as described in Section 3.2 We examine the superiority of the pro-
posed LKG Extraction with LLM by comparing it with "LKG Extraction with category names” and
”LKG Extraction with WordNet [Miller] (1995) Synset definitions”, the former builds LKG directly
with the category names from downstream datasets while the latter builds LKG using WordNet
Synset definitions that are retrieved from the WordNet database with category names from down-
stream datasets. As Table |/| shows, both strategies achieve sub-optimal performance. For “LKG
Extraction with category names”, the category names are often ambiguous and less informative
which degrades adaptation. For "LKG Extraction with WordNet Synset definitions”, the used Word-
Net Synset definitions are more category-discriminative but they often have knowledge gaps with
downstream data, limiting adaptation of the pretrained large-vocabulary detectors (LVDs). As a
comparison, our proposed LKG Extraction performs clearly better due to the guidance of LLM that
captures super-rich knowledge from the Internet which helps generate category-discriminative and

"https://openclipart.org/
“https://pixabay.com/
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domain-generalizable LKG and facilitates the adaption of LOVDs towards downstream data effec-
tively.

Table 7: Study of different Language Knowledge Graph Distillation(KGD-L) strategies. The ex-
periments are conducted on the Cityscapes dataset.
| Language Knowledge Graph Distillation

Method LKG Extraction LKG Extraction LKG Extraction AP50
with category names  with WordNet Synset definitions with LLM

Detic (Source only) | 46.5

v 51.9

KGD-L only v 52.0

v 52.8

Vision Knowledge Graph Distillation Strategies Our proposed Vision Knowledge Graph
Distillation(KGD-L) captures the Dynamic vision knowledge graph (VKG) along the training as
described in Section 3.2, which complements LKG by providing orthogonal and update-to-date vi-
sion information. We examine the proposed Dynamic VKG Extraction by comparing it with “’Static
VKG Extraction”. ”Static VKG Extraction” builds a static VKG with CLIP features of image crops
of objects that are predicted by the pretrained LVD before adaptation. It remains unchanged during
the LVD adaptation process. As Table [§]shows, ”Static VKG Extraction” does not perform well in
model adaptation, largely because the extracted static VKG is biased towards the pretraining datasets
of the LVD and impedes domain-specific adaptation. As a comparison, our proposed Dynamic VKG
Extraction shows clear improvements as the update-to-date vision information extracted along the
training process dynamically stabilizes and improves the model adaptation.

Table 8: Studies of different Vision Knowledge Graph Distillation(KGD-V) strategies. The experi-
ments are conducted on the Cityscapes dataset.

Method | Vision Knowledge Graph Distillation

AP50
| Static VKG Extraction Dynamic VKG Extraction
Detic (Source only) | 46.5
v 519
KGD-V only v 52.7

Distance metrics for constructing Knowledge Graph. We explore the feature distance metrics
for constructing knowledge graphs. We conduct experiments that construct knowledge graphs with
the following feature distance metrics: 1) Cosine Similarity [Deza et al.| (2009)), 2) Euclidean Dis-
tance|Deza et al.|(2009), 3) Manhattan Distances|Deza et al.|(2009). The results in TableE] show that
our KGD works effectively and consistently with different feature distance metrics. Besides, the co-
sine similarity metric performs the best, largely because CLIP is also trained with cosine similarity
where using the same metric to distill its knowledge works the best reasonably.

Table 9: Study of different distance metrics for constructing KG. The experiments are conducted
on the Cityscapes dataset.

Distance Metrics | Cosine Similarity — Euclidean Distance ~ Manhattan Distances
AP50 | 53.6 52.9 53.1

Analysis of KGD with respect to the parameter m. In Eq. 3| the parameter m controls the number
of domain-generalizable prompts generated by LLM for a certain category. It plays a critical role
in balancing the trade-off between generalization and discrimination in pseudo label denoising with
our KGD. We study m by changing it from 1 to 9 with a step of 2 and the table below shows results
on Cityscapes. It shows that the increase of m improves the performance clearly.

Training and inference time analysis. We study the training and inference time of all the compared
methods, and Table shows the results on Cityscapes. It shows that incorporating CLIP into
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Table 10: Parameter analysis of KGD with respect to the parameter m.
m | 1 3 5 7 9
AP50 | 509 525 539 541 539

unsupervised domain adaptation introduces a few additional overhead on training time and almostly
does not affect inference time. The reason lies in that the cropped object regions are processed by
CLIP in a parallel manner during training while the inference pipeline does not involve CLIP.

Table 11: Training and inference time analysis of all the compared methods. The experiments are
conducted on one RTX 2080Ti. { signifies that the methods employ LLM to generate category
descriptions given category names, and CLIP to predict classification pseudo labels for objects.

Method | MT MTi SHOT SHOTt SFOD SFODt HCL HCL{ IRG-SFDA IRG-SFDAt KGD (Ours)
Training Time (hours) 4.083 5022 4.055 5045 4110 5193 4133 5.095 4.158 5.222 5.267
Inference Speed (images per second) | 6.703 6.767  6.749 6.809 6.523 6.752  6.689 6.683 6.758 6.701 6.758

Study of vocabulary size of KGD. The construction of knowledge graphs greatly improves the
quality of pseudo-labels. We study how vocabulary size affects the cost of model training and in-
ference. As shown in Table [I2] the increase in vocabulary size of knowledge graphs brings little
computation overhead, largely because our knowledge graphs are implemented in a efficient com-
putation manner.

Table 12: Study of vocabulary size of knowledge graphs. The experiments are conducted on one
RTX 2080Ti.

Dataset Vocabulary Size  Training Time (hours) Inference Speed (images per second)
Watercolor2k 6 5.165 6.696
Comic2k 6 5.159 6.721
Cityscapes 8 5.167 6.718
Vistas 8 5.163 6.694
VisDrone 10 5.169 6.720
BDD100k 10 5.168 6.788
MIO-TCD 11 5.167 6.677
BAAI-VANJEE 12 5.169 6.714
Clipartlk 20 5.165 6.721
Pascal VOC 20 5.168 6.698
Objects365 365 5.171 6.723

A.4 MORE QUALITATIVE COMPARISONS

We provide qualitative illustrations of KGD over downstream datasets.

As shown in Figure 2}{6| KGD produces accurate detection across multiple datasets, demonstrating
its capability to adapt LVDs to various downstream domains of very different data distribution and
vocabulary.

17



Under review as a conference paper at ICLR 2024

Figure 2: Qualitative comparisons over autonomous-driving data. Zoom in for details. Top: De-

tic (2022). Bottom: KGD (Ours).

Figure 3: Qualitative comparisons over autonomous-driving data under different weather and time-
of-day conditions. Zoom in for details. Top: Detic|Zhou et al.|(2022). Bottom: KGD (Ours).

Figure 4: Qualitative comparisons over intelligent-surveillance data. Zoom in for details. Top:

Detic [Zhou et al.|(2022). Bottom: KGD (Ours).

Figure 5: Qualitative comparisons over common-object data. Zoom in for details. Top: Detic

let al](2022). Bottom: KGD (Ours).
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Figure 6: Qualitative comparisons over artistic illustration data. Zoom in for details. Top: De-

tic/Zhou et al.| (2022). Bottom: KGD (Ours).
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