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ABSTRACT

Large-scale transformer models have achieved remarkable empirical successes,
largely due to their in-context learning capabilities. Inspired by this, we ex-
plore training an autoregressive transformer for in-context Reinforcement Learn-
ing (RL). In this setting, we initially train a transformer on an offline dataset con-
sisting of trajectories collected from various RL instances, and then fix and use this
transformer to create an action policy for new RL instances. Notably, we consider
the setting where the offline dataset contains trajectories sampled from suboptimal
behavioral policies. In this case, standard autoregressive training corresponds to
imitation learning and results in suboptimal performance. To address this, we pro-
pose the Decision Importance Transformer (DIT), which emulates the actor-critic
algorithm in an in-context manner. In particular, we first train a transformer-based
value function that estimates the advantage functions of the behavior policies that
collected the suboptimal trajectories. Then we train a transformer-based policy
via a weighted maximum likelihood estimation loss, where the weights are con-
structed based on the trained value function to steer the suboptimal policies to the
optimal ones. We conduct extensive experiments to test the performance of DIT
on both bandit and Markov Decision Process problems. Our results show that
DIT achieves superior performance, particularly when the offline dataset contains
suboptimal historical data.

1 INTRODUCTION

Large-scale transformer models (LTMs) such as Large Language Models have achieved remarkable
empirical successes (Radford et al., 2019; OpenAI et al., 2024). In particular, LTMs trained on vast
amount of data have shown remarkable in-context learning (ICL) capabilities in supervised learning,
effectively solving new tasks with just a few demonstrations and without requiring any parameter
updates (Brown et al., 2020a; Akyürek et al., 2022). Meanwhile, substantial evidence demonstrates
that autoregressive LTMs excel at solving individual Reinforcement Learning (RL) tasks where an
LTM-based agent is trained and tested on the same task (Li et al., 2023b).

In-context RL. Inspired by these, recent research has explored the use of LTMs for in-context
RL (Laskin et al., 2022; Lee et al., 2024). In this setting, we pretrain LTMs on an offline dataset
consisting of trajectories collected from various RL instances. After pretraining, we deploy LTMs
to new and unseen RL instances. When presented with the context containing history of environ-
ment interactions collected by unknown and often suboptimal policies, pretrained LTMs predict the
optimal actions for current states from the environmental information provided in the context. See
Figure 1 for a visual illustration. Two recent works, Algorithm Distillation (AD) (Laskin et al.,
2022) and Decision Pretrained Transformer (DPT) (Lee et al., 2024), have demonstrated impressive
in-context RL abilities, inferring near-optimal policies for new RL instances.

Challenges. However, existing approaches focus on training LTMs to imitate the actions in the
pretraining datasets and thus have stringent requirements on the pretraining datasets. For example,
DPT requires access to optimal policies to generate a set of optimal action labels for its supervised
pretraining of LTMs. To overcome these limitations, this work considers training LTMs for in-
context RL using only suboptimal historical data. While this presents significant challenges, it
also offers substantial potential benefits by significantly improving the feasibility of in-context RL,
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as suboptimal trajectories are far easier to gather. For instance, large companies often maintain
extensive databases of historical trajectories from non-expert users.
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Figure 1: Supervised Pretraining (left): Presented with offline trajectories and optimal action la-
bels, LTMs are pretrained to predict the optimal actions for query states across RL tasks. In-Context
RL (middle): When deployed to unseen environments, the pretrained LTMs generate actions con-
ditioned on the current states and offline trajectories collected by (suboptimal) behavioral policies.
Pretraining with Suboptimal Historical Data (right): Lack of the optimal action labels, the pro-
posed framework employs in-trajectory state-action pairs as query states and pseudo-optimal action
labels, and a weighted pretraining objective, where the weights are based on the optimality of ac-
tions, estimated by an LTM-based in-context advantage function estimator.

Contributions. In pursuit of this goal, we introduce the Decision Importance Transformer (DIT),
a supervised pretraining framework for in-context RL using only historical trajectories collected by
suboptimal behavioral policies across distinct RL instances. When the pretraining datasets contain
only suboptimal trajectories, existing approaches correspond to imitation learning and thus result in
suboptimal performance. DIT overcomes this challenge through several techniques:

• DIT learns to infer near-optimal actions from suboptimal trajectories through an exponen-
tial reweighting technique that assigns good actions in the offline dataset with more weights
during supervised pretraining. These assigned weights guide the suboptimal policies to-
ward the optimal ones.

• In particular, the assigned weights are constructed from the advantage functions of the
behavior policies such that actions with high advantage values receive more weights during
pretraining, leading to guaranteed policy improvements over the behavior policies.

• Notably, although advantage weighted regression has been studied in standard RL, it re-
mains unclear how to generalize this approach to ICRL. The main reason is that the weight-
ing function needs to be task dependent for ICRL. Thus, it is necessary to estimation the
advantages functions for all RL tasks in the pretraining dataset. The most severe technical
challenge for this is that because the source tasks of training trajectories are unknown and
thus we cannot combine the trajectories from the same RL tasks to improve estimation , we
need to estimate the advantage functions individually for each trajectory in the pretraining
dataset. To address this formidable challenge, DIT trains an LTM-based advantage estima-
tor that interpolates across tasks for an in-context estimation of the advantage functions to
facilitate the weighted supervised pretraining. See Figure 1 for a visualization.

Empirical Results. Through extensive experiments on various bandit and Markov Decision Process
(MDP) problems, we demonstrate that pretrained DIT models generalize to unseen decision-making
problems. On bandit problems, the performance of DIT models matches that of the theoretically
optimal bandit algorithms (e.g., Thompson Sampling (Russo et al., 2018)). In four challenging
MDP problems including two navigating tasks with sparse rewards (Dark Room (Laskin et al., 2022)
and Miniworld (Chevalier-Boisvert et al., 2023)) and two complex continuous control tasks (Meta-
World (Yu et al., 2020) and Half-Cheetah (Todorov et al., 2012)), DIT models achieves superior
performance, particularly when the pretraining dataset contains suboptimal trajectories. Notably,
in most scenarios, DIT is comparable to DPT in both online and offline testings, despite being
pretrained without optimal action labels.
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2 RELATED WORK

Offline Reinforcement Learning. Since we consider pretraining with historical data, our work
falls within the broader field of offline RL. While online RL algorithms (Kaelbling et al., 1996;
François-Lavet et al., 2018) learn optimal policies by interacting with the environments through trial
and error, offline RL (Levine et al., 2020; Matsushima et al., 2020; Prudencio et al., 2023) aims
to infer optimal policies from historical data collected by (suboptimal) behavioral policies. One of
the substantial challenges for offline RL is the distribution shift caused by the mismatch between
behavioral policies and optimal policies (Levine et al., 2020; Kostrikov et al., 2021). To this end,
offline RL algorithms learn pessimistically by either policy regularization or underestimating the
policy returns (Wu et al., 2019; Kidambi et al., 2020; Kumar et al., 2020; Rashidinejad et al., 2021;
Yin & Wang, 2021; Jin et al., 2021; Dong et al., 2023; Fujimoto & Gu, 2021). While the goal of
offline RL is solve the same RL tasks from where the offline datasets are collected, the goal of in-
context RL is to efficiently generalize to unseen tasks after pretraining with offline datasets from
diverse RL tasks.

Transformer Models and Autoregressive Decision Making. Large Language Models and autore-
gressive models (Radford et al., 2019; Brown et al., 2020b; Wu et al., 2023b; Touvron et al., 2023;
OpenAI et al., 2024) have achieved astonishing empirical successes in a wide range of application
areas, including medicine (Singhal et al., 2023; Thirunavukarasu et al., 2023), education (Kasneci
et al., 2023), finance (Wu et al., 2023a; Yang et al., 2023), etc. As it is natural to use autoregressive
models for sequential decision making, transformer models have demonstrated superior performance
in both bandit and MDP problems (Li et al., 2023a; Yuan et al., 2023). In particular, Decision Trans-
former (DT) (Chen et al., 2021; Zheng et al., 2022; Liu et al., 2023; Yamagata et al., 2023) uses
return-conditioned supervised learning to tackle offline RL. Although salable to multi-task settings
(i.e., one model for multiple RL problems), DT is commonly criticised for its inability to improve
upon the offline datasets and provably sub-optimal in certain scenarios, e.g., environment with high
stochasticity (Brandfonbrener et al., 2022; Yang et al., 2022; Yamagata et al., 2023). More impor-
tantly, DT cannot generalize to unseen RL problems in context. To this end, Algorithm Distillation
(AD) (Laskin et al., 2022) uses sequential modeling to emulate the learning process of RL algo-
rithms, i.e., meta-learning (Vilalta & Drissi, 2002). The work most closely related to ours is the
Decision Pretrained Transformer (DPT) (Lee et al., 2024), a supervised pretraining approach for in-
context decision making. DPT trains transformers to predict the optimal action given a query state
and a set of transitions. As delineated in Section 1, AD and DPT have stringent assumptions on the
pretraining datasets. Our work overcomes those drawbacks and does not require query to optimal
policies nor the complete learning histories of RL algorithms (Laskin et al., 2022; Lee et al., 2024).

3 PRELIMINARY

Markov Decision Process. Sequential decision problems can be formulated as Markov Decision
Processes (MDPs). An MDP τ is described by the tuple (S,A, Pτ , Rτ , γ, ρτ ) where S is the set of
all possible states, A is the set of all possible actions, Pτ : S × A → ∆(S) is the dynamic function
that describes the distribution of the next state given the current state and action, Rτ : S × A → R
is the reward function, γ ∈ (0, 1) is the discounting factor for cumulative rewards, and ρτ ∈ ∆(S)
is the initial state distribution. An agent (decision maker) interacts with the environment as follows.
At the initial step h = 1, an initial state s1 ∈ S is sampled according to ρτ . At each time step h,
the agent chooses action ah ∈ A and receives reward rh = Rτ (sh, ah). Then the next state sh+1 is
generated following the dynamic Pτ (sh, ah). A policy π : S → ∆(A) maps the current state to an
action distribution. Let Gτ (π) = E[

∑∞
h=1 γ

h−1rh|π, τ ] denote the expected cumulative reward of
π for task τ . The goal of an agent is to learn the optimal policy π⋆

τ that maximizes Gτ (π).

Decision-Pretrained Transformer. Our proposed approach builds upon the model architecture
of DPT, which is a supervised pretraining method for transformer models to have in-context RL
capabilities (see Figure 1 for its architecture). DPT assumes a set of tasks {τ i}mi=1 sampled inde-
pendently from a task distribution pτ . Here each τ i is an instance of MDP. For each task τ i, a
context dataset Di is sampled, consisting of interactions between a behavioral policy and τ i. That
is, Di = {(sih, aih, sih+1, r

i
h)}h, where aih is chosen by a behavioral policy. Additionally, for each

task τ i, a query state siquery ∈ S is sampled, and an associated optimal action label a⋆i is sam-
pled from π⋆

τ i(squery), where π⋆
τ i is the optimal policy for τ i. The complete pretraining dataset is

3
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Dpre = {Di, siquery, a
⋆
i }mi=1. Let Tθ denote a causal GPT-2 transformer with parameters θ (Radford

et al., 2019). The pretraining objective of DPT is defined as

min
θ

1

m

m∑
i=1

− log Tθ

(
a⋆i |siquery, D

i
)
. (1)

In-context RL. After pretraining, the pretrained autoregressive LTM Tθ can be deployed as both
an online and offline agent. During deployment (testing), an unseen testing task τ is sampled from
pτ . For offline deployment, a dataset Doff is first sampled from τ , e.g., Doff contains trajectories
gathered from a random policy in τ , then DPT follows the policy Tθ(·|sh, Doff) after observing the
state sh at time step h . For online deployment, DPT initiates with an empty dataset Don. In each
episode, DPT follows the policy Tθ(·|sh, Don) to collect a trajectory {s1, a1, r1, . . . , sH , aH , rH}
which will be appended into Don. This process repeats for a pre-defined number of episodes. See
Algorithm 2 (in Appendix) for pseudocodes on deployment.

4 DECISION IMPORTANCE TRANSFORMER

Here we introduce our proposed framework Decision Importance Transformer (DIT).

Pretraining with Suboptimal Data. Similar to DPT, DIT assumes a family of datasets D =
{Di}mi=1 where Di consists of H transitions {(sih, aih, sih+1, r

i
h)}Hh=1 collected by the (suboptimal)

behavioral policy πb
τ i in the RL instance τ i which itself is independently sampled from the task

distribution pτ . In contrast to DPT, however, DIT does not require the set of paired query states and
optimal action labels {siquery, a

⋆
i }mi=1 across distinct environments, which is often difficult to obtain

in practice.

Notations. In the sequel, for any task τ , we assume that it has an index (parameter) also denoted
by τ such that the task information τ can be an explicit input to a meta-policy π(s|a; τ) which can
generate distinct policies based on the received task τ . For example, in robotic control tasks, τ may
represent the physical parameters of the robots such as robot mass or the environmental parameters
such as ground friction. We use πb

τ (a|s) to denote the behavioral policy for task τ . Denote

V b
τ (s) = E

[ ∞∑
h=1

γh−1rh
∣∣s1 = s, τ, πb

τ

]
, Qb

τ (s, a) = E
[ ∞∑
h=1

γh−1rh
∣∣s1 = s, a1 = a, τ, πb

τ

]
as its value and action-value functions respectively, and let

Ab
τ (s, a) = Qb

τ (s, a)− V b
τ (s) (2)

be its advantage function.

For presentation clarity, in Section 4.1, we first consider the scenarios where (i) Ab
τ (s, a) is known

and (ii) the task index τ is also known and can be provided as input to a policy. Then in Section 4.2,
we introduce solutions for scenarios where Ab

τ (s, a) and τ need to be estimated. All proofs of the
theoretical results in this section are deferred to the Appendix B.

4.1 WEIGHTED MAXIMUM LIKELIHOOD ESTIMATION

Motivation. To motivate DIT, we first consider the setting of imitation learning where the agent
is trained and tested on the same task. Given a dataset of transitions D = {(sh, ah, sh+1, rh)}
collected by a behavior policy πb(a|s), Wang et al. (2018) propose to optimize a weighted objective:

π ∈ argmax
π

∑
(sh,ah)∈D

exp(Ab(sh, ah)) · log π(ah|sh).

The rationale is that the good actions in the offline dataset, that is, ah with high advantage value
Ab(sh, ah), should be given more weights during imitation learning. These weights essentially
work as importance sampling ratios so that the action distribution is closer to the optimal one.

Weighted Pretraining for In-context RL. In contrast to imitation learning that focuses on individ-
ual RL tasks, the objective of DIT is to learn a task-conditioned policy π(a|s; τ) with the task index
τ as input. In particular, π(a|s; τ) should perform well for τ ∼ pτ .

4
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Motivated by the aforementioned weighted imitation learning objective, DIT has the following
weighted maximum likelihood estimation (WMLE) loss for supervised pretraining:

min
π

L(π) = −Eτ∼pτ ,s∼dτ (s),a∼πb
τ (a|s)

[
exp

(
Ab

τ (s, a) /η
)
· log π(a|s; τ)

]
, (3)

where dτ (s) is the discounted visiting frequencies of πb
τ (a|s) defined as dτ (s) = (1 −

γ)E
[∑∞

h=1 γ
h−1

1{sh = s}|τ, πb
τ

]
. The effectiveness of the objective in Equation (3) is demon-

strated by the following result which states that the optimizer to DIT’s pretraining objective is also
the solution to another policy optimization problem that is easier to interpret.
Proposition 4.1. Consider the following optimization problem:

max
π

J(π) = Eτ∼pτ ,s∼dτ (s),a∼πb
τ (a|s)

[
Ab

τ (s, a)︸ ︷︷ ︸
(I)

−η ·DKL(π(·|s; τ)∥πb
τ (·|s))︸ ︷︷ ︸

(II)

]
, (4)

where DKL is the Kullback–Leibler (KL) divergence, and let π⋆ ∈ argmaxπ J(π) be its optimizer.
Then we have for any policy π(a|s; τ),

Eτ∼p(τ),s∼dτ (s) [DKL (π
⋆(·|s; τ)∥π(·|s; τ))]

= −Ep(τ),s∼dτ (s),a∼πb
τ (a|s)

[
1

Zτ (s)
exp

(
Ab

τ (s, a)/η
)
· log π(a|s; τ)

]
+ C,

(5)

where C is a constant independent of π and Zτ (s) =
∑

a π
b
τ (a|s) exp(Ab

τ (s, a) /η).

In Equation (4), the objective is to find a policy π⋆ that improves over the behavior policy (by
maximizing term (I)) and does not stray too far from the behavior policy (by minimizing term
(II)). When the behavioral policy πb

τ (a|s) is near-optimal, η should set to a large value so that we
can have safe improvements over the behavioral policy. On the other hand, when the behavioral
policy is highly sub-optimal, η should set to a small value so that we have more freedom for policy
improvement to decrease the sub-optimality. Note that the DKL constraint (term (II) in Equation (4))
is critical for pretraining large transformer models to prevent policy collapse (Schulman, 2015).

Comparing Equation (5) with the pretraining objective of DIT in Equation (3), we observe that
DIT aims to identify a policy that is closest to π⋆ by setting Zτ (s) = 1 (we provide a brief discussion
for why this approach is valid in Appendix B.3). When Ab

τ (s, a) is known, the pretraining objective
of DIT can be estimated with the given pretraining dataset D by

min
π

Ln(θ) := − 1

mH

m∑
i=1

H∑
h=1

exp(Ab
τ i(sih, a

i
h)/η) log π

(
aih|sih; τ i

)
. (6)

Next we establish that DIT can provably achieve policy improvement.
Proposition 4.2 (Policy Improvement). Let π⋆ be the policy that optimizes (4). For any task τ and
policy π, let Gτ (π) = E[

∑∞
h=0 γ

hrh|π, τ ] represent the expected cumulative reward of π for τ . Let
π⋆
τ denote π⋆(a|s; τ). Then we have

Eτ∼pτ
[Gτ (π

⋆
τ )−Gτ (π

b
τ )] ≥

η

1− γ
Eτ∼pτ [C

D
τ ]− 2γ

(1− γ)2
Eτ∼pτ

[
CA

τ ·
√

CD
τ /2

]
, (7)

where CD
τ = Es∼dτ (s)[DKL(π

⋆(·|s; τ)∥πb
τ (·|s))] and CA

τ = maxs |Ea∼π⋆(a|s;τ)A
b
τ (s, a)|.

In particular, when the magnitude of the advantage function Ab
τ is small, the right-hand side of

Equation (7) is nonnegative. In this case, the policy π⋆ obtained by solving Equation (4) is strictly
better than the behavior policy. Equivalently, adding the exponential weights in Equation (6) is
strictly better than vanilla imitation learning, when the total number of pretraining tasks m is large.

4.2 IN-CONTEXT TASK IDENTIFICATION AND ADVANTAGE FUNCTION ESTIMATION

However, two key challenges remain:

1. The task index τ is not accessible during testing as only a context dataset Dτ is presented.
In other words, we have no knowledge about the true identity of the testing task τ .

5
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Figure 2: Model structure of the in-context action-value transformer Q̂ (left) and value transformer
V̂ (right) on the trajectory of the i-th pretraining task.

2. The advantage function Ab
τ (s, a) is not accessible for pretraining.

In-context Task Identification. We follow DPT to instantiate π(a|s; τ) with an autoregressive
transformer Tθ parameterized by θ. Conditioned on a given context dataset Dτ consisting of envi-
ronment interactions collected by a behavioral policy in τ , the LTM-based policy Tθ(a|s,Dτ ) first
implicitly extracts task information about τ from the context Dτ and chooses an action based on
the extracted task information (see Lee et al. (2024) for a detailed discussion). During pretraining,
Tθ learns to extract useful task information for the pretraining tasks {τ i}mi=1 conditioned on the
pretraining context datasets {Di}mi=1, and generalizes to unseen tasks during testing.

In-context Advantage Function Estimation. The second problem is more critical. Given that
during pretraining the context dataset Di may contain up to several trajectories for each task τ i in
the setting of in-context RL, estimation of Ab

τ i(s, a) based on Di alone can be unreliable.

To this end, in the same spirit of in-context RL, we propose to use an in-context advantage function
estimator to estimate the advantage of any state-action pair (sih, a

i
h) in the pretraining dataset D by

Âb(s
i
h, a

i
h|τ i) = Q̂ζ(s

i
h, a

i
h|D

i,h
Q )− V̂ϕ(s

i
h|D

i,h
V ), (8)

with two transformers V̂ϕ and Q̂ζ , parameterized by ϕ and ζ, as in-context value/action value
estimators that interpolate across tasks to have an improved estimation.

Model Architecture. Specifically, let Gi
h =

∑H
h′=h γ

h′−hrih be the in-trajectory discounted cumu-
lative reward. For any observed state-action pair (sih, a

i
h) in the pretraining dataset, Q̂ζ(s

i
h, a

i
h|D

i,h
Q )

and V̂ϕ(s
i
h|D

i,h
V ) estimate the action-value function Qb

τ i(sih, a
i
h) and value function V b

τ i(sih) re-
spectively, conditioned on the histories of transitions Di,h

Q = {(sij , aij , Gi
j)}

h−1
j=1 and Di,h

V =

{(sij , Gi
j)}

h−1
j=1 , where we employ {Gi

j}j<h as the noisy labels for value functions to facilitate in-
context learning. See Figure 2 for a visual representation of the model architecture.

Training. We train V̂ϕ and Q̂ζ with the following objective function:

min
ϕ,ζ

LA(ϕ, ζ) := Lreg(ϕ, ζ) + λ ·
(
LB
V (ϕ) + LB

Q(ζ)
)
, (9)

where λ > 0 is a hyperparameter to balance

Lreg(ϕ, ζ) :=
1

mH

m∑
i=1

H∑
h=1

(
V̂ϕ(s

i
h|D

i,h
V )−Gi

h

)2

+
(
Q̂ζ(s

i
h, a

i
h|D

i,h
Q )−Gi

h

)2

,

LB
Q(ζ) :=

1

mH

m∑
i=1

H−1∑
h=1

(
rih + γQ̂ζ(s

i
h, a

i
h|D

i,h
Q )− Q̂ζ(s

i
h+1, a

i
h+1|D

i,h+1
Q )

)2

and

LB
V (ϕ) :=

1

mH

m∑
i=1

H−1∑
h=1

(
rih + γV̂ϕ(s

i
h|D

i,h
V )− V̂ϕ(s

i
h+1|D

i,h+1
V )

)2

.

Here, LB
Q and LB

V regularize the transformer models with the Bellman equations for value functions.

DIT with In-context Advantage Estimator. After training, with Âb(s
i
h, a

i
h|τ i) defined in Equa-

tion (8) as an estimation of the true advantage function, we can now optimize the objective function

6
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of DIT to have the pretrained LTM Tθ⋆ for in-context RL, i.e.,

θ⋆ ∈ argmin
θ∈Θ

L̂n(θ) := − 1

mH

m∑
i=1

H∑
h=1

exp(Âb(s
i
h, a

i
h|τ i)/η) log Tθ

(
aih|sih, Di

)
. (10)

We summarize the complete procedure of DIT in Algorithm 1 (in Appendix).

5 EXPERIMENTS

We empirically demonstrate the efficacy of DIT through experiments on various bandit and MDP
problems. In bandit problems, DIT showcases matching performance to that of the theoretically
optimal bandit algorithms in both online and offline settings. In MDP problems, we corroborate
that DIT can infer close-to-optimal policies from suboptimal pretraining datasets. Notably, albeit
without optimal action labels during pretraining, DIT models demonstrate performance as strong
as that of DPT, which has access to optimal action labels during pretraining.

Implementation. We follow Lee et al. (2024) to choose GPT-2 (Radford et al., 2019) as the back-
bone for Tθ, Q̂, and V̂ due to limited computation resource, and note that the performance may be
further improved with larger models. Because all tasks have fairly short horizons (all less than 200),
we set γ = 0.8 for all tasks. We choose η = 1 for all tasks. Due to space constraint, see Appendix F
for more details.

5.1 BANDIT PROBLEMS

We consider linear bandit (LB) problems with an underlying structure shared among tasks. Specifi-
cally, there exists a bandit feature function ϕ : A → Rd that is fixed across tasks where d denotes the
dimension of linear bandit problems. The reward of a bandit a ∈ A in task τ i is ri(a) ∼ N

(
µi
a, σ

2
)

where µi
a = E[r|a, τ i] = ⟨θi, ϕ(a)⟩ and σ2 = 0.3. Here, θi is the task-specific parameter that de-

fines task τ i. We conduct experiments on LB problems where K = 20, d = 10 and H = 200. The
pretraining dataset for DIT are generated as follows.

Pretraining Dataset. For LB problems, we generate the feature function ϕ : A → Rd by sampling
bandit features from independent Gaussian distributions, i.e., ϕ(a) ∼ Nd (0, Id/d) for all a ∈ A.
To generate the pretraining tasks {τ i}, we sample their parameters {θi} independently following
θi ∼ Nd (0, Id/d). To generate context dataset Di, we randomly generate a behavioral policy by
mixing (i) a probability distribution samples a Dirichlet distribution and (ii) a point-mass distribution
on one random arm. The mixing weights are uniform sampled from {0.0, 0.1, . . . , 1.0}. At every
time step h, the behavioral policy samples an action aih and receives rih. We do not enforce extra
coverage of the optimal actions for bandit problems. Following the setting of DPT (Lee et al., 2024),
we collect 100k context datasets for LB problems.

Comparisons. We compare to the following baselines (see Appendix A for more details): Empir-
ical Mean (EMP) selects the bandit with the highest average reward; Upper Confidence Bound
(UCB) (Auer, 2002) builds upper confidence bounds for all bandits and selects the bandit with the
highest upper bound; Lower Confidence Bound (LCB) (Xiao et al., 2021) builds lower confidence
bounds for all bandits and selects the bandit with the highest lower bound; Thompson Sampling
(TS) (Russo et al., 2018) builds a posterior distribution for the rewards of all bandits. At each step,
TS samples means for all bandits from the posterior distribution and selects the bandit with the
highest sampled mean. In terms of metrics, for offline learning, we follow the convention to use the
suboptimality defined as (µa⋆ − µâ) where µa⋆ is the mean reward of the optimal bandit and µâ is
the mean reward of the chosen bandit; for online learning we use the cumulative regret defined as∑

h(µa⋆ − µah
) where ah is the chosen action at time step h.

Empirical Results. As can be seen in Figure 3, in the online setting, though pretrained without the
optimal action labels, DIT models demonstrate superior performance to those of the theoretically
optimal bandit algorithms, i.e., UCB and TS. Deployed for unseen bandit problems, DIT models
quickly identify the optimal bandits at the beginning and maintain low regrets over the horizon. In
the offline setting, DIT models can infer near-optimal bandits from trajectories collected by sub-
optimal policies. In particular, when the behavioral policies (captioned as BEH in Figure 3) are
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Figure 3: Results for Linear Bandits (lower values indicate better performance). Left: Online test-
ing. Middle: Offline testing conditioned on trajectories gathered by highly suboptimal, randomly
generated policies. Right: Offline testing condtioned on trajectories gathered by experts.

randomly generated policies, DIT significantly outperforms both TS and LCB, the theoretically op-
timal algorithm for offline bandit problems. When the context is collected by expert policies, DIT
models improve upon their performance, achieving lower regrets through in-context decisions.

5.2 MDP PROBLEMS

Environments. We conduct experiments on four challenging MDP environments: two navigating
tasks with sparse reward Dark Room Laskin et al. (2022) and Miniworld Chevalier-Boisvert et al.
(2023), as well as two complex continuous-control tasks Meta-world and Half-Cheetah. In Dark
Room, the agent is randomly placed in a room of 10 × 10 grids, and there is an unknown goal
location on one of the grid. The agent needs to move to the goal location by choosing from 5 actions
in 100 steps. In Miniworld, the agent is placed in a room and receives a (25× 25× 3) color image
and its direction as input. It can choose from four possible actions to reach a target box, out of
four boxes of different colors. In Meta-World, the task is to control a robot hand to reach a target
position in 3D space. In Half-Cheetah, the agent controls a robot to reach a target velocity, which
is uniformly sampled from the interval [0, 3], and is penalized based on how far its current velocity
is from the target velocity. See Appendix C for details of these environments.

Pretraining Datasets. For Dark Room and Miniworld, to ensure coverage of optimal actions (so
that optimal policies can be inferred), at every step, with probability p (respectively 1 − p) we use
optimal policy (respectively random policy) to choose action. We choose p so that the average re-
ward of the trajectories in the pretraining dataset is less than 30% of that of the optimal trajectories.
For Meta-World and Half-Cheetah, we construct the pretraining datasets using historical trajectories
generated by agents trained with Soft Actor Critic (SAC). Specifically, SAC is trained until conver-
gence for each task, then we sample from its learning trajectories to build the dataset. Our SAC
model training follows the settings outlined in Haarnoja et al. (2018). See Appendix D for details
regarding the pretraining dataset.

Comparisons. We compare DIT to other in-context algorithms as well as RL algorithms that train
an agent from scratch without pretraining. The baseline algorithms are briefly described next (see
their implementation details in Appendix A).

• Soft Actor Critic (SAC) Haarnoja et al. (2018): SAC is an online RL algorithm that trains
an agent from scratch in every environment.

• Algorithm Distillation (AD): AD is a sequence modeling-based approach for in-context
RL that emulates the learning process of RL algorithms (Laskin et al., 2022). To this
end, AD requires the pretraining dataset to consist of complete learning histories of an RL
algorithm —from episodes generated by randomly initialized policies to those collected by
nearly optimal policies— across a wide range of RL tasks. In this work we use SAC as the
RL algorithm for AD to emulate.

• Decision Pretrained Transformer (DPT): DPT and DIT use the same context datasets
for pretraining. However, DPT requires query states and their associated optimal action
labels across different tasks. We follow the original setting of DPT to uniformly sample
query state from all possible states and obtain an associated optimal action label.
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• Prompt-DT (PDT): PDT is a Decision Transformer-based approach for in-context RL (Xu
et al., 2022). PDT leverages the transformer’s sequential modeling and prompt framework
for few-shot adaptation. PDT uses the same pretraining dataset as DIT. Thus, the perfor-
mance gain of DIT over PDT highlights the effectiveness of DIT’s design.

• Behavior Cloning (BC): To investigate the effectiveness of the proposed reweighting tech-
nique, we include an variation of DIT without the exponential reweighting. This approach
closely imitates BC (thus we name it BC), with the following pretraining objective:

min
θ

1

mH

m∑
i=1

H∑
h=1

− log Tθ

(
aih|sih, Di

)
.

In particular, AD and DPT require extra information during pretraining: AD requires the complete
learning history of RL algorithms while DPT requires optimal action labels. Given that DIT only
relies on suboptimal historical data, the comparison is inherently unfair. Notably, despite these
disadvantages, DIT outperforms AD and matches with DPT in most scenarios. In terms of metrics,
we follow the convention to use the episode cumulative return

∑H
h=1 rh.

In-context Decision-making for Navigating Tasks. We explore how our method generalizes to
unseen RL tasks, using the Dark Room environment (Laskin et al., 2022). Following the evaluation
protocal of DPT (Lee et al., 2024), we use 80 goals for training and evaluate on the remaining 20
unseen goals. For SAC, since it is an online learning method, we directly train from scratch on the
20 goals to benchmark the returns of in-context RL. Figure 4a shows the online evaluation over 40
episodes. After 40 episodes, SAC gains little in return, demonstrating the difficulty of the RL tasks
for testing. Restricted by their capability to efficiently explore in new tasks, BC also perform poorly.
Although our method (DIT) initially has lower returns than DPT and AD, it quickly surpasses them
and continues to improve. Figures 4b and 4c show the results for offline evaluations with expert
(high-reward) trajectories and random (low-reward) trajectories. Despite being pretrained without
the optimal action labels, DIT models demonstrate competitive performance to that of DPT.
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Figure 4: Results on Dark Room (higher values indicate better performance). (a): Change in return
of policies with additional online episodes for (in-context) learning. (b) and (c): Offline evaluations
with context trajectories sampled from random and expert policies.

In-context Continuous Control. We explore two complex continuous control tasks, Meta-
World (Yu et al., 2020) and Half-Cheetah (Todorov et al., 2012). Meta-World has 20 tasks in total,
to evaluate our approach’s ability to generate to new RL tasks, we use 15 tasks to train and 5 to test.
Similarly, for Half-Cheetah, out of the 40 total tasks, we use 35 tasks to train and 5 to test. The
results for Meta-World is presented in Figure 5 and those for Half-Cheetah is presented in Figure 6.
We observe that DIT outperforms PDT and BC in all testing scenarios. Moreover, DIT consistently
outperforms AD despite with less information used for pretraining. It can also be observed that
the performance gap between DPT and DIT is larger in the Meta-World environment compared to
Half-Cheetah. We believe this is because Meta-World is a more challenging environment than Half-
Cheetah. As a result, the additional set of optimal action labels for out-of-trajectory query states
used by DPT has a greater impact on performance, while DIT can only utilize in-trajectory states
and actions as query states with pseudo-optimal labels.

Ablation Study on Weighted Supervised Pretraining. While DIT’s significantly improved per-
formance over BC (the unweighted version of DIT) already demonstrates the effectiveness of the
proposed weighted pretraining objective, we now conduct experiments in the Miniworld (Chevalier-
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Figure 5: Results on Meta-World. (a): Online testing. (b) and (c): Offline evaluations.
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Figure 6: Results on Half-Cheetah. (a): Online testing. (b) and (c): Offline evaluations.

Boisvert et al., 2023) environment to explore whether DIT reaches the limits of the weighted pre-
training framework. To this end, we compare our model to the DPT model that uses a pretraining
dataset containing only query states that belong to the set of observed states in the pretraining
dataset, along with their associated optimal action labels. In this scenario, the total number of pre-
training context datasets and optimal action labels for DPT remains the same, but the query states
are restricted. This restriction makes the DPT model function as an oracle upper bound for DIT,
as all query states used by DIT in the weighted pretraining originate from the observed states. The
significant performance gain of DIT over BC (the unweighted version of DIT) demonstrate the effec-
tiveness of the weighted pretraining framework. Surprisingly, in the online setting, DPT struggles
to perform, while DIT models gradually improve their returns, as shown in Figure 7a. In the offline
setting, DIT again demonstrates competitive performance with DPT. These results indicate that DIT
has effectively leveraged the pretraining dataset to a significant extent.
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Figure 7: Ablation Study on Miniworld.

6 DISCUSSION

We have proposed DIT for pretraining LTMs from suboptimal historical data for in-context RL. DIT
has guaranteed policy improvements over the suboptimal behavior policies and thus demonstrated
superior empirical performance. Despite these strengths, DIT still requires the behavior policies that
collected the historical data from various RL instances to have reasonable rewards. Most historical
data typically adheres to this constraint. That said, it is highly unlikely to infer near-optimal actions
solely from random trajectories without any information about optimal policies. To this end, we will
further explore the limits of the weighted pretraining framework in future work.
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Ethics Statement. This work explores pretraining transformer models for in-context reinforcement
learning (RL). We do not anticipate any immediate ethical concerns.

Reproducibility Statement. We have provided details about how the datasets used in benchmark
environments are generated and how models are trained, including values of all hyperparameters.
We have also provided in supplement material implementation of our algorithms in Python.
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A BASELINES

A.1 BANDIT ALGORITHMS

Empirical Mean (EMP). We follow Lee et al. (2024) to consider a strengthened version of EMP
which, in the offline setting, only chooses from actions that have been observed at least once in the
offline dataset while, in the online setting, at least choosing every action once. At every time step,
EMP chooses actions as

â ∈ argmax
a∈A

{µ̂a},

where µ̂a is the average observed reward for action a.

Upper Confidence Bound (UCB). Motivated by the Hoeffding’s Inequality, at each time step,
UCB chooses actions as

â ∈ argmax
a∈A

{
µ̂a + C ·

√
1/na

}
,

where C is a hyperparameter and na is the number of times a has been chosen. For unseen actions,
µ̂a is set to 0 and na is set to 1. We follow Lee et al. (2024) to set C to be 1 as it demonstrates the
best empirical performance.

Lower Confidence Bound (LCB). LCB is on the contrary of UCB. In the offline setting, LCB
only chooses from observed actions in the offline dataset. Specifically, it chooses actions as

â ∈ argmax
a∈A

{
µ̂a − C ·

√
1/na

}
,

where C is a hyperparameter and na is the number of times a has been chosen. Similar to hy-
perparameter of UCB, the hyperparameter C for LCB is also set to 1 due to its strong empirical
performance.

Thompson Sampling (TS). We use Gaussian TS Russo et al. (2018) with a Gaussian prior. The
mean and variance of the prior are set to the true mean and variance of the pretraining tasks: 0 for
mean and 1 for variance.

A.2 RL BASELINES

Decision-Pretrained Transformer (DPT). The Decision-Pretrained Transformer (DPT) is de-
signed to perform in-context learning for reinforcement learning (RL) tasks by leveraging a super-
vised pretraining approach. The core idea is to train a transformer model to predict optimal actions
given a query state and a corresponding in-context dataset, which contains interactions from a vari-
ety of tasks. These interactions are represented as transition tuples consisting of states, actions, and
rewards, offering context for decision-making. During pretraining, DPT samples a distribution of
tasks. For each task Ti, an in-context dataset Di is constructed to include sequences of state-action-
reward interactions that represent past experience with that task. Additionally, a query state s∗ is
sampled from the MDP’s state distribution, and the model is trained to predict the optimal action
based on this query state and the context Di. Formally, the training objective is to minimize the
expected loss over the sampled task distribution by predicting a distribution over actions given the
state and context.

Prompt-based Decision Transformer (Prompt-DT). Prompt-DT arranges its data to fa-
cilitate few-shot policy generalization by using trajectory prompts. For each task Ti, a
prompt τ∗i of length K∗ is constructed from few-shot demonstration data Pi, containing tu-
ples of state, action, and reward-to-go (s∗, a∗, Ĝ∗). This prompt encodes task-specific con-
text necessary for policy adaptation. Additionally, the recent trajectory history τi of length
K, sampled from an offline dataset Di, is appended to the prompt to form the full in-
put sequence τinput. Formally, this input sequence is represented as τinput = (τ∗i , τi) =
(r̂∗1 , s

∗
1, a

∗
1, . . . , r̂

∗
K∗ , s∗K∗ , a∗K∗ , r̂K∗+1, sK∗+1, aK∗+1, . . . , r̂K∗+K , sK∗+K , aK∗+K). This se-

quence contains 3(K∗ + K) tokens, following the state-action-reward format. The full sequence
τinput is then passed through a Transformer model, which autoregressively predicts actions at the
heads corresponding to each state token. We follow Prompt-DT’s setting and set k = 20.
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Algorithm Distillation (AD). Algorithm Distillation (AD) transforms the process of reinforce-
ment learning (RL) into an in-context learning task by training a transformer model to predict op-
timal actions based on a cross-episodic trajectory. AD gathers trajectories from training episodes,
where each trajectory T of length H encodes the states, actions, and rewards observed over mul-
tiple episodes. Instead of training via traditional gradient updates, AD models the training history
to predict actions for subsequent episodes, effectively distilling the behavior of RL algorithms like
SAC into the transformer. This enables the model to learn directly from context, facilitating quick
adaptation to new tasks and improving learning efficiency.

Behavior Cloning (BC). Behavior Cloning (BC) is a supervised learning approach for imita-
tion learning, where the goal is to learn to mimic the behavior of a policy by mapping states
to actions. Specifically, the objective is to minimize the discrepancy between the actions pre-
dicted by the learned policy πθ and the target policy’s actions, often through a loss function
such as mean squared error or cross-entropy for continuous or discrete action spaces, respectively:
J(θ) = E(st,at)∼D[ℓ(πθ(st), at)], where D is the dataset of state-action pairs collected from the
target policy’s demonstrations, st is the state at time step t, and at is the corresponding target action.

Soft Actor-Critic (SAC). Soft Actor-Critic (SAC) is an off-policy deep reinforcement learning
algorithm that balances exploration and exploitation by maximizing a trade-off between expected
reward and entropy. The core objective of SAC is to learn a policy that not only maximizes cumu-
lative rewards but also encourages exploration by maximizing the entropy of the policy’s actions.
SAC uses an actor network to predict actions, and two critic networks to estimate the Q-values of
state-action pairs. The training objective involves learning the parameters of the policy to maximize
a soft objective function: J(π) =

∑
t E(st,at)∼D[Q(st, at) − α log π(at|st)], where Q(st, at) is

the Q-value estimated by the critics, α is a temperature parameter controlling the trade-off between
reward and entropy, and π(at|st) is the action probability distribution given the state. SAC is trained
by sampling mini-batches of transitions from a replay buffer to update the policy (actor) and Q-value
estimates (critics). For model and training settings, we use the default implementation from Stable
Baselines3 Raffin et al. (2021).

B THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 4.1

Consider the following optimization problem:

max
π

J(π) = Eτ∼pτ ,s∼dτ (s),a∼πb
τ (a|s)

Ab
τ (s, a)︸ ︷︷ ︸

(I)

−η ·DKL(π(·|s; τ)∥πb
τ (·|s))︸ ︷︷ ︸

(II)

 , (11)

where DKL is the Kullback–Leibler (KL) divergence, and let π⋆ ∈ argmaxπ J(π) be its optimizer.
Then we have for any policy π(a|s; τ),

Eτ∼p(τ),s∼dτ (s) [DKL (π
⋆(·|s; τ)∥π(·|s; τ))]

= −Ep(τ),s∼dτ (s),a∼πb
τ (a|s)

[
1

Zτ (s)
exp

(
Ab

τ (s, a)

η

)
log π(a|s; τ)

]
+ C,

(12)

where C is a constant independent of π and Zτ (s) =
∑

a π
b
τ (a|s) exp(Ab

τ (s, a) /η).
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Proof of Proposition 4.1. For any task τ and fixed state s, we have

max
π

Ea∼π(a|s;τ)
[
Ab

τ (s, a)− η ·DKL(π(·|s; τ)∥πb
τ (·|s))

]
= min

π
Ea∼π(a|s;τ)[log

π(a|s; τ)
πb
τ (a|s)

− 1

η
Ab

τ (s, a)]

= min
π

Ea∼π(a|s;τ)

[
log

π(a|s; τ)
πb
τ (a|s) exp(Ab

τ (s, a) /η)

]
= min

π
Ea∼π(a|s;τ)

[
log

π(a|s; τ)
πb
τ (a|s) exp(Ab

τ (s, a) /η)/Zτ (s)
− logZτ (s)

]
= min

π
Ea∼π(a|s;τ)

[
log

π(a|s; τ)
πb
τ (a|s) exp(Ab

τ (s, a) /η)/Zτ (s)

]
(Zτ (s) is independent of π)

= min
π

DKL(π(·|s; τ)∥π⋆
τ ),

where π⋆
τ (a|s) = πb

τ (·|s) exp(Ab
τ (s, a) /η)/Zτ (s). Note that the optimum π for a fixed s and

task τ is obtained at π = π⋆
τ , which is unique by the uniqueness property of KL divergence, i.e.,

DKL(π∥π⋆
τ ) = 0 if and only if π = π⋆

τ (a|s). Thus, the optimal task-conditioned policy is

π⋆(a|s; τ) = π⋆
τ = πb

τ (a|s) exp(Ab
τ (s, a) /η)/Zτ (s).

Thus, we further have

Eτ∼p(τ),s∼dτ (s) [DKL (π
⋆(·|s; τ)∥π(·|s; τ))]

= Eτ∼p(τ),s∼dτ (s),a∼π⋆(a|s;τ)

[
log

π⋆(a|s; τ)
π(a|s; τ)

]
= Eτ∼p(τ),s∼dτ (s)

[∑
a

πb
τ (a|s) exp(Ab

τ (s, a) /η)/Zτ (s) log
π⋆(a|s; τ)
π(a|s; τ)

]
= −Eτ∼p(τ),s∼dτ (s),a∼πb

τ (a|s)
[
exp(Ab

τ (s, a) /η)/Zτ (s) log π(a|s; τ)
]
+ C,

where C = Eτ∼p(τ),s∼dτ (s),a∼πb
τ (a|s)

[
exp(Ab

τ (s, a) /η)/Zτ (s) log π
⋆(a|s; τ)

]
.

B.2 PROOF OF PROPOSITION 4.2

Let π⋆ be the policy that optimizes Equation (4). For any task τ and policy π, let Gτ (π) =
E[
∑∞

h=0 γ
hrh|π, τ ] represent the expected reward of π for τ . Let π⋆

τ denote π⋆(a|s; τ). Then

Eτ∼pτ
[Gτ (π

⋆
τ )−Gτ (π

b
τ )] ≥

η

1− γ
Eτ∼pτ

[CD
τ ]− 2γ

(1− γ)2
Eτ∼pτ

[
CA

τ

√
CD

τ /2

]
, (13)

where CD
τ = Es∼dτ (s)[DKL(π

⋆(·|s; τ)∥πb
τ (·|s))] and CA

τ = maxs |Ea∼π⋆(a|s;τ)A
b
τ (s, a)|.

Proof of Proposition 4.2. First consider any fixed task τ . From Corollary 1 in Achiam et al. (2017),
we have

Gτ (π
⋆
τ )−Gτ (π

b
τ ) ≥

1

1− γ

∑
s

dτ (s)
∑
a

π⋆(a|s; τ)Ab
τ (s, a)−

2γCA
τ

(1− γ)2
Es∼dτ (s)∥π

⋆(·|s; τ)−πb
τ (·|s)∥TV ,

(14)
where CA

τ = maxs |Ea∼π⋆(a|s;τ)A
b
τ (s, a)| and ∥ · ∥TV is the total variation distance between two

distributions. In the proof of Propsition 4.1, we observe that: for any τ and s,

π⋆(·|s; τ) ∈ argmax
π

L(π, s) = Ea∼π(a|s;τ)
[
Ab

τ (s, a)− η ·DKL(π(·|s; τ)∥πb
τ (·|s))

]
.

Thus, L(π⋆
τ , s) ≥ L(πb

τ , s), which implies that

Ea∼π⋆(a|s;τ)
[
Ab

τ (s, a)− η ·DKL(π
⋆(·|s; τ)∥πb

τ (·|s))
]
≥ Ea∼πb

τ (a|s;τ)
[
Ab

τ (s, a)
]
= 0.

Hence, we have

Es∼dτ (s),a∼π⋆(a|s;τ)
[
Ab

τ (s, a)
]
≥ ηEs∼dτ (s)[DKL(π

⋆(·|s; τ)∥πb
τ (·|s))]. (15)
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Moreover, from Pinsker’s inequality (Canonne, 2022),

Es∼dτ (s)∥π
⋆(·|s; τ)− πb

τ (·|s)∥TV ≤ Es∼dτ (s)

√
1

2
DKL(π⋆(·|s; τ)∥πb

τ (·|s)) (16)

≤
√

1

2
Es∼dτ (s)[DKL(π⋆(·|s; τ)∥πb

τ (·|s))], (17)

where the last inequality comes from Jensen’s Inequality. Pluging (16) and (15) into (14), we have

Gτ (π
⋆
τ )−Gτ (π

b
τ ) ≥

η

1− γ
Es∼dτ (s)[DKL(π

⋆(·|s; τ)∥πb
τ (·|s))] (18)

− 2γCτ

(1− γ)2

√
1

2
Es∼dτ (s)[DKL(π⋆(·|s; τ)∥πb

τ (·|s))]. (19)

Taking expectation with respect to τ concludes the proof:

Eτ∼pτ
[Gτ (π

⋆
τ )−Gτ (π

b
τ )] ≥

η

1− γ
Eτ∼pτ

[CD
τ ]− 2γ

(1− γ)2
Eτ∼pτ

[
CA

τ

√
CD

τ /2

]
, (20)

where CD
τ = Es∼dτ (s)[DKL(π

⋆(·|s; τ)∥πb
τ (·|s))] and CA

τ = maxs |Ea∼π⋆(a|s;τ)A
b
τ (s, a)|.

B.3 JUSTIFICATION FOR THE IDENTITY Zτ (s) = 1

Assume that |Ab
τ (s, a)/η| ≪ | log πb

τ (a|s)|. Note that this can always be satisfied through reward
normalization. Then

Zτ (s) =
∑
a

πb
τ (a|s) exp(Ab

τ (s, a) /η) = Ea∼πb
τ (a|s)[exp(A

b
τ (s, a) /η)]

= Ea∼πb
τ (a|s)[1 +Ab

τ (s, a) /η + o((Ab
τ (s, a) /η)

2)] (by Taylor expansion).

Moreover, by definition of the advantage function, we have

Ea∼πb
τ (a|s)[A

b
τ (s, a)] = Ea∼πb

τ (a|s)[Q
b
τ (s, a)]− V b

τ (s) = 0.

Thus,

Zτ (s) = 1 + Ea∼πb
τ (a|s)[o((A

b
τ (s, a) /η)

2)] ≈ 1.

C MDP ENVIRONMENTS

Dark Room. The agent is randomly placed in a room of 10 × 10 grids, and there is an unknown
goal location on one of the grid. Thus, there are 10x10 = 100 goals. The agent’s observation is its
current position/grid in the room, i.e., S = [10]× [10]. The agent needs to move to the goal location
by choosing from 5 actions: to move in one of the 4 directions (up, down, left, right) or stay still.
The agent receives a reward of 1 only when it is at the goal; otherwise, it receives 0. The horizon
for Dark Room is 100. We follow Lee et al. (2024) to use the tasks on 80 out of the 100 goals for
pretraining, and reserve the rest 20 goals for testing our models’ in-context RL capability for unseen
tasks. The optimal actions are defined as: move up or down until the agent is on the same vertical
position as the goal; otherwise move left or right until the agent reaches the goal.

Miniworld. The agent is placed in a room with four boxes of different colors, one of which being
the target box. The goal is to reach a box of a specific color in the room. The agent receives a
(25× 25× 3) color image and its 2-D direction as input, and can choose from four possible actions:
to turn left/right, move straight forward, or stay still. Similar to Dark Room, it receives a reward
of 1 only when it is near the target box while the horizon is 50. The optimal actions are defined as
follows: turn left/right towards the correct box if the agent’s front is not within 15 degrees of the
correct box; otherwise move forward and stay if the agent is near the box.
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Meta-World. The agent needs to control a robotic arm to pick up an object and place it at a
designated target location. In each task, the state space is in 39 dims including the gripper’s position
and state (open or closed), the 3D position of the object to be manipulated, and the coordinates of the
target location. The agent operates in a continuous action space, where it can adjust the gripper’s 3D
position and control the open/close state to enable successful grasping and releasing of the object. It
provides partial rewards for moving the gripper towards the object, grasping it correctly, transporting
it to the target location, and successfully releasing it there. The task goal is to learn an optimal policy
that efficiently achieves the sequence of actions required to pick up and accurately place the object
at the specified location. Each task has a different goal position. We train in 15 tasks and test in 5
tasks.

Half-Cheetah. The agent needs to control a 2D half-cheetah robot to achieve and maintain varying
target velocities, which change across episodes. The state space contains the cheetah’s motion,
including joint angles, velocities, body velocity, and position. These observations enable the agent
to learn intricate movement patterns and maintain balance while running. The action controls the
torques applied to each joint of the cheetah, thus dictating its locomotion and stability. The reward
is designed to align with the core task objective: matching the agent’s velocity to the target velocity.
Each task has different target velocity, and we use 35 tasks to train and 5 to test.

D PRETRAINING DATASET

Pretraining Datasets for Dark Room and Miniworld. To ensure coverage of optimal actions
(so that optimal policies can be inferred), at every step, with probability p (respectively 1 − p) we
use optimal policy (respectively random policy) to choose action. We choose p so that the average
reward of the trajectories in the pretraining dataset is less than 30% of that of the optimal trajectories,
reflecting the challenging yet common scenarios. For Dark Room, to test whether DIT models can
generalize to unseen RL problems in context, we collect context datasets from only 80 out of the
total 100 goals and reserves the rest 20 for testing. For each training goal, we follow the setting
of DPT to collect 1k context datasets, leading to a total of 80k context datasets in the pretraining
dataset (64k for training and 16k for validation). For Miniworld, we collect 40k context datasets
(32k for training and 8k for validation), 10k datasets for each of the four tasks corresponding to four
possible box colors.

Pretraining Datasets for Meta-World and Half-Cheetah. We construct the pretraining datasets
using historical trajectories generated by agents trained with Soft Actor Critic (SAC). Specifically,
SAC is trained until convergence for each task, then we sample from its learning trajectories to build
the dataset. Our SAC model training follows the settings outlined in Haarnoja et al. (2018). For the
Meta-World environment, we use its built-in deterministic policy as the optimal policy; for Half-
Cheetah, we use the optimal SAC policy. In Meta-World, we used 15 tasks to train and 5 to test.
Similarly, for Half-Cheetah, we used 35 tasks to train and 5 to test.

E TRAINING PARAMETERS.

For all methods, we use the AdamW optimizer with a weight decay of 1e − 4, a learning rate of
1e− 3, and a batch size of 128.

F MODEL DETAILS

Decision Transformer Architecture. Our model is based on a causal GPT-2 architecture Radford
et al. (2019). It consists of 6 attention layers, each with a single attention head, and an embedding
size of 256. To separately encode state, action, and reward pairs, we employ three fully connected
layers. We use a single fully connected layer to decode from the transformer’s output.

Value Function Transformer Architecture. The architecture of the value function transformer
mirrors that of the decision transformer.
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G COMPUTATION REQUIREMENTS

Our experiments can be conducted on a single A6000 GPU. It typically takes less than one hour to
generate the required dataset for training in parallel. For PPO, training usually takes less than 10
minutes per task. For the other methods, we observe that the transformer model converges within
50 epochs.

H PSEUDOCODES

Algorithm 1 Pretraining of Decision Importance Transformer

1: Input: Pretraining Dataset D = {Di}; transformer models Tθ, Q̂ζ , V̂ϕ.
2: // In-context Estimation of Advantage Functions

3: Randomly initialize and train Q̂ζ and V̂ϕ by optimizing the loss in Equation (9).
4: Construct the in-context advantage estimator as:

Âb = Q̂ζ − V̂ϕ.

5: // Weighted Pretraining
6: Randomly initialize Tθ.
7: With trained Âb and D, train Tθ by optimizing the loss in Equation (10).

Algorithm 2 Deployment of In-Context RL Models

1: Input: Pretrained transformer Model Tθ; Horizon of episodes H; Number of episodes N for
online testing; Offline dataset Doff = {(sh, ah, sh+1, rh)}h, consisting of transitions collected
by a behavioral policy.

2: // Offline Testing
3: for every time step h ∈ {1, . . . ,H} do
4: Observe state sh
5: Sample action with Tθ:

ah ∼ Tθ (·|sh, Doff)

6: Collect reward rh
7: end for
8: // Online Testing
9: Initialize an empty online data buffer Don = {}

10: for every online trial n ∈ {1, . . . , N} do
11: for every time step h ∈ {1, . . . ,H} do
12: Observe state sh
13: Sample action with Tθ:

ah ∼ Tθ (·|sh, Don)

14: Collect reward rh
15: end for
16: Append the collected transitions {(sh, ah, sh+1, rh)}h into Don

17: end for

I ESTIMATION OF ADVANTAGE FUNCTION

Figure 8 illustrates the performance of our value function estimators. Notably, the ground truth
labels represent the cumulative rewards empirically sampled using Monte Carlo, rather than the in-
trajectory cumulative rewards. From the two graphs, we observe that our function estimator effec-
tively learns the empirical distribution of cumulative rewards. Furthermore, the difference between
the Q-function and V -function estimators provides the advantage function.
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(a) Q function (b) V function

Figure 8: Performance of Q and V function estimator. On the x-axis is time step of horizon; on the
y-axis is the model predictions or ground truth values.

Figure 9: Performance of DIT when the in-context trajectory is aligned (In Task) or misaligned (Out
Task) with the current task goal.

J EFFECTIVENESS OF IN-CONTEXT TRAJECTORY

Figure 9 illustrates the effectiveness of the in-context trajectory for DIT. Since DIT predicts actions
based on the current state and the historical states in the in-context trajectory, it is crucial to ensure
that the task goal of the in-context trajectory aligns with the current task that DIT is predicting. Here,
”In Task” refers to cases where the in-context trajectory is sampled from the same task as the current
task, while ”Out Task” indicates that the in-context trajectory is sampled from a different task.

From Figure 9, we observe that alignment between the in-context trajectory and the current task
goal is critical for effective performance. This finding also validates that DIT relies heavily on the
in-context trajectory for action prediction, as misalignment with the current task goal leads to a
significant decrease in performance.
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