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ABSTRACT

This paper introduces a novel framework designed to significantly enhance the in-
ference speed and memory efficiency of Hypergraph Neural Networks (HGNNs)
while maintaining their high accuracy. Our approach, named DistillHGNN,
employs an advanced teacher-student knowledge distillation strategy, where the
teacher model comprises an HGNN and a Multi-Layer Perceptron (MLP). In this
setup, the HGNN generates embeddings, which the MLP subsequently processes
to predict soft labels. The student model consists of a lightweight Graph Convolu-
tional Network (GCN), TinyGCN, paired with an MLP and optimized for online
prediction. We leverage contrastive learning to train both TinyGCN and HGNN
simultaneously, facilitating the transfer of high-order and structural knowledge
from the HGNN to the TinyGCN. Additionally, the teacher employs a mechanism
to transfer knowledge to the student model through soft labels. This dual transfer
mechanism enables the student to effectively capture complex dependencies while
benefiting from the lightweight GCN’s faster inference and lower computational
cost. The student is trained using both labeled data and soft labels provided by the
teacher, with contrastive learning further ensuring that the student retains high-
order relationships. This makes the proposed method efficient and suitable for
real-time applications, achieving performance comparable to traditional HGNNs
but with significantly reduced resource requirements. Experimental results on
several real-world datasets demonstrate that our method significantly reduces in-
ference time while maintaining accuracy comparable to HGNN, and it achieves
higher accuracy than state-of-the-art techniques, like LightHGNN, with a similar
inference time.

1 INTRODUCTION

Hypergraphs, with their ability to capture multi-node relationships through degree-free hyperedges,
offer a significant advantage over traditional graphs in modeling complex high-order interactions
Fan et al. (2021). As a result, several Hypergraph Neural Networks (HGNNs) have been developed
to tackle various tasks, such as node classification in citation networks, recommendation in bipartite
graphs, and link prediction in biological networks ZENG et al. (2024). Despite these advances,
the widespread adoption of HGNNs in large-scale industrial applications still needs to be improved.
This is primarily due to the heavy reliance on hypergraph structures during inference, which requires
substantial memory and computational resources Yu et al. (2024). As the hypergraph size and the
HGNNs’ depth increase, the inference time and memory requirements grow exponentially, posing
significant challenges for their deployment in real-world scenarios where speed and efficiency are
crucial Feng et al. (2024). This disparity highlights the need for more lightweight and scalable
solutions that can harness the representational power of HGNNs while being suitable for high-speed,
resource-constrained environments.

The dependency of HGNNs on the hypergraph structure arises from their message-passing mecha-
nism, which involves complex high-order interactions between vertices and hyperedges. To address
this challenge, recent methods like Graph-Less Neural Networks (GLNN) Zhang et al. (2021), and
Noise-robust Structure-aware MLPs On Graphs (NOSMOG) Tian et al. (2022) and Knowledge-
inspired Reliable Distillation (KRD)Wu et al. (2023) have aimed to eliminate graph dependencies
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by distilling knowledge from GNNs to MLPs. However, these methods focus on simple graph
structures, using soft labels or pairwise edge information as supervision, and are insufficient for
hypergraphs, where hyperedges connect multiple vertices, leading to more intricate neighborhoods.
Consequently, MLPs, despite their scalability and graph independence, often underperform on hy-
pergraph data, showing an average decline in accuracy compared to HGNNs. Recently, LightHGNN
has extended the GLNN framework to hypergraphs by distilling knowledge from HGNNs into MLPs
using soft labels. While this method effectively transfers class information, it cannot convey the
complex high-order relationships and structural knowledge inherent in hypergraphs. Soft labels
alone are insufficient to capture these intricate dependencies. This limitation raises an important
question: Can we develop a strategy that distills soft labels and transfer the hypergraph’s struc-
tural and high-order knowledge to the student model, ensuring a more comprehensive knowledge
transfer?

Present work. In this paper, we present DistillHGNN, a novel framework that significantly im-
proves the inference speed and memory efficiency of HGNNs while maintaining high accuracy. Dis-
tillHGNN leverages a comprehensive teacher-student knowledge distillation approach. The teacher
model includes an HGNN and an MLP, where the HGNN captures complex relationships within the
hypergraph and generates node embeddings. These embeddings are then passed to the MLP, which
produces soft labels. Together, these embeddings and soft labels form the knowledge to be trans-
ferred to the student model. The student model includes a lightweight GCN called TinyGCN and an
MLP. TinyGCN, designed for efficient learning, consists of a single-layer GCN without non-linear
activation functions to reduce computational complexity. A contrastive learning strategy maximizes
the similarity between the embeddings generated by the HGNN and TinyGCN, effectively trans-
ferring high-order structural knowledge to the student model. This strategy enables TinyGCN to
replicate the behavior of the HGNN while operating at a significantly lower computational cost.
Moreover, soft labels are transferred as supplementary labeled data, further using the training pro-
cess of the student model. This dual transfer mechanism allows the TinyGCN and MLP in the
student model to inherit both high-order dependencies and structural knowledge from the HGNN,
resulting in faster inference and improved performance. Novelties of the Proposed Method are:

1. DistillHGNN transfers soft labels and structural knowledge from HGNN to TinyGCN, re-
sulting in richer and more effective knowledge distillation than methods like LightHGNN.

2. DistillHGNN utilizes a contrastive learning strategy to maximize the similarity between
embeddings generated by the HGNN and TinyGCN, effectively transferring high-order
structural knowledge to the student model.

3. TinyGCN is streamlined to a single layer without activation functions, reducing compu-
tational complexity while effectively capturing the high-order relationships of the teacher
HGNN.

4. The proposed method achieves inference speeds comparable to LightHGNNFeng et al.
(2024) but with higher accuracy, making it highly suitable for real-time and large-scale
applications.

5. By integrating the representational power of HGNNs with the lightweight nature of
TinyGCN, DistillHGNN delivers fast and accurate predictions while maintaining low mem-
ory and computational requirements.

2 PRELIMINARIES

Graph and Hypergraph: A graph G = (V,E) consists of a set of nodes V and edges E, where
each edge e = (vi, vj) connects two nodes, vi and vj . The structure of a graph can be represented
by its adjacency matrix A ∈ Rn×n, where Aij = 1 if there is an edge between nodes vi and vj , and
0 otherwise. This representation is limited to pairwise relationships between nodes. A hypergraph
H = (V,E), on the other hand, generalizes the concept of a graph by allowing hyperedges e ∈ E
to connect any subset of nodes, enabling the representation of complex, multi-node relationships.
A hypergraph is represented by its incidence matrix H ∈ Rn×m, where n is the number of nodes,
m is the number of hyperedges, and Hij = 1 if node vi is connected to hyperedge ej , and 0
otherwise. This matrix effectively captures high-order interactions among nodes, making it suitable
for modeling heterogeneous graphs. To convert a hypergraph into a homogeneous graph, we can

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

compute a projected adjacency matrix A ∈ Rn×n as A = HWH⊤−Dv , where W ∈ Rm×m is the
hyperedge weight matrix, and Dv is the diagonal node degree matrix, with Dv(i, i) =

∑m
j=1Hij .

This transformation reduces the hypergraph to a traditional graph where two nodes are connected if
they share common hyperedges.

Graph Convolutional Networks (GCNs) Kipf & Welling (2016) are designed to operate directly on
graph-structured data, allowing for effective representation learning from the connections between
nodes. In the context of a graph, the input consists of an adjacency matrix A that encodes the
relationships between nodes and a feature matrix X that contains the features of each node. The
fundamental operation in a GCN is performed through a series of graph convolutional layers. The
update rule for node embeddings at layer l is defined as:

H(l+1) = σ(ÃH(l)W (l)) (1)

where H(l) represents the node embeddings at layer l (for layer 0, H(0) is the input feature matrix),
W (l) is the trainable weight matrix at layer l, σ is a non-linear activation function (e.g., ReLU), and
Ã is the normalized adjacency matrix defined as:

Ã = D̂−1/2ÂD̂−1/2 (2)

Here, Â = A + I is the adjacency matrix with self-loops (adding the identity matrix I to include
each node’s feature in the aggregation), and D̂ is the degree matrix of Â, where D̂ii =

∑
j Âij . The

term D̂−1/2 represents the normalized degree matrix (the square root inverse of the degree matrix).
This normalization ensures the node features are scaled properly, preventing exploding or vanishing
gradients during training.

Hypergraph Neural Network (HGNN) is a powerful extension of the GCN designed to capture
high-order relationships among nodes by leveraging the structure of hypergraphs. In a hypergraph
H = (V,E), each hyperedge ej ∈ E can connect multiple nodes from the set V , allowing for
more complex interactions than simple pairwise connections. The incidence matrix H ∈ Rn×m

represents these connections, where Hij = 1 if node vi is connected to hyperedge ej . HGNNs use
the hypergraph Laplacian, derived from the node degree matrix Dv and the hyperedge degree matrix
De, to propagate information across the hypergraph. This is achieved through a message-passing
mechanism that updates node features using the formula:

H(l+1) = σ
(
D−1/2

v HWD−1
e HTD−1/2

v H(l)Θ(l)
)

(3)

where Θ(l) represents the learnable weights and σ(·) is a non-linear activation function. This
formulation allows HGNNs to effectively aggregate and propagate features, accounting for the
structure of the hypergraph, thus enabling the modeling of complex dependencies between nodes.
HGNNs have demonstrated their versatility and effectiveness in various applications, including
recommendation systems, social networks, and biological data analysis Feng et al. (2019).

3 METHODOLOGY

The overall architecture of the proposed DistillHGNN framework is shown in Figure 1.

The proposed method aims to enhance the inference speed and memory efficiency of HGNNs while
maintaining performance comparable to HGNNs. The method is structured around a teacher-student
knowledge distillation Figure 1. The teacher model is formed by an HGNN and a Multi-Layer
Perceptron (MLP). The HGNN generates node embeddings Zt ∈ Rn×d by processing the node
feature matrix X ∈ Rn×f and the hypergraph incidence matrix H ∈ Rn×m, where n is the number
of nodes and m is the number of hyperedges. Given the node feature matrix X ∈ Rn×f , where f is
the number of features, the HGNN propagates these features through the hypergraph structure using
the hypergraph Laplacian:

L = D−1/2
v HWD−1

e HTD−1/2
v (4)

Here, Dv ∈ Rn×n is the diagonal node degree matrix, De ∈ Rm×m is the diagonal hyperedge
degree matrix, and W ∈ Rm×m is the hyperedge weight matrix. The HGNN generates node em-
beddings Zt ∈ Rn×d by propagating the input features X through the Laplacian as:

Zt = HL (5)
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Figure 1: The proposed model consists of a teacher section (HGNN) and a student section
(TinyGCN). The HGNN represents hypergraphs and generates soft labels using high-order rela-
tionships, while the TinyGCN captures direct neighborhood relations in graphs. Both models are
trained using a supervised loss and contrastive loss to align their embeddings, enabling efficient
knowledge distillation from teacher to student.

where L is the number of layers in the HGNN, and

H(l+1) = σ
(
LH(l)Θ(l)

)
(6)

is the recursive update rule, with H(l+1) = σ
(
D

−1/2
v HWD−1

e HTD
−1/2
v H(l)Θ(l)

)
. The embed-

ding Zt is then input into the teacher MLP to predict soft labels Y t. Let C = {c1, c2, . . . , ck} be a
set of node classes. A soft label is a vector with a length equal to the number of classes (i.e., |C|),
where each value in the i-th cell represents the probability of the node belonging to the class ci ∈ C.
The supervised loss, called BPR loss, is defined as:

Lbpr =
1

|V L|
∑
v∈V L

(
Yv − Y t

v

)2
(7)

where Yv is the true label for labeled nodes V L, and Y t
v is the soft label predicted for the node v.

To transfer knowledge from the teacher to the student model, we propose a lightweight GCN called
TinyGCN, designed to mimic the embedding generation capabilities of HGNN. TinyGCN simpli-
fies the standard GCN architecture by removing non-linear activation functions and using only a
single layer. This minimalistic design allows TinyGCN to effectively capture the high-order relation-
ships learned by the teacher model while significantly reducing inference time and computational
complexity. In parallel, the graph is also passed through the TinyGCN to generate embeddings
Zs ∈ Rn×d using the node feature matrix X and adjacency matrix As ∈ Rn×n obtained from
the incidence matrix H. The node embeddings are updated using only the linear aggregation of
neighboring nodes’ information via the adjacency matrix, represented as:

Zs = ÂsXW s (8)

where Âs = As + I and W s is the trainable weight matrix. To ensure that the TinyGCN captures
similar high-order relationships as the HGNN, a contrastive learning approach is applied using the
InfoNCE loss:

Lcon = − 1

|V |
∑
v∈V

log

(
exp (Zs

v · Zt
v/τ)∑

v′∈V exp (Zs
v′ · Zt

v′/τ)

)
(9)

where τ is the temperature parameter that scales the similarity scores between embeddings. The
total loss for the teacher model combines the supervised and contrastive losses as:

Lteacher = Lbpr + γLcon (10)

with γ as a hyperparameter balancing the contributions of both losses. This ensures a seamless
transfer of the topological structure and high-order information from the HGNN to the TinyGCN.

4
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Additionally, the teacher model generates soft labels for all nodes in the graph, representing the prob-
ability distribution over classes for each node. Given the limited availability of human-annotated
labels, these soft labels serve as a valuable form of knowledge, transferred to the student model
to provide richer supervisory signals. This approach helps the student model effectively learn the
underlying data distribution, enabling it to perform well even with a sparse set of ground truth labels.

The student model includes the TinyGCN and a separate MLP. TinyGCN produces embeddings Zs

for each node, which is then fed into the student MLP to predict the target labels. We use both
labeled data and soft labels provided by the teacher model to train the student model. For a given
node v with node features Xv , the predicted label is:

Ŷ s
v = MLPs(TinyGCN(Xv)) (11)

The loss function for the student model is:

Lstudent =
1

|V L|
∑
v∈V L

(Ŷv − Yv)
2 + λ

1

|V |
∑
v∈V

KL(Ŷv||Y t
v ) (12)

where Y t
v represents the soft label obtained from the teacher model, and KL denotes the Kullback-

Leibler divergence, which measures the difference between the predicted probability distribution
and the target distribution provided by the teacher. The parameter λ controls the influence of the
distillation loss in the overall training objective, balancing the impact of learning from the teacher’s
knowledge against other learning signals. This approach ensures that the student model effectively
assimilates the nuanced class probabilities inferred by the teacher. The algorithm of the proposed
method is provided in Algorithm 1 in the Appendix A.

4 EXPERIMENTS

4.1 DATASETS

In our experiments, we utilize eight well-known graph datasets. The Cora dataset, introduced by
Sen et al. Sen et al. (2008), and the Citeseer dataset, developed by Giles et al. Giles et al. (1998),
have been transformed into hypergraph datasets, namely CC-Cora and CC-Citeseer, by Yadati et al.
Yadati et al. (2019). In these two datasets, vertices represent academic papers, and hyperedges con-
nect co-cited papers (CC). Each vertex is labeled according to the topic of its corresponding paper.
We include the complete IMDB dataset and its subset IMDBAW from Fu et al. Fu et al. (2019),
which features multiple types of hyperedges: user-movie interactions, actor-movie collaborations,
and director-movie relationships. While IMDBAW focuses on co-actor and co-director relation-
ships, the complete IMDB encompasses a broader network of 142,129 nodes across movies, users,
directors, and actors. Additionally, we incorporate the complete DBLP dataset and its three subsets:
DBLP-Paper, DBLP-Term, and DBLP-Conf, as introduced by Sun et al. Sun et al. (2011). The
complete DBLP dataset contains 66,543 nodes spanning papers, authors, venues, and terms, with
hyperedges formed through various academic relationships. In its subsets, hyperedges are formed
based on collaborations (DBLP-Paper), the use of the same term (DBLP-Term), and papers pub-
lished at the same conference (DBLP-Conf). The vertex labels correspond to the authors’ research
areas. A summary of the dataset statistics is provided in Table 3 in the Appendix B.

4.2 EVALUATION METHODS

We conducted each experiment five times using different random seeds, reporting both the average
performance and standard deviation. Our evaluation is based on three training methods: transduc-
tive, inductive, and production Tian et al. (2022); Feng et al. (2024). In the transductive method,
the training and test data are used during evaluation, allowing the model to learn from the entire
dataset. In contrast, the inductive method trains the model on one dataset and tests it on a com-
pletely different, unseen dataset. The production method combines both transductive and inductive
predictions to simulate a more realistic deployment scenario. For each dataset, 20% of the data was
used for validation, and 10% was used for testing. Accuracy was the primary metric for performance
comparison, and the model with the best validation performance was applied to the test set for final
evaluation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 BASELINE METHODS

We evaluate DistillHGNN against two different types of approaches. The first category includes
graph-based methods, comprising traditional GNN models Scarselli et al. (2008), GCN by Kipf and
Welling Kipf & Welling (2016), Multilayer Perceptron (MLP) by Taud et al. Taud & Mas (2018),
and knowledge distillation methods. These include GNN-to-MLP models like GLNN by Zhang et al.
Zhang et al. (2021) and KRD by Wu et al. Wu et al. (2023), which operate on graph structures. The
second category comprises hypergraph-based methods. We utilize the Hypergraph Neural Network
(HGNN) by Feng et al. Feng et al. (2019) and the knowledge distillation method HGNN-to-MLP
(LightHGNN) by Feng et al. Feng et al. (2024). Accordingly, we generate two versions of the data:
for the first type of methods, we use the graph structure, which includes GNN, MLP, and GLNN,
while for the second type, we utilize the hypergraph structure for HGNN and LightHGNN. The
baseline experiments and our methods are implemented using PyTorch and the DHG library 1. We
evaluate the proposed method for classification based on two key aspects: accuracy and inference
speed. Table 1 presents the results based on accuracy across the three training methods.

Table 1: Experimental results on eight hypergraph datasets under production setting.

Dataset Setting GNN GCN MLP HGNN GLNN KRD LightHGNN DistillHGNN

IMDB
Tran. 46.45+2.15 46.92+1.65 43.22+1.95 51.45+1.77 45.88+2.33 47.33+1.88 50.22+1.95 51.88+1.66

Ind. 47.33+2.44 47.67+1.72 44.15+2.12 52.28+1.95 46.85+2.55 48.22+2.05 51.18+2.12 52.33+1.77

Prod. 46.88+2.33 47.15+1.88 43.77+2.05 51.22+1.88 46.12+2.44 47.88+1.95 50.45+2.05 51.92+1.66

IMDB-AW
Tran. 46.26+1.36 46.77+2.12 42.70+1.67 53.36+2.25 45.22+2.51 47.15+1.88 51.11+0.77 52.34+1.62

Ind. 48.28+4.43 48.67+2.33 43.35+3.33 54.12+2.74 46.50+2.23 49.12+2.55 52.27+1.14 55.27+1.16

Prod. 47.33+1.82 47.88+1.95 43.15+1.92 53.31+3.01 45.16+3.98 48.22+2.15 51.84+3.51 53.93+2.14

CC-Citeseer
Tran. 53.06+0.62 53.88+1.62 46.76+0.83 62.26+1.68 52.57+1.73 54.12+1.55 59.65+2.12 61.02+1.62

Ind. 55.00+1.09 55.22+1.88 49.20+2.60 62.38+2.11 54.45+3.01 55.67+2.12 61.36+1.27 62.18+2.16

Prod. 53.60+0.34 54.05+2.01 47.20+1.60 61.39+3.11 52.08+2.55 54.33+1.92 60.11+1.63 61.88+2.14

CC-Cora
Tran. 52.26+3.25 52.88+1.95 45.16+2.51 65.17+1.68 51.22+1.10 53.45+2.15 63.65+2.12 65.02+1.62

Ind. 54.39+2.15 54.67+2.05 48.66+2.19 66.88+2.11 53.50+1.81 55.12+1.88 65.76+1.27 66.78+1.16

Prod. 54.15+3.44 54.55+1.92 48.02+2.05 65.52+2.11 53.19+2.75 54.88+2.33 64.11+1.63 65.68+2.14

Dataset Setting GNN GCN MLP HGNN GLNN KRD LightHGNN DistillHGNN

DBLP
Tran. 75.33+2.15 75.92+1.88 66.88+2.77 83.26+1.55 72.45+2.55 76.45+1.95 81.45+2.88 82.88+1.66

Ind. 76.15+2.44 76.67+1.95 67.22+3.15 84.12+1.77 73.12+2.88 77.22+2.12 82.33+2.55 84.45+1.88

Prod. 75.88+2.33 76.15+1.92 66.45+2.95 83.55+1.88 72.88+2.66 76.88+2.05 81.88+2.44 83.77+1.75

DBLP-Paper
Prod. 65.15+2.21 65.88+1.95 60.47+2.44 71.80+1.08 62.42+4.02 66.33+2.15 69.12+3.22 71.22+2.55

Tran. 66.23+1.55 66.77+2.12 62.38+2.45 72.52+0.98 63.87+3.76 67.12+2.33 71.22+2.63 72.02+1.76

Ind. 65.57+1.86 66.22+2.05 61.50+3.07 72.08+1.54 63.17+3.22 66.88+1.92 70.69+2.17 71.16+1.64

DBLP-Term
Prod. 66.33+2.31 66.92+1.88 61.20+3.65 72.10+0.90 64.15+2.84 67.45+2.15 70.16+3.29 71.67+0.87

Tran. 67.52+3.29 67.88+2.15 62.12+3.50 73.46+1.63 65.24+2.72 68.33+2.44 71.64+1.53 73.79+1.32

Ind. 66.13+4.06 66.77+2.05 61.68+2.88 73.12+1.33 64.87+3.15 67.22+2.33 71.51+2.17 72.45+1.76

DBLP-Conf
Prod. 72.30+2.55 72.88+1.95 63.53+2.77 90.03+1.66 69.18+3.11 73.45+2.15 88.10+3.51 89.27+2.17

Tran. 74.18+2.84 74.67+2.12 65.12+3.44 92.22+2.78 71.45+2.23 75.22+2.33 90.74+4.20 92.11+1.84

Ind. 74.26+2.62 74.88+2.05 64.22+4.07 91.00+2.42 71.02+2.96 75.33+1.92 90.05+4.04 91.38+3.25

The DistillHGNN model demonstrates substantial advantages in classification tasks by utilizing
knowledge distillation to enhance its performance over traditional graph-based and hypergraph-
based methods. As shown in Table 1, DistillHGNN consistently achieves either the highest or
second-highest accuracy across various datasets and settings, including training (Tran), inductive
(Ind), and production (Prod) scenarios. Although DistillHGNN’s accuracy is slightly lower than
HGNN’s top performance, it consistently outperforms LightHGNN and shows a small but notice-
able improvement in accuracy. Additionally, DistillHGNN significantly surpasses traditional models
such as GNN, GCN, MLP, GLNN and KRD.

1https://github.com/iMoonLab/DeepHypergraph
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4.4 BALANCING ACCURACY AND INFERENCE TIME

Before introducing the results of this section, it is important to note that for all subsequent exper-
iments, we employ the production method for training. Additionally, we use three versions of the
DBLP dataset (based on Papers, Terms, and Conferences), running the model on all three variants
and taking the average to ensure consistency. This averaged result is referred to as the DBLP dataset
in our analysis. In this evaluation phase, we focus on two datasets—IMDB-AW and DBLP—and
compare DistillHGNN with other models by examining the trade-off between model accuracy and
inference time. This approach allows us to evaluate both the effectiveness and computational effi-
ciency of each model, offering a comprehensive comparison across these dimensions. In real-world
applications, an ideal model should maintain high accuracy while minimizing inference time, partic-
ularly when computational resources and processing speed are critical. Models with high accuracy
but slow inference times, such as GNNs or HGNNs, may not be practical for time-sensitive ap-
plications, while faster models like MLPs, which sacrifice accuracy, may fail to meet performance
expectations. The strength of knowledge distillation models lies in achieving a balanced trade-off,
offering both competitive accuracy and reasonable computational efficiency. Higher accuracy often
comes at the expense of longer inference time, but DistillHGNN is designed to balance these fac-
tors. The results, illustrated in Figure 2, demonstrate how each model’s accuracy compares with its
inference time across the datasets.

(a) IMDB-AW (Accuracy vs. Inference Time) (b) DBLP (Accuracy vs. Inference Time)

Figure 2: Comparison of Models based on Accuracy and Inference Time

Figure 2 demonstrates that DistillHGNN significantly reduces inference time compared to HGNN,
achieving a reduction of approximately 69%. This improvement underscores DistillHGNN’s ef-
ficiency, as it maintains high accuracy while providing much faster inference. Although MLP
offers the quickest inference time at just 4 ms, its accuracy of 0.42 makes it less suitable for
high-performance applications. DistillHGNN’s inference time is not only significantly faster than
HGNN’s but also comparable to LightHGNN’s, while delivering superior accuracy. This indicates
that the knowledge distillation process enhances overall performance without adding substantial
computational overhead. Additionally, DistillHGNN outperforms GNN and GLNN in accuracy,
making it an effective model for large-scale tasks that require a balance of performance and speed.
Overall, DistillHGNN effectively balances high accuracy with computational efficiency, making it
an ideal choice for scenarios where both model performance and rapid execution are crucial, such
as in real-time systems or large-scale applications.

4.5 ACCURACY OF THE METHODS

A key challenge in knowledge distillation is to ensure that the student captures not only direct re-
lationships between nodes but also crucial high-order relations. In this process, we focus on two
relationship types within the student model: direct (neighboring) relations and high-order relations.
The teacher model, leveraging a hypergraph structure, excels at capturing high-order relationships
but often suffers from high inference times due to the complexity of hyperedges.

Previous research, such as Tian et al. (2022); Wu et al. (2023); Feng et al. (2024), has utilized soft
labels to facilitate knowledge transfer. However, while soft labels approximate the teacher’s behav-
ior, they alone cannot fully convey the high-order structural knowledge captured by the hypergraph.
To overcome this limitation, we propose a combined approach that utilizes both soft labels and
structural knowledge from the Hypergraph Neural Network (HGNN) as the teacher model. To im-
plement this combined distillation, we employ contrastive learning within the TinyGCN framework.
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The student model receives two types of inputs: one based on the simpler TinyGCN architecture and
the other derived from high-order embeddings generated by the HGNN teacher model. To evaluate
the effectiveness of DistillHGNN, we propose the High-Order Preservation Score (Hpres), which
quantifies how well the student model retains the complex, high-order relationships transferred from
the teacher model. DistillHGNN addresses this challenge by incorporating both soft labels and
high-order relation embeddings through contrastive learning. The High-Order Preservation Score is
computed as follows:

Hpres =
1

|V |
∑
v∈V

1

K

∑
u∈NK(v)

Sim(xteacher
u ,xstudent

u ) (13)

Here, |V | is the total number of nodes, NK(v) is the set of K-nearest neighbors of node v, and
xteacher
u and xstudent

u are the embeddings generated by the teacher and student models, respectively.
The similarity measure Sim can be based on cosine similarity or Euclidean distance, depending on
the experimental setup. This score evaluates the extent to which the student model replicates the
high-order structural information encoded in the teacher model, focusing on the similarity between
the embeddings of neighboring nodes in both models. The results indicate in Table 2 as follows:
The results demonstrate a clear progression in the High-Order Relation Preservation Score (Hpres)

Table 2: Comparison of Knowledge Distillation Methods Based on Preservation Scores Across
Datasets

Method CC-Cora CC-Citeseer IMDB-AW DBLP Mean
GLNN Tian et al. (2022) 0.54 0.58 0.51 0.67 0.575
KRD Wu et al. (2023) 0.56 0.62 0.54 0.71 0.6075
LightHGNN Feng et al. (2024) 0.72 0.78 0.74 0.83 0.7675
DistillHGNN 0.78 0.84 0.81 0.88 0.8275

across the evaluated methods, with DistillHGNN achieving the highest mean score of 0.8275. This
indicates that methods integrating greater structural knowledge are significantly more effective at
preserving high-order relationships.

4.6 INFERENCE TIME

MLPs offer faster execution times and lower memory usage but typically result in reduced accuracy.
In contrast, HGNNs deliver superior performance, though at the cost of slower inference times and
higher memory consumption. DistillHGNN successfully bridges this gap by achieving a balanced
trade-off between memory usage and accuracy. As illustrated in Figure 2, DistillHGNN maintains
competitive inference times and reduces memory consumption through its lightweight student model
design without sacrificing accuracy. By utilizing heterogeneous graphs, such as those derived from
the IMDB and DBLP datasets Fan et al. (2021), the model benefits from the rich, multi-relational
structures present in the data. These datasets include complex relationships where nodes—such as
movies or academic papers—interact with various entities (e.g., users, directors, authors), forming
hyperedges that capture higher-order connections. Detailed statistics of the datasets and the results
from this evaluation are presented in Tables 4 and 5, respectively, in Appendix C.

4.7 ABLATION STUDY

In this section, we present findings that evaluate the effectiveness of different knowledge transfer
methods employed in the DistillHGNN framework. The proposed model is assessed using three dis-
tinct approaches: (1) soft labels alone, (2) structural knowledge alone, and (3) a combination of both
(DistillHGNN). The results are illustrated in Figure 3, which includes calculations of both accuracy
and inference time for each method. The findings are presented in Figure 3 as follows: The accuracy
scores reveal a significant improvement when using the combined approach of DistillHGNN, which
leverages both soft labels and structural knowledge, compared to using either method individually.
Across all datasets, the combined method consistently outperforms the individual approaches, with
accuracy improvements ranging from 3% to 10%. These findings underscore the advantages of uti-
lizing both soft labels and structural knowledge within the DistillHGNN framework, demonstrating
a favorable trade-off between speed and accuracy.

8
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Figure 3: The proposed model is evaluated using three different knowledge transfer methods: (1)
soft labels alone, (2) structural knowledge alone, and (3) a combination of both (DistillHGNN). The
evaluation includes calculating both accuracy and inference time for each method.

In DistillHGNN, knowledge transfer occurs through both structural knowledge and soft labels from
the teacher model to the student model. When CL is incorporated, the model achieves a more refined
alignment of node embeddings, enabling the student to effectively capture intricate high-order rela-
tionships. The results comparing models with and without CL are presented in Figure 4 as follows:
The accuracy comparison between the models with and without contrastive learning across datasets

Figure 4: The proposed model is evaluated based on the absence of contrastive learning (lack of CL)
and with contrastive learning (DistillHGNN), focusing on accuracy across four datasets.

clearly shows performance improvements when using CL. These results indicate that incorporat-
ing both structural knowledge and contrastive learning in DistillHGNN enhances generalization and
performance, particularly in more complex datasets like DBLP. Despite slightly slower inference
times, the accuracy gains justify the use of DistillHGNN for achieving more accurate predictions.

To further evaluate the performance of DistillHGNN, we examine the impact of increasing the num-
ber of layers in the proposed model on both accuracy and inference time. This analysis helps deter-
mine the influence of model depth on the quality of predictions and computational efficiency across
HGNN, Teacher MLP, TinyGCN, and Distill MLP. The results of this evaluation are presented in
Appendix D.

In the context of the proposed DistillHGNN method, several hyperparameters play key roles in con-
trolling the trade-offs between different components, the learning process, and overall performance.
Table 6 shows the results of the evaluation of the DistillHGNN framework based on different con-
figurations of hyperparameters and their corresponding accuracy metrics in Appendix E.

In this experiment, we evaluate the performance of DistillHGNN across six hypergraph datasets
under different training sizes. The goal is to observe how varying the proportion of training data
affects the model’s accuracy. We compare the DistillHGNN model with several baselines: GNNs,
MLP, GLNN, HGNN, and LightHGNN. The results are presented in Table 7 in Appendix F.
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To thoroughly assess the performance of DistillHGNN, we conducted an ablation study focusing
on the impact of different training durations, specifically varying the number of training epochs.
This evaluation aims to determine how the duration of training influences the model’s accuracy and
generalization capability across different datasets. Each model was trained using the same dataset
and hyperparameter settings to ensure a fair comparison. The results of this study are shown in
Figure 5, which presents the accuracy achieved by DistillHGNN for each training epoch setting.

(a) CC-Citeseer, CC-Cora, and IMDB-AW Datasets (b) DBLP Datasets

Figure 5: Sensitivity analysis of training epoch settings ranging from 100 to 1000. This analysis
aims to evaluate how varying the number of training epochs influences model performance,

providing insights into the optimal training duration for achieving the best accuracy.

The experimental results indicate that as the number of epochs increases, model accuracy generally
improves, though at varying rates depending on the dataset. This result indicates that the datasets
contains rich features that the model can leverage effectively, benefiting substantially from additional
training epochs.

4.8 VISUAL ANALYSIS OF KNOWLEDGE TRANSFER

We conducted a comprehensive visual analysis of DistillHGNN’s performance using multiple visu-
alization techniques to evaluate the effectiveness of knowledge transfer between teacher and student
models. The results of this evaluation are presented in Appendix G.

5 CONCLUSION

In this paper, we address two key challenges in knowledge distillation for graph-based models:
(1) effectively transferring high-order relationships between nodes, and (2) overcoming the limita-
tions of using soft labels as the sole medium for transferring knowledge from the teacher model to
the student model. To address the first challenge, we leveraged a hypergraph structure within the
teacher model, allowing for the capture and transfer of high-order relationships that go beyond di-
rect node connections. For the second challenge, we employed a CL framework in combination with
soft labels to enhance the knowledge transfer process. The contrastive learning mechanism ensures
that the embeddings generated by the student model align with those of the teacher model, thereby
preserving the high-order relational knowledge encoded in the HGNN. The experimental results
demonstrate that the proposed approach achieves superior accuracy compared to traditional knowl-
edge distillation methods. Specifically, the use of hypergraph-based embeddings and the integration
of soft label distillation with structural knowledge led to better performance in terms of both classi-
fication accuracy and the preservation of high-order node relations. Moreover, our method strikes a
desirable balance between inference speed and memory efficiency. Although TinyGCN significantly
reduces computational complexity, its performance remains comparable to that of the more complex
HGNN model. Overall, this approach opens up new possibilities for lightweight models that retain
the expressiveness of more complex networks while ensuring faster inference, making it suitable for
real-world applications where computational resources are limited.
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A ALGORITHM

The proposed DistillHGNN framework is a knowledge distillation approach that leverages the power
of a Hypergraph Neural Network (HGNN) as the teacher model and a lightweight TinyGCN (Graph
Convolutional Network) as the student model. The goal of this framework is to transfer knowl-
edge from the HGNN, which captures high-order relations among nodes through hyperedges, to
the TinyGCN, which is designed for direct and low-complexity node aggregation. By distilling the
rich information from the teacher model into the simpler student model, the system ensures effi-
cient learning while maintaining competitive performance in tasks such as node classification. The
distillation process includes the generation of soft labels from the teacher model, which are used
as targets for the student model in conjunction with the true labels. Additionally, a contrastive loss
function ensures that the embeddings produced by the student model align with the high-order rela-
tional embeddings learned by the teacher, reinforcing the transfer of meaningful information. The
combination of BPR loss, contrastive loss, and KL divergence enables a robust learning process
for the student model. The overall procedure of the proposed DistillHGNN method is outlined in
Algorithm 1.

B DATASETS

In this work, we evaluate the performance of the proposed DistillHGNN framework on several
widely used benchmark datasets. These datasets come from various domains, including citation
networks, movie databases, and bibliographic datasets, providing a diverse range of graph structures
and node features. The IMDB dataset represents a comprehensive heterogeneous network from the
Internet Movie Database, containing 142,129 nodes across four different types: movies (40,635
nodes), users (2,113 nodes), directors (4,060 nodes), and actors (95,321 nodes). The heterogeneous
nature is reflected in its three types of relationships: user-movie interactions (1,216,358 edges),
director-movie connections (15,732 edges), and actor-movie collaborations (364,058 edges). With
a high average degree of 22.46, this dataset exhibits very dense connectivity patterns, making it
particularly challenging for graph learning tasks.
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Algorithm 1 DistillHGNN Framework with Knowledge Distillation
Input: Hypergraph G = {V,E}, features X , incidence matrix H, labeled data DL = {VL, YL},
number of epochs E, parameters τ, γ, λ
Output: Student model parameters

1: Initialize: Parameters for HGNN (Θ(l)), Teacher MLP (Θt), Student TinyGCN (W s), and
Student MLP (Θs)
Step 1: Compute Laplacian and Adjusted Adjacency

2: L← D
−1/2
v HWD−1

e H⊤D
−1/2
v

3: Âs ← As + I
Step 2: Pre-train the Teacher Model

4: for epoch = 1 to E do
5: Compute HGNN embeddings: Zt ← HL, where

H(l+1) = σ(LH(l)Θ(l))

6: Generate teacher predictions: Y t ← MLPt(Zt)

7: Compute TinyGCN embeddings: Zs ← ÂsXW s

8: Compute teacher loss:

Lteacher ←
1

|VL|
∑
v∈VL

(Yv − Y t
v )

2 − γ
1

|V |
∑
v∈V

log
exp(Zs

v · Zt
v/τ)∑

v′ exp(Zs
v′ · Zt

v′/τ)

9: Update teacher parameters Θt and freeze them
10: end for

Step 3: Train the Student Model
11: for epoch = 1 to E do
12: Generate teacher outputs: Zt, Y t (using frozen teacher model)
13: Compute student outputs:

Zs ← ÂsXW s, Ŷ s
v ← MLPs(Zs)

14: Compute student loss:

Lstudent ←
1

|VL|
∑
v∈VL

(Ŷ s
v − Yv)

2 + λ
1

|V |
∑
v∈V

KL(Ŷ s
v ∥Y t

v )

15: Update student parameters {W s,Θs}
16: end for
17: Return: Student model parameters

The DBLP dataset is a heterogeneous bibliographic network comprising 66,543 nodes of four types:
papers (43,128 nodes), authors (14,475 nodes), venues (20 nodes), and terms (8,920 nodes). The
heterogeneity is manifested in its diverse edge types: author-paper collaborations (58,592 edges),
venue-paper publications (20,770 edges), and term-paper associations (195,462 edges). With an
average degree of 8.26, it presents a dense, interconnected structure while maintaining clear hier-
archical relationships among different node types. CC-Citeseer and CC-Cora are standard citation
network datasets where nodes represent research papers, and edges represent citation links between
papers. These datasets are characterized as homogeneous due to their uniform node and edge types.
Each paper (node) is represented by a bag-of-words feature vector, and the goal is to classify papers
into different research topics. Their relatively low average degrees (3.2 and 3.8 respectively) indi-
cate sparse connectivity patterns. IMDB-AW is a subset of the complete IMDB dataset that focuses
on actor collaborations and relationships within the movie industry. Nodes represent actors, and
edges connect actors who have appeared in the same movie. Despite being smaller than the com-
plete IMDB dataset, it maintains its heterogeneous characteristics with an average degree of 8.4,
indicating dense connectivity patterns.
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DBLP-paper, DBLP-term, and DBLP-Conf are subsets of the complete DBLP bibliographic dataset,
each highlighting different aspects of the academic network. These subsets maintain the heteroge-
neous nature of the complete dataset but with varying connectivity patterns:

1. DBLP-paper exhibits moderate connectivity (degree 5.2) focusing on paper-centric rela-
tionships.

2. DBLP-term shows higher connectivity (degree 7.1) emphasizing term-paper associations.
3. DBLP-Conf demonstrates sparse but hierarchical structure (degree 284.2) concentrating on

conference-paper relationships.

The summary of the dataset statistics, including the number of nodes, edges (or hyperedges),
features, and classes, is provided in Table 3. This diverse collection of datasets, ranging from
sparse homogeneous to very dense heterogeneous networks, allows for comprehensive evaluation
of hypergraph-based methods across different network structures and application domains.

Table 3: Information on Hypergraph Datasets

Dataset Statistics Characteristics
#Nodes #Edges #Feat #Class

DBLP 66,543 274,824 334 4 Dense, heterogeneous (deg=8.26)
IMDB 142,129 1,596,148 3,066 3 Very dense, heterogeneous (deg=22.46)
CC-Citeseer 3,312 1,004 3,703 6 Sparse, homogeneous (deg=3.2)
CC-Cora 2,708 1,483 1,433 7 Mod. sparse, homogeneous (deg=3.8)
IMDB-AW 5,355 6,811 3,066 3 Dense, heterogeneous (deg=8.4)
DBLP-paper 14,376 14,475 334 4 Moderate, heterogeneous (deg=5.2)
DBLP-term 14,376 13,789 334 4 High connect., heterogeneous (deg=7.1)
DBLP-Conf 14,376 1,612 334 4 Sparse, hierarchical (deg=284.2)

C COMPARISON OF DISTILLHGNN AND HGNN MODEL BASED ON
INFERENCE TIME

In this evaluation phase, we assess the inference time of the DistillHGNN model using two hetero-
geneous datasets: IMDB and DBLP. These datasets are particularly challenging due to their diverse
node types and complex relationships, making them ideal for evaluating both the effectiveness and
computational performance of our model. The IMDB dataset comprises user, movie, director, and
actor nodes, interconnected through various hyperedges, including user-movie, director-movie, and
actor-movie relationships. This structure exemplifies a typical heterogeneous network where multi-
ple node types and interactions are represented. Similarly, the DBLP dataset includes paper, author,
venue, and term nodes, connected through their respective relationships (author-paper, venue-paper,
and term-paper), representing another common structure found in academic collaboration networks.

Table 4 summarizes the key statistics of these datasets, including the number of nodes, types of
nodes, and hyperedges. The complexity and scale of these datasets pose significant challenges in
terms of inference time, making them ideal for evaluating DistillHGNN’s ability to balance accuracy
and computational efficiency.

Given the intricacies of these datasets, it is crucial to evaluate the inference time of DistillHGNN in
comparison to the original HGNN model. This section aims to assess the inference performance of
DistillHGNN on both IMDB and DBLP graphs, contrasting it with the performance of the standard
HGNN model. The results, which include a comparative analysis of the inference times, are sum-
marized in Table 5. These findings illustrate the efficiency of DistillHGNN in reducing inference
time while maintaining competitive performance.

These results highlight the scalability and computational efficiency of DistillHGNN, especially when
managing large-scale graphs. For example, with 40,635 nodes in the IMDB dataset, DistillHGNN
demonstrates an impressive speed improvement, being almost 79 times faster than the HGNN model.
Similarly, for the DBLP dataset with 43,128 nodes, DistillHGNN is nearly 82 times faster. The sub-
stantial speedup, particularly at larger node levels, underscores the practical advantages of Distill-
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Table 4: Statistics of the Datasets

Dataset Nodes Count of Nodes Hyperedges Count of Edges

IMDB

Movie 40,635
User 2,113 User-Movie 1,216,358

Director 4,060 Director-Movie 15,732
Actor 95,321 Actor-Movie 364,058

Total 142,129 1,596,148

DBLP

Paper 43,128
Author 14,475 Author-Paper 58,592
Venue 20 Venue-Paper 20,770
Term 8,920 Term-Paper 195,462

Total 66,543 274,824

Table 5: Comparison of Inference Time (ms) between DistillHGNN and HGNN for IMDB and
DBLP Datasets at Different Node Levels.

Dataset Hyperedge Count HGNN DistillHGNN Improvement (%)

IMDB

10,000 8.12 0.67 12.12
20,000 37.35 1.13 33.05
30,000 84.70 1.68 50.42
40,635 175.56 2.23 78.70

DBLP

10,000 9.47 0.72 13.15
20,000 42.15 0.98 43.01
30,000 75.33 1.51 49.88
43,128 168.84 2.06 81.97
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HGNN in applications that require rapid inference on complex, multi-relational data. Furthermore,
the consistently higher times-faster ratios across both datasets accentuate DistillHGNN’s effective-
ness in minimizing computational overhead compared to the HGNN model. Overall, the analysis
illustrates that DistillHGNN not only maintains competitive performance but also significantly en-
hances inference speed, making it a compelling choice for real-world applications that demand ef-
ficiency without sacrificing accuracy. This capability is particularly valuable in scenarios where the
processing of vast amounts of data is required, such as recommendation systems and social network
analyses.

D EVALUATION OF DISTILLHGNN BASED ON THE DEPTH OF LAYERS
CONFIGURATION

To further assess the performance of DistillHGNN, we evaluate the impact of increasing the number
of layers in various sections of the proposed model. This includes the HGNN and Teacher MLP
in the Teacher section, as well as TinyGCN and Distill MLP in the Student section, with a focus
on accuracy and inference time. The selected layers for the proposed method include three layers
for both HGNN and Teacher MLP, a single layer for TinyGCN, and two layers for Distill MLP. In
this section, we experiment with each model by testing different configurations with multiple layers
(specifically, 2, 3, 4, and 5 layers) and comparing the results based on accuracy and inference time.
Our experiments are conducted on the IMDB-AW dataset, and the results are illustrated in Figure 6
as follows:

(a) HGNN Model (b) Teacher MLP HGNN Model

(c) TinyGCN Model (d) Distill MLP Model

Figure 6: Evaluation of the Proposed Method Based on the Depth of Layers Configuration for
HGNN, Teacher MLP, TinyGCN, and Distilled MLP using the IMDB-AW Dataset

In evaluating the performance of DistillHGNN, as indicated in Figure 6, we analyzed the impact
of increasing the number of layers across different sections of the proposed model, including the
HGNN and Teacher MLP in the Teacher section, as well as TinyGCN and Distill MLP in the Student
section. The analysis focused on accuracy and inference time, based on the results obtained. The
selected layers for the proposed method include three layers for both HGNN and Teacher MLP, a
single layer for TinyGCN, and two layers for Distill MLP. This selection is driven by the need to
balance model complexity with computational efficiency while ensuring optimal performance. The
HGNN model demonstrates a consistent upward trend in accuracy as the number of layers increases,
starting from 52.37% with 1 layer and reaching 54.15% with 5 layers. However, the decision to limit
the depth of the HGNN to three layers is based on observed diminishing returns in accuracy beyond
this point, as indicated by the marginal improvement from 54.12% at 4 layers to 54.15% at 5 layers.
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This suggests that three layers are sufficient to capture the essential relationships in the data while
minimizing inference time, which escalates from 4 ms to 39 ms with increased depth.

Similarly, the Teacher MLP model shows a relatively stable accuracy range, peaking at 54.11% with
4 layers before slightly dropping to 54.02% at 5 layers. Selecting three layers for the Teacher MLP
balances complexity and performance, as it allows the model to learn effectively without succumb-
ing to overfitting or unnecessary computational overhead, particularly since inference time increases
significantly from 7 ms at 2 layers to 40 ms at 5 layers. For TinyGCN, which reached its highest
accuracy of 54.03% at 3 layers before slightly declining to 53.90% at 5 layers, a single layer was
selected to maintain efficiency in inference time while still leveraging the strengths of graph convo-
lution. The increase in accuracy from 53.91% with a single layer to 54.03% at 3 layers is marginal,
indicating that a more straightforward architecture is sufficient to capture the essential features of
the dataset without incurring excessive computational costs, as inference time ranges from 10 ms to
44 ms with increasing depth. In the case of the Distill MLP model, selecting two layers allows for
enhanced performance, reaching an accuracy of 54.33% at 4 layers while still being computationally
feasible. The results indicate that two layers strike an effective balance between learning capacity
and inference efficiency, given that the inference time increases significantly from 10 ms to 51 ms
as layers are added.

In summary, the proposed model’s architecture is optimized through careful selection of layer depths
tailored to each component’s strengths and limitations. Three layers for both HGNN and Teacher
MLP allow for capturing complex relationships while avoiding overfitting and excessive inference
time. A single layer for TinyGCN maximizes efficiency, while two layers for Distill MLP ensure suf-
ficient capacity for accurate predictions without significant computational overhead. This thoughtful
arrangement provides a robust framework for model performance, emphasizing the critical balance
between accuracy and operational efficiency. These findings are visually represented in Figure 6,
providing further insights into how model architecture affects performance.

E SENSITIVELY HYPERPARAMETERS

In the context of the proposed DistillHGNN method, several hyperparameters play key roles in con-
trolling the trade-offs between different components, the learning process, and overall performance.
Below is a brief explanation of the most important hyperparameters:

1. Temperature for contrastive learning (τ ): This temperature parameter scales the similar-
ity scores between student and teacher embeddings. A lower value of τ results in sharper,
more distinct similarity scores, while a higher value leads to softer comparisons.

2. Contrastive loss weight (γ): This hyperparameter balances the importance of the con-
trastive loss relative to the BPR loss in the teacher model. A higher value of γ increases the
influence of contrastive learning.

3. Distillation loss weight (λ): This hyperparameter controls the contribution of the distilla-
tion loss in the student model. A higher value emphasizes learning from the teacher model’s
soft labels, while a lower value focuses more on the ground truth labels.

4. Learning Rate lr: The rate at which the model updates its parameters during training.
A lower learning rate ensures more gradual convergence but may slow down the training
process.

5. Embedding Dimension: This determines the size of the embedding vectors generated
by both the teacher and student models. Higher dimensions can potentially capture more
information, but at the cost of increased computation.

Table 6 shows the results of evaluating the DistillHGNN framework based on different configura-
tions of hyperparameters and their corresponding accuracy metrics.

The evaluation of the DistillHGNN framework, based on various hyperparameter configurations,
reveals interesting patterns in model performance. The temperature for contrastive learning (τ )
plays a crucial role in the accuracy, with an optimal value of 0.5 yielding the highest accuracy of
78.33%. Similarly, the contrastive loss weight (γ) shows an increase in performance as its value
rises, peaking at 0.4. Distillation loss weight (λ) has a more consistent influence, with the best result
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Table 6: Hyperparameter Configurations for DistillHGNN on the DBLP

Config τ γ λ Embed Dim Learning Rate (lr) Accuracy (%)
1 0.1 - - - - 76.20
2 0.2 - - - - 76.85
3 0.3 - - - - 77.79
4 0.4 - - - - 78.05
5 0.5 - - - - 78.33
6 0.6 - - - - 78.02
7 0.7 - - - - 77.64

Config - γ - - - Accuracy (%)
1 - 0.1 - - - 77.55
2 - 0.2 - - - 77.83
3 - 0.3 - - - 78.11
4 - 0.4 - - - 78.33
5 - 0.5 - - - 77.80
6 - 0.6 - - - 77.61

Config - - λ - - Accuracy (%)
1 - - 0.1 - - 77.87
2 - - 0.2 - - 78.33
3 - - 0.3 - - 78.30
4 - - 0.4 - - 78.21

Config - - - Embed Dim - Accuracy (%)
1 - - - 32 - 74.48
2 - - - 64 - 77.75
3 - - - 128 - 78.33
4 - - - 256 - 77.17
5 - - - 512 - 76.59

Config - - - - lr Accuracy (%)
1 - - - - 0.1 76.25
2 - - - - 0.5 75.15
3 - - - - 0.001 78.33
4 - - - - 0.005 77.23
5 - - - - 0.0001 77.61

Best Hyperparameters Combinations
1 0.5 0.4 0.2 128 0.001 78.33

observed at 0.2. When analyzing embedding dimensions, 128 emerges as the most effective, balanc-
ing representation richness with computational cost. Finally, the learning rate (lr) of 0.001 proves
optimal, enabling the model to converge effectively. The best-performing configuration, combining
these hyperparameters, demonstrates the importance of fine-tuning to achieve maximal accuracy.
This suggests that the interaction between the temperature, loss weights, embedding dimension, and
learning rate is crucial for optimizing the DistillHGNN framework.

F TRAINING SIZE SETTINGS

In this section, we evaluate the performance of DistillHGNN under varying training size settings
across six hypergraph datasets. The primary objective is to understand how increasing the amount
of training data influences the model’s accuracy compared to several baseline models: GNNs, MLP,
GLNN, HGNN, and LightHGNN. By setting the training sizes to 20%, 40%, 60%, and 80%, we
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aim to observe the progression of each model’s performance as more data becomes available. This
analysis helps us assess the scalability and effectiveness of each method as the volume of training
data increases. The table below presents the results of our experiments, where we report the accuracy
for each model across different datasets and training sizes.

Table 7: Experimental results on six hypergraph datasets under various training settings.

Dataset Train size GNNs MLP GLNN HGNN LightHGNN DistillHGNN

CC-Citeseer

20% 46.40 40.29 44.27 56.42 54.76 55.18

40% 49.66 43.18 48.17 58.77 58.11 58.42

60% 52.14 45.65 50.87 61.13 60.19 60.34

80% 55.20 48.34 53.77 62.23 62.05 62.44

CC-Cora

20% 48.32 41.74 46.92 60.17 59.05 58.34

40% 50.61 44.22 49.19 62.54 61.58 61.56

60% 52.06 46.16 51.50 64.69 64.01 64.83

80% 55.50 48.58 54.79 66.04 65.28 66.81

IMDB-AW

20% 39.27 35.76 40.77 48.50 47.69 47.16

40% 43.82 39.27 42.66 49.42 49.08 49.15

60% 46.42 41.29 44.33 52.08 51.65 52.26

80% 49.65 45.25 47.44 55.03 53.86 55.35

DBLP

20% 61.53 55.80 59.47 70.41 69.02 69.44

40% 65.21 57.17 63.43 74.73 73.73 74.65

60% 68.12 61.40 67.00 78.63 77.55 78.16

80% 70.14 64.09 69.04 80.42 79.35 80.61

The experimental results demonstrate that as the training size increases from 20% to 80%, all models
generally show improved performance, with DistillHGNN consistently outperforming the baseline
methods across all datasets. Notably, in the DBLP dataset, DistillHGNN achieves the highest ac-
curacy at 80% training size with a value of 80.61%. Similarly, in CC-Citeseer and CC-Cora, the
performance gap between DistillHGNN and the other models widens as the training size increases.
This suggests that DistillHGNN benefits more from additional training data compared to the other
models, particularly on larger datasets. While HGNN and LightHGNN also perform well, Distill-
HGNN’s knowledge distillation, which combines structural knowledge with soft labels based on
high-order relations, contributes to its superior performance, making it the most effective model
across various training settings.

G VISUAL ANALYSIS OF KNOWLEDGE TRANSFER

To comprehensively assess the effectiveness of knowledge transfer in DistillHGNN, we employ
visual analysis as a key evaluation tool. Visualization offers intuitive insights into how well the
student model learns from the teacher model, complementing numerical performance metrics. By
examining embedding spaces, structural relationships, and feature similarities, we can evaluate the
extent to which the student model captures the essential patterns and relationships embedded in the
teacher’s representations.

This section provides a detailed visual analysis, focusing on embedding space visualization as a crit-
ical dimension of knowledge transfer. These visualizations not only allow us to verify the alignment
between teacher and student models but also uncover deeper nuances in their respective feature
representations. Through these analyses, we aim to highlight the strengths and limitations of the
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distillation process, offering a comprehensive understanding of the student model’s performance.
We then present findings from each visualization approach applied to two datasets, IMDB-AW and
DBLP, demonstrating how DistillHGNN achieves effective and efficient knowledge transfer.

The t-SNE visualizations illustrate the model’s ability to preserve class relationships and structural
information. The student model maintains clear class separations, forming well-defined clusters that
closely resemble the teacher’s representation. The consistent spatial arrangement of classes between
the teacher and student embeddings across the IMDB-AW and DBLP datasets, as shown in Fig. 7,
indicates effective knowledge transfer while preserving the essential topological structure of the
data.

(a) IMDB-AW dataset

(b) DBLP datasets

Figure 7: t-SNE visualizations comparing teacher and student embeddings for two datasets: (a)
IMDB-AW dataset shows scattered and overlapping class distributions in the teacher embeddings,

which are effectively refined into cohesive and distinct clusters in the student embeddings,
indicating successful knowledge transfer. (b) DBLP dataset reveals fragmented and abnormal class
clusters in the teacher embeddings, likely due to the hypergraph model’s high-dimensional feature

complexities and high-order relationships. In contrast, the student embeddings display
well-organized and continuous class regions, demonstrating the effectiveness of knowledge

distillation in simplifying and structuring complex representations into interpretable embeddings.

IMDB-AW Dataset Analysis The t-SNE visualization of the IMDB-AW dataset reveals distinct
embedding patterns across both models. The teacher model exhibits well-defined clustering for three
classes, with Class 2 (blue) showing the most extensive distribution, indicating rich feature diversity
within the class. Class 0 (green) demonstrates interesting sub-cluster formations, suggesting un-
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derlying structural patterns in the data, while Class 1 (red) maintains moderate cohesion with clear
boundaries. The student model successfully preserves these fundamental class relationships while
introducing its own structural interpretations. Notably, it maintains class separability while showing
a more continuous distribution pattern, with Class 2 adopting an elongated formation and Class 0
demonstrating enhanced cluster cohesion. The slight increase in inter-class mixing, particularly vis-
ible in Class 1’s boundaries, suggests a balanced trade-off between feature preservation and model
simplification.

DBLP Dataset Analysis In the DBLP dataset, both models demonstrate sophisticated four-class
separation patterns with distinct characteristics. The teacher model establishes clear class bound-
aries with unique spatial distributions: Class 0 (green) exhibits multiple sub-clusters in the upper
region, indicating complex internal structure; Class 1 (red) forms compact, well-isolated clusters;
Class 2 (blue) shows concentrated distribution on the left; and Class 3 (yellow) presents an elongated
central formation. The student model transforms this representation into a more globally coherent
structure, organizing the classes in a distinctive crescent-like pattern. This arrangement maintains
clear class separation while achieving smoother transitions between clusters. The student’s repre-
sentation demonstrates particular effectiveness in boundary definition, with each class occupying a
specific region: Class 0 forms a curved structure in the upper left, Class 1 maintains concentration
in the lower right, Class 2 shows compact clustering in the upper right, and Class 3 creates a central
curved formation.

Both datasets demonstrate successful knowledge transfer between teacher and student models, with
the student model consistently achieving more regularized and structured representations. In the
IMDB-AW case, the preservation of three-class separation with modified spatial arrangements in-
dicates effective feature learning while maintaining essential data relationships. The DBLP visual-
ization further reinforces this finding across four classes, where the student model’s more organized
spatial arrangement suggests enhanced feature generalization without loss of discriminative power.
These results validate the effectiveness of our knowledge distillation approach, demonstrating that
the student model can capture and, in some aspects, enhance the structural understanding of the data
despite its simplified architecture.

These visual analyses provide strong empirical evidence for the success of our knowledge distil-
lation framework. The student model’s ability to maintain clear class separation while developing
more structured representations suggests effective compression of the teacher’s knowledge into a
more efficient form. This is particularly noteworthy given the architectural simplification, indicat-
ing that our approach successfully preserves essential feature relationships while reducing model
complexity.

H RELATED WORKS

Hypergraph Neural Networks (HGNN). HGNNs extend traditional graph neural networks
(GNNs) by capturing complex high-order interactions among multiple nodes through hypergraphs
Antelmi et al. (2023). Unlike conventional graphs, where edges connect only two nodes, hyper-
graphs allow hyperedges to connect multiple nodes, making HGNNs particularly effective in do-
mains where higher-order relationships are crucial Wu et al. (2022). Early models like HGNN
Feng et al. (2019) and HpLapGCN Fu et al. (2019) utilized the hypergraph Laplacian matrix for
efficient representation learning by smoothing node features across hyperedges. HyperGCN Yadati
et al. (2019) further simplified hypergraphs into conventional graphs, applying established GNN
techniques to learn node representations, thus leveraging the structural richness of hypergraphs. In
addition to spectral approaches, spatial-based hypergraph convolution methods have emerged to
overcome earlier limitations. For instance, Bai et al. Bai et al. (2021) introduced a vertex-hyperedge
attention mechanism that enhances the focus on critical node-hyperedge interactions. Research such
as Yan et al. (2024); Jiang et al. (2019); Yin et al. (2022); Hayat et al. (2024) has explored dynamic
hypergraph construction, allowing for flexible representations that adapt to specific datasets. Inno-
vations like two-stage message-passing strategies proposed by Gao et al. Gao et al. (2022), Dong
et al. Dong et al. (2020), and Ruggeri et al. Ruggeri et al. (2024) have enabled more efficient in-
formation flow across nodes and hyperedges. These advancements have broadened the application
of HGNNs, allowing them to effectively model intricate, higher-order relationships in diverse fields
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such as social networks, recommendation systems, and biological networks. By capturing complex
interactions, HGNNs outperform traditional GNNs, which are limited to pairwise interactions.

Distillation from GNNs and HGNNs to MLPs. Knowledge distillation involves transferring
knowledge from a larger, more complex model (the teacher) to a smaller, more efficient model
(the student). Previous distillation methods, such as GLNN Zhang et al. (2021) and NOSMOG Tian
et al. (2022), primarily use the prediction distribution of teacher GNNs as soft labels to guide stu-
dent MLPs. However, these approaches often fail to consider the original graph’s structure, limiting
their ability to capture intricate relationships within the data. For example, while Yang et al. Yang
et al. (2021) extracts knowledge from a trained GNN model and transfers it to a student model for
more efficient predictions, the method still lacks full integration of structural information into the
distillation process. KRD Wu et al. (2023) improves this by quantifying each vertex’s knowledge
and considering its proximity to neighbors, but it remains limited to low-order graph structures.
Additionally, Liu et al. Liu et al. (2022) introduced the HIgh-order RElational (HIRE) knowledge
distillation framework for heterogeneous graphs, which captures both first- and second-order infor-
mation using soft labels. For HGNN-to-MLP distillation, Feng et al. Feng et al. (2024) proposed
the LightHGNN model, which incorporates reliable hyperedges to support high-order relations in
the distillation process. However, they still relied on soft labels. Similarly, Yu et al. Yu et al. (2024)
developed a method to distill knowledge from meta-paths into hypergraphs in heterogeneous graphs,
again using soft labels for transferring knowledge from the teacher to the student. This paper aims
to address the limitations of prior methods by focusing on hypergraph neural networks (HGNNs).
The key challenge in earlier techniques is that soft labels alone do not capture the high-order depen-
dencies inherent in hypergraphs.
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