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Abstract
Out-of-distribution (OOD) detection has seen significant advancements with zero-shot approaches
by leveraging the powerful Vision-Language Models (VLMs) such as CLIP. However, prior re-
search works have predominantly focused on enhancing Far-OOD performance, while potentially
compromising Near-OOD efficacy, as observed from our pilot study. To address this issue, we
propose a novel strategy to enhance zero-shot OOD detection performances for both Far-OOD and
Near-OOD scenarios by innovatively harnessing Large Language Models (LLMs) and VLMs. Our
approach first exploit an LLM to generate superclasses of the ID labels and their corresponding
background descriptions followed by feature extraction using CLIP. We then isolate the core se-
mantic features for ID data by subtracting background features from the superclass features. The
refined representation facilitates the selection of more appropriate negative labels for OOD data
from a comprehensive candidate label set of WordNet, thereby enhancing the performance of zero-
shot OOD detection in both scenarios. Furthermore, we introduce novel few-shot prompt tuning
and visual prompt tuning to adapt the proposed framework to better align with the target distribu-
tion. Experimental results demonstrate that the proposed approach consistently outperforms cur-
rent state-of-the-art methods across multiple benchmarks, with an improvement of up to 2.9% in
AUROC and a reduction of up to 12.6% in FPR95. Additionally, our method exhibits superior
robustness against covariate shift across different domains, further highlighting its effectiveness in
real-world scenarios.
Keywords: Out-of-distribution detection, VLM, LLM

1. Introduction

Out-of-distribution (OOD) detection is a critical and active research area that aims to identify
whether input samples belong to the distribution of the training data used in machine learning (ML)
models. This capability is crucial for preventing unpredictable outputs from ML models when faced
with unseen inputs in real-world applications Ulmer et al. (2020).

Traditionally, OOD detection approaches have primarily relied on Convolutional Neural Net-
works (CNN), focusing on analyzing visual features Lee et al. (2018); Sastry and Oore (2020),
or logit spaces Liu et al. (2020). However, these methods are usually limited by either their lim-
ited model capacities or their reliance on visual information alone. The emergence of powerful
Vision-Language Models (VLMs) like Contrastive Language-Image Pretraining (CLIP) Radford
et al. (2021), which is trained with 400 million image-text pairs, has opened new avenues for tack-
ling OOD detection by utilizing their rich semantic information in both visual and label spaces.
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Recent studies Esmaeilpour et al. (2022); Ming et al. (2022); Jiang et al. (2024) have explored using
CLIP for zero-shot OOD detection, demonstrating promising results. For instance, one of the rep-
resentative CLIP-based zero-shot OOD detectors, NegLabel Jiang et al. (2024), augments the class
labels for ID data with the selected negative labels from the noun and adjective lexname categories
of WordNet Fellbaum (1998) as the proxies for OOD classes to enhance the performance. However,
these works mainly focus on studying Far-OOD scenarios where the distributions of in-distribution
(ID) and OOD data are distant. Additionally, while zero-shot OOD detection methods using CLIP
have shown great potential, they may struggle to capture the nuances and specific characteristics
of downstream tasks Wei et al. (2023). Therefore, when the distributions of ID and OOD data are
similar for the Near-OOD scenarios, it is still a challenging problem requiring more discriminative
and detailed information.

To tackle this challenge, we propose a novel approach to enhance the power of CLIP for zero-
shot OOD detection in both Near-OOD and Far-OOD scenarios by expanding the selection space
of OOD candidate labels and refining the semantic space of ID labels. To achieve the expansion,
we employ a comprehensive set of WordNet categories for candidate OOD label selection by per-
forming a similar negative-mining algorithm as NegLabel without any candidate label filtering. As
we find from our experimental results (c.f. Table 5) when NegLabel performs negative-mining for
appropriate negative labels, it filters out specific candidate labels and leads to suboptimal perfor-
mance. Next, to refine the semantic space of ID labels, we use Large Language Models (LLMs) to
yield superclass labels and background descriptions to create a proxy for selecting negative labels.
This process involves initially broadening the ID semantic space through superclass identification
with LLM followed by a subtraction step of background information to refine the space. The refined
ID space enables negative-mining to select more representative negative labels from the expanded
selection space of OOD candidate labels. With our proposed hierarchical strategy, our zero-shot
approach outperforms not only current state-of-the-art zero-shot but also CLIP-based training meth-
ods, demonstrating the effectiveness of combining VLMs with LLMs for OOD detection.

To further enhance the performance of our zero-shot OOD method, we adapt CLIP to the target
distributions by our two-phase training method with few-shot prompt tuning (PT) and visual prompt
tuning (VPT). Moreover, to address the practical challenge of collecting unlabeled OOD samples for
training, we adopt the same approach as ID-like Bai et al. (2024) by leveraging less label-relevant
portions of ID samples as OOD data to create a robust OOD proxy dataset while maintaining the
inherent characteristics of the ID domain. Together with this method, it allows us to benefit from
outlier exposure during few-shot training without relying on external OOD data. Our proposed
few-shot method has been extensively evaluated on multiple benchmarks with state-of-the-art per-
formances, including the ImageNet-1K OOD benchmark Huang et al. (2021) and the challenging
OpenOOD V1.5 full-spectrum benchmark Zhang et al. (2023); Yang et al. (2022). Our method
significantly outperforms existing approaches, achieving the average AUROC of 97.67% on the
ImageNet-1K OOD benchmark and the average AUROC of 83.04% on the challenging OpenOOD
V1.5 Near-OOD full-spectrum benchmark. In summary, our key contributions are as follows:

• Improved zero-shot OOD detection: We introduce a hierarchical strategy using LLMs to
generate superclass labels and background descriptions, creating more representative negative
labels to enhance the zero-shot OOD detection performance.

• Novel few-shot OOD detection method: We propose a new two-phase few-shot learning
framework that exploits our proposed PT and VPT to adapt CLIP to the target distributions.
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Figure 1: Illustration of the proposed zero-shot OOD detection and Superclass-BG negative label
selection. We harness the capabilities of LLMs to select more representative negative labels. The
full LLM prompt can be found in Appendix B.2.
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Figure 2: Illustration of the proposed few-shot learning framework. The training dataset consists
of a few-shot sample from the ImageNet-1K training set, while the OOD dataset is generated using
an ID-like Bai et al. (2024) approach. Here, the term positive labels refer to the class labels with
learnable prompt.

Together with the ID-like auxiliary OOD data generation, the proposed approach achieves
state-of-the-art OOD detection performance.

2. Related Work

While OOD detection has a rich history in computer vision, our work focuses on leveraging VLMs
for OOD detection. For a comprehensive review of traditional OOD detection methods using CNNs
and Vision Transformers Dosovitskiy et al. (2021), please refer to Appendix A. Here, we focus on
recent advancements in CLIP-based OOD detection.
CLIP-based OOD Detection. VLMs, such as CLIP, possess formidable zero-shot capabilities
and robustness against distribution shifts. Recognizing these strengths, an increasing number of
researchers are focusing on harnessing the power of VLMs to enhance OOD detection Miyai et al.
(2024). ZOC Esmaeilpour et al. (2022) trains an image descriptor to obtain descriptions of images,
using these additional descriptions as supplementary OOD labels. MCM Ming et al. (2022) uses
class labels as prototypes and exploits the uniformity property of contrastive learning to enhance the
discrepancy between ID and OOD samples through softmax rescaling. Another research direction
aims to teach CLIP the logic of contrary semantics, namely the concept of no. CLIPN Wang et al.
(2023) fine-tunes using the CC12M Changpinyo et al. (2021) dataset, a no text encoder, and no
prompts to teach CLIP the logic of no. Meanwhile, LSN Nie et al. (2024) leverages ID data to learn
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this no logic. NegPrompt Li et al. (2024) learns a set of negative prompts that contain semantics
opposite but related to the ID labels. Furthermore, employing additional OOD labels to make ID
images gravitate towards ID labels and away from selected OOD labels is also a popular research
direction. TOE Park et al. (2023b) demonstrates the utility of textual outliers, achieving promising
results through training methods similar to image outlier exposure. ID-like Bai et al. (2024) uses
random cropping to identify images most closely aligned and unrelated to the corresponding label,
aiming to align textual prompts and learnable OOD labels with these images. NegLabel Jiang et al.
(2024), on the other hand, employs negative-mining from a large word corpus to identify labels
semantically distant from ID semantic space.

3. Preliminaries

Zero-shot Classification with CLIP. CLIP consists of a text encoder T : t → Rd and an image
encoder I : x → Rd, mapping text t and image x to d-dimensional feature vectors. For zero-shot
classification with label set C = {c1, ..., cm}, the vectors tj are constructed using prompts “a photo
of a ⟨cj⟩”. The similarity score between image features I(x) and text features T (tj) is computed
as the cosine similarity of T (tj) and I(x). The predicted probability for class cj is computed using
the softmax function over the similarity scores, with a temperature parameter τ .

Prompt Tuning and Visual Prompt Tuning Prompt tuning (PT) methods like CoOp Zhou et al.
(2022b) initialize learnable prompt tensors t = [V ]1...[V ]L[CLASS], where [V ]l are learnable vec-
tors. These prompts are optimized using few-shot examples to improve the performance on target
distributions. The concept of the visual prompt tuning (VPT) Jia et al. (2022), akin to that used in
CoOp, involves the insertion of fixed-length learnable vectors between the image patch embeddings
and the class token.

Out-of-Distribution Detection. OOD detection aims to construct a binary classifier G(x):

G(x) =
{ ID, if α(x) ≥ γ

OOD, if α(x) < γ
(1)

where α(x) is a score function and γ is a threshold.

4. Methodology

In this section, we describe the detailed of the proposed zero-shot and few-shot training OOD de-
tection as follows.

4.1. Zero-Shot OOD Detection

As shown in Figure 1, we perform similar CLIP-based zero-shot classification for zero-shot OOD
detection. Moreover, we augment the class labels for ID data with negative labels for OOD classes
from a comprehensive set of WordNet categories using our proposed LLM-based Superclass-BackGround
(Superclass-BG) negative label selection algorithm, as detailed below (i.e., we do not apply any can-
didate label filtering during the process). Additionally, the selected negative labels are partitioned
into K distinct groups following the grouping strategy in NegLabel Jiang et al. (2024).
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LLM-based Superclass-BG Negative Label Selection. Let C = {c1, c2, ..., cm} denote the set
of class labels, SC = {sc1, sc2, ..., scn} the set of superclass labels where SC is generated from
C through LLMs, n ≤ m, and N = {n1, n2, ..., np} the set of candidate labels. Define S(u, v)
as the measure of cosine similarity between the embedding u and v. The negative-mining algo-
rithm introduced in NegLabel calculates S(T (ni), T (cj)) for all ni ∈ N and cj ∈ C, where T
denotes the CLIP text encoder. Defining Score(ni) as the q-quantile of {S(T (ni), T (cj))|cj ∈ C}.
This approach of using a quantile, rather than a minimum distance or average similarity, provides
robustness against outlier ID labels by considering the overall distribution of similarities. The neg-
ative labels are determined by selecting the labels corresponding to the lowest p percentage of
Score(ni) values, where p is a predefined threshold. Our proposed method extends this approach
by leveraging superclass labels generated by LLMs. We calculate Score′(ni) as the q-quantile of
{S(T (ni), T (scj))|scj ∈ SC}. This superclass-based approach offers an improved representa-
tion of high similarity across a broader range of concepts, as each scj encapsulates multiple re-
lated classes, mitigating the influence of semantically similar class clusters on the quantile calcu-
lation. We leverage the semantic comprehension capability of CLIP Goh et al. (2021) to further
refine the semantic representation. For each superclass label scj , we also generate a background
description BG(scj) using LLMs. We then compute adjusted superclass label embeddings as
T ′(scj) = T (scj) − T (BG(scj)). This subtraction aims to isolate the core semantic content
of each superclass label by removing general background features. The rationale behind this addi-
tional step is twofold. First, it addresses potential inaccuracies in LLM-generated superclass labels,
which may not perfectly align with optimal taxonomies. Second, it focuses the embeddings on
distinguishing features of the superclass labels, potentially reducing semantic overlap.

4.2. Two-Phase Training for Few-shot OOD Detection

Our method is structured into two distinct phases. In the initial phase, we focus exclusively on
prompt tuning for class labels while maintaining all other model components fixed. The second
phase builds upon the results of the first. We fix the tuned prompts obtained from the previous
stage and proceed with VPT. The overview is illustrated in Figure 2. To derive the OOD datasets
from few-shot training samples, we employ an ID-like Bai et al. (2024) approach. Multiple cropped
images are initially extracted from each training sample via random cropping. Subsequently, these
cropped images are bifurcated based on their cosine similarity to the corresponding class label.
Images exhibiting lower similarity are allocated to the OOD dataset. This approach enables the cre-
ation of a robust OOD proxy dataset while maintaining the inherent characteristics of the ID domain.

Phase-1 Prompt Tuning. To facilitate subsequent discussions, we introduce the term positive la-
bels, denoted as P , to refer to the class labels with learnable prompts while all other components re-
main fixed. Let Dtrain be the few-shot training dataset, DID be the ID dataset and DOOD be the OOD
dataset. The dissimilarity measure between embedding u and v is given by D(u, v) = 1− S(u, v)
. Let C be the set of class labels. Let x be the input image from the few-shot training dataset, y be
the corresponding ground-truth label and τ be the temperature. During the prompt tuning phase, the
optimization process incorporates two distinct loss functions: the ID loss and the OOD loss. The
ID loss is formulated in Equation 2 and 3.

LID = max
k

E(x,y)∼Dtrain

[
Fk(x, y)

]
, (2)
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where

Fk(x, y) = − log
e(Sy+λ1Dy)/τ

|P |∑
i=1

e(S
p
i +λ1D

p
i )/τ +

|Nk|∑
j=1

e(λ2(Sn
j +Dn

j ))/τ

. (3)

In Equation 3, negative labels selected by Superclass-BG are partitioned into K groups. Let Nk

denote the kth negative label group. Define the similarity between the image and the ground-truth
positive label as Sy = S(I(x), T (Py)) and dissimilarity between ground-truth positive label and
ground-truth class label as Dy = −D(T (Cy), T (Py)). Similarly, we also define the similarity
between the image and ith positive label as Sp

i = S(I(x), T (Pi)) and the corresponding posi-
tive dissimilarity as Dp

i = D(T (Py), T (Pi)) − D(T (Cy), T (Pi)). Additionally, we denote the
similarity between the image and j-th negative label in group k as Sn

j = S(I(x), T (Nkj )) and
the corresponding negative dissimilarity as Dn

j = −D(T (Py), T (Nkj )). Finally, λ1 and λ2 are
weighting hyperparameters. The ID loss aims to enhance the alignment between positive label em-
beddings and image embeddings while preserving the robust generalization capabilities inherent in
the pre-trained CLIP model. Additionally, it aims to maximize the distinction between the image
embeddings and the most challenging group of negative labels, thereby improving the model’s dis-
criminative power in the worst-case scenario. Through the utilization of Sp

i and Dp
i , we refine the

semantic relationships between positive labels, encouraging intra-class cohesion while preserving
some aspects of the original inter-class structure. Concurrently, Dn

j further amplifies the distance
between positive and negative labels. Conversely, the OOD loss, formalized in Equation 4 and 5, is
designed to minimize the overall similarity between OOD images x, sourced from DOOD, and the
positive labels, while explicitly exposing the model to background description generated through
the LLMs.

LOOD = E(x)∼DOOD

[
G(x)

]
, (4)

where

G(x) = e

|P |∑
i=1

(S(I(x),T (Pi))/τ)

|P |∑
i=1

e(S(I(x),T (Pi))/τ) +
|SC|∑
j=1

e(S(I(x),T (BG(scj)))/τ)

. (5)

To construct our final training objective, we employ gradient-aware scaling before balancing the
two loss components. Specifically, we scale the OOD loss to match the gradient magnitude of the
ID loss, ensuring comparable influence on model updates.

Ltotal = Lscaled OOD + λ3 · LID, (6)

where λ3 is a balancing hyperparameter.

Phase-2 Visual Prompt Tuning. In the first phase, we exclusively employ PT of the label space
to enhance the ability of positive labels to distinguish ID and OOD samples while preserving the
visual architecture of the model. This approach prompts an inquiry into potential OOD detection
improvements achievable through visual space tuning. Post-acquisition of the refined positive labels
via PT, we implement VPT to align the training images with these labels using cross entropy and
OOD losses. The process initiates with a enhanced positive embedding derived from a weighted sum
of the learned positive labels and class labels. This methodology leverages class labels to preserve
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the pretrained knowledge of CLIP, mitigating overfitting risks in few-shot training scenarios. Let
x be the input image with a learnable visual prompt from a few-shot training dataset and y be
the corresponding ground truth label, and P ′ denote the enhanced positive embeddings. The cross
entropy loss is formulated as

L = E(x,y)∼Dtrain

− log
eS(I(x),P

′
y)/τ

|P ′|∑
i=1

eS(I(x),P
′
i )/τ

 . (7)

The design of the OOD loss for VPT aligns with the principles of PT, both aiming to minimize the
similarity between OOD images and learned positive labels. The OOD loss for VPT is formulated
as

LVPT OOD = E(x)∼DOOD

[
H(x)

]
, (8)

where

H(x) =

max
i,0≤i≤|P ′|

e(S(I(x),P
′
i )/τ)

|P ′|∑
i=1

e(S(I(x),P
′
i )/τ) +

|SC|∑
j=1

e(S(I(x),T (BG(scj))/τ)

. (9)

In this phase, we deal with a single learnable visual prompt while the positive labels are now fixed.
With only one learnable prompt, optimizing against all positive labels simultaneously might be
too constrained and potentially lead to conflicts. Given the current visual representation, the max
operation allows the model to focus on the most critical case - the positive label most similar to
the OOD sample. To formulate our final training objective for VPT, we employ a methodology
analogous to that used in the prompt tuning phase.

LVPT total = L+ λ4 · Lscaled VPT OOD, (10)

where λ4 is a balancing hyperparameter.

Few-shot Inference Similar to zero-shot OOD setting, The negative labels, mined through the
proposed Superclass-BG approach, are also partitioned into K distinct groups during inference. We
compute softmax probabilities for each group, incorporating both enhanced positive embeddings
and the respective negative label group. The OOD detection score function aggregates probabilities
assigned to enhanced positive embeddings across all groups. Formally, for input image x, enhanced
positive label embeddings P ′, negative label groups Nk, and total group count K, the score function
α(x) is defined as:

α(x) =
K∑
i=1

|P ′|∑
i=1

e(S(I(x),P
′
i )/τ)

|P ′|∑
i=1

e(S(I(x),P
′
j)/τ) +

|Nk|∑
j=1

e
(S(I(x),T (Nkj

)/τ)

. (11)
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Table 1: Comparisons of the proposed method and competitive baselines on the ImageNet-1K as the
ID dataset. The best result in each column is in bold, and the second-best is underlined. The values
for Superclass and Superclass-BG are derived from the average of 3 independent generations using
identical prompts. All methods are based on CLIP-B/16, which employs a ViT-B/16 as the image
encoder and a masked self-attention Transformer as the text encoder. All values are percentages.
Performance metrics for baseline methods are cited from NegLabel and their respective original
publications. The # column indicates the required number of samples per class for training, where
F denotes full fine-tuning. The methods with ∗ indicate the requirement of additional training. The
shaded part represents our method.

Method # iNaturalist SUN Places Texture Average

FPR95 ↓ AUROC↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

zero-shot
Mahalanobis Lee et al. (2018) 0 99.33 55.89 99.41 59.94 98.54 65.96 98.46 64.23 98.94 61.50
Energy Liu et al. (2020) 0 81.08 85.09 79.02 84.24 75.08 83.38 93.65 65.56 82.21 79.57
ZOC Esmaeilpour et al. (2022) * 87.30 86.09 81.51 81.20 73.06 83.39 98.90 76.46 85.19 81.79
MCM Ming et al. (2022) 0 20.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
CLIPN Wang et al. (2023) * 23.94 95.27 26.17 93.93 33.45 92.28 40.83 90.93 31.10 93.10
NegLabel Jiang et al. (2024) 0 1.91 99.49 20.53 95.49 35.59 91.64 35.59 90.22 25.40 94.21
Ours (Superlcass) 0 1.26 99.68 20.74 94.85 35.80 91.60 47.95 88.21 26.44 93.58
Ours (Superclass-BG) 0 1.15 99.71 13.36 96.64 26.62 93.70 44.26 89.57 21.34 94.90

requires training
NPOS Tao et al. (2023) F 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22
LSN Nie et al. (2024) 64 21.56 95.83 23.62 94.35 34.48 91.25 38.54 90.42 30.22 92.96
ID-like Bai et al. (2024) 4 8.98 98.19 42.03 91.64 44.00 90.57 25.27 94.32 30.07 93.68
LoCoOp Miyai et al. (2023) 16 16.05 96.86 23.44 95.07 32.87 91.98 42.28 90.19 28.66 93.52
NegPrompt Li et al. (2024) 16 6.32 98.73 22.89 95.55 27.60 93.34 35.21 91.60 23.01 94.81
Ours (Train) 4 0.65 99.83 12.07 96.91 23.21 94.47 28.10 93.80 16.01 96.25
Ours (Train) 16 0.68 99.81 13.15 96.94 16.03 96.55 11.74 97.38 10.4 97.67

5. Experiments

Datasets and Benchmarks. We utilize the ImageNet-1K OOD benchmark Huang et al. (2021)
to compare our method with existing zero-shot and few-shot training-based OOD detection ap-
proaches. The ImageNet-1K OOD benchmark employs ImageNet-1K as the ID dataset and uses
iNaturalist Van Horn et al. (2018), SUN Xiao et al. (2010), Places Zhou et al. (2018), and Tex-
ture Cimpoi et al. (2014) as OOD datasets, which have no class overlap with the ID dataset. For
the more challenging OOD detection, we follow the settings of MCM Ming et al. (2022), which
adopt ImageNet-10 and ImageNet-20 alternately as ID and OOD datasets. Beyond the aforemen-
tioned datasets, we evaluate our proposed method on OpenOOD V1.5 ImageNet-1K full-spectrum
benchmark Zhang et al. (2023); Vaze et al. (2022). These benchmarks introduce more challenging
Near-OOD datasets, such as SSB-hard Vaze et al. (2022) and NINCO Bitterwolf et al. (2023), and
also test robustness against covariate shifts. Implementation Details. We employ CLIP-B/16 as
our backbone architecture, which uses a ViT-B/16 as the image encoder and a masked self-attention
Transformer as the text encoder. For few-shot training, we randomly sample 16 images per class.
We create 256 random crops per image to generate OOD datasets and select the bottom two crops
based on label similarity. Claude 3.5 Sonnet Anthropic (2024) generates 10 three-word background
descriptions using a temperature of 0. Following NegLabel Jiang et al. (2024), we use the lowest
15% similarity scores in nouns and adjectives as negative labels. Prompt tuning is performed for
200 epochs, with batch size 256 and learning rate 0.025 (SGD). VPT is trained for 5 epochs, with
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Table 2: Comparison of the OpenOOD V1.5 full-spectrum benchmark Zhang et al. (2023); Yang
et al. (2022) between competitive baseline, including and the current state-of-the-art, NNGuide Park
et al. (2023a), LSA Lu et al. (2023) and CoCoOp Zhou et al. (2022a). Near-OOD is the average
of SSB-hard and NINCO, while Far-OOD is the average of iNaturalist, Texture, and OpenImage-O
Wang et al. (2022).

Method # Near-OOD Far-OOD

FPR95↓ AUROC↑ FPR95↓ AUROC↑

zero-shot
MCM 0 94.74 58.11 77.47 82.56
NegLabel 0 76.97 70.11 28.80 93.52
Ours (Superclass-BG) 0 66.52 77.98 32.53 93.03

requires training
NNGuide F 74.28 71.85 34.28 92.24
CoOp 16 95.82 56.36 80.31 82.41
CoCoOp 16 96.23 53.11 79.59 74.48
LoCoOp 16 90.91 59.34 54.33 84.02
LSA 16 70.56 78.22 48.06 86.85
Ours (Train) 16 51.35 83.04 17.36 95.73

Table 3: Zero-shot performance comparison of OOD detection methods on challenging OOD
datasets ImageNet-10 and ImageNet-20.

ID Dataset OOD Dataset Method FPR95↓ AUROC↑

ImageNet-10 ImageNet-20
MCM 6.69 98.45

NegLabel 8.69 98.39
Superclass-BG 6.26 98.70

ImageNet-20 ImageNet-10
MCM 9.46 98.33

NegLabel 8.51 98.27
Superclass-BG 6.56 98.46

batch size 32 and learning rate 0.2 (SGD). ID loss hyperparameters are λ1 = λ2 = 0.25. ID and
OOD loss balancing weights are λ3 = λ4 = 0.3 Enhanced positive embeddings incorporate equal
contributions (0.5) for class labels and learned positive labels. All experiments are conducted on a
single NVIDIA 4090 GPU. Further training details are fully described in Appendix B.1.

Evaluation Metrics. We employ two primary metrics: (1) FPR95, which is the probability that an
OOD example is misclassified as ID when the true positive rate is as high as 95%; (2) Area Under
the Receiver Operating Characteristic (AUROC).

5.1. Results and Discussions

Main Results. Table 1 presents a comprehensive comparison of our proposed method against ex-
isting OOD detection approaches. On the ImageNet OOD benchmark, our method achieves an av-
erage improvement of 2.8% in AUROC and a reduction of 12.6% in FPR95 compared to the current
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Figure 3: Superclass-BG zero-shot performance metrics as a function of description length. Each
subplot shows the trend of a specific OOD detection metric for description lengths ranging from 1
to 4. Data points represent average scores computed from 5-15 descriptions. The brown dashed line
indicates the performances of NegLabel Jiang et al. (2024).

state-of-the-art. For the more challenging OpenOOD V1.5 full-spectrum benchmark, the results are
shown in Table 2. Our method exhibits remarkable robustness to covariate shifts. In the Far-OOD
detection scenarios, we observe a 2.2% increase in AUROC and a 9.4% decrease in FPR95. The
improvement is even more pronounced in Near-OOD scenarios, with an 4.8% increase in AUROC
and a 19.2% decrease in FPR95. Notably, our zero-shot Superclass-BG approach surpasses current
training-based state-of-the-art methods on the ImageNet-1K OOD benchmark. It also performs su-
perior on the challenging ImageNet-10 and ImageNet-20 benchmarks, as evidenced in Table 3.

Influence of the Quantity of Background Description on Zero-Shot Performance. Figure 3 re-
veals that shorter descriptions enhance performance on the ImageNet-1K OOD benchmark, while
longer descriptions prove more effective for Near-OOD detection. We hypothesize that shorter
descriptions, limited in capturing nuanced background features, may be oversimplified by omit-
ting general characteristics. This approach benefits the simpler ImageNet-1K OOD benchmark but
potentially removes possible indicators for distinguishing challenging Near-OOD samples. Con-
versely, removing broader background concepts might reduce overlap with straightforward OOD
samples, contributing to improved performance on the ImageNet-1K OOD benchmark. On the other
hand, longer descriptions provide a more comprehensive representation of both specific and general
attributes, aiding in Near-OOD sample differentiation where similarities with ID data are shared.
However, longer descriptions may retain general characteristics that overlap with straightforward
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Table 4: Superclass-BG zero-shot OOD detection performance comparison using various LLMs on
ImageNet OOD and Near-OOD datasets. The results are the average of 3 independent generations
using identical prompts.

LLMs ImageNet OOD Near-OOD

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Claude 3.5 Sonnet 21.34 94.90 67.22 81.04
GPT-4-Turbo 21.39 94.93 66.60 81.16
GPT-4o 22.07 94.62 67.44 81.05
GPT-4o-mini 20.18 95.13 68.74 80.27

OOD samples, presenting a trade-off in effectiveness across different OOD detection scenarios.

Various Large Language Models. The results presented in Table 4 show that utilizing smaller
LLMs such as GPT-4o-mini OpenAI (2024) yields performance similar to employing fewer words
for background description generation. This phenomenon may be attributed to the limited capac-
ity of these models to articulate nuanced features. Compared to GPT-4-Turbo, Claude 3.5 Sonnet
demonstrates comparable performance while offering a more affordable solution with a faster gen-
eration speed. Consequently, we have opted to employ Claude 3.5 Sonnet for our experiments.

Computational Complexity. Training takes 194 minutes for phase 1 and 6 minutes for phase 2 on
average, using a single NVIDIA 4090 GPU. Following the score function proposed by NegLabel,
the computational complexity of our proposed method incurs about O(2Md) FLOPs extra compu-
tational burden per image during inference, where M denotes the number of negative labels and d
represents the dimension of the embedding feature.

5.2. Ablation Study

The Effectiveness of Prompt Tuning and Visual Prompt Tuning. In Table 5, we find that few-shot
prompt tuning yields performance improvements on both ImageNet OOD and Near-OOD datasets,
regardless of whether Superclass-BG or filtering is employed. Notably, the enhancement is partic-
ularly pronounced for Near-OOD, with AUROC improvement of at least 6.6%. Furthermore, the
results show that the application of VPT in the second phase leads to additional performance gains.

Pilot study of Candidate Label Filtering. When using ImageNet as the ID dataset, words from
animal and food categories are excluded in NegLabel due to their prevalence classes; however, from
the zero-shot and few-shot training results presented in Table 5, we observe that filtered methods
consistently outperform their unfiltered counterparts on the ImageNet OOD benchmark. Notably,
the performance disparity is substantially more pronounced on Near-OOD datasets. We hypoth-
esize that the slight decrease in performance on ImageNet OOD, observed when reincorporating
candidate labels belonging to the major lexname category of the ID labels into the pool of selectable
negative labels, may be attributed to the potential selection of negative labels semantically proximate
to the major category. Conversely, the significant performance improvement on Near-OOD datasets
can be explained by the inherent semantic proximity of Near-OOD samples to the ID semantic
space. Consequently, these semantically related negative labels effectively serve as discriminative
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Table 5: Performance comparisons of various configurations in the proposed methods with
ImageNet-1K as ID dataset. S-BG denotes Superclass-BG. Results are reported in terms of AU-
ROC, with higher values indicating better performance.

S-BG Filter PT VPT ImageNet OOD Near-OOD

zero-shot
× × 93.39 80.79
✓ × 94.90 81.04
× ✓ 94.28 73.92
✓ ✓ 95.51 72.52

few-shot
× × ✓ × 95.49 87.47
× × × ✓ 94.60 76.06
✓ × ✓ × 96.63 87.96
× ✓ ✓ × 96.39 83.24
✓ ✓ ✓ × 97.33 80.34
× × ✓ ✓ 96.59 91.25
✓ × ✓ ✓ 97.67 91.98
× ✓ ✓ ✓ 97.25 87.43
✓ ✓ ✓ ✓ 97.77 82.49
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Figure 4: Performance comparison on the OpenOOD V1.5 benchmark Zhang et al. (2023); Yang
et al. (2022). The evaluation contrasts the effectiveness of positive labels enhanced by original class
labels against the baseline without enhancement.

features for identifying Near-OOD samples. Additionally, in the absence of filtering, our proposed
Superclass-BG method, which employs a more refined ID semantic space to select negative labels,
further enhances performance on Near-OOD datasets.

The Effectiveness of Enhancing Positive Labels with Class Labels. As shown in Figure 4, the
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OpenOOD V1.5 ImageNet-1K benchmark, which does not account for covariate shift, demonstrates
that positive labels enhanced by class labels consistently outperform their non-enhanced counter-
parts across various datasets, albeit with marginal differences. However, we observe a strong ampli-
fication of this performance gap when examining the full-spectrum benchmark, which incorporates
covariate shift robustness. This amplification underscores the efficacy of enhancing positive labels,
adapted to the target distribution, with class labels that possess strong generalization capabilities.

6. Conclusion

In this work, we present a novel zero-shot OOD detection approach that harnesses the power of
LLMs and VLMs. Our method introduces a hierarchical strategy using superclass labels and back-
ground descriptions generated by LLMs to select more representative negative labels from a com-
prehensive set of unfiltered candidate labels. Combining this approach with prompt tuning and vi-
sual prompt tuning, the proposed few-shot method further pushes the boundaries of OOD detection,
consistently outperforming current state-of-the-art methods across multiple benchmarks, including
challenging full-spectrum benchmark. Moreover, our method demonstrates remarkable robustness
to covariate shifts, addressing a critical challenge in real-world scenarios.

Limitations Our proposed method leverages the capabilities of LLMs and VLMs, which may intro-
duce certain considerations. The semantic understanding provided by these models, while powerful,
can potentially reflect biases present in their training data. Additionally, the effectiveness of candi-
date label filtering in our approach presents an area for extended research. While initial results are
promising, comprehensive studies across various datasets and OOD detection tasks would provide
valuable insights into optimal filtering strategies. These aspects offer opportunities for future work
to further enhance the adaptability of the model and performance across diverse applications.

Societal Impact Advancements OOD detection have the potential to significantly enhance the relia-
bility and safety of AI systems across critical domains such as healthcare, autonomous vehicles, and
finance. Improved OOD detection could lead to more accurate diagnostic tools, safer autonomous
systems, and robust fraud detection mechanisms. However, as these technologies evolve, it is crucial
to address ethical considerations, including privacy, fairness, and transparency. Responsible devel-
opment and deployment of OOD detection systems will be essential to maximize societal benefits
while mitigating potential risks.
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