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Abstract

In this paper, we propose an improved online con-
fidence bound for multinomial logistic (MNL)
models and apply this result to MNL bandits,
achieving variance-dependent optimal regret. Re-
cently, Lee & Oh (2024) established an on-
line confidence bound for MNL models and
achieved nearly minimax-optimal regret in MNL
bandits. However, their results still depend on
the norm-boundedness of the unknown param-
eter B and the maximum size of possible out-
comes K. To address this, we first derive an
online confidence bound of O (\/dlogt + B),
which is a significant improvement over the
previous bound of O(Bv/dlogtlog K) (Lee &
Oh, 2024). This is mainly achieved by estab-
lishing tighter self-concordant properties of the
MNL loss and introducing a novel intermedi-
ary term to bound the estimation error. Using
this new online confidence bound, we propose
a constant-time algorithm, OFU-MNL++, which
achieves a variance-dependent regret bound of

O(dlog T/ Zthl J?) for sufficiently large 7',

where o2 denotes the variance of the rewards
at round ¢, d is the dimension of the contexts,
and T is the total number of rounds. Fur-
thermore, we introduce a Maximum Likelihood
Estimation (MLE)-based algorithm, OFU-M2NL,
which achieves an anytime poly(B)-free regret

of O(dlog(BT)\/ S, 7).

1. Introduction

The multinomial logistic (MNL) bandit framework (Rus-
mevichientong et al., 2010; Sauré & Zeevi, 2013; Agrawal
et al., 2017; 2019; Oh & Iyengar, 2019; 2021; Perivier &
Goyal, 2022; Agrawal et al., 2023; Lee & Oh, 2024) pro-
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vides a principled approach to tackling sequential assort-
ment selection problems. At every round ¢, an agent offers
an assortment of at most K items among total N items
and receives feedback only for the chosen decisions. The
user choice probability follows an MNL model (McFadden,
1977). This framework is widely deployed in industry, with
applications ranging from news recommendation systems
to online retail, where assortment selections are optimized
based on user-choice feedback from the offered options. In
such applications, the agent often has access to item fea-
tures and, potentially, contextual information about the user.
This setup is referred to as the contextual MNL bandit prob-
lem (Agrawal et al., 2019; 2017; Ou et al., 2018; Chen et al.,
2020; Oh & Iyengar, 2019; 2021; Perivier & Goyal, 2022;
Agrawal et al., 2023; Lee & Oh, 2024).

Recently, in contextual MNL bandits, Lee & Oh (2024)
proposed a constant-time algorithm and obtained a regret
of O(B*?dlog K (log T)*/?+/T). Although this result is
nearly minimax optimal when ignoring B and logarithmic
terms, it still depends on the maximum assortment size K
and the norm-boundedness of the parameter B. Intuitively,
a larger K may provide more information (Lee & Oh, 2024),
suggesting that the regret should not scale with any factor
involving K. Moreover, while poly(B)-free regret bound
has been established for generalized linear model (GLM)
bandits (Lee et al., 2024b) using the MLE, it remains unclear
whether such a bound can be obtained while maintaining a
constant per-round computational cost.

Our main goal is to design a constant-time algorithm that
achieves improved regret with respect to poly(B) and K.
The main challenge in achieving such regret lies in deriving
a tight confidence bound. Currently, the best-known online
confidence bound is O (B Vdlogtlog K ) (Lee & Oh, 2024),
which explicitly depends on both B and log K. This depen-
dency poses a significant bottleneck for obtaining improved
regret. Furthermore, to the best of our knowledge, there is
no variance-dependent regret in contextual MNL bandits.
Hence, the following research questions arise:

e Can we derive a B, K -improved confidence bound for
online parameter estimation in MNL models?

e Can we design a constant-time algorithm that achieves
B, K-improved (or free) and variance-dependent re-
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gret in contextual MNL bandits?

In the first part of our main results (Section 4.1), we con-
struct a K -free online confidence bound with improved
dependence on B, which depends on a update condition
parameter «. This significantly improves upon previous re-
sults in online parameter estimation in MNL models (Zhang
& Sugiyama, 2024; Lee & Oh, 2024). To achieve this, we
first establish self-concordant-like properties with respect to
the {,,-norm (instead of the traditional /5-norm) (Proposi-
tions B.3 to B.6). This improvement enhances the existing
self-concordant properties of MNL models (Tran-Dinh et al.,
2015), which is of independent interest. Additionally, un-
like Zhang & Sugiyama (2024), we introduce a bounded
intermediary parameter to bound estimation errors, eliminat-
ing the need for a smoothing technique (Foster et al., 2018),
which would otherwise lead to a O(+/logtlog K) looser
confidence bound. Finally, through refined analysis, we can
set the dimension-free regularization parameter A, resulting
in the B term appearing only as an additive term.

In the second part (Section 4.2), we propose a constant-time
algorithm, called OFU-MNL++, that achieves B-improved,
K -free, and variance-dependent regret. This algorithm up-
dates the parameter only within a specific space constructed
during the adaptive warm-up rounds. With high probabil-
ity, this space contains the true parameter w*, while also
shrinking sufficiently relative to the current feature set ;.
This is the key to keeping the update condition parame-
ter « of the online confidence bound small (or constant).
Note that since the parameter is updated in a fully online
manner, the computational cost per round of OFU-MNL++
remains constant throughout all rounds. Furthermore, we
introduce a novel regret decomposition, which ultimately
allows us to achieve a variance-dependent regret bound

of O( (dlogT + B+/dlogT T 02), where o2 de-
t=1

notes the variance of the rewards at round ¢.

In the final part (Section 4.3), as an independent contri-
bution and inspired by Lee et al. (2024b), we propose an
MLE-based algorithm, OFU-M2NL, that leverages an MLE
confidence bound and achieves completely poly(B), K -free
regret with only log B dependence. However, note that the
per-round computational cost of OFU-M2NL increases lin-
early with ¢ due to the use of the MLE, whereas the per-
round computational cost of OFU-MNL++ remains constant.

Our main contributions are summarized as follows:

e Sharpest online confidence bound for the MNL
models: We first establish a confidence bound for
online parameter updates in MNL models, which de-
pends on the update condition parameter « (defined
later). In Theorem 4.2, when the parameter is up-
dated over the entire space B?(B), as is common in

prior works (Faury et al., 2022; Zhang & Sugiyama,
2024; Lee & Oh, 2024), we achieve a confidence
bound of O(B+/dlogt + B?), significantly improv-
ing upon the previous bound of O(B\/glog tlog K +
B3/2,/dlog K) (Lee & Oh, 2024). More importantly,
when the parameter is updated within a specific space
where the update condition parameter « is bounded
by a constant, we achieve a confidence bound of
O(/dlog(t) + B), which is completely independent
of poly(B) and K.

* New B-improved, K -free, variance-dependent re-
gret bound: To apply our new online confidence bound
to MNL bandits and achieve a tighter regret in terms
of poly(B) and K, we propose an algorithm called
OFU-MNL++. In addition, through a novel regret decom-
position, we derive a variance-dependent optimal regret

ofO( (dlog T + By/dlogT) A/, JE), where o2

represents the variance of the rewards at round ¢. For

sufficiently large 7', we obtain a @(dq/Zthl JE)

regret. To the best of our knowledge, this is the
first B, K-free and variance-dependent optimal regret
bound in contextual MNL bandits.

* Completely poly(B), K-free confidence and regret
bound using MLE: We propose an MLE-based al-
gorithm, OFU-M2NL, which achieves poly(B), K-free
variance-dependent optimal regret by leveraging a B-
free MLE confidence bound.

2. Related Work

Logistic bandits. The logistic bandit problem (Dong et al.,
2019; Faury et al., 2020; Abeille et al., 2021; Faury et al.,
2022; Lee et al., 2024a;b) is a special case of the MNL
bandit problem. In this setting, the agent offers only a
single item (i.e., K = 1) and receives 0-1 binary feed-
back, restricting the problem to the uniform rewards setting.
As summarized in Table 1, recent works have successfully
eliminated the harmful dependency on 1/« (which can be
exponentially large) in the leading term, achieving instance-
dependent regret (i.e., x;-dependent regret). However, most
of these approaches still suffer from an unnecessary depen-
dency on the norm-boundedness of the unknown parameter,
poly(B). While a recent work by Lee et al. (2024b) suc-
cessfully eliminated the poly(B) factors, their approach
incurs a per-round computational cost that grows linearly
with . Thus, the question of whether it is possible to design
a B-free, computationally efficient algorithm remains open.

MNL bandits. The MNL bandits (Agrawal et al., 2019;
2017; Ouetal., 2018; Chen et al., 2020; Oh & Iyengar, 2019;
2021; Perivier & Goyal, 2022; Agrawal et al., 2023; Lee &
Oh, 2024) address more sophisticated problems compared
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Table 1: Comparisons of regret bounds in recent works on contextual logistic and MNL bandits with 7" rounds, the

maximum size of assortments K, d-dimensional feature vectors, the norm-boundedness of the unknown parameter B,

problem-dependent constants 1/x = O(K?%e3P) and k] :=>,_q. p:(i|S7, w*)p(0|S7, w*) < 1, and the variance of the
¢ b t

rewards o2 < 1 at round ¢ (formally defined in (9)). For the computational cost (abbreviated as “Comput.”), we consider
only the dependence on ¢. The term “Intractable” refers to computational runtimes that are non-polynomial.

Algorithm Regret Rewards Comput. per Round
Abeille et al. (2021) o ( B3/2dlog T m ) Uniform Intractable
(OFULog)

Logistic :?)l;f]lLlieg e;)al. 202D 0 ( B*dlog Tm> Uniform o)

T T ) e ot
(L;iyzig' (20240) @ (d log(BT)m ) Uniform o(t)
((1\::[1;?5 é;l' (2020) @] (Bd log(KT) \/T) Uniform/Non-Uniform Intractable
82885Mlgf)rlgar (2021) O (%d logTVT ) =0 (KQ eBdlogTVT ) Uniform/Non-Uniform o(t)

Blfri\(IlIidts ([:)eFrLiI\iil‘f;L% Coval (2022 o (B Kdlog(KT)y/ Zle Ki ) Uniform Intractable
(L(f;;iﬁ}i )(2024) O (B 32dlog K (log T)%?\/T ) Uniform/Non-Uniform O(1)
:l;l;;sﬁ;v};):i Theorem 4.5) @) ( (dlog T + By/dlog T) A/}, cr?) Uniform/Non-Uniform o(1)
2‘;;5;";‘1" Theorem 4.12)  © (d log(BT) \/@ ) Uniform/Non-Uniform o)

to logistic bandits, as they involve selecting a set of items
(thus highlighting their combinatorial nature) and consider
non-uniform rewards rather than binary feedback. Recently,
Lee & Oh (2024) made significant progress by resolving
the long-standing open problem of establishing the mini-
max optimal regret (ignoring factors of B and logarithmic
terms) with computational efficiency. However, as shown in
Table 1, all existing regret bounds increase with B and K.
Furthermore, the tightest regret bound by Lee & Oh (2024)
includes an additional (log T")'/? term, arising from a loose
confidence bound. To address these limitations, in this paper,
we construct the sharpest online confidence bound to date
and, leveraging this, achieve (asymptotically) B, K-free
regret while maintaining computational efficiency.

RL with MNL models. There has been growing interest
in incorporating MNL models into reinforcement learning
(RL). One line of work extends MNL bandits to the RL
setting. Recently, Lee & Oh (2025) proposed a new frame-
work, called combinatorial RL with preference feedback,
in which the agent selects a subset of items in each round
to maximize long-term cumulative reward based on MNL-
modeled preferences, and established the minimax-optimal
regret bound in linear MDPs (Jin et al., 2020).

Another direction focuses on RL with MNL-based transition
models. Hwang & Oh (2022) introduced MNL-MDPs, a
class of MDPs where the transition probabilities are param-

eterized by an MNL model. Building on this, Cho et al.
(2024) and Li et al. (2024) concurrently improved the de-
pendency on 1/k = O(K?2e3P) in their regret bounds. Park
et al. (2024) further extended this direction to the infinite-
horizon setting.

3. Preliminaries

Notations. For a positive integer n, we define [n] as the
set {1,2,...,n}. The ¢5- and £y,-norm of a vector x is
denoted by | x| and ||z, respectively. For a positive semi-
definite matrix A and a vector z, we use |z 4 to represent
VT Az. For any two symmetric matrices A and B of the
same dimensions, A > B indicates that A — B is a positive
semi-definite matrix. Finally, we define S as the set of
candidate assortments with a size constraint of at most X,
ie,S={Sc[N]:|S <K}

3.1. Problem Setting

We consider the contextual MNL bandit problem, where
an agent selects assortments (sets of items) and receives
feedback based on user choices. Specifically, at each round
t, the agent receives a feature vector x;; € R? and a re-
ward r; for every item 7 € [IN]. Note that the feature set
X, := {4} | and rewards {r;}Y; can be arbitrarily cho-
sen by an adversary. The agent then offers an assortment
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Sy = {i1,...,141} € S, where | < K. After presenting the
assortment, the agent observes the user’s purchase decision
¢ € Sy u {0}, where {0} represents the “outside option”, in-
dicating that the user did not choose any item from S;. The
user choices are modeled using the Multinomial Logistic
(MNL) framework (McFadden, 1977), where the probability
of selecting an item i € S; U {0} is defined as:

. . exp(z;w*)
pt(71|St7W >:= )
1+ZjeSt exp(xz;-w )

where w* € R? is an unknown parameter and x;o = 0.

The choice response for each item ¢ € S; u {0} is
defined as y;; := 1(c; = i) € {0,1}. Hence, the
choice feedback vector y: := (yio, Ytiy, - - - Yt,) 1S Sam-
pled from the multinomial (MNL) distribution y; ~
MNLA{1, (pt (0S¢, w*), ..., pe(41]St, w*)) }, where the pa-
rameter 1 indicates that y; is a single-trial sample, meaning
Yo + 22:1 Yy, = 1. Then, the expected revenue of an

assortment S is defined as:

R Dics OxXp(x W )Ty
)i= > p(i]S, W)y = =2 C -
; ‘ 1+Zjes exp(xtTjw )

We denote S} as the optimal assortment at time ¢, i.e.,
Sy = argmaxg.g R¢(S,w*). The goal of the agent is
to minimize the cumulative regret over the 7' rounds:

T
Reg;(w Z t(S7, W") — Re(S, w).

When K = 1and r;; = 1, the MNL bandit reduces to the bi-
nary logistic bandit with R;(S = {z},w*) = o (z'w*) =
1/(1 + exp(—xTw*)), where o (-) is the sigmoid function.

We will work under the standard boundedness assumption.

Assumption 3.1 (Bounded assumption). We assume that,
forallt > 1,4 € [N], |x#]2 < 1 and r4; € [0,1]. There
exists a known constant such that [w* |2 < B,

Following the previous contextual MNL bandit litera-
ture (Oh & Iyengar, 2021; Perivier & Goyal, 2022; Zhang
& Sugiyama, 2024; Lee & Oh, 2024), we introduce the
problem-dependent constant:

Definition 3.2. Let W = {w € R? | |w|2 < B}. There
exists k > 0 such that, forany i € S, S € S,and t € [T],
we have minyweyy p:(i]S, w)p: (0|S, w) = &

A small x signifies a greater deviation from the linear model.
Notably, 1/x can be exponentially large, growing on the
order of O(K?e*P). Therefore, it is crucial to ensure that
our regret bound does not depend on 1/k.

4. Main Results
4.1. Sharpest Online Confidence Bound for MNL Model

Instead of performing Maximum Likelihood Estimation
(MLE) as done in previous studies (Chen et al., 2020; Oh
& lyengar, 2021; Perivier & Goyal, 2022), we follow the
approach of Zhang & Sugiyama (2024); Lee & Oh (2024)
and adopt the online mirror descent (OMD) algorithm for
parameter estimation. To begin, we define the multinomial
logistic loss function for round ¢ as:

G(w) i= = > i log pi(i] Si, w). 0))

1€St

In this paper, we present a general description of online pa-
rameter estimation. We consider a (possibly) time-varying
compact convex search space W; < R? and allow for occa-
sional updates to the parameter rather than requiring updates
at every round. We denote 7 < [1] as all the update rounds.
At the update round ¢ € 7, the true parameter w* is esti-
mated as follows:

w, = argmin |[w — w¢| g, ,
weE

(projection onto W;)

1
w1 = argmin (Ve (w}), w) + —||w th o 2)
weW;
where 17 > 0 is the step-size parameter, and W; < R? is
the compact convex set, thich will be specified later. The
matrix H, is defined as Hy := H; + nV?{;(w}), where
Ht = )\Id + ZseT\{t,“.,T} V2ZS(W5+1) with A > 0.

If no update is performed, wy, H, + and H,; remain unchanged.
Formally, let ¢’ € T denote the last update round prior
to t (ie., t' < t). Then, we have w1 = -+ = Wy,
Hyiy=---=Hiand Hyyq = -+ = Hy.

In the optimization problem (2), we first solve the uncon-
strained optimization problem in closed form, obtaining
w;_ ;. Then, we project w;_ ; back into the feasible set.

nH; 'V, (W),

Wi = argmin |w — Wt+1HHf 3)
weW,

’ R
Wip1 = Wy —

This estimator is efficient in both computation and storage.
Remark 4.1 (Computational cost). For a general convex set
W;, the projection optimization problem (e.g., Equation (3))
can be solved up to € > 0 accuracy using the Projected Gra-
dient Descent algorithm (e.g., Algorithm 2 in (Hazan et al.,
2016)), requiring computational cost of O(Kd?3 log(1/e)).
As a special case, if W, is an ellipsoid, the optimization
problem can be solved in a single projection step (via a
closed-form projection), which needs only O(Kd?) cost.

In terms of storage, the estimator avoids retaining all his-
torical data, as H;, and H; can be updated incrementally,
requiring only O(d?) storage.
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Our first main contribution is the development of an im-
proved online confidence bound for MNL bandits, which
depends on the update condition parameter c. The proof is
deferred to Appendix C.

Theorem 4.2 (Improved online confidence bound). Let § €
(0,1] and T < [T denote the set of update rounds. For all
t € T, we assume the following update conditions hold:

sup |z (w—w")|<a, Vies;,

weW,
where W, is a compact convex set, and o« > 0. We set
n = (1 +3v2a)/2 and X = 12+/2na. Then, under As-
sumption 3.1, with probability at least 1 — §, we have:

[we — w*|g, = O (a«/dlog(t/é) + aB) )

Remark 4.3 (Condition of Theorem 4.2). Note that the con-
dition in Theorem 4.2 is easy to satisfy and has already
been addressed in prior works (Faury et al., 2022; Zhang
& Sugiyama, 2024; Lee & Oh, 2024). Specifically, if the
parameter is updated at every round (i.e., 7 = [T]) over
the entire parameter space (i.e., W, = W), as is common
in previous works (Faury et al., 2022; Zhang & Sugiyama,
2024; Lee & Oh, 2024), it follows directly that o« = B.

Discussion of Theorem 4.2. When the parameter is up-
dated at every round (so @« = B) and ) is set to A =
124/2na = ©(B?), we obtain a completely K -free con-
fidence bound of O(B+/dlogt + B?). Compared to the re-
cently established confidence bound O(B Vdlogtlog K +
B3/2,/dlog K) (Lee & Oh, 2024), our bound is tighter by
a factor of 4/log t log K in the leading term.

More importantly, and perhaps more interestingly, if we
can construct W; such that o remains small (or constant)
and updates occur only when this condition is met, we
achieve a confidence bound of O(4/dlog(t) + B). For suf-
ficiently large ¢, i.e., t = O(eB/9), this further simplifies to
O(+/dlog(t)), representing a significant improvement over
the previous bound O(B+/dlogtlog K) (Lee & Oh, 2024),
with no dependence on B or K.

Proof sketch of Theorem 4.2. We provide a proof sketch
and highlight the technical novelties of Theorem 4.2.

Following the previous works (Zhang & Sugiyama, 2024,
Lee & Oh, 2024), we first bound the estimation error be-
tween wy 1 and w* as follows:

[Wer =W, S 1), (W) = Lo(Wesn)) + B2,

s€Tt 41

“)
where T;11 € 7T is the set of update rounds prior to ¢ + 1.

1) B, K-independent step size 7. In Zhang & Sugiyama
(2024); Lee & Oh (2024), npis setas n ~ log K + B, based

on Lemma 4 from Jézéquel et al. (2021). To eliminate the
dependency on B and log K, we establish Proposition B.3,
which shows that the MNL loss is 34/2-self-concordant with
respect to the £,,-norm (rather than the /5-norm, as shown
in Tran-Dinh et al. (2015)), which may be of independent in-
terest. This result enables us to set 7 ~ a (Proposition C.5),
making it independent of B and K.

2) Novel intermediary term. The first term in Equation (4)
can be bounded by introducing an intermediary parameter:

7y = 0 (Bwnr, [0 ((@W)jes.)])

where o is the softmax function, O'j is its pseudo-inverse,
and P; is a truncated normal distribution with mean w’,.
Then, we decompose the sum of losses as follows:

Z (gs(W*) - Ks(Werl))

s€Tt 41
= 2 (W) = La(Z0)) + D) (La(@s) — £e(Warn)) -
s€Ti+1 s€Ti+1

(a) (b)

Note that, in Zhang & Sugiyama (2024); Lee & Oh (2024), a
non-truncated normal distribution was used for P;, leading
to a bound for term (a) of O(log K (logt)?). When the
support of P is not bounded, the intermediary parameter is
generally unbounded (Foster et al., 2018). To address this
issue, they employed a smoothed version, which resulted in
a looser confidence bound.

In contrast, we use a truncated normal distribution for P;,
ensuring that the intermediary parameter z, is well-bounded.
As a result, we do not require the smoothed version of z;.
This allows us to bound term (a) as follows:

Z (ts(W*) — £s(zs)) < avlogt, Q)

SETt+1

which is an improvement by a factor of O(log K logt) com-
pared to O(log K (log t)?) (Zhang & Sugiyama, 2024).

On the other hand, using a truncated normal distribution for
P, introduces additional challenges when bounding term (b).
In Zhang & Sugiyama (2024); Lee & Oh (2024), when P;
is a non-truncated normal distribution, the analysis relies on
the fact that the normalization constant for P, denoted by
Zs, 1s equal to the normalization constant for ]53+1, denoted
by Zs+1. Here, Pq-i—l is identical distribution to P, except
for a shift in the mean, w/, — w_ 1.

However, in our case, because the support is bounded, the
mean shift results in a non-symmetric distribution, caus-
ing the normalization constants to differ, i.e., Z; # ZS+1.
To address this, we restrict the support of ]55+1 to ensure
symmetry while keeping it within the support of P, i.e.,
supp(ﬁsﬂ) < supp(Ps). Additionally, we set the covari-
ance of Psﬂ sufficiently small to ensure that Z; < Zs+1,
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thereby preserving the desired properties needed for bound-
ing the term. Therefore, we can bound term (b) as follows:

D (le(20) — Ls(wein)) < dlogt. (6)

s€Tt+1

3) Dimension-free regularization parameter \. In The-
orem 4.2, we set A\ = 12+/2na, which is completely inde-
pendent of d. This independence is crucial for obtaining an
additive B confidence bound instead of a multiplicative one,
as B2\ ~ B2?a? does not depend on d. In contrast, Zhang
& Sugiyama (2024) set A\ = O(d), resulting in a confidence
bound with a multiplicative factor of B. The key difference
arises from the construction of Ps. Instead of directly us-
ing H, for the covariance of P, as in Zhang & Sugiyama
(2024), we carefully select the covariance, allowing us to
eliminate the dimensional dependence on \.

Combining (4), (5), and (6), we complete the proof.

4.2. Online Update with Adaptive Warm-Up

In this subsection, we introduce OFU-MNL++ (Algorithm 1),
which employs a novel two-phase online update approach
leveraging the improved confidence bound from Theo-
rem 4.2 to achieve the tightest regret bound in MNL bandits.
Note that the feature set & can be arbitrarily given at each
round ¢, without imposing any distributional assumptions
on the exogenous contexts.

Intuition. Theorem 4.2 indicates that if « is constant, a
confidence bound of O(4/dlog(t/d) + B) can be obtained.
Our primary objective is to design the search space W; to
ensure that o remains constant in most rounds. To achieve
this, we enforce the condition by rejecting, on-the-fly, any
A that might violate the constancy of a. Specifically, it is
sufficient to verify the following condition:

2 S 1/.2
22%@5 HxH(H;v)—l > 1/77, )

where Hy" = XNIq + X cru\ g 1) V20s(w¥, ) is the
warm-up version of Hy, i.e., the regularized sum of Hes-
sians corresponding to all assortments played during the
adaptive warm-up rounds 7. Here, 7; is a carefully chosen
threshold and A > 0 is a regularization parameter.

Online adaptive warm-up. At round ¢, given A}, if for any
feature © € A}, the quantity |‘$H%qu),1 is greater than or
equal to the threshold 1/77 (as specified in Equation (7)),
we do not update our current estimate w;. Instead, we
update a separate warm-up parameter w;’ to ensure that the
condition in (7) is more likely to hold in the future.

In such cases, we offer only the single item that maximizes

Ha:H%Hw)_l (Line 6). Subsequently, we update the warm-up
t

parameter w;’ by invoking Restricted Space Online Mirror

Descent (RS-OMD, Algorithm 2) as a subroutine (Line 7).
Then, we construct the following parameter set (Line 8):

11(0) = {w e RY | W = Wi |z, < Gaa(0)},

where (;11(8) = O(B+/dlog(t/§) + B?). This ellipsoid
is then used in the RS-OMD procedure during the Planning
& Learning rounds (Line 11- 13). Note that, since the
search space is the entire parameter space YV, we can set
a = B for the condition of Theorem 4.2 to obtain the warm-
up confidence bound (;11(d). The quantities H; and w;,
remain unchanged during the warm-up rounds (Line 9).

Parameter update within restricted space JV;(5). When
the condition in Equation (7) does not hold, the parame-
ter w; is updated by searching only within W}, (0) using
RS-OMD as a subroutine (Line 12). In this scenario, o can
be set as a constant (with high probability), leading to a con-
fidence bound of O(+/dlog(t/d) + B) (by Theorem 4.2).

Corollary 4.4 (Informal, B-improved & K-free confidence

bound). Letd € (0,1] and 5:(5) = O («/dlog(t/(?) + B).
Suppose w* € W} () for all t = 1. Define the following
confidence set as follows:

Ce(8) == {w e R | |w — we|m, < B:(9)}.
Then, we have Pr [Vt = 1, w* € C¢(0)] = 1 — 4.

Efficient assortment selection. Given the confidence set in
Corollary 4.4, we calculate the optimistic utility UCBy; as:
UCBy; := z/w; + Bt(é)thiHHt—l, Vi e [N].

If the true parameter w* lies within the confidence set C;(9),
the value UCBy; serves as an upper bound for z/w*. Using

UCBy;, we define the optimistic expected revenue for an
assortment S’ as:

~ L ZieS eXP(UCBti)Tti

Ru(8) =3 Yljes €xp(UCBy;)’ ®

where r;; € [0,1]. We then offer the assortment S, that
maximizes R;(S), i.e., Sy = argmaxg.g Ry(S) (Line 11).
The quantities H;”, w;’, and W;* () remain unchanged dur-
ing the planning & learning rounds (Line 13). Note that
the optimization problem in (8) can be efficiently solved
in polynomial time, O(poly(XN)), independent of ¢ (Rus-
mevichientong et al., 2010; Davis et al., 2014).

Variance-dependent optimal regret. We establish a
variance-dependent optimal regret bound through a novel
regret decomposition. Specifically, we show that the re-
gret is bounded by the sum of covariances between r;; and
[z w1 given St. Thus, with some slight notational abuse
(as the expressions do not strictly denote random variables),
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Algorithm 1 OFU-MNL++

1: Input: failure level d, confidence radii 5;(9) and (;(9).

2: Initialize: WP (6) = W, Hy = My, HY = ALy, wi,w¥ € W, = 1, g% := L 4+ 3V2B, A := dn, A¥ :=

max{12v/2na, 2}, 7 := 64/2¢:(6) .

3: forroundt =1,...,7 do

4 Observe feature set X; = {z4;}~ ; and rewards {ry;}¥ ;.

5 if max,cx, HxH%H’t“’)—l > 1/77 then = Adaptive warm-up
6: Offer S; = {i;}, where x;;, = argmax, y, HxH%Htw)_l, and observe y;.

7 Update (w3, H. 1) < RS-OMD(W, ¢;, H;", w3, ") by Algorithm 2.

8 Calculate W4, (6) — {w eRY | |w—w¥ [me < CtH(cS)}.

9 Update Hy1 < Hy and wyiq «— Wy

10: else > Planning & Learning
11: Offer S, = argmaxg.g R:(S) and observe y;.

12: Update (w41, Hit1) < RS-OMD(W}¥(0), 4y, Hy, W, m) by Algorithm 2.

13: Update H} | «— H", wi’,; — wi’, and W} (0) < W (9).

14: end if

15: end for

Algorithm 2 RS-0MD, Restricted Space OMD

1: Input: convex set W, £y, Hy, Wy, 7).

2: Update H; < H; +nV2L(w).

3: Calculate w;1 by Equation (2).

4: Update Ht+1 <« Ht + Vzét(wtﬂ).
5: Return: wy 1, Hyi1.

the regret can be bounded as follows:

Reg(w*) < 67(0) Y Cove (rui, weil 1 )
t¢Tw

<Br©) | X Vilra), [ D) Vil g),

tgTw tgTw

where Cov; (-, -) and V,(-) is the covariance and variance,
respectively, given S;. For simplicity, rewrite V;(r¢;) as

O—E = EiNPt('|St~,W") [(r” - Ej’”Pt("St,W*)[rtj])Z:I )

where o = 0. By applying the elliptical potential lemma
(Lemma D.7) to the sum of the variances of |z pots We
derive a variance-dependent regret bound. The complete
proof is provided in Appendix D.

Theorem 4.5. Let § € (0,1], and assume that Assump-
tion 3.1 holds. Then, with probability at least 1 — 6, the
regret of OFU-MNL++ (Algorithm 1) satisfies

Reg, (w*) < (dlogT + By/dlog T)

1 1
+ =B%d*(logT)* + —=B*dlogT.
K K

Discussion of Theorem 4.5. For sufficiently large, i.e.,
T > O(eP*/? + 1, B8d?), OFU-MNL++ achieves a regret of

@ (d logT'4/ Z;‘ll af) . To the best of our knowledge, this

is the first variance-dependent and poly(B), K -free regret
bound in contextual MNL bandits. Compared to the recent
minimax optimal result of O (B*?dlog K (log T)*?v/T)
by Lee & Oh (2024), our method improves the regret by a
factor of O (B*?log K+/logT). Moreover, the O(v/T)
term in Lee & Oh (2024) is replaced in our result by

@(q/ztll a?). Since 07 < 1 always holds, this repre-

sents a strict improvement over v/7".

Remark 4.6 (Computational cost of OFU-MNL++). The pro-
posed algorithm, OFU-MNL++, maintains a constant compu-
tational cost per round of O(Kd® + poly(N)), which is
entirely independent of ¢. For parameter updates, we utilize
the linearized loss, inspired by Zhang & Sugiyama (2024),
and work within ellipsoidal search spaces (W and W; ()
in both phases. As a result, the update process incurs only
a cost of O(K d?). Moreover, the assortment optimization
problem can be solved in O(poly(NN)) (Davis et al., 2014).

Remark 4.7 (Lower bound and optimality). For the worst-
case regret, we achieve O(dv/T) (since oy = O(1)), which
matches the minimax lower bound of Q(d+/T') established
by Lee & Oh (2024). When the rewards are uniform, i.e.,
i = 1, we obtain O(dr/T/K), as 02 ~ p,(0|S;, w*) ~
1/K. This result also matches the uniform reward minimax
lower bound of Q(d+/T/K) (Lee & Oh, 2024).

Comparison to related works. While our approach shares
some similarities with previous works (Faury et al., 2022;
Sawarni et al., 2024) that also use a similar warm-up phase,
there are significant differences.
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Remark 4.8 (Comparison to Faury et al. (2022)). Faury et al.
(2022) incurs a poly(B) dependence in the leading term,
whereas our method avoids this entirely by exploiting the
self-concordant structure of the MNL loss (see Appendix B).
Additionally, their use of MLE in the adaptive warm-up
phase results in a per-round computation cost that grows lin-
early with the number of warm-up rounds. In contrast, our
method uses an online update rule, resulting in significantly
better computational efficiency. Finally, their approach re-
quires prior knowledge of «, which is often unknown or
hard to estimate in practice.

Remark 4.9 (Comparison to Sawarni et al. (2024)). Unlike
Sawarni et al. (2024), which requires prior knowledge of
k—an impractical assumption in real-world scenarios—our
approach does not rely on knowing « in advance. Addi-
tionally, their method fully updates parameters using MLE
rather than an online update. As a result, the per-round
computation cost of their algorithm scales linearly with ¢,
while ours remains constant.

Discussion on instance-dependent regret. As a special
case, if the rewards are uniform (i.e., r;; = 1), we can
establish an instance-dependent regret bound.

Proposition 4.10. Under the same conditions as Theo-
rem 4.5 and assuming uniform rewards, for sufficiently

large T, OFU-MNL++ achieves a regret of@ (dq / Zthl Ii;),

where K} :=> ;e v pe(i] ST, w*)pe (0]SF, w*).

This result improves upon the previous instance-dependent

regret of o (eB dn/ Zle ﬁg) (Proposition 2 of Lee & Oh

(2024)), by a factor of eZ. The proof and further discussions
are provided in Appendix E.

4.3. MLE-Based Approach

Inspired by Lee et al. (2024b), who proposed a poly(B)-
free confidence bound using the MLE for generalized linear
models (GLM) (but not for MNL models), we introduce an
MLE-based algorithm that achieves poly (B), K -free regret.
To this end, we first define the MLE estimator W, as follows:

W, := argmin £;(w),
wew

where Li(w) =

Lemma 4.11 (Informal, Improved MLE confidence bound).
Let Gy = §3(1 — v)V2Ly(Wy + v(W* — W,))dv + ghs 1.
Then, for any t > 1, if Assumption 3.1 holds, then with
probability at least 1 — §, we have:

[w* = Wlg, = O (V/dlog(Bt))

Note that G; is used solely for analytical purposes. The
algorithm and proofs are provided in Appendix F.

Theorem 4.12. Let § € (0, 1]. Then, under Assumption 3.1,
with probability at least 1 — §, the regret of OFU-M?NL
(Algorithm F.1) is bounded as follows:

T
1
Reg, (W) < dlog(BT), | Y. 07 + EdQ (log(BT))?.

t=1

Discussion of Theorem 4.12. Theorem 4.12 shows that
OFU-M2NL enjoys a completely poly(B)-free regret for any
T, indicating that its regret is tighter than that of OFU-MNL++
by a factor of O(poly(B)) in the non-leading term. How-
ever, its asymptotic regret still depends on log B, whereas
the asymptotic regret of OFU-MNL++ remains entirely inde-
pendent of B. Additionally, the per-round computational
cost of OFU-M?NL increases linearly with ¢, while that of
OFU-MNL++ remains constant.

5. Numerical Experiments

We empirically evaluate the performance of our algo-
rithms, OFU-MNL++ and OFU-M2NL, by measuring cumu-
lative regret over 7' = 3000 rounds. The algorithms are
tested on 20 independent instances, and we report the aver-
age performance along with a shaded area representing two
standard deviations. In each instance, the true underlying
parameter w* is uniformly sampled from the d-dimensional
ball B(B) of radius B, and the context features x; are
drawn from a B%(1). The rewards are sampled from a uni-
form distribution in each round, i.e., r¢; ~ Unif(0, 1).

The baselines are the practical and state-of-the-art al-
gorithms: the UCB-based algorithm, UCB-MNL (Oh &
Iyengar, 2019), the Thompson Sampling-based algorithm,
TS-MNL (Oh & Iyengar, 2019), and the constant-time algo-
rithm, OFU-MNL+ (Lee & Oh, 2024). Figure 1 shows that
both of our algorithms significantly outperform the baseline
algorithms. Although OFU-MNL++ incurs high regret in the
early rounds due to the adaptive warm-up phase (with the
number of such rounds depending on B), its regret stabilizes
after a certain point, exhibiting the lowest slope. Therefore,
we believe that OFU-MNL++ achieves the best asymptotic
performance among all algorithms. This aligns with our
theoretical results, which show that the asymptotic regret
of OFU-MNL++, O(dlog T+/T), is entirely independent of
B (even in logarithmic terms), whereas other algorithms ex-
hibit B-dependence. Additionally, OFU-M?NL demonstrates
the most robust performance, maintaining its superiority
even as B increases, particularly in the early rounds. For
more details and additional results, refer to Appendix G.

Furthermore, Figure 2 shows that the online update meth-
ods (OFU-MNL+ and OFU-MNL++) maintain a constant run-
time per round, while the others exhibit a linear increase
with ¢ due to their use of MLE-based parameter estima-
tion. Among them, our MLE-based approach, OFU-M2NL, is
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Figure 1: Cumulative regret for varying the norm-boundedness of the unknown parameter B.
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Figure 2: Runtime per round for varying the norm-boundedness of the unknown parameter B.

the most computationally expensive, as it solves a convex
optimization problem to compute the optimistic parame-
ter—unlike the others, which rely on closed-form UCBs
(see Line 6 in Algorithm F.1).

6. Conclusion

In this work, we construct the sharpest online confidence
bound for MNL models, with improvements in terms of
log K and poly(B) dependencies. Leveraging this result,
we propose a constant-time algorithm, OFU-MNL++, that
achieves B, K-free regret in an asymptotic sense. Addi-
tionally, we introduce a MLE-based algorithm, OFU-M2NL,
which ensures poly(B), K-free regret at every round.
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Appendix

A. Notation

Let T be the total number of rounds, with ¢ € [T'] representing the current round. We denote N as the total number of items,
K as the maximum size of assortments, d as the dimension of feature vectors, and B as the upper bound on the norm of the
unknown parameter. For ease of reference, we provide Table A.1.

Table A.1: Symbols

T feature vector for item ¢ given at round ¢

Tt reward for item ¢ given at round ¢

St assortment chosen by an algorithm at round ¢

K :=|S¢|, size of chosen assortment at round ¢

0 outside option

Yti choice response for each item ¢ € S; U {0} at round ¢

Ry(S,w*) :=3,cqpe(i]S,w*)rs, expected revenue of the assortment S at round ¢
le(w) = = Dlies, Yrilog (%), loss function at round ¢

li(zy) = = Dies, Yrilog (%), loss function at round ¢, z;; = x);w
T set of adaptive warm-up rounds

Wi online parameter estimate at round ¢

W} projection of w; onto the current search space W;

wy adaptive warm-up parameter estimate at round ¢

n := 1, step-size parameter for w;

nv = % + 34/2B, step-size parameter for w’

A = 4n), regularization parameter

A := max{121/2nB, 2} regularization parameter for adaptive warm-up
V(W) = Yies, PelilSe, W)z — Yics, Djes, Pe(ilSe, W)pe(§|Se, Wiz

H, =g+ ZS¢[t_1]\7—w V2ls(Wey1)

H, = Hy + V2 (w))L(t ¢ T)

Hy(w*) = 214+ Do VEs(W?)

H = NTa 4 Yger i,y Vs (Wat1)

B(0) = O (+/dlog(t/) + B) , confidence radius for w; at round ¢

¢ (9) := O (B+/dlog(t/5) + Bz), confidence radius for w;’ at round ¢

T := 64/2(;(6), threshold for determining whether to implement adaptive warm-up
UCBy; = al;wi + Be(0) |z ;> optimistic utility of item 7 at round ¢

Ry (S) = %, optimistic expected revenue of assortment .S at round ¢
o? = Biep, (1S0,w%) [(Tm‘ —Ejop, (S, w) [th])Z], variance of rewards given .S, at round ¢

For notational simplicity, we express the loss function in two different forms throughout the proof, using them interchangeably

12
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as needed:

G(w) == > yrilogpy(ilSe, w) = = ) i log ( p(ze; ) > ;

14+ cq, exp(zw)

€Sy €Sy
exp(zy;)
- Yti log ,
i;t <1+Zjes,, eXP(th)>
Vwle(w) = > (i (il St W) = 1) i,
€Sy

szt(zt) = o(z]) — v,
Va,gt(w)= Zpt(ﬂsm wtzwn 2 Zpt i St w)pe (515, )xtix;;w

€St €St jESt
Vili(z,) = diag(o:(z])) — o4(2]) o (z)) T, (A.1)

where zy; = 2w, z; = (24:)ics, € RISt and y, = (Yti)ies, € RISt Hence, it is clear that Li(W) = ly(zg).

B. Self-Concordant Properties of MNL Function

In this section, we present several key properties of self-concordant-like functions that are essential for proving the main
theorems in this paper.

For simplicity, we will work with the MNL loss in the form of ¢ rather than ¢ throughout this section. However, it is
important to note that the properties introduced in this section also apply to £. Whenever these properties are used in the
proofs of other lemmas or theorems, we will explicitly demonstrate their applicability to £.

We begin by revisiting the definition of self-concordant-like functions.

Definition B.1 (Self-concordant-like function, Tran-Dinh et al. 2015). A convex function f € C3 : RX — R is M-self-
concordant-like function with constant M if:

6" (s)] < M]b]2¢"(s)
for s € Rand M > 0, where ¢(s) := f(a + sb) for any a,b € RX.

To derive a tighter confidence bound in Theorem 4.2 and a tighter regret bound in Theorem 4.5, we redefine the concept of
self-concordant-like functions specifically for the MNL loss function £.

Definition B.2 (/.,-norm self-concordant-like MNL loss). The MNL loss function £(z) : R — R is M-self-concordant-
like function with constant M if:

6" (s)] < M[bllwg"(s).
for s € Rand M > 0, where ¢(s) := £(a + sb) for any a,b € RX.

Note that because x| < x| for any vector w € R¥, the new definition of a self-concordant-like function (Definition B.2),
which is specifically designed for the MNL loss function, is tighter than the original definition (Definition B.1).

Using this new definition, we show that the MNL loss defined in (1) is a 3+/2-self-concordant-like function.

Proposition B.3 (Constant self-concordant-like MNL loss). For any t € [T'], the multinomial logistic loss {;, defined in
Equation (A.1), is 3v/2-self-concordant-like function under Definition B.2.

Proof of Proposition B.3. Recall that the loss ¢, is defined as:

2 YiiZ¢i + log (1 + Z et )

€St i€St

linear =:f(z)
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Since /; consists of the linear term and f(z) : RISl — R, and the third derivatives of the linear term are zero, it suffices to
show that f(z) is a 3v/2-self-concordant-like function.

Fix any ¢ € [T']. For simplicity, let K = |S;|. We define:
K K
#(s) :== f(a+ sb) = log (1 + Z ea"+8b"> = log (Z e“”‘qb?‘) ,
i=1 i=0
where a = [a1,...,ax]" € RE andb = [by,...,bx]" € RX, and ag = by = 0. Then, by simple calculus, we have

S, (b1 — by)2enctsbint by

@"(s) = 5 >0,
(Zfio eai-f-sbi)
and
i+sb; ,a;+sb; K . ) . +sby
o Zi<j (bi — bj)2€a Fobigaitshi [Zk:O(bz + b — 2by)ek e k] - Z}i(:o(bi +b; — 2ak)€a’“+5b"" "
¢ (S) - 3 K a;+sb; (b (S)
(et Zeoct T
(B.1)
Note that for all ¢, j,k =0, ..., K,
; + b — 2bi| < 2 4+ b2 4+ b? < max |b;|.
bi + bj — 2bi| < V6, /b7 + b7 + b} < 3v2 max_|b
i=0,...,
Hence, we obtain
K K K
. L ap+sb . o ap+sb . a;+sb;
kgo(bz + by — 2by)em b | < ];sz + by — 2by| e Hebr < 3\/§i:r5{§§K|bz|§)e : (B.2)
Plugging in (B.2) into (B.1), we derive that
§"(s) <3v2 max _|bl¢"(s) = 3v2[blon0"(5).
By Definition B.2, we conclude that the MNL loss is 3+/2-self-concordant-like. O

Building on our new definition (Definition B.2), we establish several fundamental properties of the self-concordant-like MNL
loss function. The following proposition is analogous to Theorem 3 of Tran-Dinh et al. (2015). However, Proposition B.4
provides a tighter result specifically tailored to the MNL loss function (though it may be extendable to other functions).

Proposition B.4. For a convex function f € C* : R — R, we define D? f(x)[u,u, u] := (D? f(x)[u]u, u). Then, if f is
the MNL loss function, i.e., f = £, then for any x,u;,us € R¥, we have:

|D? f(x) [, g, wg]| < 3V2 [us oo us 32 5 -
Proof of Proposition B4. Let ¢(s) = f(a + sb). Then, we have
¢"(s) = V2f(a+sb)b'b, ¢”(s) = D3f(a+ sb)[b,b,b].
By Definition B.2 and Proposition B.3, we know that
[#"(5)] < 3V2[bld" (5).
By substituting s = 0, a = x, and b = u;, we get

|D*f () [ur, wr, wi ][ = [67(0)] < 3v2|us o0 g (0) = 3v2[ i |0 V2 f(x)uf uy,

14
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which can be equivalently expressed as
=3V2{ui o V2 £ (x) < D? f(x)[wi] < 3v2[ur ] V2 £ ().
Therefore, for any u, € RX, we have
’u2 D3f )y 112‘ 3\/§||u1Hoou;V2f(x)ug
= |D? f(x)[u1, uz, up]| < 3V2 |uy HOOHuQHQsz(x).

This concludes the proof. O

Proposition B.5, a variant of Theorem 4 in Tran-Dinh et al. (2015), establishes a key inequality for the Hessian of the MNL
loss, which plays a crucial role in eliminating B-dependency.

Proposition B.5. For any t € [T, the Hessian of the multinomial logistic loss l; - RISl — R satisfies that, for any
21,22 € RISt we have:

e 3Vm 2210 727, (7)) < V20, (25) < 3V 2200 G2, (2y).

Proof of Proposition B.5. We denote z; = z; + s(z2 — z1) for notational convenience, where s € [0,1]. We define

the function ¢(s) := u' V2/;(z,)u = Hune .y~ Note that 1(0) = HuHQV%(Zl) and (1) = Hu”v% ,)- Then, by
Proposition B.4, we have
[0/ (5)| = | D*e(2s)[22 — 21, w,u]| < 3v2[z2 — 21 o0t)(s),

which can be equivalently written as follows:

dIn(s

‘dw() < 3\/§HZ2 — Z1H00~

S

By integrating both sides over s € [0, 1], we conclude the proof. [

Additionally, we introduce an improved version of Proposition 6 in Perivier & Goyal (2022), which serves as a useful tool
for the subsequent proofs.

Proposition B.6. For any t € [T, the Hessian of the multinomial logistic loss {; : RISl — R satisfies the following for any
u,z1,2o € RIS:
1

T2y
u' V<4 (z1)u.
2+ 3v2|22 — 21| ¢

ul (f(l V(21 + (22 — zl))ds) u>

0

Proof of Proposition B.6. From Proposition B.5, we have

1

1
u' (f (1 —5)V?ly(zy + s(zz — zl))ds) u>u' V¥ (z)u _3‘[“ (z2=21)ll g

0 0

—3v2[(z2—21) [0 _
> uTVQEt (z1)u ( ¢ 1 )

NI znu " 3Vl — )l

> uTVQEt (z1)u

2+ 3[” Z2 _Z1)|oo>

where in the third inequality, we use the fact that 1 (1 + "‘7;_1> > 51— forallz > 0. O

C. Proof of Theorem 4.2

In this section, we provide the proof of Theorem 4.2. We begin with the main proof of the theorem, followed by the proof of
the technical lemma that is used within the main argument.
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C.1. Main Proof of Theorem 4.2

Proof of Theorem 4.2. The overall proof structure is similar to the analysis presented in Zhang & Sugiyama (2024); Lee
& Oh (2024). However, as explained in the main paper, several novel analytical techniques are introduced to derive a
B-improved, K -free confidence bound, including:

1. B, K-independent step size 1) by leveraging improved self-concordant properties,
2. O(y/logtlog K) improvement through the use of a novel intermediary term, and
3. dimension-free regularization parameter ), achieved via a more refined analysis.
Throughout the proof of Theorem 4.2, we denote 7 < [T'] as the set of total update rounds. For any round ¢ € [T'], we

denote T; < T as the set of update rounds that occur before ¢, ie., T = {s€ T : s <t} = T\{t,t +1,...,T}. We assume
the following conditions hold:

Condition C.1 (Update condition). For all ¢t € T, we assume that

sup |zf(w—w*)|<a, Viels,
weW;

where W; is a compact convex set, and o« > 0.

We also denote the size of the assortment at round ¢ as K3, i.e., K; = |S;| < K.

Lemma C.1. Suppose Condition C.1 holds. The update rule for the parameter at round t € T is defined as:

w, = argmin |[w — w¢| g, ,
weW,

Lo~ 1
Wiy = argmin £ (w) + 2*HW —wi|%,,
weW, Ui

where ly(w) = b(w)) + (w — W), Vi (w)})) + 1w — W£|‘2§2gt(w;)~ Letn =1+ BTﬁa and \ = 12+/2na. Then, under
Assumption 3.1, for any update round t € T, we have

* * 1
[Wisr — w3, <27 Z ls(w") — Z ls(Wsy1) | +4B%X — 3 Z [ w1 —wilF,- C.DH

s€Ti41 s€Ti41 s€Ti41

The proof is deferred to Appendix C.2.1. Following the approach of Faury et al. (2022); Zhang & Sugiyama (2024); Lee &
Oh (2024), to bound the first term in Equation (C.1), we introduce an intermediary parameter that is Fs-measurable. Note
that w1 is Fs-measurable.

To do so, we first define the softmax function at round ¢, denoted as o¢(z) : RE: — RE: ag follows:

o.(2)]; = exp([2]:) Vi e [K, c2
= R ey 2

where [-]; denotes ¢’th element of the input vector. The probability of choosing the outside option is denoted as:
1
= e
L4 2ty exp([z]r)

Although [+(2)]o is not part of the output vector of the softmax function o(z), it is expressed in a similar form to (C.2)
for simplicity. Then, the MNL user choice model can be equivalently expressed as p;(i|S;, w) = [O't ((ﬂftT]W) jeSt)]

lo¢(2)]o

i

for all i € [K,] and p,(0|S;, w) = [0 ((%Tjw)jest)]o- Furthermore, the loss function in (1) can also be expressed as

Uz, y1) = ko L{yes = 1} - log (W)
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We also define a pseudo-inverse function of o (-) as o} : REt — Rt where [0, (q)]; = log (¢;/(1 — |ql|1)) for any

qe {pe[0,1]% | |p|1 < 1}. Then, we define the intermediary parameter as follows:
zs =0} (Bw~p, [0s ((x5;W)jes.)]) - (C3)

where Py := TNy _w |, <3y (ws, cH 1) is a truncated multivariate normal distribution with mean w, and covariance

cH !, truncated to the region {||w — w’,| g, < 3~+}. Here, H, := H, + A and ¢, \,y > 0 are positive constants to be
specified later. Note that z, is Fs-measurable unlike w ;. Then, the first term in Equation (C.1) can be decomposed into

two terms as follows:
DLW = Y L@+ Y La(@) — Y La(Wapn)

s€Ti41 s€Ti41 s€Tt41 s€Tt41
(@) ®)
First, we demonstrate that the term (a) is bounded by O (log t) with high probability.

Lemma C.2. Let 6 € (0,1] and X = 1. Assume that Condition C.1 holds. Define the intermediary parameter as
Equation (C.3) with and v, c > 0. Then, for any t € T, with probability at least 1 — §, we have

2 LW = Q) hi(2) S11- (24 3v2a +2v2n + gv) log (@) .

s€Ti+1 s€Ti+1

The proof is deferred to Appendix C.2.2. Compared to Lemma F.2 of Lee & Oh (2024), which bound the similar term by
@) ((log t)?log K ), Lemma C.2 improves the bound by a factor of log ¢ log K. This improvement is primarily due to our
use of the truncated normal distribution P; instead of the non-truncated one used by Zhang & Sugiyama (2024); Lee & Oh
(2024). By bounding the support of Ps, the intermediary parameter z; is also well-bounded. As a result, we avoid relying
on the smoothed version of zg, as suggested by Foster et al. (2018). In contrast, the smoothed intermediate term in Zhang &
Sugiyama (2024); Lee & Oh (2024) is bounded by log(Kt), ultimately leading to the looser bound of O ((logt)? log K)
for the term (a).

Now, we bound the term () by the following lemma:
Lemma C.3. Lety > 2v/2n, Hy = Hy + My, ¢ > 0, and X\ > max{2,72d}. Then, for all t > T, we have

s 1 t+1
S ey~ Y wan) < o O Iwaer — Wil + Vodlog <1+4).

s€T¢v1 s€Tt 41 s€Tt 41

The proof is deferred to Appendix C.2.3.
Finally, by combining Lemma C.1, Lemma C.2, and Lemma C.3, and substituting v = 2+/21, we derive that

[weer — w3,

24/1 42t t+1
<22 (2 +3vV2a + 5\@77> nlog (5> + g Z [Wsi1 — W/SH%{ +2v/6ndlog <1 + 4)

s€Tt 41

1
HABA = 5 D [waar — Wi,

s€Tt+1

21 + 2t t+1
<22 (2 +3v2a + 5\/577) nlog ((;’) +2v/6ndlog (1 + Z) +4B%)\

= 0 (a? - dlog(t/0) + &*B?).

in the last inequality, by setting ¢ > 2n(X + X)/A, we get ZH, < \/(2(A + \))H, <
t € T\{t1} (where t; denote the first update round), we have

lwe —w*|z, <O (om/d log(t/3) + aB) : (C.4)

For t; € T, we know that [w;, — W*|z, < VAB = O(aB). Thus, Equation (C.4) holds for all # € 7. This concludes the
proof of Theorem 4.2. O

%H s- This implies that for all
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C.2. Proofs of Lemmas for Theorem 4.2

C.2.1. PROOF OF LEMMA C.1

Proof of Lemma C.1. For any update round s € 7; (an update round occurring before t € 7)), let £(w) = £,(W’,) +
(VU (W), w—wiy+ 3w — w2, ¢.(w) be a second-order approximation of the original function £ (w) at the point w’,,

where wi, = argmin .y |W — Wz, is the projection of w, onto W,. Then, the update rule in (2) can be equivalently
rewritten as follows:

. 1
Woe = argmin (VA (w) w) + - w — w2
weWs n °

. 1 1
= argmin(V/;(w;), W) + §Hw — Wi | vz, (w,) + %HW —wi| Izqs

weWg

~ 1
= argmin (4(w) + — |w — w} |3 .
weWs 277 )

Then, by applying Lemma C.4, we get
(Vls(Wet1), Wep1 —W") (Iwe = w3, = Iwepr = w3, = [Wer — willF,)

1

< R
2n
1 * *

< o (Iws = w* |, = IWepr — W7, — [Wer1 — Wi|7) (C.5)

where the last inequality holds due to the nonexpansive property of the projection mapping Py, i.e., |[W}, — w*| fq =
|Pw, (Ws) — Py, (w*)|3;, <|lws —w*||7_. On the other hand, by applying Lemma C.5, which is based on our improved
self-concordant-like property (Proposition B.4), we obtain:

* * 1 * (|2
gs(Werl) - gs(W ) < <V£S(Ws+1)7ws+1 - W >_ m“ws+1 - W HVZES(WS+1)' (C6)

Letn=1+ 37‘/501. Then, by combining (C.5) and (C.6), we obtain that
Es(Werl) - es (W*) < <V£s(ws+1) - v‘Zs (Ws+1)» Wsi1 — W*>

1
g (Iws =W, = Iwass =W, = Iwos =il ). €7

In the inequality above, the first term on the right-hand side can be further bounded as:
<V€S(WS+1)—V€~S(WS+1), Wsi1 — W)
= (Vls(Wi1) = V(W) = V2L (W) (Was1 — W), W1 — W)
= (D*(W)[Wes1 — Wa](Wer1 — W), Wer1 — W) (Taylor expansion)
= D3€S(V_VS)[WS+1 —-w, Wst1 — Wlsa Wst1 — Wg]7 (C.3)

where in the second equality, we use the Taylor expansion by introducing W, which is a convex combination of w4
and w’,. Recall that by the definition of loss (see Equation (A.1)), the loss £4(W) can be expressed as {4(z,), where
Zs = (v, W)ics. € RIS, Moreover, let z,,1 = (z];Woi1)ics., 2, = (], W))ics., and z* = (x[;w*);cs.. Then, by
simple calculus, we get

Dggs (Ws)[ws-b-l — W Wy — W;, Wst1 — Wlé] = DSZS(ZS)[Zs—i-l — 7", 2541 — ng Zsy+1 — Z;]
< 3V2|zo41 — 2% oo||Zos1 — Z/5H2V2l75(25) (Proposition B.4)
T
< 3\/52;&}}5(@ (Wit — W*)||Zsg1 — ZQHQVQZS(ES)
< 3\/§O‘HZ8+1 - Z;H2vzzs(zs)
= 3vV2a|wai1 — W32, () (Definition of £)
< 3V2a|weyr — w3, (C.9)
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where the last inequality holds because

V2Uo(We) = D ps(ilSe, Wo)zainl; — D1 > pa(ilSe, Wa)ps(i] S, Wo)zsiw
i€Ss i1€Ss JES
-
= > ps(ilSs, Wo)siwl; — lZ ps(ilSs, Ws) x31‘| lz ps(i |Ssaws)x31]
€S €S €S
< 2 ps(i]Ss, W)z giw ), < Iy (|zsi]l2 < 1, Assumption 3.1)
i€Ss

Hence, by plugging (C.8) and (C.9) into (C.7), and summing over s € T¢;1, we obtain

Dlwap) = D) Lo(w

s€Ti41 s€Ti41
1
<3v2a Y Iwe —wild+ oo Y (Iwe = Wil = Iwer — W'l — Iwe — Wil )
s€Tt41 s€Te41
\/7 /12 1 *|2 *|2 /12
= 3V 2« 2 [Wey1 — wilz + B Wi, —w HHt1 — Wit —w HHt+1 - 2 [wst1 —wilz, |
s€Te+1 N s€Ti41

where in the equality, ¢; € 7 represents the first update round. Additionally, we use the fact that the parameter wy, and
the matrices H; and H; remain unchanged during non-update rounds. By rearranging the terms and using the fact that
[wi, — w3, < Alwe, — w3 < 4B, we get

[wer = w7,

<2 Z ls(W") — Z ls(Wsi1) +4B%*) — Z ”WS-&-I_W;H?{S""(S\/Z?O‘ Z HWS-FI_W;H%

s€Ti41 s€Ti41 s€Ti41 s€Ti41

N 1
< 2n Z KS(W)_ Z ls(Wsi1) +4BQ)‘_§ Z HWS-H_W;H%IN

s€Ti41 s€Ti41 s€Ti41
. - ~ 12 < 1 12
where the last inequality holds because, by setting A > 12v/2na, we have 6v/2nal w1 — wi|j3 < 3|wepr —wi|3, . O

C.2.2. PROOF OF LEMMA C.2

Proof of Lemma C.2. Recall the definition of Z, in Equation (C.3). For any j € S, and ws ~ P, we denote Z,; = x;rjvifs
and z,; = x;rjvv'g Since the support of P, is bounded by the region {|w — w/, |z, < 2~}, for any j € S, we have

- - 1 -
s — 25| = |23;(% = W) < Jasjl o1 [W = Wi, < ﬁ\lxsj\lz\lw —wiln,
3 -
<57 A= 1Lzl < L [W = wiln, < 3

Hence, we get

T &) exp (2o — 37)  exXp (25 + 57) .
[0’3 ((-rsjws)jess)]j € [1 T+ exp (Zé n % ), 1+ exp (Zsj = %7) , VjeSs and

— 1 1
[0'5 ((ijWS)JESS)]O € ll +exp (ZS]' i %7) 5 I exp (Zsj — S’y)] .
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Let gy; = [o‘s ((zljvvs)jess)]j and g50 = [a‘s ((:USijVs)jeSS)]o. Then, we have
3 3 3 3 .
loggsi € |zs5 — i'y —log (1 +exp | zs; + 57 ,Zsj + 57 —log (1 +exp | zs — 57 , VjeSs and

3 3
log gs0 € [—log (1 +exp (Zsj + 27)) ,—log (1 + exp (Zsj - 27))] .

Using the definition of the pseudo-inverse function, given by [o} (qs)]; = log (¢s;/(1 — |as|1)) = log ¢s; — log gso, for
any j € S5, we obtain

- 3 3
zgj = ol (as)]; € [Zsj — 3%t 27] ;

which implies that

- 3
125 = 250 < 57 (C.10)
Now, we are ready to prove the lemma. Let z} = (x;rjw*)je s, € REs,
PIACHEED N ACHEED S ACW E S AN (Definition of 7)
s€Ti41 s€Ti41 s€Tt41 s€Tt41
- 1
< D Vl(2), 2 — 2y — ———— O |Zh — 2]y ey (LemmaCl5)
2Xs\dg ), Lg s s s 20 (2zY)
T 2 + 3v2a =
1
= D> {ou(2) ~yazt =) - ——— > 2}~ ZlRe(ar) (C.11)
seTin 2 + 3v2a T ;

where last equality holds by directly calculating the first-order derivative and the Hessian of the logistic loss, as shown
below:

VZZS(Z;) =0s(25) — ¥s, V§ES(Z;) = diag(os(z})) — US(Zg)US(Z;)T = Vo(zy).

To bound the first term of Equation (C.11), we begin by defining d as follows:

1 3

d, := 5(z; —Zs), where © = max {a +2v2n + 57,2 + 3\/§a} .
We then extend d ¢ with zero padding to create d’; € RX i.e.,d’, = [d/,0,...,0]T, where zeros are appended to increase the
dimension of d;; to K. Similarly, we extend o(z%) — ys with zero padding and define 5 = [(05(2}) —ys)T,0,...,0]" €
RE.
It is straightforward to verify that |d’, |, < 1 because

/ 1 * fad 1 * ~

[dalleo = F 25 = Zslloo < 5 (125 = Zs4illoo + 2541 = Zs oo + 125 — Zs]c)

1 3
<= 220+ =) <1,
®<a+ xfn+27)

where the second-to-last inequality holds because

|zt — zg11]0 = max |z, (W —w,1)] = max |zl (w* —w)| <a. (Ws41 € Wy, Definition of «)
i€Ss 1€Ss,WEWq
12541 = Zolloo < max s g2 [Wosr = Wil < [Wosr = Willa, (Jzsila <1, A= 1)
< 277HV55(W2)HH;1 =2 Z (ps(iISs,W’s) - ysi) Tsi (Lemma C.6)
i€Ss H;l
<2V, (il o1 <D
- 3
|25 — 250 < 57 (Eq. (C.10))
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Note that d/ is Fs-measurable since z; and z, are independent of y,. Furthermore, we have Hd’gH]QE[ coeT|F] =
Ids H]%[(.O'.s(Z:)*y.s)(o's(z;)fys)ﬂfs] = HdsHQVGS(z;) and |os(z}) — ys|1 < 2. Therefore, by applying Lemma C.7, with
probability at least 1 — §, for any ¢t € T, we get

Z (o5(2) —ys,25 —Zs) =D Z (o5(2;) —¥s,ds)

s€Tit1 s€Tt+1

=9 Z <€Svd.ls>

s€Tt+1

_ 1
\/X 4 2\/1 + §25€ﬂ+1 HdSH2Vas(z;)

<D A+ Z ||dsH2vo o | —— + —=log
\/ S€72+1 S( 5) 4 \/X 6
. A 4 21 + 2t
<2, i+ X ||ds%as<z*)-({+~1og(vé+ )) c1)
s€Tt41 ° \/X

where A > 1. The last inequality holds because HdS“chs(z*) =d/Vo,(z:)d, < 2. Then, plugging (C.12) into (C.11)
and (C.12), we have '

Z KS(W*)— Z ES(ZS)

s€Tt+1 s€Tt+1

<D A+ ) IR, )

s€Ti41

VA4 21+ 21 1 .
+ = 1Og - E HZS - ZSHVG'S(Z*)
4 \/X 0 2 + 3v/2a T s

- Vi o4 oW1+ 2t D2
=D A+ [CHE ( +—=log ( )) - [ -
\/ SE;-H (=2) 4 \A g 2+3\/§a82 )

€Ti+1

(g0

<D A+ D) dslRg, o) |+ D | = + —=log
s€Tt+1 7 4 \/X 0
@2
- d,|? . AM-GM inequalit
2+ Sﬁa se;Jrl H HVO'S(ZS) ( q y)
2
17~ 24/1 4+ 2t 16 24/1 4 2t
<@<16)\+210g<5+>+5\(10g<5+>) ), ® =2+ 31/20)

where in the last inequality, we set v > % (2 + (3v2 — 1)c). Finally, by setting A= \}—% log (27v15+2t >, we derive

Sty = Y G(a) < (V17 +2) - Dlog (2”1;%)

s€Tt41 s€Tt41

)

24/1 42
<11-(2+3vV2a + 22 + g’y) log ((;_t>

which concludes the proof. O

C.2.3. PROOF OF LEMMA C.3

Proof of Lemma C.3. The proof builds on an observation from Proposition 2 in Foster et al. (2018), which states that z; is
an aggregation forecaster for the logistic function. Recall that P; is defined as P = TNHw—w' I, <3~ (W;, cH ;1), where

H, := H, + A\I; with X\ > 0. Then, for any s € T¢y1, the following holds:

_ 1
ls(z5) < —log (EWNPS [e_Z’(W)D = —log —f e LsWdw |, (C.13)
Zs Jjw—wi |, <2~
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20 ”W w

where L(w) := £,(w) + & |w — w’|% and Z, e Vo, dw.

T SHW—W’S lms <3~

We define the the quadratic approximation of L4(w) as follows:
- 1 )
Lo(w) := Ls(Wss1) + (VLs(Ws11), W = Wor1) + - [W = wasa [,

Then, by Lemma C.8 and considering the fact that £, is 3+/2-self-concordant-like function by Proposition B.3, we get

LS(W) < LS(W) + 618“W—W3+1H§HW — WS+1H2V2ZS(WS+1). (C]4)

We define €, > 1 as a sufficiently large constant such that

1 2 : 2
J e~ WIE, qw < f e~ 2 Wl dw, (C.15)
wlm, <3

Iwlm, <5y
Such a €, always exists because, as €, increases, the Gaussian becomes narrower, which produces a larger integral value
within the smaller region. Then, we define the function fs11 : W — R as

- ¢ _ 2
fs+1(w) = exp (—22“’ - Ws+1”?§r5 —e!8v Ws+1”2||w - Ws+12v2€s(ws+1)> :

Note that f,,1 (W) < exp (—Q%HW - ws+1H%{S — et8IW—werilz |y — Ws+1“2v2gs(ws+l)). We can then derive a lower
bound for the expectation in Equation (C.13) as follows:

Ewr, [o™] = — j exp(— Ly (w))dw
[w—wilms<5v
J exp(—Lo(w) — o18Iw—w, 13 lw — Ws+1H2ws(w5+1))dW (Eqn. (C.14))
—wi <8y
. o= Z(wm))f For1(W) - exp(—(VLy(Wsi1),Ww — Wyy1d)dw  (Definition of fs 1 (w))
s Iw—w |, <3~
_Ls S ry
o eXP(=Ls(Wss1)) J For1 (W) - exp(—(VLo(Was1), W — Way1))dw
Zs IwW—weit . <3y

where the last inequality holds because, by setting v > 2+/27), for any w € R? satisfying |[W — w11 ] m, < 37, it follows
that w € {w e R?: |[w — w/ |z, < 2~}. To verify this, we compute

. 1
e, <|W =woilam, + IWep1 = wilm, < 57+ [Wer1 — Willm,

2
1
< 57+ 20Vl (W) | (Lemma C.6)
1 . /
= 57 + 2n Z (ps(Z|Ss»Ws) - ysi) Tsi
€Sy Hs_l
1
st 2v/2n (lzsill - < 1)
3
<357 (sety = 2v/2n)

Moreover, we define Zerl SHW Wasrllm, <ty fs+1(w)dw < +00, and denote the distribution whose density function is
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fg+1(W)/ZS+1 as 153+1. Then, we have

exp(—Lgs(wg s
Ew~Ps I:e—fs(w)] > p( (Zé-'rl)) +1 EWNISS+1 [eXp(—<VLS(Ws+1),W _WS+1>)]
—Ly(Wey1))Zs . .
> exp( (2’ +1))Zs 11 exp ( — Ew~155+1 [(VLg(Wsy1),w — ws+1>]) (Jensen’s inequality)
=0

C.16
7 : (€.16)
where the equality holds because ]53+1 is symmetric around w1 ;. Plugging (C.16) into (C.13), we get
- 1 -
e(zsaYS) < es(Werl) + ?CHW/S - Ws+1“§q5 +log Z, — log Zs+1~

We can further bound the term — log Z s+1 as follows:

7 ¢ 2 18| w— 2 2
—log Zs41 = —log f exp (_st — Wil —e Iw=worilz )| w — Wir1llv2g, (w, ) | AW
[w—wos1llir, <3 c
> 18|l w—we 12 2
= —log (ZS+1 By p., [exp <—e Iw=werilz |y — Ws+1‘|v2z§(w§+1)>])
> 18|w—wsi1|2 2 e .

< —log Zsi1 + Ew~155+1 [e [w w.+1Hsz - Ws+1|‘v2zs(ws+1)] , (Jensen’s inequality)

where in the second equality, we define P, := TNHWst+1HH5<%'Y (Wss1,¢(€Hy)™!) as a truncated multivariate

normal distribution with mean w1 and covariance c(€,H,)~", truncated to the region {|w — w1 |z, < 37}, and let

A~

7 o —&lw-w,i1]% dw. H
op1 i= Swaws-%—lHHqsé')’e 3 sdw. Hence, we get

N 1 Z, _ 2
UzZs,ys) < ls(Wsi1) + %HW; - WS+1H%[5 +log =—— + EWNﬁS“ [618““’ WSHHQHW - WS+1H2V2€S(W5+1)] (C.17)
s+1
To bound 2Z =~ in Equation (C.17), we have
s+1
- lw—wi|%
Zy Sw-wili <3+ ¢ Hedw
= = s — 2
ZSJFI SHW—WS-FlnH <37 o ws+lHHS dw
— w2
Sl <0 € e dw .
= - — (change of variable)
—sslwlg
Siwia, <3 @ “dw
<1 (Definition of €, Eqn. (C.15))

which indicates that

log = < 0. (C.18)
Zs+1

Now, we bound the last term in Equation (C.17). Using the Cauchy-Schwarz inequality, we have

_ 2
Ew~133+1 [818\|w W13 [w — W5+1H2v2€s(ws+1)]
< \/E%ﬁs“ (30l w1 ] \/Ewwﬁm [Hw - ws+1u4v%(w8+1)] . (C.19)
-1 (b)-2
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By Lemma C.9, we know that the expectations in both terms (b) -1 and (b) -2 are non-decreasing as the support bound ~y
increases. Consequently, as v — 0, each term can be bounded by the expectation with respect to the untruncated normal
distribution. We define the untruncated normal distribution as Py := N (Wsy1,¢(€sH,)™"). Then, there exist orthogonal
bases e1, ..., e4 € R% such that w — w1 follows the same distribution as PS+1, expressed as:

d
Safer; ((€H,) 1) X e;,  where X; <" N(0,1),¥j € [d], (C.20)
j=1

and \; ((€,H,)™") denotes the j-th largest eigenvalue of (€, H,) ™. Now, we bound the term (b)-1 in (C.19) as follows:

VEaer,, [P B] < 4B, [e0lw—werl3] (Lemma C.9)

_ lﬁ 36cX; ((C.Hy) )Xf]

d

< \ [[Ex, [636/”;"] (eXj ((€.H) ™) < c/(€N) < 1/, set € = ¢)
j=1

= (EX~X2 [636/;\)(])% <Ex.y2 [elgd/;\x] ; (Jensen’s inequality)

where y? represents the chi-square distribution. By setting X\ > 72d, we get

\/IEWNA [eP0lw—w i8] < Ex-a [eﬂ <2, (C21)

Psiq

where the last inequality holds because the moment-generating function of the y2-distribution satisfies | X~y? [etX] <

1/v/1—2tforallt < 1/2.

To bound the term (b)-2 in (C.19), let M, = (V2ls(wqy1)) V2 H (V2 s(Wey1))~V/? and Mo =) (c(€sM;)~1) be the
j-th largest eigenvalue of the matrix ¢(€,M,)~. Then, we have

VBt 19 = el ] < A B [~ Wil (Lemma C.9)

= \/EW~N(O,C(GSH5)1) [HWH%zzS(WS“)]

= B ey (Wl

Furthermore, by performing an analysis similar to that in Equation (C.20), we obtain

d 4
2 A/ )\_/ijej
j=1 2

- if_} XX Ex, o) | X2X2

\/EW~N(0,C(QSMS)71) (wl3] = |Ex;~a0.1)

Ex, N (0,1) (2 A’X?)

d d
<3 2 2 Xj A (EXJ-,XJ./~N(0,1)[XJ2X]2/] <3V, 5" €[d])
j=1j'=1
V3e N
=& (47 (X = Tr (e(€,M,) 1)
<V3Tr (Ms_l) ) (set €, = ¢)
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where in the last inequality, we set €, > c. Here, Tr(A) denotes the trace of the matrix A.

Define the matrix Q441 := %Id + 25,67—8“ V24 (W y1). By setting A > 2, we can ensure that V2/,(w, 1) < Iy < %Id.

As aresult, we have Qs+1 < (A + S\)Id + 25,67—5 Vzﬁs/(wslﬂ) = H,. Using this relationship, we can bound the trace as
follows:

Tr (M. 1) = Tr (H;'V2H(wai)) < Tr(Qu) V2(Wai1))

- Tr (Q;}l (Qs11 — Qs)) <log (ﬁte(t?gr)l)’

where in the last inequality, we apply Lemma 4.5 of Hazan et al. (2016). Hence, we get

det(Qerl)
\/Ew~135+1 [Hw - WS+1H4V2ZS(WS+1)] < V3log 7det(Qs) . (C22)

By substituting (C.21) and (C.22) into (C.19), combining the result with (C.17) and (C.18), and summing over s € T; 11, we
obtain

7 1 det(Qerl)
Z E(Z&ys) - Z és(Werl) < — Z HW; - WS+1H% + \/6 Z log —_—
367;4.1 SG77,+1 2C 567;_'_1 ) 567;,4_1 det(Q?)
1 det
=5 D Iwh = w3, + V6log det(@eir)
¢ s€Ti41 det (%Id>
1 t+1 _
< % 2 |w’, — wwl”%s + V6d log (1 + 4> . A=2)
s€Ti41
This concludes the proof. O

C.3. Technical Lemmas for Theorem 4.2

Lemma C.4 (Proposition 4.1 of Campolongo & Orabona 2020). Let the w1 be the solution of the update rule

Wi, = arg gel{;l el (W) + Dy (W, Wy),

where V € W < R% is a non-empty convex set and Dy (w1, w2) = 1(w1) —1(wa) —(Vth(W2), W1 — W2 ) is the Bregman
Divergence w.r.t. a strictly convex and continuously differentiable function v : W — R. Further supposing ¥(w) is
1-strongly convex w.r.t. a certain norm || - | in W, then there exists a g} € 00;(W¢11) such that

<77tg;7wt+1 - u> < <Vw(wt) — Vp(Wig1), Wig1 — U—>

foranyueW.

Lemma C.5. For any t € [T] and w,w' € R? such that max;cs, |z);,(w — w')| < «, the multinomial logistic loss
l, : R4 — R, defined in (1), satisfies the following property:

(W) = b(W') + V(W) T (w —w) (w—w) V20 (W) (w —w).

1
_’_7
2+ 3v2a

Proof of Lemma C.5. Recall that by definition (see Equation (A.1)), the loss £;(w) can be rewritten as l4(z4), where
z; = (x);W)ics, € RI%!I. Similarly, ¢;(w') = £;(z}). Then, by a second order Taylor expansion, we have

Zt(zt) = Et(zlt) + VZt(Z;)T (Zt — Z/t) + (Zt — Z/t)T (
) 1
2+ 3v2||zs — 2] oo

fl(l — 8)V2Ui(2 + s(z — ZQ))d5> (z¢ — 2t)

0

> U(z)) + Vi(z) " (z¢ —z)) (z¢ — z;)T V2l (2y) (2 — 2y) (C.23)
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where the inequality holds by Proposition B.6. Moreover, by definition, we know that
Vi(z))" (z¢ — 2z;) = V(W) (w — W),
and (z; — z;)—r V20 (zy) (2 — 2y) = (W — W) T V20 (W) (w — w).
Hence, we can rewrite Equation (C.23) equivalently as follows:

1
2 + 3v/2 maxcs, |z (w — w')|

(W) = (W) + V(W) T (w — W) + (w—w') V2, (W) (w —w)

> 0 (W) + Vi (W) T (w —w') (w —w') V2 (W) (w — w'),

1
_l’_ -
2 +3v2a
which concludes the proof. O

Lemma C.6 (Lemma F.9 of Lee & Oh 2024). For any set W, let w1 = argming (V0 (W), w) + ﬁHW - Wt“%t’
where w; € W. Then, we have

4n
T
Lemma C.7 (Lemma 15 of Zhang & Sugiyama 2024). Let {F;}>, be a filtration. Let {z:}{° | be a stochastic process
in Bo(K) = {z € RE | ||z|on < 1} such that z; is F; measurable. Let {€;} | be a martingale difference sequence such

that €; € R¥ is F; | measurable. Furthermore, assume that, conditional on F;, we have ||e;|1 < 2 almost surely. Let
Y, = E[eig/ | Fi]- and X > 0. Then, for any t > 1 define

2
W1 = Wil < 29[ V(W) -1 < 777||V€t(wt)\|2 <

t—1 t—1
U= Y lewzsy and Hy=X+ ) |z%,,
s=1 s=1

Then, for any 6 € (0, 1], we have

Pr[ﬂt}l,Ut>\/E<\f+\%log (ﬁ) +\;1X10g<§)>1 < 4.

Lemma C.8 (Lemma 18 of Zhang & Sugiyama 2024). For any H, > 0, let Ly(w) = {,;(w) + 5| w — wi||%,. Assume
that Uy is a M -self-concordant-like function. Then, for any w, w; € W, the quadratic approximation it(w) = Li(wiy1) +
(VL{(Wi41), W — Wes1) + o |[W — wep1 |3, satisfies

- 2 2
Li(w) < Li(w) 1M HW_WHIMHW_WtJrlHQVZt(wt_,_l)'

Lemma C.9. Let X ~ N(u, X) be a d-dimensional Gaussian random vector with mean ji € R% and covariance matrix ¥.
For C > 0, define the truncated version X ¢ by restricting X to the ellipsoid {|x — pl|pr < C}, where M > 0. Concretely,

Xc has density po(x) = pxw)l{”x_“‘w?i}, where px is the original Gaussian density. Let f : R* — R be any function

Jo-nia<o PX (2
that is non-decreasing in the | - | ar sense—that is, if |z — plapr < |y — pl|as, then f(x) < f(y). Then, forany C' = C > 0
we have

E[f(Xo)] < E[f(Xcr)]-

Proof of Lemma C.9. Let A := {|z — pu|ps < C}, and B := {|z — p|as < C'}, with C < C’. Obviously, A < B.
Moreover, for simplicity, we define the following quantities:

&:f px(z)dz, Sa = f f@)px (2)dz, Ty = j px(@)de, Th= | fl@px(@)de.
4 A B\A B\A
Then, we have
So Sy + Ty
E[f(Xc)] = ¢ EUf(Xe)] = ot
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Therefore, it suffices to show

7, _ s,
T 5
To show this,
flx x px (x)dx
T SB\A px (z)dz _— SB\A x () _ f(4), and
T SB\A pX( )z P ()
Sy §, f(@)px (2)dx § 4 px(x)dx
_ Ja JIPXLICE ) dAPXTICT gy
5 SAPX e I )SApx(a?)dx f(4)
Hence, & 7= f(4)= 52 , which concludes the proof. O
D. Proof of Theorem 4.5

In this section, we present the proof of Theorem 4.5. To begin, we define a set of adaptive warm-up rounds as follows:
Tw .= {t €[T]: max ”‘T”%HZ“)’I > 1/7}2} , (D.1)

where we define the threshold 7; as:

7y 1= 6v/2G,(5) (B\/dlog t/0) +B2)

Moreover, we define the following two confidence sets for all ¢ € [T']:

Wi (0) = {w e R? | |w — Wiz < G(6)}, and

Ci(0) = {weR | |w—wi|u, <B(6)}, (D.2)
where
¢ (9) := \/22 . (2 +3vV2a + 5\@7]) nlog (215+2t> + 2+/6ndlog <1 + T) 48+/2na B2
— O (B/dlog(t/0) + B?) . (seta = 2B,n = L + 32B)
and

Be(0) = \/22- (2+3\/§0¢+5\/§n) nlog <2\/T> +2\/677(“0@; (1 N T) 4B
:O(\/W-FB). (seta:ﬁ,nzl)

Then, the true parameter w* lies within both confidence sets with high probability.

Corollary D.1 (Confidence set for adaptive warm-up). Let 6 € (0,1]. We set n = (1 + 3v/2B)/2 and \* =
max{12+/2Bn, 2}. Then, we have

Pr[Vt = 1, w* e W"(§)] =1 —6.

The proof can be found in Appendix D.2.1.
Corollary D.2 (Restatement of Corollary 4.4, Confidence set for planning & learning). Let d € (0,1]. We setn =1, A =4,
and 7, = 6+/2¢(6) (B«/dlog t/0) + BQ) Then, if w* € W} (0) for all t = 1, we have

Pr{Vi=1,w*e€C(d)] =1-04.
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The proof is provided in Appendix D.2.2.

Furthermore, we introduce several useful lemmas. Lemma D.3 shows that UCBy; provides an optimistic estimate of the true
utility.

Lemma D.3 (Lemma E.1 of Lee & Oh 2024). Let UCB;; = z]w; + /Bt(é)HfEtiHHt—l. Assume that w* € Ci(9), where
Ci(d) :={weW||w;—wW|u, <B(6)} Then, we have

0 < UCBy; — x;zw* < 25t(6)”mtiHHt_l'

Lemma D.4 shows that R, (S;), defined in (8), is an upper bound of the true expected revenue of the optimal assortment,
R (S, w™).

. ~ s exp(UCBi ) T4;
Lemma D.4~(Opt1m1sm, Lemma 4 of Oh & Iyengar 2021). Let R:(S) = %. And suppose S; =
argmaxgeg Re(9). Iffor every item i € Sf, UCBy; > x;w*, then for all t > 1, the following inequalities hold:

Ry(S;,w") < Ri(S}) < Ri(Sh).

It is important to note that Lemma D.4 does not assert that the expected revenue is a monotonic function in general. Rather,
it specifically states that the expected revenue associated with the “optimal” assortment increases as the MNL parameters
increase (Agrawal et al., 2019; Oh & Iyengar, 2021; Lee & Oh, 2024).

Lemma D.5 shows that Rt(St) increases as the utility values of the items in S} further grow.

Lemma D.5 (Overly optimism, Lemma H.2 of Lee & Oh 2024). We define R;(S) := % and Sy =
_ jES tj

argmaxgeg R¢(S). Assume UCBy; = UCBy; > 0 for all i € [N]. Then, we have

Yics, eXP(UCB;)re;
1+ cs, exp(UCB;)

Ri(S)) <

Moreover, we demonstrate that the rewards for the chosen assortment, r; for all ¢ € Sy satisfy the condition R (S, w*).

Lemma D.6. For all round t € [T'], we have

ry; = Ry(Se, w*), VieS;.

The proof is provided in Appendix D.2.3.

We introduce an elliptical potential lemma that will be used in our proof.
Lemma D.7 (Elliptical potential lemma). Define Hy(w) := Aa + > c(p_1j\7w V2ls(w). If stiH?{,(w)—l < 1 forall
i€ Ssand s e [t\\T", then we have

. 2 t
Z - Z pS(Z|SS,W) Hxsz - IEj««ps(-|Ss,w) [xsj]H(Hs(w))—l < leog <1 + d)\) .
se[t\Tv ieSsu{0}

The proof is deferred to Appendix D.2.4.

Lemma D.8 shows that H; and H;(w™*) remain similar when updated only for ¢ ¢ 7*.
Lemma D.8. Let H, = \I; + Zse[t—l]\T’w V2ly(Wsy1) and Hy(w*) = %Id + Zse[t—l]\T’w V2ls(W*). Then, we have

1
—Hy(w*) < Hy < eHy(w?").
e

The proof is provided in Appendix D.2.5.

Additionally, we present a useful lemma that will be employed to bound the second-order term of the regret.
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Lemma D.9 (Lemma E.3 of Lee & Oh 2024). Define Q : RX — R, such that for any u = (uq,...,ux) € RE,
Qu) =YK o) rop(u) = — S Then foralli € [K], we have

i=1 1+ZkK:1 exp(ur) 1+ZkK:1 exp(uk)

52@ 3pi(u) ifi=j,
Pz&g 2p;(w)p;(a) if i #j.

The size of the set 7™ is bounded as described in the following lemma:
Lemma D.10. The size of the set T, defined in Equation (D.1), is bounded as follows:

2, T
w <7 -
[T K;Tleog (1+d/\)

The proof is deferred to Appendix D.2.6.

We are now ready to provide the proof of Theorem 4.5.

D.1. Main Proof of Theorem 4.5
Proof of Theorem 4.5. Throughout the proof of the theorem, assume the following event holds:

vt=1,weWr ()} U {¥t=1,w" eC(d)}, (D.3)
which occurs with a probability of at least 1 — 2§ by Corollary D.1 and D.2.

From the definition of 7" (see Equation (D.1)), we decompose the regret as follows:

RegT Z Rt S:, * Rt(St,W*)

= Z Ry(S;,w*) = Ri(Se,w*) + > Ry(S;,w*) = Ry (S, w*)
teTw teTw

<ITY|+ D) Re(S;,w*) — Re(Sp, w*) (R:(S7,w*) — Ry(S;,w*) < 1)

tgTw

2 2 T * * *

< *TTdIOg 1+ a + Z Rt(St,W )—Rt(St,w ), (D4)
K tgTw

where the last inequality holds by Lemma D.10. Next, we concentrate on deriving a bound for the last term. We define
UCBy; as UCBy; := z/,w* + 23,(9)||z4; HH—l. Under the event in Equation (D.3), by Lemma D.3, we have

UCBtz l't,LW + 2515( )Hl’n”Hf—l =: UCBM

Then, we define the overly optimistic expected revenue, R, (S;), as

ZZES, exp(UCBtz){rtz
L+ Dles, exp(UCBy;)

Ri(Sy) =

Using this definition and applying the optimism lemmas, we can derive an upper bound for the regret as follows:

Z Rt(S;,W*) Rt St, Z Rt St Rt St, ) (Lemma D4)
tET T
< Z fit(St) — Ry (S¢,w™). (Lemma D.5)
t¢7’w
Now, we define a function Q : RIS¢l — R, such that for all u = (u, ... ,u‘st|)T e RIS, Q(u) = ZLStl %.
exp(u;
Here, we denote S; = {i1,...,1%|g,|} for simplicity. Additionally, let u; = (us, , . .. Uty s, )T = (UCBy,, .. UCBn‘SH)
and uy = (uf;,, .. .u}fi‘sﬂ)—r = (zf;,w*, ... ,ac;‘st‘w*)—r.
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Then, by a second order Taylor expansion, we derive

S Ri(S) — Re(Sew™) = D] Quy) — Q(u})

tETw tgTw
* 1 2
= > VQu)'( w)+ 5 D7 (w =) 'VEQ(1y) (wy — uf) (D.5)
tgTw tgTw
L I
where u; = (G, - . - s Uiy, )T e RIS is the convex combination of u; and u;.
First, we bound the term ;.
VR (wy —uy)
tgTw
€xXp mt’L )rtz * eXp(xtT]W*)th ZlESt exp(ac;w*) *
"2 2 TS, el M T T 4 TS ey
tET ies, kes, P s JESe kes, ©XP W
= > > pe(ilSe, W) rri(urs — udy) = > > pelilSe, W) reipe (3] S, W) (ugy — uj;)
t¢Tw €Sy €St jESt
Z Z pe(i|Se, w*)re; ( Ut — uy;) Z pe(J|Se, w*) (ue; — UZ]))
t¢Tw ieS, j€St
= > 28:(0) Y. pelilSe, W) (mH v = Y (1S w ”M;)
t¢Tw €St JESL
>0
<28r(6) > D, pelilSe, w)rsi (Itz”H L= pe(lSe w )”xtj”Ht1> ) (B¢(6) is non-decreasing)
t¢Tw 1€St JES:

where in the last inequality, we use the fact that 5,(0) is non-decreasing and that the following holds:

3 it wyra (bl = 3 mulSw el

€St JESt

Z pe(i|Se, w meHH—l <7“n Z Pe(J1Se, Ww*)re; ) = 0. (Lemma D.6)

€St JESt

=R¢(St,w*)
Let 249 = 0 and 4o = 0. For simplicity, we denote E}Y [z4;] = E;p,, (|5, .w)[®ti], and B} [r4;] = E; L, (|5, w) [7:]. Here,

E} represents the expectation taken with respect to the distribution p(+|S¢, w). Note that EYY [ry;] = R;(S;, w). Then, we
can rewrite the above inequality in the following form:

3 VO (- )

t¢7’w
<26r(5) Y (EZV* [mHmllH;l] B [m] [H%HH D (240 = 0. 740 = 0)
t¢7’w
= 200(0) 3 B | (i~ 8 Tl (Lowls = 57" [Joull] )| 0
tgT

Covariance between r¢; and ||z ¢ || ,—1 given S¢
t

By Lemma D.6, we know that ry; = R,(S;, w*) = E [r;] for all i € S,. Therefore, we can bound the term inside the
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expectation in (D.6) as follows:

(7 =B o] ) (Jeilg =B [lasla |) < (e =B Ir)) (Jousl s = 1B (2] 1)
>0 by Lemma D.6

(Jensen’s inequality)

< (Tti — ]E:"* [rtj]> ‘xn- — E;’V* [xtj]HHgl , (D.7)

where the last inequality holds due to the fact that ||a]| = ||la — b + b| < |a — b|| + |b]| for any vectors a,b € R
Plugging (D.7) into (D.6), we obtain

2, VQu) (ur —uy)

tgTw

<207(0) 3 B |~ B T fow B2 ]|

T

< 267(9) Z EM [ (ry —EM [rtj])Q] Z EM [ |2y — EX [actj]H?{;l (Cauchy-Schwartz inequality)

tET W tgTw
:V}"’* [rei]=:02
2
=260(0), | >, 07, [ X1 X3 mililSew) e — B[] (D.3)
tgTw t¢gT v ieSyu{0}
where in the last equality, we define the variance of the rewards under w*, given S;, as 07 := V;"’* [re:]

EX [(m —E¥ [th])Q:I. We define H;(w*) = 214 + X ;137w Vs (W*). Using this definition, we further bound
the right-hand side of Equation (D.8) as follows:
2

Z Z pe(ilSew Hx“ B [Iw‘ Z 2 (| Sy, w )Hzm EY [xtj]“Ht(w*)—l

tgT v €S u{0} tgT v ieSu{0}

(Lemma D.8)
2

<e ) N wlilsew)fee - m ],

t¢T™ ieS, u{0}

< 2edlog <1 + df) (Lemma D.7)

where when applying the elliptical potential lemma (Lemma D.7), we verify the condition ||z ;2 Hy(we)-1 S 3 forallie S,
and t ¢ T as follows:
e 1

||:Em-H§{t(w -1 S eHanH 1 < IThDE (LemmaD.8,t ¢ T*)

Therefore, we can bound the term I; in Equation (D.5) as follows:
T , T
Z o2y [2edlog [ 1+ — ). (D.9)
= dA

>, VQu) (ur —uy) < 257(5)

t¢7’w
Now, we bound the term I, in (D.5). We define a function Q : RI®t| — R, such that for all u = (u1,...,u5,)) € RISt
[St| i) Q| o
Qu) =71 % Then, it is clear that ‘— < | 5755 | since ry; € [0, 1]. Hence, we get

z Z —u})"'V2Q(a,)(u;, — u}) < Z Z Z Ui — Uy;) ag( —ug;)

tﬁéTw t¢T“’ €St jESY
T
1 82Q
5 D0 s — | luej — ugjl- (r; € [0,1])
t=14eS; jeSt J
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Furthermore, we denote p;(u;) = % Then, we have
rt1 exp(a

62Q

ut; — “;g|

|ut] utjl +35 Z Z |utl utz

t 14€S;

é’&

**ZZ 2l =il

t=14eSy jESt,j#1

T
ZZ Z lu; — Utz\pv(uf)pg(ufﬂuu Ut3|+ ZZ U — Uy;) p7 (uy) (Lemma D.9)

1ieS; jeS,j#i t 1ieS;

i€St jES: t 1 zeSt

1 . .
5 Z Z Z wgi — ul;)?pi(0y)p; (W) Z 2 Ugj — ug;) pi(0g)pj () (AM-GM inequality)
14eS: jeSt zeSt JESE

Therefore, we can bound the term I5 in Equation (D.5) as follows:

2 (e — ug;)*pi(ae)

€S}

5 Z ) VEQ (1) (uy —uf) < g

t¢T‘“

Z e o (definitions of u; and u})
i€S;

5 |IMH LMH

<10 ) max 5,(6)* w7, -

t=1

< 108r(0 Z max meHH 1
20 ) T

<= — .
—Br(9) dlog (1 + dA) (D.10)

Finally, by substituting (D.9) and (D.10) into (D.4), and setting A = 4, v, = O (B«/dlog(t/é) + BQ), and Sr(8) =

O («/dlog(t/é) + B), we obtain

T

eT 20 T
522d11——62d11—
tlat\/e og( +d/\)+IQ6T() og( +d/\)

2 T
Reg (w*) < ET%dlog <1 + d)\) + 287(9)

T
1 |
_0 (dlogT + By/dlog T) Y 0F + —Bd* (log T)* + B'dlog T

t=1

By setting 6 < §/2, we complete the proof of Theorem 4.5.
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D.2. Proofs of Corollaries and Lemmas for Theorem 4.5
D.2.1. PROOF OF COROLLARY D.1

Proof of Corollary D.1. Tn Theorem 4.2, we consider the case where W, = W = {w € R? | |w]y < B} forall ¢ > 1 and
the Hessian matrix is H;".

Condition: supy.eyy, |2f;(w —w*)| < aforallie S, = a=2B.

We set o« = 2, as shown below:

sup [af; (W —w*)| = sup |z/;(w — w*)| < sup |yfo|w — w2 < 2B.
weW, wew wew

Substituting v = 2B (which gives = 3 + 3v/2B) into Theorem 4.2, while setting A\ = 12+/2na, for t € T, we obtain

[w* = wi' iz < G(6) = O (B/dlog(t/0) + B?) .

For t ¢ T, the confidence set W}“(9), along with w}’ and H}", remains unchanged. Thus, the proof is complete. O

D.2.2. PROOF OF COROLLARY D.2

Proof of Corollary D.2. As with Corollary D.1, we prove this using Theorem 4.2. Let W; = W}”(§) and let the Hessian
matrix be H;.

Condition: supg.eyy, |t;(w —w*)| < aforallie §; = o= ﬁ

We set o = ﬁ, as shown below:
sup [afi(w—w) = sup [o(w —w")
weW, weW (6)
< max || (£ry-1 (wg/l\%“)’((é) [w —wi| e + Wi — W*H;u> (Holder’s inequality)
1 w w * w
< (Wg@% Iw —wy' [ + Wy —w |H;~> t¢TY)
1
< — 0) + |[w¥ —w*| gw Definitions of 7 and WX (§
sz (G v = wl) ( and W (5)
)
< ﬂ (Corollary D.1)
3v/2¢(6)
_ 1
3v2

Plugging o = ﬁ (which implies n = % + 342 = 1) into Theorem 4.2, while setting \ = 47, for t ¢ T, we derive

[w* = wl, < 5:(6) = O (v/dlog(t/3) + B)

Fort € T, the confidence set C; (), along with w; and H, remains the same. This conclude the proof of Corollary D.2. [

D.2.3. PROOF OF LEMMA D.6

Proof of Lemma D.6. By the definition of the optimal assortment and Lemma D.4, we have
R (Se, w™) < Ry (Sy,w*) < Rt(S’;) < Rt(St).
Thus, it is sufficient to show that ry; > Rt(St) for all 7 € S,.

33



Improved Online Confidence Bounds for Multinomial Logistic Bandits

We prove this by contradiction. Suppose there exists an item ¢ € Sy such that ry; < Rt(St). If we remove item i~fr0m
the assortment Sy, it would result in higher expected revenue. This contradicts the optimality of S; = argmaxg.g R (.5).
Hence, we conclude

ri = R(Se), Vie Sy,
which completes the proof. O
D.2.4. PROOF OF LEMMA D.7

Proof of Lemma D.7. For simplicity, let EY [24;] = E;_,,(.|s,,w)[t;] and 29 = 0. Then, we can express V2{,(w) as
follows:

vzfs(w) = Z ps(Z|SQaW)I91qu7 - Z Z ps(i|SS7w)ps (]|SQ,W)I’%I’;
i€S, 1€S5s JES,
= Z ps(i‘Sszw)xsix;—i - Z Z ps(i|Ssyw)ps(j‘SS7W)xsiml—j
€Ssu{0} i€Ssu{0} jeSsu{0}

= EY[zoia);] - BY [2,i] (BY [2])"
= EY [(zi — EY [2g]) (20i — EY[25]) "]

= D pulil S, W)z — EY[wg]) (s — EV[z]) .
€Ssu{0}

Using the definition Hy(W) = Mg + X (177w V244(w), it follows that for any update round s € [t]\7", we have

det (Hyy1) = det (H,) [1+ ) ps(i|SS,w)Hxsi—E‘S"'[xsj]H?{s(w),l
i€Ssu{0}

. . . w 2
By the assumption that [z %, (w) -1 3 forall i € S, we know that Yies,ufo} Ps(ilSs, W) [2si — EY [25;] [ ()< 1.
Then, using the fact that z < 2log(1 + z) for any z € [0, 1], we obtain

. 2
Do > pelilSe, w) |z — B [26]1 % ()
se[t\Tw ieSsu{0}

<2 )7 log |1+ D pslilSe W) e — BY [24]17, )

se[t\T™ ieSsu{0}
det(HS+1> )
=2 Z log (
se[t]\Tw det(H)
det(Ht+1)
=21 —_—
Og( det(H,)
tr(Ht+1) t
< 2d1 ——— | <2dl 1+ —,
%8 ( ax 2T
which concludes the proof. O

D.2.5. PROOF OF LEMMA D.8

Proof of Lemma D.8. Forany s € [t—1]\T™, let X, € RI5tI*¢ be the matrix whose 4’th row is 2;. Then, by the equivalent
notation of the loss (see Equation (A.1)), we have

V2(Way1) = X Vily(2541) X, (Eqn. (A.1))
< egﬁ\lzﬁl*zz”@X;rViZS(z;)XS (Proposition B.5)
<eX, Vil,(z})X, (12541 — 250 < 535
= eV2,(w*),
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where the last inequality holds because, for any s ¢ 7%, the following holds:

2541 — 25 |0 = max |z (wypr — w?)]
€S,

= max |zsill (o)1 (IWss1 — W g + Wy — W] g ) (Holder’s inequality)
ies E : k
1

< — (Iworr = Wiy + Wy — W) (s¢T")

S

1
S V26 0)
_G)
= 3v/2¢,(6)
1

= 3—\/5
Thus, we get

Hy=Mg+ > Vi(wen)<Mgte Y V(W) =eH(w).
se[t—1\Tw sE[t—1\T™

To prove the other inequality, we use a similar line of reasoning:
V20,(w*) = X[ V20, (22) X, < V21 =20o X TV20 (2,,1) X, < X V2ly(2541) Xy = eV y(Wei1),

which implies that

1 1
= Mg+ ) V(we) = Mg+= Y V(w ") = H (W),

(G(8) + W — w* | gw) (Definitions of 7, and w1 € WY (4))

(Corollary D.1)

se[t—1\T € sept—1p\T
This concludes the proof. O
D.2.6. PROOF OF LEMMA D.10
Proof of Lemma D.10. Recall that by the definition of H;", we have
Hy = Mg + Z 2 (Wst1)
seTw\{t,...,T}
=g+ Z Ps(is|{is}7ws+1)$si3$;5 _ps(isHis}yWs+1)ps(is|{is}7Ws+1)$sism;ris
seTw\{t,...,T}
=g+ YL palisl{is} wern)ps(O1{ish Was1)zas, 20,
seT\{t,...,T}
where i, is the index of the item such that z;, = argmax, y_ HxH%Hw),l. Then, we get
Z max HxH?Hgﬂ)—l = Z thitH%H;”)_l (T4i, = argmax,c y, H“'”H%H#J)f1 fort e T*)
teTw teTw
1 . . -,
< - Z (el {ie}, Wir1)pe(O1{ie}, wig1) | e, H?ng),l (Definition of k)
teT“’
=13 i { g ik Wi Ol Wil g
teT“’ L
(thitH%H;ﬂ)—l < WHItit 2 < 3. A" >2)
2 T
< —dlog |1+ — (Lemma D.11)
K dX
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On the other hand, by the definition of the update rule in Algorithm 1, we have

1 1
Z max HxH?ng),l > Z — = — |[T"|. (¢ is non-decreasing)
teTw T teTw 't T

By combining the two results above, we obtain

2 T
T < ET%dlog (1 + dA) ,

which concludes the proof. O

D.3. Technical Lemmas

Lemma D.11 (Lemma F.2 and H.3 of Lee & Oh 2024). Let H; = \g + Zi;ll V2%, (Wsy1). Define iy := wg —
Ejp. (18 wesn) [Tsi] If Hx“”?{” < L forallie S, and s € [t), then the following statements hold true:

J~Ds
(1) Zi:l Ziess psmsmWerl)ZDS(O|SSaWerl)HstiH?qs—1 < 2dlog (1 + d%\)’

(2) Yooy Sies, Ps(ilSe, wor1)|&ai?, 1 < 2dlog (1 + ),

(3) Yo; maxies,

T2 o1 < 2dlog (1 + £&).

(4) ' _ maxies,

Fl? 1 < Zdlog (1+ ).

E. Instance-Dependent Regret
As a special case, if the rewards are uniform (i.e., r4; = 1), we can establish an instance-dependent regret bound.

Proposition E.1 (Restatement of Proposition 4.10 Instance-dependent regret under uniform rewards). Define x} :=
Zz‘es; p(i|Sy, w*)p(0|Sf, w*). Under the same conditions as Theorem 4.5 and assuming uniform rewards, the regret of
OFU-MNL++ is upper bounded by

T
1 1

Y ki + =Bd® (log T)* + = B'dlog T
K K

t=1

Reg, (w') = O (dlogT + By/dlog T)

E.1. Proof of Proposition 4.10

In this section, we present the proof of Proposition 4.10. In the case of uniform rewards, where r;;—; for all i € [IN], the Jf
term can be upper-bounded by «} plus an additive term.

Proof of Proposition 4.10. From Theorem 4.5, we have

T
1 1
Reg (w*) = O (dlogT n B«/dlogT) Y 0F + B (log T)* + B'dlog T
t=1
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When rewards are uniform, we can rewrite the 23:1 o2 term as follows:
T
Yot -
t=1 =
T 2
= Z (il S, w*)ri; — (Z pt(iSnW*)th‘)

T
2
Eivpu(isiwn) | (1t = Egepa i [711])’]
1

t=14i€eS; €S
T

= Z Z pe(i[Se, w*)pe (0 Sy, w™) (re; = 1)
t=11€S5;

where the last inequality holds by the following lemma:

Lemma E.2 (Lemma 11 of Perivier & Goyal 2022). Let k} := ZieS{ p (8|S, w*)p(0|St, w*). Then, we have

T T
0 peilSe, w)pe (0[S, w*) < ) K7 + Regp(w).

t=14€eS, t=1

Hence, we get

T
1 1
Reg, (w') = O (dlogT + By/dlog T) N k7 + Regy(w*) + —B2d* (log T)? + —B'dlog T
im1 K K

Solving the above equation completes the proof of Proposition 4.10. O

E.2. Discussion on Instance-Dependent Regret
In this subsection, we further discuss about the instance-dependent parameter «; and the variance of rewards o.

True meaning of x;. The instance-dependent parameter ~;, which appears in the regret bounds of many existing
(multinomial) logistic and GLM bandits (Abeille et al., 2021; Faury et al., 2022; Perivier & Goyal, 2022; Lee & Oh, 2024;
Sawarni et al., 2024), is indeed the variance of the uniform rewards given Sf. In contrast, J? denotes the variance of general
rewards (including both uniform and non-uniform) for the offered assortment S;. Under uniform rewards, as shown in the
analysis of Proposition 4.10, x} and o7 are closely related, as the assortment size remains the same and the rewards are
identical.

Possibility of Instance-Dependent Regret under Non-Uniform Rewards. Readers might expect an instance-dependent
regret bound for general non-uniform rewards. However, we cautiously argue that establishing such a bound in the non-
uniform case is non-trivial using existing analytical approaches. Unlike prior works on binary logistic bandits (Abeille et al.,
2021; Faury et al., 2022), uniform rewards MNL bandits (Perivier & Goyal, 2022; Lee & Oh, 2024), and generalized linear
bandits (Sawarni et al., 2024), the size and rewards of the offered assortment S* and the optimal assortment S} are different.
This fundamental discrepancy makes it impossible to bound quantities related to .S; using those related to S;.

F. Proof of Theorem 4.12

In this section, we provide the proof of Theorem 4.12. For ease of reference, Table F.1 summarizes the notations used for
OFU-M2NL.

We define £;(w) as the negative log-likelihood of w with respect to data collected up to ¢t — 1, and Wy as the corresponding
maximum likelihood estimate (MLE) estimate:

t—1 t—1
Li(w) = Z ly(w) = — Z Z yts log ps(i|Ss, w), Wy := argmin Ly (w).
s=1 s=11eS; wew
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Table F.1: Symbols for OFU-M2NL

Ly (W) = Zi;ll ieS, Yts log ps (“Ssv W)

Wy maximum likelihood estimate (MLE) estimate at round ¢

AMLE := gz, regularization parameter for MLE

HME(w) = 307 V2 (w) + AMEFL,

vy arameter that satisfies 3 | w* — W, |3 = |w* — W2 N <
t p 2 tIv2L, (vy) EI5 (1—0) V2 Ly (Wi +o(w* —W¢ ) )dv
MLE(5) = O (W /d 1og(Bt/5))

NEE) = /28)15(0)? + 1

CMLE(S)  i={weW: Li(w)— L,(W,) < BME(S)?}

Wii 1= argmaxeome g ,;W, optimistic utility of item i at round ¢

HMLE o Dieg exp(a) Wii)res

RME(S) = i +Zsj — exp’(xt L optimistic expected revenue of assortment S at round ¢

o? = Eip(1850w) | (Tti = Ejpy (150,w*) [rtj])z], variance of rewards given S; at round ¢

And the confidence set is defined as follows:

CYE(S) == {weW: Ly(w) — Li(Wy) < BE(6)?},

MLE (5) \/log (15 + dlog (max {e’ 463(;_1)})

The confidence radius SM-E(4) follows directly from Theorem 3.1 in Lee et al. (2024b). This result is derived by
incorporating the Lipschitz constant for the MNL loss, i.e., Ly = maxwew |VL(W)[|y < (¢ — 1) [|[Vl(W)], <2(t—1)
(under Assumption 3.1).

Lemma F.1 (Unified CS for generalized linear models (GLMs), Theorem 3.1 of Lee et al. 2024b). Let L; :=
maxwew ||VLi(W) |, be the Lipschitz constant of Ly(+), which may depend on {(zs,75)}._]. Then, we have Pr[Vt >
L,w* e CME§)] = 1— 6, where

CMEE(§) .= {w eEW : Li(w) — Li(Wy) < BME(S)? = log% + dlog <max {6, QeiLt }) } .

where

Then, we offer an assortment .S; that maximizes the optimistic expected revenue ]:Z%’[LE(S) as follows:

T ~
- e q €XD (T Wi )Ty
S; = argmax RME(S) = argmax e OXP(L1 Wt ,  where W = argmax x/;w. (ED)

T ~
Ses Ses 1+ 2 cqexp(zWej) WeCLE (§)

Additionally, we define the Hessian of the regularized loss at w as:

1

HME(w Z V2s(w) + AMET, where AMME = 35

Now, we present useful lemmas that will be used in the proof of Theorem 4.12.

Lemma F.2 (Restatement of Lemma 4.11, Improved MLE confidence bound). For any t € [T], we define v}
* ~ 12 * *

such that % |w* _Wt”vi’ﬁt( vr) = [[w _Wt”Sé(l—v)V"’Lt(vAvt-Fv(w*—vAvt))dv and HMLE(y¥) .= V2L, (v}) + AMLET, =

22;11 VQES( vi) + XMELy. Let \MLE = L5 Then, for any t > 1, if w* € C}"M(8) and Assumption 3.1 holds, then we have

[w* = |2 e ) < 281(5)% + 1 = O (dlog(BY)).
—_——

= LE(8)?
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Algorithm F.1 OFU-M2NL, OFU-Maximum Likelihood Estimation MNL

1: Input: failure level &, confidence radius SME(5).

2: for roundt =1,...,7T do

3 Observe feature set X;.

4 Calculate the norm -constrained MLE: W; « argmin. £t( ).
5: Update CMLE <« {W eEW: Et( ) Et(wt) < ﬁMLE( ) }

6 Set Wy; «— argmaxwecgm((;) z)w forallie [N].

7 Offer S, = argmaxg.g RMF(S) and observe y;.

8: end for

The proof is provided in Appendix F.2. By Lemma F.2, we define the ellipsoidal version of the confidence radius as follows:

() = \/2 logi +2dlog <Inax{e, 463(;”}) +1=0 ( dlog(Bt)) .

Additionally, we present useful technical lemmas.

Lemma F.3. Foranyt € [T], wi, wq € CME(6), and wy; > 0, we have

E |pe(31Se, W) — e (5]Se, W )| wis < 4yMEE(8) max wy; max |zt e uwy—1-
ics, €St €St
The proof is deferred to Appendix F.2.2.

Lemma F.4 (Elliptical potential count lemma, Lemma 4 of Kim et al. 2022). For X,L > 0, let z1,...,27 € R? be a
sequence of vectors with ||z||2 < X forall t € [T). Let Vy := Xy + Y.\ _ wox] for some X > 0. Let J < [T be the set
of indices where Hth%/,l > L. Then,

T<—2  dlog (14—
“log(1+ L) ©8 log(1+ L)X/~

F.1. Main Proof of Theorem 4.12
Proof of Theorem 4.12. We follow a reasoning process similar to that used in the proof of Theorem 4.5.
First, we define the set of large elliptical potential rounds as follows:

1 .
1257 VZESt}.

TMLE : {t € [ ] : H.’I}“H%NLE(V:),
Let UCBy; = z/W; + ’)/i\/ILE(g)”ztiHHL\/[LE(V:)—l and UCBy; as UCBy; := z/w* + QVMLE((S)thi”HLVILF,(U:)—l. Then, for all
i€ [N]and ¢ > 1, we have

T T MLE
Ty Wy — 2wt < UCBy; — )

W < 29) lzti |l e umy -1 (Definition of Ww;;, Lemma F.2)

which implies :c;Ethi < UCBy;. Thus, by Lemma D.5, we get

RY™(S,) < RY™E(S)), (F2)
PMLE o ZieSt exp(UCBy; )1
where Ry"(Sy) 1= Trys, exp(0CB,,)"
Define a function Q : RISl — R, such that for all u = (u, ... Juys,) | € RIS, Qu) = Zlks'l %’”m?). For
exp(u;
simplicity, we write Sy = {i1,...,i|g,}. Furthermore, we denote u; = (u¢, , - - .uti‘sﬂ) = (UCBy, , - - s UCByi g, )7
T T T T
and uy = (uf;,, .. 'u:i\st\) = (Ty, W*, ... ,wm“st‘W*) .
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Then, by the elliptical potential count lemma (Lemma F.4), we get

T
Z Rt(S;,W*> — Rt(St,w*) = |7;MLE| + Z Rt(S;,W*) - Rt(st,W*)

t=1 t¢ TMLE

2 1 * * *
<bg<3,/z>d1°g(1+bg@/mm)+ >, Re(S;w*) = Ri(Sp,w*).  (E3)

t¢7’tMLE
Moreover, we have
Z R (S, w*) — Ry(St, w*) < Z RME(S,)) — Ry(Sy, w*) (Lemma D.4)
tg TMLE tgTMLE
< D) RME(S) — Ry(Si,w*) (Eqn. (F2))
t¢7’tMLE
= 2, Qu) = Q)
t¢7*tM[_E
A * * 1 * (= *
> Ve (uy —uj) + 3 D1 (ue—u))TVEQ(y) (w —uf),  (F4)
t¢7’tMLE t¢7’tMLE
I3 Iy
where u; = (G, - - - s Uiy, )T e RIS is the convex combination of u; and u;.

We first bound the term [3. For simplicity, let E} [24;] = Ejp,, |5, w)[2t:], and B [r;] = Ejop, (|s,,w) [7¢i]. Then, we
get

>, VQu)T (u —uj)

t¢TMLE

Z Z exp xn *)Tti (s — uly) — Z eXp(wfjW*)m ZieSt exp(x;w*) o
ti

*
Ui )
t¢ TMLE i€S; 1+ ZkeS eXp( *) jes, (1 + Zkest exp(xtTch*))Q '

Z Z e (i S, )T < MLE((S)thi”H{"[LE(u;)*l - Z Pt(j|5taW*)2’YyLE(5)|xtj|HyLE(u;)1)

tggTMLE €St JES
WEG) DT pilil Sty wh)re (‘TM”HMLE(V — X pe(G1Se W) s | gy g - 1)
t¢ TMLE 1€St JES

—156) 3 B | (ri -5 lri]) (Joulmpurs B [loglmmon] )| @o=0ra =0

t¢7_tMLE

MEG) S EY [(m gy [th]) ‘

t ¢ TMLE

i — By [xtj]‘

o (V:)l] (Similar to Eqn.(D.7))

We further decompose the last term as follows:

> EY [(Tti ~-EY [m]) Hl"ti ~-EV [%‘]‘

t$TMLE

= > 2 Vpelil Sy, wh)p(i |Sfayf)(rti7EZv*[th]> Hivti*Ef:[iﬂtj]‘

t$TMLE ’LESt

£ 0 2 (VIS w) = VpililSi i) ) Vil w) (v~ B[] |

t¢7;MLE 1€S:

+ Z Z p+(i]St, w (Tm EY [th]) (xti —Ey*[xtj]

t¢TMLE ie S,

H%LE(un—l]

HYy(vi) =1

* ‘

z — By [145]

HYE ()

HMLE ()1 - H‘/L’tl - E;lt [xtj]HHMLE(u*)—l) . (FS)
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Then, the first term in (F.5) can be bounded as follows:

Z Z \/pt (2| Se, w*)pe(i]Se, vf) <th‘ - EX”* [th]) Hiﬁm - ]Enlf/: [%j]‘

t¢TMLE lESt

HYLE ()1

Ew* 2

2 Zpt i S, w*) (re; — EY [145]) Z Zpt i St vf) |z — Et [tj]‘ MLE /-y 1
t¢TMLE lESt t$TMLE 'LESt H (V )

—02

(Cauchy-Schwarz inequality)

9 T
Doy [2dlog <1+W). (Lemma D.7)
t=1

Note that when applying the elliptical potential lemma (Lemma D.7), we ensure that the condition ||x¢; H?{, w1 S 1 holds
for all ¢ ¢ TME. Additionally, the second term in (F.5) can be bounded as follows:

Y 2 (VelilSe W) = VpelilSv0)) V/pelilSe w) (ras = B ris]) e — B[]

tg TMLE (€S,
< Z |pe (] Se, w*) — pe(i]Se, )|
t¢7*tMLE €Sy \/Pt(ﬂst» W*) + \/pt(i‘stv Vt*)
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Finally, we bound the last term in (F.5). Using the inequality |a| — |/b| < |a — b|| for any vectors a, b € R%, we get
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By combining the three results above, we can establish a bound for I5.

T
. T 36 v T
tgTMLE t=1

On the other hand, the term I, in Equation (F.4) can be bounded by following the same process as in Equation (D.10) in
Appendix D.
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Plugging (F.6) and (F.7) into (F.3), and setting \M'F = L and /E(§) = O(1/dlog(BT)), we obtain
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F.2. Proof of Lemmas for Theorem 4.12
F.2.1. PROOF OF LEMMA F.2

Proof of Lemma F.2. By using a Taylor expansion and applying the first-order optimality condition for a convex function,
we obtain
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By setting L; = 2(t — 1) and \MLE = and applying Lemma F.1, we derive
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which concludes the proof. O
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F.2.2. PROOF OF LEMMA F.3

Proof of Lemma F.3. By the mean value theorem, there exists € = (1 — ¢)wy + cws for some ¢ € (0, 1) such that
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which concludes the proof. O

G. Experiment Details and Additional Results
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Figure G.1: Cumulative regret for different values of B when d = 10.

For each instance, we sample the true parameter w* uniformly from a d-dimensional Euclidean ball of radius B, denoted by
B?(B). Similarly, each context feature x; is independently and identically distributed (i.i.d.) from a unit ball, denoted as
B<(1). This ensures that |[w*||y < B and |z ]2 < 1, satisfying Assumption 3.1. The rewards are sampled independently in
each round from a uniform distribution, i.e., r¢; ~ Unif(0, 1). We set the number of items to N = 50 and the maximum
assortment size to K = 5. For each instance, we conducted 20 independent runs and reported the average cumulative regret
(Figures 1 and G.1) as well as the average runtime per round (Figure 2) for each algorithm. In our experiments, since the
threshold 7, is too conservative in practice, we empirically tuned the hyperparameter 7; for OFU-MNL++ by searching over a
certain range of values while maintaining its inverse relationship with « (i.e., a higher 7; corresponds to a lower «).

As an additional experiment, Figure G.1 presents results for a larger value of d, specifically d = 10. Our algorithms
continue to outperform other baselines. While the performance of OFU-MNL++ is somewhat sensitive to the values of B and
d, primarily due to the adaptive warm-up rounds, its asymptotic performance appears to be the best. Notably, the slope
of the regret curve is the smallest for large ¢t. Additionally, OFU-MNL++ enjoys a constant computational cost, similar to
OFU-MNL+. In contrast, OFU-M?NL is the slowest among the algorithms, as it requires solving a convex optimization problem
to compute the optimistic parameter wy;, as described in Equation (F.1).
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