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Abstract
In this paper, we propose an improved online con-
fidence bound for multinomial logistic (MNL)
models and apply this result to MNL bandits,
achieving variance-dependent optimal regret. Re-
cently, Lee & Oh (2024) established an on-
line confidence bound for MNL models and
achieved nearly minimax-optimal regret in MNL
bandits. However, their results still depend on
the norm-boundedness of the unknown param-
eter B and the maximum size of possible out-
comes K. To address this, we first derive an
online confidence bound of O

`?
d log t`B

˘

,
which is a significant improvement over the
previous bound of OpB

?
d log t logKq (Lee &

Oh, 2024). This is mainly achieved by estab-
lishing tighter self-concordant properties of the
MNL loss and introducing a novel intermedi-
ary term to bound the estimation error. Using
this new online confidence bound, we propose
a constant-time algorithm, OFU-MNL++, which
achieves a variance-dependent regret bound of

O
´

d log T

b

řT
t“1 σ

2
t

¯

for sufficiently large T ,

where σ2
t denotes the variance of the rewards

at round t, d is the dimension of the contexts,
and T is the total number of rounds. Fur-
thermore, we introduce a Maximum Likelihood
Estimation (MLE)-based algorithm, OFU-M2NL,
which achieves an anytime polypBq-free regret

of O
´

d logpBT q

b

řT
t“1 σ

2
t

¯

.

1. Introduction
The multinomial logistic (MNL) bandit framework (Rus-
mevichientong et al., 2010; Sauré & Zeevi, 2013; Agrawal
et al., 2017; 2019; Oh & Iyengar, 2019; 2021; Perivier &
Goyal, 2022; Agrawal et al., 2023; Lee & Oh, 2024) pro-
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vides a principled approach to tackling sequential assort-
ment selection problems. At every round t, an agent offers
an assortment of at most K items among total N items
and receives feedback only for the chosen decisions. The
user choice probability follows an MNL model (McFadden,
1977). This framework is widely deployed in industry, with
applications ranging from news recommendation systems
to online retail, where assortment selections are optimized
based on user-choice feedback from the offered options. In
such applications, the agent often has access to item fea-
tures and, potentially, contextual information about the user.
This setup is referred to as the contextual MNL bandit prob-
lem (Agrawal et al., 2019; 2017; Ou et al., 2018; Chen et al.,
2020; Oh & Iyengar, 2019; 2021; Perivier & Goyal, 2022;
Agrawal et al., 2023; Lee & Oh, 2024).

Recently, in contextual MNL bandits, Lee & Oh (2024)
proposed a constant-time algorithm and obtained a regret
of OpB3{2d logKplog T q3{2

?
T q. Although this result is

nearly minimax optimal when ignoring B and logarithmic
terms, it still depends on the maximum assortment size K
and the norm-boundedness of the parameter B. Intuitively,
a largerK may provide more information (Lee & Oh, 2024),
suggesting that the regret should not scale with any factor
involving K. Moreover, while polypBq-free regret bound
has been established for generalized linear model (GLM)
bandits (Lee et al., 2024b) using the MLE, it remains unclear
whether such a bound can be obtained while maintaining a
constant per-round computational cost.

Our main goal is to design a constant-time algorithm that
achieves improved regret with respect to polypBq and K.
The main challenge in achieving such regret lies in deriving
a tight confidence bound. Currently, the best-known online
confidence bound is OpB

?
d log t logKq (Lee & Oh, 2024),

which explicitly depends on both B and logK. This depen-
dency poses a significant bottleneck for obtaining improved
regret. Furthermore, to the best of our knowledge, there is
no variance-dependent regret in contextual MNL bandits.
Hence, the following research questions arise:

• Can we derive a B,K-improved confidence bound for
online parameter estimation in MNL models?

• Can we design a constant-time algorithm that achieves
B,K-improved (or free) and variance-dependent re-
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gret in contextual MNL bandits?

In the first part of our main results (Section 4.1), we con-
struct a K-free online confidence bound with improved
dependence on B, which depends on a update condition
parameter α. This significantly improves upon previous re-
sults in online parameter estimation in MNL models (Zhang
& Sugiyama, 2024; Lee & Oh, 2024). To achieve this, we
first establish self-concordant-like properties with respect to
the ℓ8-norm (instead of the traditional ℓ2-norm) (Proposi-
tions B.3 to B.6). This improvement enhances the existing
self-concordant properties of MNL models (Tran-Dinh et al.,
2015), which is of independent interest. Additionally, un-
like Zhang & Sugiyama (2024), we introduce a bounded
intermediary parameter to bound estimation errors, eliminat-
ing the need for a smoothing technique (Foster et al., 2018),
which would otherwise lead to a Op

?
log t logKq looser

confidence bound. Finally, through refined analysis, we can
set the dimension-free regularization parameter λ, resulting
in the B term appearing only as an additive term.

In the second part (Section 4.2), we propose a constant-time
algorithm, called OFU-MNL++, that achieves B-improved,
K-free, and variance-dependent regret. This algorithm up-
dates the parameter only within a specific space constructed
during the adaptive warm-up rounds. With high probabil-
ity, this space contains the true parameter w‹, while also
shrinking sufficiently relative to the current feature set Xt.
This is the key to keeping the update condition parame-
ter α of the online confidence bound small (or constant).
Note that since the parameter is updated in a fully online
manner, the computational cost per round of OFU-MNL++
remains constant throughout all rounds. Furthermore, we
introduce a novel regret decomposition, which ultimately
allows us to achieve a variance-dependent regret bound

of O
´

`

d log T `B
?
d log T

˘

b

řT
t“1 σ

2
t

¯

, where σ2
t de-

notes the variance of the rewards at round t.

In the final part (Section 4.3), as an independent contri-
bution and inspired by Lee et al. (2024b), we propose an
MLE-based algorithm, OFU-M2NL, that leverages an MLE
confidence bound and achieves completely polypBq,K-free
regret with only logB dependence. However, note that the
per-round computational cost of OFU-M2NL increases lin-
early with t due to the use of the MLE, whereas the per-
round computational cost of OFU-MNL++ remains constant.

Our main contributions are summarized as follows:

• Sharpest online confidence bound for the MNL
models: We first establish a confidence bound for
online parameter updates in MNL models, which de-
pends on the update condition parameter α (defined
later). In Theorem 4.2, when the parameter is up-
dated over the entire space BdpBq, as is common in

prior works (Faury et al., 2022; Zhang & Sugiyama,
2024; Lee & Oh, 2024), we achieve a confidence
bound of OpB

?
d log t ` B2q, significantly improv-

ing upon the previous bound of OpB
?
d log t logK `

B3{2
?
d logKq (Lee & Oh, 2024). More importantly,

when the parameter is updated within a specific space
where the update condition parameter α is bounded
by a constant, we achieve a confidence bound of
Op

a

d logptq `Bq, which is completely independent
of polypBq and K.

• New B-improved, K-free, variance-dependent re-
gret bound: To apply our new online confidence bound
to MNL bandits and achieve a tighter regret in terms
of polypBq and K, we propose an algorithm called
OFU-MNL++. In addition, through a novel regret decom-
position, we derive a variance-dependent optimal regret

of O
´

`

d log T `B
?
d log T

˘

b

řT
t“1 σ

2
t

¯

, where σ2
t

represents the variance of the rewards at round t. For

sufficiently large T , we obtain a Õ
´

d

b

řT
t“1 σ

2
t

¯

regret. To the best of our knowledge, this is the
first B,K-free and variance-dependent optimal regret
bound in contextual MNL bandits.

• Completely polypBq,K-free confidence and regret
bound using MLE: We propose an MLE-based al-
gorithm, OFU-M2NL, which achieves polypBq,K-free
variance-dependent optimal regret by leveraging a B-
free MLE confidence bound.

2. Related Work
Logistic bandits. The logistic bandit problem (Dong et al.,
2019; Faury et al., 2020; Abeille et al., 2021; Faury et al.,
2022; Lee et al., 2024a;b) is a special case of the MNL
bandit problem. In this setting, the agent offers only a
single item (i.e., K “ 1) and receives 0-1 binary feed-
back, restricting the problem to the uniform rewards setting.
As summarized in Table 1, recent works have successfully
eliminated the harmful dependency on 1{κ (which can be
exponentially large) in the leading term, achieving instance-
dependent regret (i.e., κ‹

t -dependent regret). However, most
of these approaches still suffer from an unnecessary depen-
dency on the norm-boundedness of the unknown parameter,
polypBq. While a recent work by Lee et al. (2024b) suc-
cessfully eliminated the polypBq factors, their approach
incurs a per-round computational cost that grows linearly
with t. Thus, the question of whether it is possible to design
a B-free, computationally efficient algorithm remains open.

MNL bandits. The MNL bandits (Agrawal et al., 2019;
2017; Ou et al., 2018; Chen et al., 2020; Oh & Iyengar, 2019;
2021; Perivier & Goyal, 2022; Agrawal et al., 2023; Lee &
Oh, 2024) address more sophisticated problems compared
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Table 1: Comparisons of regret bounds in recent works on contextual logistic and MNL bandits with T rounds, the
maximum size of assortments K, d-dimensional feature vectors, the norm-boundedness of the unknown parameter B,
problem-dependent constants 1{κ “ OpK2e3Bq and κ‹

t :“
ř

iPS‹
t
ptpi|S

‹
t ,w

‹qptp0|S‹
t ,w

‹q ď 1, and the variance of the
rewards σ2

t ď 1 at round t (formally defined in (9)). For the computational cost (abbreviated as “Comput.”), we consider
only the dependence on t. The term “Intractable” refers to computational runtimes that are non-polynomial.

Algorithm Regret Rewards Comput. per Round

Logistic
Bandits

Abeille et al. (2021)
(OFULog)

O
´

B3{2d log T

b

řT
t“1 κ

‹
t

¯

Uniform Intractable

Abeille et al. (2021)
(OFULog-r)

O
´

B5{2d log T

b

řT
t“1 κ

‹
t

¯

Uniform Optq

Faury et al. (2022)
(ada-OFU-ECOLog)

O
´

Bd log T

b

řT
t“1 κ

‹
t

¯

Uniform Oplog tq

Lee et al. (2024b)
(OFUGLB)

O
´

d logpBT q

b

řT
t“1 κ

‹
t

¯

Uniform Optq

MNL
Bandits

Chen et al. (2020)
(MLE-UCB)

O
´

Bd logpKT q
?
T
¯

Uniform/Non-Uniform Intractable

Oh & Iyengar (2021)
(UCB-MNL)

O
´

1
κd log T

?
T
¯

“ O
´

K2eBd log T
?
T
¯

Uniform/Non-Uniform Optq

Perivier & Goyal (2022)
(OFU-MNL)

O
´

BKd logpKT q

b

řT
t“1 κ

‹
t

¯

Uniform Intractable

Lee & Oh (2024)
(OFU-MNL+)

O
´

B3{2d logKplog T q3{2
?
T
¯

Uniform/Non-Uniform Op1q

This work
(OFU-MNL++, Theorem 4.5)

O
´

`

d log T `B
?
d log T

˘

b

řT
t“1 σ

2
t

¯

Uniform/Non-Uniform Op1q

This work
(OFU-M2NL, Theorem 4.12)

O
´

d logpBT q

b

řT
t“1 σ

2
t

¯

Uniform/Non-Uniform Optq

to logistic bandits, as they involve selecting a set of items
(thus highlighting their combinatorial nature) and consider
non-uniform rewards rather than binary feedback. Recently,
Lee & Oh (2024) made significant progress by resolving
the long-standing open problem of establishing the mini-
max optimal regret (ignoring factors of B and logarithmic
terms) with computational efficiency. However, as shown in
Table 1, all existing regret bounds increase with B and K.
Furthermore, the tightest regret bound by Lee & Oh (2024)
includes an additional plog T q1{2 term, arising from a loose
confidence bound. To address these limitations, in this paper,
we construct the sharpest online confidence bound to date
and, leveraging this, achieve (asymptotically) B,K-free
regret while maintaining computational efficiency.

RL with MNL models. There has been growing interest
in incorporating MNL models into reinforcement learning
(RL). One line of work extends MNL bandits to the RL
setting. Recently, Lee & Oh (2025) proposed a new frame-
work, called combinatorial RL with preference feedback,
in which the agent selects a subset of items in each round
to maximize long-term cumulative reward based on MNL-
modeled preferences, and established the minimax-optimal
regret bound in linear MDPs (Jin et al., 2020).

Another direction focuses on RL with MNL-based transition
models. Hwang & Oh (2022) introduced MNL-MDPs, a
class of MDPs where the transition probabilities are param-

eterized by an MNL model. Building on this, Cho et al.
(2024) and Li et al. (2024) concurrently improved the de-
pendency on 1{κ “ OpK2e3Bq in their regret bounds. Park
et al. (2024) further extended this direction to the infinite-
horizon setting.

3. Preliminaries
Notations. For a positive integer n, we define rns as the
set t1, 2, . . . , nu. The ℓ2- and ℓ8-norm of a vector x is
denoted by }x}2 and }x}8, respectively. For a positive semi-
definite matrix A and a vector x, we use }x}A to represent?
xJAx. For any two symmetric matrices A and B of the

same dimensions, A ľ B indicates that A´B is a positive
semi-definite matrix. Finally, we define S as the set of
candidate assortments with a size constraint of at most K,
i.e., S “ tS Ď rN s : |S| ď Ku.

3.1. Problem Setting

We consider the contextual MNL bandit problem, where
an agent selects assortments (sets of items) and receives
feedback based on user choices. Specifically, at each round
t, the agent receives a feature vector xti P Rd and a re-
ward rti for every item i P rN s. Note that the feature set
Xt :“ txtiu

N
i“1 and rewards trtiu

N
i“1 can be arbitrarily cho-

sen by an adversary. The agent then offers an assortment

3



Improved Online Confidence Bounds for Multinomial Logistic Bandits

St “ ti1, . . . , ilu P S, where l ď K. After presenting the
assortment, the agent observes the user’s purchase decision
ct P St Y t0u, where t0u represents the “outside option”, in-
dicating that the user did not choose any item from St. The
user choices are modeled using the Multinomial Logistic
(MNL) framework (McFadden, 1977), where the probability
of selecting an item i P St Y t0u is defined as:

ptpi|St,w
‹q :“

exppxJ
tiw

‹q

1`
ř

jPSt
exppxJ

tjw
‹q
,

where w‹ P Rd is an unknown parameter and xt0 “ 0.

The choice response for each item i P St Y t0u is
defined as yti :“ 1pct “ iq P t0, 1u. Hence, the
choice feedback vector yt :“ pyt0, yti1 , . . . ytilq is sam-
pled from the multinomial (MNL) distribution yt „

MNLt1, pptp0|St,w
‹q, . . . , ptpil|St,w

‹qqu, where the pa-
rameter 1 indicates that yt is a single-trial sample, meaning
yt0 `

řl
k“1 ytik “ 1. Then, the expected revenue of an

assortment S is defined as:

RtpS,w
‹q :“

ÿ

iPS

ptpi|S,w
‹qrti “

ř

iPS exppxJ
tiw

‹qrti

1`
ř

jPS exppxJ
tjw

‹q
.

We denote S‹
t as the optimal assortment at time t, i.e.,

S‹
t :“ argmaxSPS RtpS,w

‹q. The goal of the agent is
to minimize the cumulative regret over the T rounds:

RegT pw‹q :“
T
ÿ

t“1

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q.

WhenK “ 1 and rt1 “ 1, the MNL bandit reduces to the bi-
nary logistic bandit with RtpS “ txu,w‹q “ σ

`

xJw‹
˘

“

1{p1 ` expp´xJw‹qq, where σp¨q is the sigmoid function.

We will work under the standard boundedness assumption.

Assumption 3.1 (Bounded assumption). We assume that,
for all t ě 1, i P rN s, }xti}2 ď 1 and rti P r0, 1s. There
exists a known constant such that }w‹}2 ď B,

Following the previous contextual MNL bandit litera-
ture (Oh & Iyengar, 2021; Perivier & Goyal, 2022; Zhang
& Sugiyama, 2024; Lee & Oh, 2024), we introduce the
problem-dependent constant:

Definition 3.2. Let W “ tw P Rd | }w}2 ď Bu. There
exists κ ą 0 such that, for any i P S, S P S, and t P rT s,
we have minwPW ptpi|S,wqptp0|S,wq ě κ.

A small κ signifies a greater deviation from the linear model.
Notably, 1{κ can be exponentially large, growing on the
order of OpK2e3Bq. Therefore, it is crucial to ensure that
our regret bound does not depend on 1{κ.

4. Main Results
4.1. Sharpest Online Confidence Bound for MNL Model

Instead of performing Maximum Likelihood Estimation
(MLE) as done in previous studies (Chen et al., 2020; Oh
& Iyengar, 2021; Perivier & Goyal, 2022), we follow the
approach of Zhang & Sugiyama (2024); Lee & Oh (2024)
and adopt the online mirror descent (OMD) algorithm for
parameter estimation. To begin, we define the multinomial
logistic loss function for round t as:

ℓtpwq :“ ´
ÿ

iPSt

yti log ptpi|St,wq. (1)

In this paper, we present a general description of online pa-
rameter estimation. We consider a (possibly) time-varying
compact convex search space Wt Ď Rd and allow for occa-
sional updates to the parameter rather than requiring updates
at every round. We denote T Ď rT s as all the update rounds.
At the update round t P T , the true parameter w‹ is esti-
mated as follows:

w1
t “ argmin

wPWt

}w ´ wt}Ht
, (projection onto Wt)

wt`1 “ argmin
wPWt

x∇ℓtpw1
tq,wy `

1

2η
}w ´ w1

t}
2
H̃t
, (2)

where η ą 0 is the step-size parameter, and Wt Ď Rd is
the compact convex set, which will be specified later. The
matrix H̃t is defined as H̃t :“ Ht ` η∇2ℓtpw

1
tq, where

Ht :“ λId `
ř

sPT ztt,...,T u ∇2ℓspws`1q with λ ą 0.

If no update is performed, wt, H̃t andHt remain unchanged.
Formally, let t1 P T denote the last update round prior
to t (i.e., t1 ă t). Then, we have wt1`1 “ ¨ ¨ ¨ “ wt,
Ht1`1 “ ¨ ¨ ¨ “ Ht, and H̃t1`1 “ ¨ ¨ ¨ “ H̃t.

In the optimization problem (2), we first solve the uncon-
strained optimization problem in closed form, obtaining
w1
t`1. Then, we project w1

t`1 back into the feasible set.

w1
t`1 “ w1

t ´ ηH̃´1
t ∇ℓtpw1

tq,

wt`1 “ argmin
wPWt

}w ´ w1
t`1}H̃t

, . (3)

This estimator is efficient in both computation and storage.
Remark 4.1 (Computational cost). For a general convex set
Wt, the projection optimization problem (e.g., Equation (3))
can be solved up to ϵ ą 0 accuracy using the Projected Gra-
dient Descent algorithm (e.g., Algorithm 2 in (Hazan et al.,
2016)), requiring computational cost of OpKd3 logp1{ϵqq.
As a special case, if Wt is an ellipsoid, the optimization
problem can be solved in a single projection step (via a
closed-form projection), which needs only OpKd3q cost.

In terms of storage, the estimator avoids retaining all his-
torical data, as H̃t, and Ht can be updated incrementally,
requiring only Opd2q storage.
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Our first main contribution is the development of an im-
proved online confidence bound for MNL bandits, which
depends on the update condition parameter α. The proof is
deferred to Appendix C.

Theorem 4.2 (Improved online confidence bound). Let δ P

p0, 1s and T Ď rT s denote the set of update rounds. For all
t P T , we assume the following update conditions hold:

sup
wPWt

|xJ
tipw ´ w‹q| ď α, @i P St,

where Wt is a compact convex set, and α ą 0. We set
η “ p1 ` 3

?
2αq{2 and λ “ 12

?
2ηα. Then, under As-

sumption 3.1, with probability at least 1 ´ δ, we have:

}wt ´ w‹}Ht
“ O

´

α
a

d logpt{δq ` αB
¯

.

Remark 4.3 (Condition of Theorem 4.2). Note that the con-
dition in Theorem 4.2 is easy to satisfy and has already
been addressed in prior works (Faury et al., 2022; Zhang
& Sugiyama, 2024; Lee & Oh, 2024). Specifically, if the
parameter is updated at every round (i.e., T “ rT s) over
the entire parameter space (i.e., Wt “ W), as is common
in previous works (Faury et al., 2022; Zhang & Sugiyama,
2024; Lee & Oh, 2024), it follows directly that α “ B.

Discussion of Theorem 4.2. When the parameter is up-
dated at every round (so α “ B) and λ is set to λ “

12
?
2ηα “ ΘpB2q, we obtain a completely K-free con-

fidence bound of OpB
?
d log t`B2q. Compared to the re-

cently established confidence bound OpB
?
d log t logK `

B3{2
?
d logKq (Lee & Oh, 2024), our bound is tighter by

a factor of
?
log t logK in the leading term.

More importantly, and perhaps more interestingly, if we
can construct Wt such that α remains small (or constant)
and updates occur only when this condition is met, we
achieve a confidence bound of Op

a

d logptq `Bq. For suf-
ficiently large t, i.e., t ě OpeB

2
{dq, this further simplifies to

Op
a

d logptqq, representing a significant improvement over
the previous bound OpB

?
d log t logKq (Lee & Oh, 2024),

with no dependence on B or K.

Proof sketch of Theorem 4.2. We provide a proof sketch
and highlight the technical novelties of Theorem 4.2.

Following the previous works (Zhang & Sugiyama, 2024;
Lee & Oh, 2024), we first bound the estimation error be-
tween wt`1 and w‹ as follows:

}wt`1 ´ w‹}2Ht`1
À η

ÿ

sPTt`1

pℓspw
‹q ´ ℓspws`1qq`B2λ,

(4)

where Tt`1 Ď T is the set of update rounds prior to t` 1.

1) B,K-independent step size η. In Zhang & Sugiyama
(2024); Lee & Oh (2024), η is set as η » logK `B, based

on Lemma 4 from Jézéquel et al. (2021). To eliminate the
dependency on B and logK, we establish Proposition B.3,
which shows that the MNL loss is 3

?
2-self-concordant with

respect to the ℓ8-norm (rather than the ℓ2-norm, as shown
in Tran-Dinh et al. (2015)), which may be of independent in-
terest. This result enables us to set η » α (Proposition C.5),
making it independent of B and K.

2) Novel intermediary term. The first term in Equation (4)
can be bounded by introducing an intermediary parameter:

z̃s :“ σ`
s

`

Ew„Ps

“

σs
`

pxJ
sjwqjPSs

˘‰˘

,

where σs is the softmax function, σ`
s is its pseudo-inverse,

and Ps is a truncated normal distribution with mean w1
s.

Then, we decompose the sum of losses as follows:
ÿ

sPTt`1

pℓspw
‹q ´ ℓspws`1qq

“
ÿ

sPTt`1

`

ℓspw
‹q ´ ℓ̄spz̃sq

˘

looooooooooooomooooooooooooon

paq

`
ÿ

sPTt`1

`

ℓ̄spz̃sq ´ ℓspws`1q
˘

.

looooooooooooooomooooooooooooooon

pbq

Note that, in Zhang & Sugiyama (2024); Lee & Oh (2024), a
non-truncated normal distribution was used for Ps, leading
to a bound for term paq of OplogKplog tq2q. When the
support of Ps is not bounded, the intermediary parameter is
generally unbounded (Foster et al., 2018). To address this
issue, they employed a smoothed version, which resulted in
a looser confidence bound.

In contrast, we use a truncated normal distribution for Ps,
ensuring that the intermediary parameter z̃s is well-bounded.
As a result, we do not require the smoothed version of z̃s.
This allows us to bound term paq as follows:

ÿ

sPTt`1

`

ℓspw
‹q ´ ℓ̄spz̃sq

˘

À α log t, (5)

which is an improvement by a factor of OplogK log tq com-
pared to OplogKplog tq2q (Zhang & Sugiyama, 2024).

On the other hand, using a truncated normal distribution for
Ps introduces additional challenges when bounding term pbq.
In Zhang & Sugiyama (2024); Lee & Oh (2024), when Ps
is a non-truncated normal distribution, the analysis relies on
the fact that the normalization constant for Ps, denoted by
Zs, is equal to the normalization constant for P̂s`1, denoted
by Ẑs`1. Here, P̂s`1 is identical distribution to Ps except
for a shift in the mean, w1

s Ñ ws`1.

However, in our case, because the support is bounded, the
mean shift results in a non-symmetric distribution, caus-
ing the normalization constants to differ, i.e., Zs ‰ Ẑs`1.
To address this, we restrict the support of P̂s`1 to ensure
symmetry while keeping it within the support of Ps, i.e.,
supppP̂s`1q Ď supppPsq. Additionally, we set the covari-
ance of P̂s`1 sufficiently small to ensure that Zs ď Ẑs`1,
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thereby preserving the desired properties needed for bound-
ing the term. Therefore, we can bound term pbq as follows:

ÿ

sPTt`1

`

ℓ̄spz̃sq ´ ℓspws`1q
˘

À d log t. (6)

3) Dimension-free regularization parameter λ. In The-
orem 4.2, we set λ “ 12

?
2ηα, which is completely inde-

pendent of d. This independence is crucial for obtaining an
additive B confidence bound instead of a multiplicative one,
as B2λ » B2α2 does not depend on d. In contrast, Zhang
& Sugiyama (2024) set λ “ Õpdq, resulting in a confidence
bound with a multiplicative factor of B. The key difference
arises from the construction of Ps. Instead of directly us-
ing Hs for the covariance of Ps, as in Zhang & Sugiyama
(2024), we carefully select the covariance, allowing us to
eliminate the dimensional dependence on λ.

Combining (4), (5), and (6), we complete the proof.

4.2. Online Update with Adaptive Warm-Up

In this subsection, we introduce OFU-MNL++ (Algorithm 1),
which employs a novel two-phase online update approach
leveraging the improved confidence bound from Theo-
rem 4.2 to achieve the tightest regret bound in MNL bandits.
Note that the feature set Xt can be arbitrarily given at each
round t, without imposing any distributional assumptions
on the exogenous contexts.

Intuition. Theorem 4.2 indicates that if α is constant, a
confidence bound of Op

a

d logpt{δq `Bq can be obtained.
Our primary objective is to design the search space Wt to
ensure that α remains constant in most rounds. To achieve
this, we enforce the condition by rejecting, on-the-fly, any
Xt that might violate the constancy of α. Specifically, it is
sufficient to verify the following condition:

max
xPXt

}x}2pHw
t q´1 ě 1{τ2t , (7)

where Hw
t :“ λwId `

ř

sPT wztt,...,T u ∇2ℓspw
w
s`1q is the

warm-up version of Ht, i.e., the regularized sum of Hes-
sians corresponding to all assortments played during the
adaptive warm-up rounds T w. Here, τt is a carefully chosen
threshold and λw ą 0 is a regularization parameter.

Online adaptive warm-up. At round t, given Xt, if for any
feature x P Xt, the quantity }x}2

pHw
t q´1 is greater than or

equal to the threshold 1{τ2t (as specified in Equation (7)),
we do not update our current estimate wt. Instead, we
update a separate warm-up parameter ww

t to ensure that the
condition in (7) is more likely to hold in the future.

In such cases, we offer only the single item that maximizes
}x}2

pHw
t q´1 (Line 6). Subsequently, we update the warm-up

parameter ww
t by invoking Restricted Space Online Mirror

Descent (RS-OMD, Algorithm 2) as a subroutine (Line 7).
Then, we construct the following parameter set (Line 8):

Ww
t`1pδq “

!

w P Rd | }w ´ ww
t`1}Hw

t`1
ď ζt`1pδq

)

,

where ζt`1pδq “ OpB
a

d logpt{δq ` B2q. This ellipsoid
is then used in the RS-OMD procedure during the Planning
& Learning rounds (Line 11- 13). Note that, since the
search space is the entire parameter space W , we can set
α “ B for the condition of Theorem 4.2 to obtain the warm-
up confidence bound ζt`1pδq. The quantities Ht and wt

remain unchanged during the warm-up rounds (Line 9).

Parameter update within restricted space Ww
t pδq. When

the condition in Equation (7) does not hold, the parame-
ter wt is updated by searching only within Ww

t`1pδq using
RS-OMD as a subroutine (Line 12). In this scenario, α can
be set as a constant (with high probability), leading to a con-
fidence bound of Op

a

d logpt{δq `Bq (by Theorem 4.2).

Corollary 4.4 (Informal, B-improved & K-free confidence
bound). Let δ P p0, 1s and βtpδq “ O

´

a

d logpt{δq `B
¯

.

Suppose w‹ P Ww
t pδq for all t ě 1. Define the following

confidence set as follows:

Ctpδq :“
␣

w P Rd | }w ´ wt}Ht ď βtpδq
(

.

Then, we have Pr r@t ě 1,w‹ P Ctpδqs ě 1 ´ δ.

Efficient assortment selection. Given the confidence set in
Corollary 4.4, we calculate the optimistic utility UCBti as:

UCBti :“ xJ
tiwt ` βtpδq}xti}H´1

t
, @i P rN s.

If the true parameter w‹ lies within the confidence set Ctpδq,
the value UCBti serves as an upper bound for xJ

tiw
‹. Using

UCBti, we define the optimistic expected revenue for an
assortment S as:

R̃tpSq :“

ř

iPS exppUCBtiqrti
1 `

ř

jPS exppUCBtjq
, (8)

where rti P r0, 1s. We then offer the assortment St that
maximizes R̃tpSq, i.e., St “ argmaxSPS R̃tpSq (Line 11).
The quantities Hw

t , ww
t , and Ww

t pδq remain unchanged dur-
ing the planning & learning rounds (Line 13). Note that
the optimization problem in (8) can be efficiently solved
in polynomial time, OppolypNqq, independent of t (Rus-
mevichientong et al., 2010; Davis et al., 2014).

Variance-dependent optimal regret. We establish a
variance-dependent optimal regret bound through a novel
regret decomposition. Specifically, we show that the re-
gret is bounded by the sum of covariances between rti and
}xti}H´1

t
, given St. Thus, with some slight notational abuse

(as the expressions do not strictly denote random variables),

6
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Algorithm 1 OFU-MNL++
1: Input: failure level δ, confidence radii βtpδq and ζtpδq.
2: Initialize: Ww

1 pδq “ W , H1 “ λId, Hw
1 “ λw1 Id, w1,w

w
1 P W , η :“ 1, ηw :“ 1

2 ` 3
?
2B, λ :“ 4η, λw :“

maxt12
?
2ηα, 2u, τt :“ 6

?
2ζtpδq .

3: for round t “ 1, . . . , T do
4: Observe feature set Xt “ txtiu

N
i“1 and rewards trtiu

N
i“1.

5: if maxxPXt
}x}2

pHw
t q´1 ě 1{τ2t then Ź Adaptive warm-up

6: Offer St “ titu, where xtit “ argmaxxPXt
}x}2

pHw
t q´1 , and observe yt.

7: Update pww
t`1, H

w
t`1q Ð RS-OMDpW, ℓt, H

w
t ,w

w
t , η

wq by Algorithm 2.

8: Calculate Ww
t`1pδq Ð

!

w P Rd | }w ´ ww
t`1}Hw

t`1
ď ζt`1pδq

)

.
9: Update Ht`1 Ð Ht and wt`1 Ð wt.

10: else Ź Planning & Learning
11: Offer St “ argmaxSPS R̃tpSq and observe yt.
12: Update pwt`1, Ht`1q Ð RS-OMDpWw

t pδq, ℓt, Ht,wt, ηq by Algorithm 2.
13: Update Hw

t`1 Ð Hw
t , ww

t`1 Ð ww
t , and Ww

t`1pδq Ð Ww
t pδq.

14: end if
15: end for

Algorithm 2 RS-OMD, Restricted Space OMD
1: Input: convex set Wt, ℓt, Ht, wt, η.
2: Update H̃t Ð Ht ` η∇2ℓtpwtq.
3: Calculate wt`1 by Equation (2).
4: Update Ht`1 Ð Ht ` ∇2ℓtpwt`1q.
5: Return: wt`1, Ht`1.

the regret can be bounded as follows:

RegT pw‹qÀ βT pδq
ÿ

tRT w

Covt

´

rti, }xti}H´1
t

¯

À βT pδq

d

ÿ

tRT w

Vtprtiq
d

ÿ

tRT w

Vtp}xti}H´1
t

q,

where Covtp¨, ¨q and Vtp¨q is the covariance and variance,
respectively, given St. For simplicity, rewrite Vtprtiq as

σ2
t :“ Ei„ptp¨|St,w‹q

”

`

rti ´ Ej„ptp¨|St,w‹qrrtjs
˘2
ı

, (9)

where rt0 “ 0. By applying the elliptical potential lemma
(Lemma D.7) to the sum of the variances of }xti}H´1

t
, we

derive a variance-dependent regret bound. The complete
proof is provided in Appendix D.

Theorem 4.5. Let δ P p0, 1s, and assume that Assump-
tion 3.1 holds. Then, with probability at least 1 ´ δ, the
regret of OFU-MNL++ (Algorithm 1) satisfies

RegT pw‹qÀ

´

d log T `B
a

d log T
¯

g

f

f

e

T
ÿ

t“1

σ2
t

`
1

κ
B2d2 plog T q

2
`

1

κ
B4d log T.

Discussion of Theorem 4.5. For sufficiently large, i.e.,
T ě ÕpeB

2
{d ` 1

κ2B
8d2q, OFU-MNL++ achieves a regret of

O
´

d log T

b

řT
t“1 σ

2
t

¯

. To the best of our knowledge, this
is the first variance-dependent and polypBq,K-free regret
bound in contextual MNL bandits. Compared to the recent
minimax optimal result of O

`

B3{2d logKplog T q3{2
?
T
˘

by Lee & Oh (2024), our method improves the regret by a
factor of O

`

B3{2 logK
?
log T

˘

. Moreover, the Õp
?
T q

term in Lee & Oh (2024) is replaced in our result by

Õ
´

b

řT
t“1 σ

2
t

¯

. Since σ2
t ď 1 always holds, this repre-

sents a strict improvement over
?
T .

Remark 4.6 (Computational cost of OFU-MNL++). The pro-
posed algorithm, OFU-MNL++, maintains a constant compu-
tational cost per round of OpKd3 ` polypNqq, which is
entirely independent of t. For parameter updates, we utilize
the linearized loss, inspired by Zhang & Sugiyama (2024),
and work within ellipsoidal search spaces (W and Wtpδq

in both phases. As a result, the update process incurs only
a cost of OpKd3q. Moreover, the assortment optimization
problem can be solved in OppolypNqq (Davis et al., 2014).

Remark 4.7 (Lower bound and optimality). For the worst-
case regret, we achieve Õpd

?
T q (since σt “ Op1q), which

matches the minimax lower bound of Ωpd
?
T q established

by Lee & Oh (2024). When the rewards are uniform, i.e.,
rti “ 1, we obtain Õpd

a

T {Kq, as σ2
t » ptp0|St,w

‹q »

1{K. This result also matches the uniform reward minimax
lower bound of Ωpd

a

T {Kq (Lee & Oh, 2024).

Comparison to related works. While our approach shares
some similarities with previous works (Faury et al., 2022;
Sawarni et al., 2024) that also use a similar warm-up phase,
there are significant differences.

7
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Remark 4.8 (Comparison to Faury et al. (2022)). Faury et al.
(2022) incurs a polypBq dependence in the leading term,
whereas our method avoids this entirely by exploiting the
self-concordant structure of the MNL loss (see Appendix B).
Additionally, their use of MLE in the adaptive warm-up
phase results in a per-round computation cost that grows lin-
early with the number of warm-up rounds. In contrast, our
method uses an online update rule, resulting in significantly
better computational efficiency. Finally, their approach re-
quires prior knowledge of κ, which is often unknown or
hard to estimate in practice.
Remark 4.9 (Comparison to Sawarni et al. (2024)). Unlike
Sawarni et al. (2024), which requires prior knowledge of
κ—an impractical assumption in real-world scenarios—our
approach does not rely on knowing κ in advance. Addi-
tionally, their method fully updates parameters using MLE
rather than an online update. As a result, the per-round
computation cost of their algorithm scales linearly with t,
while ours remains constant.

Discussion on instance-dependent regret. As a special
case, if the rewards are uniform (i.e., rti “ 1), we can
establish an instance-dependent regret bound.

Proposition 4.10. Under the same conditions as Theo-
rem 4.5 and assuming uniform rewards, for sufficiently

large T , OFU-MNL++ achieves a regret of Õ
´

d

b

řT
t“1 κ

‹
t

¯

,

where κ‹
t :“

ř

iPS‹
t
ptpi|S

‹
t ,w

‹qptp0|S‹
t ,w

‹q.

This result improves upon the previous instance-dependent

regret of Õ
´

eBd

b

řT
t“1 κ

‹
t

¯

(Proposition 2 of Lee & Oh

(2024)), by a factor of eB . The proof and further discussions
are provided in Appendix E.

4.3. MLE-Based Approach

Inspired by Lee et al. (2024b), who proposed a polypBq-
free confidence bound using the MLE for generalized linear
models (GLM) (but not for MNL models), we introduce an
MLE-based algorithm that achieves polypBq,K-free regret.
To this end, we first define the MLE estimator pwt as follows:

pwt :“ argmin
wPW

Ltpwq, where Ltpwq “

t´1
ÿ

s“1

ℓspwq.

Lemma 4.11 (Informal, Improved MLE confidence bound).
Let Gt “

ş1

0
p1 ´ vq∇2Ltppwt ` vpw‹ ´ pwtqqdv ` 1

8B2 Id.
Then, for any t ě 1, if Assumption 3.1 holds, then with
probability at least 1 ´ δ, we have:

}w‹ ´ pwt}Gt
“ O

´

a

d logpBtq
¯

.

Note that Gt is used solely for analytical purposes. The
algorithm and proofs are provided in Appendix F.

Theorem 4.12. Let δ P p0, 1s. Then, under Assumption 3.1,
with probability at least 1 ´ δ, the regret of OFU-M2NL
(Algorithm F.1) is bounded as follows:

RegT pw‹qÀ d logpBT q

g

f

f

e

T
ÿ

t“1

σ2
t `

1

κ
d2 plogpBT qq

2
.

Discussion of Theorem 4.12. Theorem 4.12 shows that
OFU-M2NL enjoys a completely polypBq-free regret for any
T , indicating that its regret is tighter than that of OFU-MNL++
by a factor of OppolypBqq in the non-leading term. How-
ever, its asymptotic regret still depends on logB, whereas
the asymptotic regret of OFU-MNL++ remains entirely inde-
pendent of B. Additionally, the per-round computational
cost of OFU-M2NL increases linearly with t, while that of
OFU-MNL++ remains constant.

5. Numerical Experiments
We empirically evaluate the performance of our algo-
rithms, OFU-MNL++ and OFU-M2NL, by measuring cumu-
lative regret over T “ 3000 rounds. The algorithms are
tested on 20 independent instances, and we report the aver-
age performance along with a shaded area representing two
standard deviations. In each instance, the true underlying
parameter w‹ is uniformly sampled from the d-dimensional
ball BdpBq of radius B, and the context features xti are
drawn from a Bdp1q. The rewards are sampled from a uni-
form distribution in each round, i.e., rti „ Unifp0, 1q.

The baselines are the practical and state-of-the-art al-
gorithms: the UCB-based algorithm, UCB-MNL (Oh &
Iyengar, 2019), the Thompson Sampling-based algorithm,
TS-MNL (Oh & Iyengar, 2019), and the constant-time algo-
rithm, OFU-MNL+ (Lee & Oh, 2024). Figure 1 shows that
both of our algorithms significantly outperform the baseline
algorithms. Although OFU-MNL++ incurs high regret in the
early rounds due to the adaptive warm-up phase (with the
number of such rounds depending onB), its regret stabilizes
after a certain point, exhibiting the lowest slope. Therefore,
we believe that OFU-MNL++ achieves the best asymptotic
performance among all algorithms. This aligns with our
theoretical results, which show that the asymptotic regret
of OFU-MNL++, Opd log T

?
T q, is entirely independent of

B (even in logarithmic terms), whereas other algorithms ex-
hibit B-dependence. Additionally, OFU-M2NL demonstrates
the most robust performance, maintaining its superiority
even as B increases, particularly in the early rounds. For
more details and additional results, refer to Appendix G.

Furthermore, Figure 2 shows that the online update meth-
ods (OFU-MNL+ and OFU-MNL++) maintain a constant run-
time per round, while the others exhibit a linear increase
with t due to their use of MLE-based parameter estima-
tion. Among them, our MLE-based approach, OFU-M2NL, is

8
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Figure 1: Cumulative regret for varying the norm-boundedness of the unknown parameter B.
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Figure 2: Runtime per round for varying the norm-boundedness of the unknown parameter B.

the most computationally expensive, as it solves a convex
optimization problem to compute the optimistic parame-
ter—unlike the others, which rely on closed-form UCBs
(see Line 6 in Algorithm F.1).

6. Conclusion
In this work, we construct the sharpest online confidence
bound for MNL models, with improvements in terms of
logK and polypBq dependencies. Leveraging this result,
we propose a constant-time algorithm, OFU-MNL++, that
achieves B,K-free regret in an asymptotic sense. Addi-
tionally, we introduce a MLE-based algorithm, OFU-M2NL,
which ensures polypBq,K-free regret at every round.
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proved optimistic algorithms for logistic bandits. In In-
ternational Conference on Machine Learning, pp. 3052–
3060. PMLR, 2020.

Faury, L., Abeille, M., Jun, K.-S., and Calauzènes, C. Jointly
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Appendix
A. Notation
Let T be the total number of rounds, with t P rT s representing the current round. We denote N as the total number of items,
K as the maximum size of assortments, d as the dimension of feature vectors, and B as the upper bound on the norm of the
unknown parameter. For ease of reference, we provide Table A.1.

Table A.1: Symbols

xti feature vector for item i given at round t
rti reward for item i given at round t
St assortment chosen by an algorithm at round t
Kt :“ |St|, size of chosen assortment at round t
0 outside option
yti choice response for each item i P St Y t0u at round t
RtpS,w

‹q :“
ř

iPS ptpi|S,w
‹qrti, expected revenue of the assortment S at round t

ℓtpwq :“ ´
ř

iPSt
yti log

´

exppxJ
tiwq

1̀
ř

jPSt
exppxJ

tjwq

¯

, loss function at round t

ℓ̄tpztq :“ ´
ř

iPSt
yti log

´

exppztiq

1̀
ř

jPSt
exppztjq

¯

, loss function at round t, zti “ xJ
tiw

T w set of adaptive warm-up rounds
wt online parameter estimate at round t
w1
t projection of wt onto the current search space Wt

ww
t adaptive warm-up parameter estimate at round t

η :“ 1, step-size parameter for wt

ηw :“ 1
2 ` 3

?
2B, step-size parameter for ww

t

λ :“ 4η, regularization parameter

λw :“ maxt12
?
2ηB, 2u regularization parameter for adaptive warm-up

∇2ℓtpwq “
ř

iPSt
ptpi|St,wqxtix

J
ti ´

ř

iPSt

ř

jPSt
ptpi|St,wqptpj|St,wqxtix

J
tj

Ht :“ λId `
ř

sRrt´1szT w ∇2ℓspws`1q

H̃t :“ Ht ` η∇2ℓtpw
1
tq1pt R T wq

Htpw
‹q :“ λ

e Id `
ř

sPrt´1szT w ∇2ℓspw
‹q

Hw
t :“ λwId `

ř

sPT wzrt,...,T s ∇2ℓspws`1q

βtpδq :“ O
´

a

d logpt{δq `B
¯

, confidence radius for wt at round t

ζtpδq :“ O
´

B
a

d logpt{δq `B2
¯

, confidence radius for ww
t at round t

τt :“ 6
?
2ζtpδq, threshold for determining whether to implement adaptive warm-up

UCBti :“ xJ
tiwt ` βtpδq}xti}H´1

t
, optimistic utility of item i at round t

R̃tpSq :“
ř

iPS exppUCBtiqrti
1`

ř

jPS exppUCBtjq
, optimistic expected revenue of assortment S at round t

σ2
t :“ Ei„ptp¨|St,w‹q

”

`

rti ´ Ej„ptp¨|St,w‹qrrtjs
˘2
ı

, variance of rewards given St at round t

For notational simplicity, we express the loss function in two different forms throughout the proof, using them interchangeably

12



Improved Online Confidence Bounds for Multinomial Logistic Bandits

as needed:

ℓtpwq “ ´
ÿ

iPSt

yti log ptpi|St,wq “ ´
ÿ

iPSt

yti log

˜

exppxJ
tiwq

1`
ř

jPSt
exppxJ

tjwq

¸

,

ℓ̄tpztq “ ´
ÿ

iPSt

yti log

˜

exppztiq

1`
ř

jPSt
exppztjq

¸

,

∇wℓtpwq “
ÿ

iPSt

pptpi|St,wq ´ ytiqxti,

∇zℓ̄tpztq “ σtpz
‹
t q ´ yt,

∇2
wℓtpwq “

ÿ

iPSt

ptpi|St,wqxtix
J
ti ´

ÿ

iPSt

ÿ

jPSt

ptpi|St,wqptpj|St,wqxtix
J
tj ,

∇2
zℓ̄tpztq “ diagpσtpz

‹
t qq ´ σtpz

‹
t qσtpz

‹
t qJ, (A.1)

where zti “ xJ
tiw, zt “ pztiqiPSt

P R|St|, and yt “ pytiqiPSt
P R|St|. Hence, it is clear that ℓtpwq “ ℓ̄tpztq.

B. Self-Concordant Properties of MNL Function
In this section, we present several key properties of self-concordant-like functions that are essential for proving the main
theorems in this paper.

For simplicity, we will work with the MNL loss in the form of ℓ̄ rather than ℓ throughout this section. However, it is
important to note that the properties introduced in this section also apply to ℓ. Whenever these properties are used in the
proofs of other lemmas or theorems, we will explicitly demonstrate their applicability to ℓ.

We begin by revisiting the definition of self-concordant-like functions.

Definition B.1 (Self-concordant-like function, Tran-Dinh et al. 2015). A convex function f P C3 : RK Ñ R is M -self-
concordant-like function with constant M if:

|ϕ3psq| ď M}b}2ϕ
2psq.

for s P R and M ą 0, where ϕpsq :“ fpa ` sbq for any a,b P RK .

To derive a tighter confidence bound in Theorem 4.2 and a tighter regret bound in Theorem 4.5, we redefine the concept of
self-concordant-like functions specifically for the MNL loss function ℓ̄.

Definition B.2 (ℓ8-norm self-concordant-like MNL loss). The MNL loss function ℓ̄pzq : RK Ñ R is M -self-concordant-
like function with constant M if:

|ϕ3psq| ď M}b}8ϕ
2psq.

for s P R and M ą 0, where ϕpsq :“ ℓ̄pa ` sbq for any a,b P RK .

Note that because }x}8 ď }x}2 for any vector w P RK , the new definition of a self-concordant-like function (Definition B.2),
which is specifically designed for the MNL loss function, is tighter than the original definition (Definition B.1).

Using this new definition, we show that the MNL loss defined in (1) is a 3
?
2-self-concordant-like function.

Proposition B.3 (Constant self-concordant-like MNL loss). For any t P rT s, the multinomial logistic loss ℓ̄t, defined in
Equation (A.1), is 3

?
2-self-concordant-like function under Definition B.2.

Proof of Proposition B.3. Recall that the loss ℓ̄t is defined as:

ℓ̄tpzq “ ´
ÿ

iPSt

ytizti

looooomooooon

linear

` log

˜

1 `
ÿ

iPSt

ezti

¸

loooooooooomoooooooooon

“:fpzq

13
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Since ℓ̄t consists of the linear term and fpzq : R|St| Ñ R, and the third derivatives of the linear term are zero, it suffices to
show that fpzq is a 3

?
2-self-concordant-like function.

Fix any t P rT s. For simplicity, let K “ |St|. We define:

ϕpsq :“ fpa ` sbq “ log

˜

1 `

K
ÿ

i“1

eai`sbi

¸

“ log

˜

K
ÿ

i“0

eai`sbi

¸

,

where a “ ra1, . . . , aKsJ P RK and b “ rb1, . . . , bKsJ P RK , and a0 “ b0 “ 0. Then, by simple calculus, we have

ϕ2psq “

ř

iăjpbi ´ bjq
2eai`sbieaj`sbj

´

řK
i“0 e

ai`sbi

¯2 ě 0,

and

ϕ3psq “

ř

iăjpbi ´ bjq
2eai`sbieaj`sbj

”

řK
k“0pbi ` bj ´ 2bkqeak`sbk

ı

´

řK
i“0 e

ai`sbi

¯3 ď

ˇ

ˇ

ˇ

ˇ

ˇ

řK
k“0pbi ` bj ´ 2akqeak`sbk

řK
i“0 e

ai`sbi

ˇ

ˇ

ˇ

ˇ

ˇ

ϕ2psq.

(B.1)

Note that for all i, j, k “ 0, . . . ,K,

|bi ` bj ´ 2bk| ď
?
6
b

b2i ` b2j ` b2k ď 3
?
2 max
i“0,...,K

|bi|.

Hence, we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“0

pbi ` bj ´ 2bkqeak`sbk

ˇ

ˇ

ˇ

ˇ

ˇ

ď

K
ÿ

k“0

|bi ` bj ´ 2bk| eak`sbk ď 3
?
2 max
i“0,...,K

|bi|
K
ÿ

i“0

eai`sbi . (B.2)

Plugging in (B.2) into (B.1), we derive that

ϕ3psq ď 3
?
2 max
i“0,...,K

|bi|ϕ
2psq “ 3

?
2}b}8ϕ

2psq.

By Definition B.2, we conclude that the MNL loss is 3
?
2-self-concordant-like.

Building on our new definition (Definition B.2), we establish several fundamental properties of the self-concordant-like MNL
loss function. The following proposition is analogous to Theorem 3 of Tran-Dinh et al. (2015). However, Proposition B.4
provides a tighter result specifically tailored to the MNL loss function (though it may be extendable to other functions).

Proposition B.4. For a convex function f P C3 : RK Ñ R, we define D3fpxqru,u,us :“ xD3fpxqrusu,uy. Then, if f is
the MNL loss function, i.e., f “ ℓ̄, then for any x,u1,u2 P RK , we have:

ˇ

ˇD3fpxqru1,u2,u2s
ˇ

ˇ ď 3
?
2 }u1}8}u2}2∇2fpxq.

Proof of Proposition B.4. Let ϕpsq “ fpa ` sbq. Then, we have

ϕ2psq “ ∇2fpa ` sbqbJb, ϕ3psq “ D3fpa ` sbqrb,b,bs.

By Definition B.2 and Proposition B.3, we know that
ˇ

ˇϕ3psq
ˇ

ˇ ď 3
?
2}b}8ϕ

3psq.

By substituting s “ 0, a “ x, and b “ u1, we get
ˇ

ˇD3fpxqru1,u1,u1s
ˇ

ˇ “
ˇ

ˇϕ3p0q
ˇ

ˇ ď 3
?
2}u1}8ϕ

3p0q “ 3
?
2}u1}8∇2fpxquJ

1 u1,

14
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which can be equivalently expressed as

´3
?
2}u1}8∇2fpxq ĺ D3fpxqru1s ĺ 3

?
2}u1}8∇2fpxq.

Therefore, for any u2 P RK , we have
ˇ

ˇuJ
2D

3fpxqru1su2

ˇ

ˇ ď 3
?
2}u1}8uJ

2 ∇2fpxqu2

ðñ
ˇ

ˇD3fpxqru1,u2,u2s
ˇ

ˇ ď 3
?
2 }u1}8}u2}2∇2fpxq.

This concludes the proof.

Proposition B.5, a variant of Theorem 4 in Tran-Dinh et al. (2015), establishes a key inequality for the Hessian of the MNL
loss, which plays a crucial role in eliminating B-dependency.

Proposition B.5. For any t P rT s, the Hessian of the multinomial logistic loss ℓ̄t : R|St| Ñ R satisfies that, for any
z1, z2 P R|St|, we have:

e´3
?
2}z1´z2}8∇2ℓ̄tpz1q ĺ ∇2ℓ̄tpz2q ĺ e3

?
2}z1´z2}8∇2ℓ̄tpz1q.

Proof of Proposition B.5. We denote zs “ z1 ` spz2 ´ z1q for notational convenience, where s P r0, 1s. We define
the function ψpsq :“ uJ∇2ℓ̄tpzsqu “ }u}2∇2ℓ̄tpzsq

. Note that ψp0q “ }u}2∇2ℓ̄tpz1q
and ψp1q “ }u}2∇2ℓ̄tpz2q

. Then, by
Proposition B.4, we have

ˇ

ˇψ1psq
ˇ

ˇ “
ˇ

ˇD3ℓ̄tpzsqrz2 ´ z1,u,us
ˇ

ˇ ď 3
?
2}z2 ´ z1}8ψpsq,

which can be equivalently written as follows:
ˇ

ˇ

ˇ

ˇ

d lnψpsq

ds

ˇ

ˇ

ˇ

ˇ

ď 3
?
2}z2 ´ z1}8.

By integrating both sides over s P r0, 1s, we conclude the proof.

Additionally, we introduce an improved version of Proposition 6 in Perivier & Goyal (2022), which serves as a useful tool
for the subsequent proofs.

Proposition B.6. For any t P rT s, the Hessian of the multinomial logistic loss ℓ̄t : R|St| Ñ R satisfies the following for any
u, z1, z2 P R|St|:

uJ

ˆ
ż 1

0

p1 ´ sq∇2ℓ̄tpz1 ` spz2 ´ z1qqds

˙

u ě
1

2 ` 3
?
2}z2 ´ z1}8

uJ∇2ℓ̄tpz1qu.

Proof of Proposition B.6. From Proposition B.5, we have

uJ

ˆ
ż 1

0

p1 ´ sq∇2ℓ̄tpz1 ` spz2 ´ z1qqds

˙

u ě uJ∇2ℓ̄tpz1qu

ż 1

0

p1 ´ sqe´3
?
2}spz2´z1q}8ds

ě uJ∇2ℓ̄tpz1qu

˜

1

3
?
2}pz2 ´ z1q}8

`
e´3

?
2}pz2´z1q}8 ´ 1

`

3
?
2}pz2 ´ z1q}8

˘2

¸

ě uJ∇2ℓ̄tpz1qu

ˆ

1

2 ` 3
?
2}pz2 ´ z1q}8

˙

,

where in the third inequality, we use the fact that 1
x

´

1 ` e´x
´1
x

¯

ě 1
2`x for all x ě 0.

C. Proof of Theorem 4.2
In this section, we provide the proof of Theorem 4.2. We begin with the main proof of the theorem, followed by the proof of
the technical lemma that is used within the main argument.
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C.1. Main Proof of Theorem 4.2

Proof of Theorem 4.2. The overall proof structure is similar to the analysis presented in Zhang & Sugiyama (2024); Lee
& Oh (2024). However, as explained in the main paper, several novel analytical techniques are introduced to derive a
B-improved, K-free confidence bound, including:

1. B,K-independent step size η by leveraging improved self-concordant properties,

2. Op
?
log t logKq improvement through the use of a novel intermediary term, and

3. dimension-free regularization parameter λ, achieved via a more refined analysis.

Throughout the proof of Theorem 4.2, we denote T Ď rT s as the set of total update rounds. For any round t P rT s, we
denote Tt Ď T as the set of update rounds that occur before t, i.e., Tt “ ts P T : s ă tu “ T ztt, t` 1, . . . , T u. We assume
the following conditions hold:

Condition C.1 (Update condition). For all t P T , we assume that

sup
wPWt

|xJ
tipw ´ w‹q| ď α, @i P St,

where Wt is a compact convex set, and α ą 0.

We also denote the size of the assortment at round t as Kt, i.e., Kt “ |St| ď K.

Lemma C.1. Suppose Condition C.1 holds. The update rule for the parameter at round t P T is defined as:

w1
t “ argmin

wPWt

}w ´ wt}Ht ,

wt`1 “ argmin
wPWt

rℓtpwq `
1

2η
}w ´ w1

t}
2
Ht
,

where rℓtpwq “ ℓtpw
1
tq ` xw ´ w1

t,∇ℓtpw1
tqy ` 1

2}w ´ w1
t}

2
∇2ℓtpw1

tq
. Let η “ 1 ` 3

?
2

2 α and λ ě 12
?
2ηα. Then, under

Assumption 3.1, for any update round t P T , we have

}wt`1 ´ w‹}2Ht`1
ď 2η

¨

˝

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓspws`1q

˛

‚` 4B2λ´
1

2

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
Hs
. (C.1)

The proof is deferred to Appendix C.2.1. Following the approach of Faury et al. (2022); Zhang & Sugiyama (2024); Lee &
Oh (2024), to bound the first term in Equation (C.1), we introduce an intermediary parameter that is Fs-measurable. Note
that ws`1 is Fs-measurable.

To do so, we first define the softmax function at round t, denoted as σtpzq : RKt Ñ RKt , as follows:

rσtpzqsi “
expprzsiq

1 `
řKt

k“1 expprzskq
, @i P rKts, (C.2)

where r¨si denotes i’th element of the input vector. The probability of choosing the outside option is denoted as:

rσtpzqs0 “
1

1 `
řKt

k“1 expprzskq

Although rσtpzqs0 is not part of the output vector of the softmax function σtpzq, it is expressed in a similar form to (C.2)
for simplicity. Then, the MNL user choice model can be equivalently expressed as ptpi|St,wq “

“

σt
`

pxJ
tjwqjPSt

˘‰

i

for all i P rKts and ptp0|St,wq “
“

σt
`

pxJ
tjwqjPSt

˘‰

0
. Furthermore, the loss function in (1) can also be expressed as

ℓpzt,ytq “
řKt

k“0 1 tyti “ 1u ¨ log
´

1
rσtpztqsk

¯

.
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We also define a pseudo-inverse function of σtp¨q as σ`
t : RKt Ñ RKt , where rσ`

t pqqsi “ log pqi{p1 ´ }q}1qq for any
q P tp P r0, 1sKt | }p}1 ă 1u. Then, we define the intermediary parameter as follows:

z̃s :“ σ`
s

`

Ew„Ps

“

σs
`

pxJ
sjwqjPSs

˘‰˘

. (C.3)

where Ps :“ TN}w´w1
s}Hsď 3

2γ

`

ws, cH̄
´1
s

˘

is a truncated multivariate normal distribution with mean ws and covariance
cH̄´1

s , truncated to the region t}w ´ w1
s}Hs

ď 3
2γu. Here, H̄s :“ Hs ` λ̄Id and c, λ̄, γ ą 0 are positive constants to be

specified later. Note that z̃s is Fs-measurable unlike ws`1. Then, the first term in Equation (C.1) can be decomposed into
two terms as follows:

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓ̄spz̃sq

looooooooooooooooomooooooooooooooooon

paq

`
ÿ

sPTt`1

ℓ̄spz̃sq ´
ÿ

sPTt`1

ℓspws`1q

looooooooooooooooooomooooooooooooooooooon

pbq

First, we demonstrate that the term paq is bounded by O plog tq with high probability.

Lemma C.2. Let δ P p0, 1s and λ ě 1. Assume that Condition C.1 holds. Define the intermediary parameter as
Equation (C.3) with and γ, c ą 0. Then, for any t P T , with probability at least 1 ´ δ, we have

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓ̄spz̃sq ď 11 ¨ p2 ` 3
?
2α ` 2

?
2η `

3

2
γq log

ˆ

2
?
1 ` 2t

δ

˙

.

The proof is deferred to Appendix C.2.2. Compared to Lemma F.2 of Lee & Oh (2024), which bound the similar term by
O
`

plog tq2 logK
˘

, Lemma C.2 improves the bound by a factor of log t logK. This improvement is primarily due to our
use of the truncated normal distribution Ps instead of the non-truncated one used by Zhang & Sugiyama (2024); Lee & Oh
(2024). By bounding the support of Ps, the intermediary parameter z̃s is also well-bounded. As a result, we avoid relying
on the smoothed version of z̃s, as suggested by Foster et al. (2018). In contrast, the smoothed intermediate term in Zhang &
Sugiyama (2024); Lee & Oh (2024) is bounded by logpKtq, ultimately leading to the looser bound of O

`

plog tq2 logK
˘

for the term paq.

Now, we bound the term pbq by the following lemma:

Lemma C.3. Let γ ě 2
?
2η, H̄s “ Hs ` λ̄Id, c ą 0, and λ̄ ě maxt2, 72du. Then, for all t ě T , we have

ÿ

sPTt`1

ℓpz̃s,ysq ´
ÿ

sPTt`1

ℓspws`1q ď
1

2c

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
H̄s

`
?
6d log

ˆ

1 `
t` 1

4

˙

.

The proof is deferred to Appendix C.2.3.

Finally, by combining Lemma C.1, Lemma C.2, and Lemma C.3, and substituting γ “ 2
?
2η, we derive that

}wt`1 ´ w‹}2Ht`1

ď 22 ¨

´

2 ` 3
?
2α ` 5

?
2η
¯

η log

ˆ

2
?
1 ` 2t

δ

˙

`
η

c

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
H̄s

` 2
?
6ηd log

ˆ

1 `
t` 1

4

˙

` 4B2λ´
1

2

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
Hs

ď 22 ¨

´

2 ` 3
?
2α ` 5

?
2η
¯

η log

ˆ

2
?
1 ` 2t

δ

˙

` 2
?
6ηd log

ˆ

1 `
t` 1

4

˙

` 4B2λ

“ O
`

α2 ¨ d logpt{δq ` α2B2
˘

.

in the last inequality, by setting c ě 2ηpλ ` λ̄q{λ̄, we get ηc H̄s ĺ λ{p2pλ ` λ̄qqH̄s ĺ 1
2Hs. This implies that for all

t P T ztt1u (where t1 denote the first update round), we have

}wt ´ w‹}Ht
ď O

´

α
a

d logpt{δq ` αB
¯

. (C.4)

For t1 P T , we know that }wt1 ´ w‹}Ht ď
?
λB “ OpαBq. Thus, Equation (C.4) holds for all t P T . This concludes the

proof of Theorem 4.2.
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C.2. Proofs of Lemmas for Theorem 4.2

C.2.1. PROOF OF LEMMA C.1

Proof of Lemma C.1. For any update round s P Tt (an update round occurring before t P T ), let ℓ̃spwq “ ℓspw
1
sq `

x∇ℓspw1
sq,w´w1

sy ` 1
2}w´w1

s}
2
∇2ℓspw1

sq
be a second-order approximation of the original function ℓspwq at the point w1

s,
where w1

s “ argminwPWs
}w ´ ws}Hs is the projection of ws onto Ws. Then, the update rule in (2) can be equivalently

rewritten as follows:

ws`1 “ argmin
wPWs

x∇ℓtpwsq,wy `
1

2η
}w ´ w1

s}
2
H̃s

“ argmin
wPWs

x∇ℓtpwsq,wy `
1

2
}w ´ w1

s}∇2ℓspwsq `
1

2η
}w ´ w1

s}
2
Hs

“ argmin
wPWs

ℓ̃spwq `
1

2η
}w ´ w1

s}
2
Hs
.

Then, by applying Lemma C.4, we get

x∇ℓ̃spws`1q,ws`1 ´ w‹y ď
1

2η

`

}w1
s ´ w‹}2Hs

´ }ws`1 ´ w‹}2Hs
´ }ws`1 ´ w1

s}
2
Hs

˘

ď
1

2η

`

}ws ´ w‹}2Hs
´ }ws`1 ´ w‹}2Hs

´ }ws`1 ´ w1
s}

2
Hs

˘

, (C.5)

where the last inequality holds due to the nonexpansive property of the projection mapping PWs
, i.e., }w1

s ´ w‹}2Hs
“

}PWs
pwsq ´ PWs

pw‹q}2Hs
ď }ws ´ w‹}2Hs

. On the other hand, by applying Lemma C.5, which is based on our improved
self-concordant-like property (Proposition B.4), we obtain:

ℓspws`1q ´ ℓspw
‹q ď x∇ℓspws`1q,ws`1 ´ w‹y ´

1

2 ` 3
?
2α

}ws`1 ´ w‹}2∇2ℓspws`1q. (C.6)

Let η “ 1 ` 3
?
2

2 α. Then, by combining (C.5) and (C.6), we obtain that

ℓspws`1q ´ ℓspw
‹q ď x∇ℓspws`1q ´ ∇ℓ̃spws`1q,ws`1 ´ w‹y

`
1

2η

´

}ws ´ w‹}2Hs
´ }ws`1 ´ w‹}2Hs`1

´ }ws`1 ´ w1
s}

2
Hs

¯

. (C.7)

In the inequality above, the first term on the right-hand side can be further bounded as:

x∇ℓspws`1q´∇ℓ̃spws`1q,ws`1 ´ w‹y

“ x∇ℓspws`1q ´ ∇ℓspw1
sq ´ ∇2ℓspw

1
sqpws`1 ´ w1

sq,ws`1 ´ w‹y

“ xD3ℓspw̄sqrws`1 ´ w1
sspws`1 ´ w1

sq,ws`1 ´ w‹y (Taylor expansion)

“ D3ℓspw̄sqrws`1 ´ w‹,ws`1 ´ w1
s,ws`1 ´ w1

ss, (C.8)

where in the second equality, we use the Taylor expansion by introducing w̄s, which is a convex combination of ws`1

and w1
s. Recall that by the definition of loss (see Equation (A.1)), the loss ℓspw̄sq can be expressed as ℓ̄spz̄sq, where

z̄s “ pxJ
siw̄sqiPSs

P R|Ss|. Moreover, let zs`1 “ pxJ
siws`1qiPSs

, z1
s “ pxJ

siw
1
sqiPSs

, and z‹ “ pxJ
siw

‹qiPSs
. Then, by

simple calculus, we get

D3ℓspw̄sqrws`1 ´ w‹,ws`1 ´ w1
s,ws`1 ´ w1

ss “ D3ℓ̄spz̄sqrzs`1 ´ z‹, zs`1 ´ z1
s, zs`1 ´ z1

ss

ď 3
?
2}zs`1 ´ z‹}8}zs`1 ´ z1

s}
2
∇2ℓ̄spz̄sq

(Proposition B.4)

ď 3
?
2max
xPXs

|xJpws`1 ´ w‹q|}zs`1 ´ z1
s}

2
∇2ℓ̄spz̄sq

ď 3
?
2α}zs`1 ´ z1

s}
2
∇2ℓ̄spz̄sq

“ 3
?
2α}ws`1 ´ w1

s}
2
∇2ℓspw̄sq (Definition of ℓ̄)

ď 3
?
2α}ws`1 ´ w1

s}
2
2, (C.9)
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where the last inequality holds because

∇2ℓspw̄sq “
ÿ

iPSs

pspi|Ss, w̄sqxsix
J
si ´

ÿ

iPSs

ÿ

jPSs

pspi|Ss, w̄sqpspj|Ss, w̄sqxsix
J
sj

“
ÿ

iPSs

pspi|Ss, w̄sqxsix
J
si ´

«

ÿ

iPSs

pspi|Ss, w̄sqxsi

ff«

ÿ

iPSs

pspi|Ss, w̄sqxsi

ffJ

ĺ
ÿ

iPSs

pspi|Ss, w̄sqxsix
J
si ĺ Id. (}xsi}2 ď 1, Assumption 3.1)

Hence, by plugging (C.8) and (C.9) into (C.7), and summing over s P Tt`1, we obtain

ÿ

sPTt`1

ℓspws`1q ´
ÿ

sPTt`1

ℓspw
‹q

ď 3
?
2α

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
2 `

1

2η

ÿ

sPTt`1

´

}ws ´ w‹}2Hs
´ }ws`1 ´ w‹}2Hs`1

´ }ws`1 ´ w1
s}

2
Hs

¯

“ 3
?
2α

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
2 `

1

2η

¨

˝}wt1 ´ w‹}2Ht1
´ }wt`1 ´ w‹}2Ht`1

´
ÿ

sPTt`1

}ws`1 ´ w1
s}

2
Hs

˛

‚,

where in the equality, t1 P T represents the first update round. Additionally, we use the fact that the parameter wt, and
the matrices H̃t and Ht remain unchanged during non-update rounds. By rearranging the terms and using the fact that
}wt1 ´ w‹}2Ht1

ď λ}wt1 ´ w‹}22 ď 4B2λ, we get

}wt`1 ´ w‹}2Ht`1

ď 2η

¨

˝

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓspws`1q

˛

‚` 4B2λ´
ÿ

sPTt`1

}ws`1 ´ w1
s}

2
Hs

` 6
?
2ηα

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
2

ď 2η

¨

˝

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓspws`1q

˛

‚` 4B2λ´
1

2

ÿ

sPTt`1

}ws`1 ´ w1
s}

2
Hs
,

where the last inequality holds because, by setting λ ě 12
?
2ηα, we have 6

?
2ηα}ws`1 ´ w1

s}
2
2 ď 1

2}ws`1 ´ w1
s}

2
Hs

.

C.2.2. PROOF OF LEMMA C.2

Proof of Lemma C.2. Recall the definition of z̃s in Equation (C.3). For any j P Ss and w̃s „ Ps, we denote z̃sj “ xJ
sjw̃s

and zsj “ xJ
sjw

1
s. Since the support of Ps is bounded by the region t}w ´ w1

s}Hs ď 3
2γu, for any j P Ss, we have

|z̃sj ´ zsj | “ |xJ
sjpw̃ ´ w1

sq| ď }xsj}H´1
s

}w̃ ´ w1
s}Hs

ď
1

?
λ

}xsj}2}w̃ ´ w1
s}Hs

ď
3

2
γ. (λ ě 1, }xsj}2 ď 1, }w̃ ´ w1

s}Hs ď 3
2γ)

Hence, we get

“

σs
`

pxJ
sjw̃sqjPSs

˘‰

j
P

«

exp
`

zsj ´ 3
2γ

˘

1 ` exp
`

zsj ` 3
2γ

˘ ,
exp

`

zsj ` 3
2γ

˘

1 ` exp
`

zsj ´ 3
2γ

˘

ff

, @j P Ss and

“

σs
`

pxJ
sjw̃sqjPSs

˘‰

0
P

«

1

1 ` exp
`

zsj ` 3
2γ

˘ ,
1

1 ` exp
`

zsj ´ 3
2γ

˘

ff

.
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Let qsi “
“

σs
`

pxJ
sjw̃sqjPSs

˘‰

j
and qs0 “

“

σs
`

pxJ
sjw̃sqjPSs

˘‰

0
. Then, we have

log qsi P

„

zsj ´
3

2
γ ´ log

ˆ

1 ` exp

ˆ

zsj `
3

2
γ

˙˙

, zsj `
3

2
γ ´ log

ˆ

1 ` exp

ˆ

zsj ´
3

2
γ

˙˙ȷ

, @j P Ss and

log qs0 P

„

´ log

ˆ

1 ` exp

ˆ

zsj `
3

2
γ

˙˙

,´ log

ˆ

1 ` exp

ˆ

zsj ´
3

2
γ

˙˙ȷ

.

Using the definition of the pseudo-inverse function, given by rσ`
s pqsqsj “ log pqsj{p1 ´ }qs}1qq “ log qsj ´ log qs0, for

any j P Ss, we obtain

z̃sj “ rσ`
s pqsqsj P

„

zsj ´
3

2
γ, zsj `

3

2
γ

ȷ

,

which implies that

}z̃s ´ zs}8 ď
3

2
γ. (C.10)

Now, we are ready to prove the lemma. Let z‹
s “

`

xJ
sjw

‹
˘

jPSs
P RKs .

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓ̄spz̃sq “
ÿ

sPTt`1

ℓ̄spz
‹
sq ´

ÿ

sPTt`1

ℓ̄spz̃sq (Definition of ℓ̄)

ď
ÿ

sPTt`1

x∇z ℓ̄spz
‹
sq, z‹

s ´ z̃sy ´
1

2 ` 3
?
2α

ÿ

sPTt`1

}z‹
s ´ z̃s}

2
∇2

z ℓ̄spz‹
sq

(Lemma C.5)

“
ÿ

sPTt`1

xσspz
‹
sq ´ ys, z

‹
s ´ z̃sy ´

1

2 ` 3
?
2α

ÿ

sPTt`1

}z‹
s ´ z̃s}

2
∇σspz‹

sq, (C.11)

where last equality holds by directly calculating the first-order derivative and the Hessian of the logistic loss, as shown
below:

∇z ℓ̄spz
‹
sq “ σspz

‹
sq ´ ys, ∇2

z ℓ̄spz
‹
sq “ diagpσspz

‹
sqq ´ σspz

‹
sqσspz

‹
sqJ “ ∇σspz

‹
sq.

To bound the first term of Equation (C.11), we begin by defining ds as follows:

ds :“
1

D
pz‹
s ´ z̃sq, where D “ max

"

α ` 2
?
2η `

3

2
γ, 2 ` 3

?
2α

*

.

We then extend ds with zero padding to create d1
s P RK , i.e., d1

s “ rdJ
s , 0, . . . , 0sJ, where zeros are appended to increase the

dimension of ds to K. Similarly, we extend σspz
‹
sq ´ys with zero padding and define εs “ rpσspz

‹
sq ´ysq

J, 0, . . . , 0sJ P

RK .

It is straightforward to verify that }d1
s}8 ď 1 because

}d1
s}8 “

1

D
}z‹
s ´ z̃s}8 ď

1

D
p}z‹

s ´ zs`1}8 ` }zs`1 ´ zs}8 ` }zs ´ z̃s}8q

ď
1

D

ˆ

α ` 2
?
2η `

3

2
γ

˙

ď 1,

where the second-to-last inequality holds because

}z‹
s ´ zs`1}8 “ max

iPSs

|xJ
sipw

‹ ´ ws`1q| “ max
iPSs,wPWs

|xJ
sipw

‹ ´ wq| ď α. (ws`1 P Ws, Definition of α)

}zs`1 ´ zs}8 ď max
iPSs

}xsi}H´1
s

}ws`1 ´ w1
s}Hs ď }ws`1 ´ w1

s}Hs (}xsi}2 ď 1, λ ě 1)

ď 2η}∇ℓspw1
sq}H´1

s
“ 2η

›

›

›

›

›

ÿ

iPSs

`

pspi|Ss,w
1
sq ´ ysi

˘

xsi

›

›

›

›

›

H´1
s

(Lemma C.6)

ď 2
?
2η. (}xsi}H´1

s
ď 1)

}zs ´ z̃s}8 ď
3

2
γ. (Eq. (C.10))
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Note that d1
s is Fs-measurable since z‹

s and z̃s are independent of ys. Furthermore, we have }d1
s}

2
ErεsεJ

s |Fss
“

}ds}
2
Erpσspz‹

sq´ysqpσspz‹
sq´ysqJ|Fss

“ }ds}
2
∇σspz‹

sq
and }σspz

‹
sq ´ ys}1 ď 2. Therefore, by applying Lemma C.7, with

probability at least 1 ´ δ, for any t P T , we get
ÿ

sPTt`1

xσspz
‹
sq ´ ys, z

‹
s ´ z̃sy “ D

ÿ

sPTt`1

xσspz
‹
sq ´ ys,dsy

“ D
ÿ

sPTt`1

xεs,d
1
sy

ď D

d

λ̃`
ÿ

sPTt`1

}ds}2∇σspz‹
sq

¨

˝

a

λ̃

4
`

4
a

λ̃
log ¨

¨

˝

2
b

1 ` 1
λ̃

ř

sPTt`1
}ds}2∇σspz‹

sq

δ

˛

‚

˛

‚

ď D

d

λ̃`
ÿ

sPTt`1

}ds}2∇σspz‹
sq

¨

˜
a

λ̃

4
`

4
a

λ̃
log

ˆ

2
?
1 ` 2t

δ

˙

¸

, (C.12)

where λ̃ ě 1. The last inequality holds because }ds}
2
∇σspz‹

sq
“ dJ

s ∇σspz
‹
sqds ď 2. Then, plugging (C.12) into (C.11)

and (C.12), we have
ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓ̄spz̃sq

ď D

d

λ̃`
ÿ

sPTt`1

}ds}2∇σspz‹
sq

¨

˜
a

λ̃

4
`

4
a

λ̃
log

ˆ

2
?
1 ` 2t

δ

˙

¸

´
1

2 ` 3
?
2α

ÿ

sPTt`1

}z‹
s ´ z̃s}

2
∇σspz‹

sq

“ D

d

λ̃`
ÿ

sPTt`1

}ds}2∇σspz‹
sq

¨

˜
a

λ̃

4
`

4
a

λ̃
log

ˆ

2
?
1 ` 2t

δ

˙

¸

´
D2

2 ` 3
?
2α

ÿ

sPTt`1

}ds}
2
∇σspz‹

sq

ď D

¨

˝λ̃`
ÿ

sPTt`1

}ds}
2
∇σspz‹

sq

˛

‚` D

˜
a

λ̃

4
`

4
a

λ̃
log

ˆ

2
?
1 ` 2t

δ

˙

¸2

´
D2

2 ` 3
?
2α

ÿ

sPTt`1

}ds}
2
∇σspz‹

sq (AM-GM inequality)

ď D

˜

17

16
λ̃` 2 log

ˆ

2
?
1 ` 2t

δ

˙

`
16

λ̃

ˆ

log

ˆ

2
?
1 ` 2t

δ

˙˙2
¸

, (D ě 2 ` 3
?
2α)

where in the last inequality, we set γ ě 2
3

`

2 ` p3
?
2 ´ 1qα

˘

. Finally, by setting λ̃ “ 16?
17

log
´

2
?
1`2t
δ

¯

, we derive

ÿ

sPTt`1

ℓspw
‹q ´

ÿ

sPTt`1

ℓ̄spz̃sq ď p2
?
17 ` 2q ¨ D log

ˆ

2
?
1 ` 2t

δ

˙

ď 11 ¨ p2 ` 3
?
2α ` 2

?
2η `

3

2
γq log

ˆ

2
?
1 ` 2t

δ

˙

,

which concludes the proof.

C.2.3. PROOF OF LEMMA C.3

Proof of Lemma C.3. The proof builds on an observation from Proposition 2 in Foster et al. (2018), which states that z̃s is
an aggregation forecaster for the logistic function. Recall that Ps is defined as Ps “ TN}w´w1

s}Hsď 3
2γ

`

w1
s, cH̄

´1
s

˘

, where
H̄s :“ Hs ` λ̄Id with λ̄ ą 0. Then, for any s P Tt`1, the following holds:

ℓ̄spz̃sq ď ´ log
´

Ew„Ps

”

e´ℓspwq
ı¯

“ ´ log

˜

1

Zs

ż

}w´w1
s}Hsď 3

2γ

e´Lspwqdw

¸

, (C.13)
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where Lspwq :“ ℓspwq ` 1
2c}w ´ w1

s}
2
H̄s

and Zs :“
ş

}w´w1
s}Hsď 3

2γ
e´ 1

2c }w´w1
s}

2
H̄sdw.

We define the the quadratic approximation of Lspwq as follows:

L̃spwq :“ Lspws`1q ` x∇Lspws`1q,w ´ ws`1y `
1

2c
}w ´ ws`1}2H̄s

.

Then, by Lemma C.8 and considering the fact that ℓs is 3
?
2-self-concordant-like function by Proposition B.3, we get

Lspwq ď L̃spwq ` e18}w´ws`1}
2
2}w ´ ws`1}2∇2ℓspws`1q. (C.14)

We define Cs ě 1 as a sufficiently large constant such that

ż

}w}Hsď 3
2γ

e´ 1
2c }w}

2
H̄sdw ď

ż

}w}Hsď 1
2γ

e´
Cs
2c }w}

2
H̄sdw. (C.15)

Such a Cs always exists because, as Cs increases, the Gaussian becomes narrower, which produces a larger integral value
within the smaller region. Then, we define the function f̃s`1 : W Ñ R as

f̃s`1pwq “ exp

ˆ

´
Cs
2c

}w ´ ws`1}2H̄s
´ e18}w´ws`1}

2
2}w ´ ws`1}2∇2ℓspws`1q

˙

.

Note that f̃s`1pwq ď exp
´

´ 1
2c}w ´ ws`1}2

H̄s
´ e18}w´ws`1}

2
2}w ´ ws`1}2∇2ℓspws`1q

¯

. We can then derive a lower
bound for the expectation in Equation (C.13) as follows:

Ew„Ps

”

e´ℓspwq
ı

“
1

Zs

ż

}w´w1
s}Hsď 3

2γ

expp´Lspwqqdw

ě
1

Zs

ż

}w´w1
s}Hsď 3

2γ

expp´L̃spwq ´ e18}w´ws`1}
2
2}w ´ ws`1}2∇ℓspws`1qqdw (Eqn. (C.14))

ě
expp´Lspws`1qq

Zs

ż

}w´w1
s}Hsď 3

2γ

f̃s`1pwq ¨ expp´x∇Lspws`1q,w ´ ws`1yqdw (Definition of f̃s`1pwq)

ě
expp´Lspws`1qq

Zs

ż

}w´ws`1}Hsď 1
2γ

f̃s`1pwq ¨ expp´x∇Lspws`1q,w ´ ws`1yqdw,

where the last inequality holds because, by setting γ ě 2
?
2η, for any w̃ P Rd satisfying }w̃ ´ ws`1}Hs

ď 1
2γ, it follows

that w̃ P tw P Rd : }w ´ w1
s}Hs

ď 3
2γu. To verify this, we compute

}w̃ ´ w1
s}Hs

ď }w̃ ´ ws`1}Hs
` }ws`1 ´ w1

s}Hs
ď

1

2
γ ` }ws`1 ´ w1

s}Hs

ď
1

2
γ ` 2η}∇ℓspw1

sq}H´1
s

(Lemma C.6)

“
1

2
γ ` 2η

›

›

›

›

›

ÿ

iPSs

`

pspi|Ss,w
1
sq ´ ysi

˘

xsi

›

›

›

›

›

H´1
s

ď
1

2
γ ` 2

?
2η (}xsi}H´1

s
ď 1)

ď
3

2
γ. (set γ ě 2

?
2η)

Moreover, we define Z̃s`1 “
ş

}w´ws`1}Hsď 1
2γ
f̃s`1pwqdw ă `8, and denote the distribution whose density function is
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f̃s`1pwq{Z̃s`1 as P̃s`1. Then, we have

Ew„Ps

”

e´ℓspwq
ı

ě
expp´Lspws`1qqZ̃s`1

Zs
Ew„P̃s`1

rexpp´x∇Lspws`1q,w ´ ws`1yqs

ě
expp´Lspws`1qqZ̃s`1

Zs
exp

ˆ

´ Ew„P̃s`1
rx∇Lspws`1q,w ´ ws`1ys

loooooooooooooooooooooomoooooooooooooooooooooon

“0

˙

(Jensen’s inequality)

“
expp´Lspws`1qqZ̃s`1

Zs
, (C.16)

where the equality holds because P̃s`1 is symmetric around ws`1. Plugging (C.16) into (C.13), we get

ℓpz̃s,ysq ď ℓspws`1q `
1

2c
}w1

s ´ ws`1}2H̄s
` logZs ´ log Z̃s`1.

We can further bound the term ´ log Z̃s`1 as follows:

´ log Z̃s`1 “ ´ log

˜

ż

}w´ws`1}Hsď 1
2γ

exp

ˆ

´
Cs
2c

}w ´ ws`1}2H̄s
´ e18}w´ws`1}

2
2}w ´ ws`1}2∇2ℓspws`1q

˙

dw

¸

“ ´ log
´

pZs`1 ¨ Ew„ pPs`1

”

exp
´

´e18}w´ws`1}
2
2}w ´ ws`1}2∇2ℓspws`1q

¯ı¯

ď ´ log pZs`1 ` Ew„ pPs`1

”

e18}w´ws`1}
2
2}w ´ ws`1}2∇2ℓspws`1q

ı

, (Jensen’s inequality)

where in the second equality, we define pPs`1 :“ TN}w´ws`1}Hsď 1
2γ

`

ws`1, cpCsH̄sq
´1

˘

as a truncated multivariate
normal distribution with mean ws`1 and covariance cpCsH̄sq

´1, truncated to the region t}w ´ ws`1}Hs ď 1
2γu, and let

pZs`1 :“
ş

}w´ws`1}Hsď 1
2γ
e´

Cs
2c }w´ws`1}

2
H̄sdw. Hence, we get

ℓpz̃s,ysq ď ℓspws`1q `
1

2c
}w1

s ´ ws`1}2H̄s
` log

Zs
pZs`1

` Ew„ pPs`1

”

e18}w´ws`1}
2
2}w ´ ws`1}2∇2ℓspws`1q

ı

(C.17)

To bound Zs

pZs`1
in Equation (C.17), we have

Zs
pZs`1

“

ş

}w´w1
s}Hsď 3

2γ
e´ 1

2c }w´w1
s}

2
H̄sdw

ş

}w´ws`1}Hsď 1
2γ
e

´
Cs
2c }w´ws`1}2

H̄sdw

“

ş

}w}Hsď 3
2γ
e´ 1

2c }w}
2
H̄sdw

ş

}w}Hsď 1
2γ
e

´
Cs
2c }w}2

H̄sdw
(change of variable)

ď 1 (Definition of Cs, Eqn. (C.15))

which indicates that

log
Zs
pZs`1

ď 0. (C.18)

Now, we bound the last term in Equation (C.17). Using the Cauchy-Schwarz inequality, we have

Ew„ pPs`1

”

e18}w´ws`1}
2
2}w ´ ws`1}2∇2ℓspws`1q

ı

ď

b

Ew„ pPs`1

“

e36}w´ws`1}22
‰

loooooooooooooooomoooooooooooooooon

(b)-1

c

Ew„ pPs`1

”

}w ´ ws`1}4∇2ℓspws`1q

ı

looooooooooooooooooooooomooooooooooooooooooooooon

(b)-2

. (C.19)
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By Lemma C.9, we know that the expectations in both terms (b)-1 and (b)-2 are non-decreasing as the support bound γ
increases. Consequently, as γ Ñ 8, each term can be bounded by the expectation with respect to the untruncated normal
distribution. We define the untruncated normal distribution as P̄s`1 :“ N pws`1, cpCsH̄sq

´1q. Then, there exist orthogonal
bases e1, . . . , ed P Rd such that w ´ ws`1 follows the same distribution as P̄s`1, expressed as:

d
ÿ

j“1

b

cλj
`

pCsH̄sq
´1

˘

Xjej , where Xj
i.i.d.
„ N p0, 1q,@j P rds, (C.20)

and λj
`

pCsH̄sq
´1

˘

denotes the j-th largest eigenvalue of pCsH̄sq
´1. Now, we bound the term (b)-1 in (C.19) as follows:

b

Ew„ pPs`1

“

e36}w´ws`1}22
‰

ď

b

Ew„P̄s`1

“

e36}w´ws`1}22
‰

(Lemma C.9)

“

g

f

f

eEXj

«

d
ź

j“1

e36cλjppCsH̄sq´1qX2
j

ff

ď

g

f

f

e

d
ź

j“1

EXj

”

e36{λ̄X2
j

ı

(cλj
`

pCsH̄sq
´1

˘

ď c{pCsλ̄q ď 1{λ̄, set Cs ě c)

“

´

EX„χ2

”

e36{λ̄X
ı¯

d
2

ď EX„χ2

”

e18d{λ̄X
ı

, (Jensen’s inequality)

where χ2 represents the chi-square distribution. By setting λ̄ ě 72d, we get
b

Ew„ pPs`1

“

e36}w´ws`1}22
‰

ď EX„χ2

”

e
X
4

ı

ď
?
2, (C.21)

where the last inequality holds because the moment-generating function of the χ2-distribution satisfies EX„χ2retX s ď

1{
?
1 ´ 2t for all t ď 1{2.

To bound the term (b)-2 in (C.19), let Ms “ p∇2ℓspws`1qq´1{2H̄sp∇2ℓspws`1qq´1{2 and λ1
j “ λj

`

cpCsMsq
´1

˘

be the
j-th largest eigenvalue of the matrix cpCsMsq

´1. Then, we have
c

Ew„ pPs`1

”

}w ´ ws`1}4∇2ℓspws`1q

ı

ď

c

Ew„P̄s`1

”

}w ´ ws`1}4∇2ℓspws`1q

ı

(Lemma C.9)

“

c

Ew„N p0,cpCsH̄sq´1q

”

}w}4∇2ℓspws`1q

ı

“

b

Ew„N p0,cpCsMsq´1q r}w}42s,

Furthermore, by performing an analysis similar to that in Equation (C.20), we obtain

b

Ew„N p0,cpCsMsq´1q r}w}42s “

g

f

f

f

eEXj„N p0,1q

»

–

›

›

›

›

›

d
ÿ

j“1

b

λ1
jXjej

›

›

›

›

›

4

2

fi

fl “

g

f

f

f

eEXj„N p0,1q

»

–

˜

d
ÿ

j“1

λ1
jX

2
j

¸2
fi

fl

“

g

f

f

e

d
ÿ

j“1

d
ÿ

j1“1

λ1
jλ

1
j1EXj ,Xj1 „N p0,1q

”

X2
jX

2
j1

ı

ď

g

f

f

e3
d
ÿ

j“1

d
ÿ

j1“1

λ1
jλ

1
j1 (EXj ,Xj1 „N p0,1qrX2

jX
2
j1 s ď 3 @j, j1 P rds)

“

?
3c

Cs
Tr

`

M´1
s

˘

(
řd
j“1 λ

1
j “ Tr

`

cpCsMsq
´1

˘

)

ď
?
3Tr

`

M´1
s

˘

, (set Cs ě c)
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where in the last inequality, we set Cs ě c. Here, TrpAq denotes the trace of the matrix A.

Define the matrix Qs`1 :“ λ̄
2 Id `

ř

s1PTs`1
∇2ℓs1 pws1`1q. By setting λ̄ ě 2, we can ensure that ∇2ℓspws`1q ĺ Id ď λ̄

2 Id.
As a result, we have Qs`1 ĺ pλ` λ̄qId `

ř

s1PTs
∇2ℓs1 pws1`1q “ H̄s. Using this relationship, we can bound the trace as

follows:

Tr
`

M´1
s

˘

“ Tr
`

H̄´1
s ∇2ℓspws`1q

˘

ď Tr
`

Q´1
s`1∇2ℓspws`1q

˘

“ Tr
`

Q´1
s`1 pQs`1 ´Qsq

˘

ď log
detpQs`1q

detpQsq
,

where in the last inequality, we apply Lemma 4.5 of Hazan et al. (2016). Hence, we get
c

Ew„ pPs`1

”

}w ´ ws`1}4∇2ℓspws`1q

ı

ď
?
3 log

detpQs`1q

detpQsq
. (C.22)

By substituting (C.21) and (C.22) into (C.19), combining the result with (C.17) and (C.18), and summing over s P Tt`1, we
obtain

ÿ

sPTt`1

ℓpz̃s,ysq ´
ÿ

sPTt`1

ℓspws`1q ď
1

2c

ÿ

sPTt`1

}w1
s ´ ws`1}2H̄s

`
?
6

ÿ

sPTt`1

log
detpQs`1q

detpQsq

“
1

2c

ÿ

sPTt`1

}w1
s ´ ws`1}2H̄s

`
?
6 log

detpQt`1q

det
´

λ̄
2 Id

¯

ď
1

2c

ÿ

sPTt`1

}w1
s ´ ws`1}2H̄s

`
?
6d log

ˆ

1 `
t` 1

4

˙

. (λ̄ ě 2)

This concludes the proof.

C.3. Technical Lemmas for Theorem 4.2

Lemma C.4 (Proposition 4.1 of Campolongo & Orabona 2020). Let the wt`1 be the solution of the update rule

wt`1 “ argmin
wPV

ηtℓtpwq `Dψpw,wtq,

where V Ď W Ď Rd is a non-empty convex set andDψpw1,w2q “ ψpw1q´ψpw2q´x∇ψpw2q,w1 ´w2y is the Bregman
Divergence w.r.t. a strictly convex and continuously differentiable function ψ : W Ñ R. Further supposing ψpwq is
1-strongly convex w.r.t. a certain norm } ¨ } in W , then there exists a g1

t P Bℓtpwt`1q such that

xηtg
1
t,wt`1 ´ uy ď x∇ψpwtq ´ ∇ψpwt`1q,wt`1 ´ uy

for any u P W .

Lemma C.5. For any t P rT s and w,w1 P Rd such that maxiPSt |xJ
tipw ´ w1q| ď α, the multinomial logistic loss

ℓt : Rd Ñ R, defined in (1), satisfies the following property:

ℓtpwq ě ℓtpw
1q ` ∇ℓtpw1qJpw ´ w1q `

1

2 ` 3
?
2α

pw ´ w1qJ∇2ℓtpw
1qpw ´ w1q.

Proof of Lemma C.5. Recall that by definition (see Equation (A.1)), the loss ℓtpwq can be rewritten as ℓ̄tpztq, where
zt “ pxJ

tiwqiPSt
P R|St|. Similarly, ℓtpw1q “ ℓ̄tpz

1
tq. Then, by a second order Taylor expansion, we have

ℓ̄tpztq “ ℓ̄tpz
1
tq ` ∇ℓ̄tpz1

tq
J
`

zt ´ z1
t

˘

`
`

zt ´ z1
t

˘J

ˆ
ż 1

0

p1 ´ sq∇2ℓ̄tpz
1
t ` spzt ´ z1

tqqds

˙

`

zt ´ z1
t

˘

ě ℓ̄tpz
1
tq ` ∇ℓ̄tpz1

tq
J
`

zt ´ z1
t

˘

`
1

2 ` 3
?
2}zt ´ z1

t}8

`

zt ´ z1
t

˘J ∇2ℓ̄tpz
1
tq
`

zt ´ z1
t

˘

, (C.23)
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where the inequality holds by Proposition B.6. Moreover, by definition, we know that

∇ℓ̄tpz1
tq

J
`

zt ´ z1
t

˘

“ ∇ℓtpw1qJpw ´ w1q,

and
`

zt ´ z1
t

˘J ∇2ℓ̄tpz
1
tq
`

zt ´ z1
t

˘

“ pw ´ w1qJ∇2ℓtpw
1qpw ´ w1q.

Hence, we can rewrite Equation (C.23) equivalently as follows:

ℓtpwq ě ℓtpw
1q ` ∇ℓtpw1qJpw ´ w1q `

1

2 ` 3
?
2maxiPSt |xJ

tipw ´ w1q|
pw ´ w1qJ∇2ℓtpw

1qpw ´ w1q

ě ℓtpw
1q ` ∇ℓtpw1qJpw ´ w1q `

1

2 ` 3
?
2α

pw ´ w1qJ∇2ℓtpw
1qpw ´ w1q,

which concludes the proof.

Lemma C.6 (Lemma F.9 of Lee & Oh 2024). For any set W , let wt`1 “ argminwPWx∇ℓtpwtq,wy ` 1
2η }w ´ wt}

2
H̃t

,
where wt P W . Then, we have

}wt`1 ´ wt}Ht ď 2η}∇ℓtpwtq}H´1
t

ď
2η

λ
}∇ℓtpwtq}2 ď

4η

λ
.

Lemma C.7 (Lemma 15 of Zhang & Sugiyama 2024). Let tFtu8
t“1 be a filtration. Let tztu

8
t“1 be a stochastic process

in B2pKq “ tz P RK | }z}8 ď 1u such that zt is Ft measurable. Let tεtu
8
t“1 be a martingale difference sequence such

that εt P RK is Ft`1 measurable. Furthermore, assume that, conditional on Ft, we have }εt}1 ď 2 almost surely. Let
Σt “ Erεtε

J
t |Fts. and λ ą 0. Then, for any t ě 1 define

Ut “

t´1
ÿ

s“1

xεs, zsy and Ht “ λ`

t´1
ÿ

s“1

}zs}
2
Σs
,

Then, for any δ P p0, 1s, we have

Pr

«

Dt ě 1, Ut ě
a

Ht

˜?
λ

4
`

4
?
λ
log

˜

c

Ht

λ

¸

`
4

?
λ
log

ˆ

2

δ

˙

¸ff

ď δ.

Lemma C.8 (Lemma 18 of Zhang & Sugiyama 2024). For any Ht ľ 0, let Ltpwq “ ℓtpwq ` 1
2c}w ´ wt}

2
Ht

. Assume
that ℓt is a M -self-concordant-like function. Then, for any w,wt P W , the quadratic approximation L̃tpwq “ Ltpwt`1q `

x∇Ltpwt`1q,w ´ wt`1y ` 1
2c}w ´ wt`1}2Ht

satisfies

Ltpwq ď L̃tpwq ` eM
2

}w´wt`1}
2
2}w ´ wt`1}2∇ℓtpwt`1q.

Lemma C.9. Let X „ N pµ,Σq be a d-dimensional Gaussian random vector with mean µ P Rd and covariance matrix Σ.
For C ą 0, define the truncated version XC by restricting X to the ellipsoid t}x´ µ}M ď Cu, where M ľ 0. Concretely,
XC has density pCpxq “

pXpxq1t}x´µ}MďCu
ş

}z´µ}M ďC
pXpzqdz

, where pX is the original Gaussian density. Let f : Rd Ñ R be any function

that is non-decreasing in the } ¨ }M sense—that is, if }x´ µ}M ď }y ´ µ}M , then fpxq ď fpyq. Then, for any C 1 ě C ą 0
we have

ErfpXCqs ď ErfpXC1 qs.

Proof of Lemma C.9. Let A :“ t}x ´ µ}M ď Cu, and B :“ t}x ´ µ}M ď C 1u, with C ď C 1. Obviously, A Ď B.
Moreover, for simplicity, we define the following quantities:

S1 “

ż

A

pXpxqdx, S2 “

ż

A

fpxqpXpxqdx, T1 “

ż

BzA

pXpxqdx, T2 “

ż

BzA

fpxqpXpxqdx.

Then, we have

ErfpXCqs “
S2

S1
, ErfpXC1 qs “

S2 ` T2
S1 ` T1

.
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Therefore, it suffices to show

T2
T1

ě
S2

S1
.

To show this,

T2
T1

“

ş

BzA
fpxqpXpxqdx

ş

BzA
pXpxqdx

ě fpAq

ş

BzA
pXpxqdx

ş

BzA
pXpxqdx

“ fpAq, and

S2

S1
“

ş

A
fpxqpXpxqdx
ş

A
pXpxqdx

ď fpAq

ş

A
pXpxqdx

ş

A
pXpxqdx

“ fpAq.

Hence, T2

T1
ě fpAq ě S2

S1
, which concludes the proof.

D. Proof of Theorem 4.5
In this section, we present the proof of Theorem 4.5. To begin, we define a set of adaptive warm-up rounds as follows:

T w :“

"

t P rT s : max
xPXt

}x}2pHw
t q´1 ě 1{τ2t

*

, (D.1)

where we define the threshold τt as:

τt :“ 6
?
2ζtpδq “ O

´

B
a

d logpt{δq `B2
¯

.

Moreover, we define the following two confidence sets for all t P rT s:

Ww
t pδq :“

␣

w P Rd | }w ´ ww
t }Hw

t
ď ζtpδq

(

, and

Ctpδq :“
␣

w P Rd | }w ´ wt}Ht
ď βtpδq

(

, (D.2)

where

ζtpδq :“

d

22 ¨

´

2 ` 3
?
2α ` 5

?
2η
¯

η log

ˆ

2
?
1 ` 2t

δ

˙

` 2
?
6ηd log

ˆ

1 `
t` 1

4

˙

` 48
?
2ηαB2

“ O
´

B
a

d logpt{δq `B2
¯

, (set α “ 2B, η “ 1
2 ` 3

?
2B)

and

βtpδq :“

d

22 ¨

´

2 ` 3
?
2α ` 5

?
2η
¯

η log

ˆ

2
?
1 ` 2t

δ

˙

` 2
?
6ηd log

ˆ

1 `
t` 1

4

˙

` 4B

“ O
´

a

d logpt{δq `B
¯

. (set α “ 1
3

?
2

, η “ 1)

Then, the true parameter w‹ lies within both confidence sets with high probability.

Corollary D.1 (Confidence set for adaptive warm-up). Let δ P p0, 1s. We set η “ p1 ` 3
?
2Bq{2 and λw “

maxt12
?
2Bη, 2u. Then, we have

Prr@t ě 1,w‹ P Ww
t pδqs ě 1 ´ δ.

The proof can be found in Appendix D.2.1.

Corollary D.2 (Restatement of Corollary 4.4, Confidence set for planning & learning). Let δ P p0, 1s. We set η “ 1, λ “ 4,

and τt “ 6
?
2ζtpδq “ O

´

B
a

d logpt{δq `B2
¯

. Then, if w‹ P Ww
t pδq for all t ě 1, we have

Pr r@t ě 1,w‹ P Ctpδqs ě 1 ´ δ.
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The proof is provided in Appendix D.2.2.

Furthermore, we introduce several useful lemmas. Lemma D.3 shows that UCBti provides an optimistic estimate of the true
utility.

Lemma D.3 (Lemma E.1 of Lee & Oh 2024). Let UCBti “ xJ
tiwt ` βtpδq}xti}H´1

t
. Assume that w‹ P Ctpδq, where

Ctpδq :“ tw P W | }wt ´ w}Ht ď βtpδqu. Then, we have

0 ď UCBti ´ xJ
tiw

‹ ď 2βtpδq}xti}H´1
t
.

Lemma D.4 shows that R̃tpStq, defined in (8), is an upper bound of the true expected revenue of the optimal assortment,
RtpS

‹
t ,w

‹q.

Lemma D.4 (Optimism, Lemma 4 of Oh & Iyengar 2021). Let R̃tpSq “

ř

iPS exppUCBtiqrti
1`

ř

jPS exppUCBtjq
. And suppose St “

argmaxSPS R̃tpSq. If for every item i P S‹
t , UCBti ě xJ

tiw
‹, then for all t ě 1, the following inequalities hold:

RtpS
‹
t ,w

‹q ď R̃tpS
‹
t q ď R̃tpStq.

It is important to note that Lemma D.4 does not assert that the expected revenue is a monotonic function in general. Rather,
it specifically states that the expected revenue associated with the “optimal” assortment increases as the MNL parameters
increase (Agrawal et al., 2019; Oh & Iyengar, 2021; Lee & Oh, 2024).

Lemma D.5 shows that R̃tpStq increases as the utility values of the items in St further grow.

Lemma D.5 (Overly optimism, Lemma H.2 of Lee & Oh 2024). We define R̃tpSq :“
ř

iPS exppUCBtiqrti
1`

ř

jPS exppUCBtjq
and St “

argmaxSPS R̃tpSq. Assume ĘUCBti ě UCBti ě 0 for all i P rN s. Then, we have

R̃tpStq ď

ř

iPSt
exppĘUCBtiqrti

1 `
ř

jPSt
exppĘUCBtjq

.

Moreover, we demonstrate that the rewards for the chosen assortment, rti for all i P St satisfy the condition RtpSt,w‹q.

Lemma D.6. For all round t P rT s, we have

rti ě RtpSt,w
‹q, @i P St.

The proof is provided in Appendix D.2.3.

We introduce an elliptical potential lemma that will be used in our proof.

Lemma D.7 (Elliptical potential lemma). Define Htpwq :“ λId `
ř

sPrt´1szT w ∇2ℓspwq. If }xsi}
2
Hspwq´1 ď 1

2 for all
i P Ss and s P rtszT w, then we have

ÿ

sPrtszT w

ÿ

iPSsYt0u

pspi|Ss,wq
›

›xsi ´ Ej„psp¨|Ss,wqrxsjs
›

›

2

pHspwqq´1 ď 2d log

ˆ

1 `
t

dλ

˙

.

The proof is deferred to Appendix D.2.4.

Lemma D.8 shows that Ht and Htpw
‹q remain similar when updated only for t R T w.

Lemma D.8. Let Ht “ λId `
ř

sPrt´1szT w ∇2ℓspws`1q and Htpw
‹q “ λ

e Id `
ř

sPrt´1szT w ∇2ℓspw
‹q. Then, we have

1

e
Htpw

‹q ĺ Ht ĺ eHtpw
‹q.

The proof is provided in Appendix D.2.5.

Additionally, we present a useful lemma that will be employed to bound the second-order term of the regret.
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Lemma D.9 (Lemma E.3 of Lee & Oh 2024). Define Q : RK Ñ R, such that for any u “ pu1, . . . , uKq P RK ,
Qpuq “

řK
i“1

exppuiq

1`
řK

k“1 exppukq
. Let pipuq “

exppuiq

1`
řK

k“1 exppukq
. Then, for all i P rKs, we have

ˇ

ˇ

ˇ

ˇ

B2Q

BiBj

ˇ

ˇ

ˇ

ˇ

ď

#

3pipuq if i “ j,

2pipuqpjpuq if i ‰ j.

The size of the set T w is bounded as described in the following lemma:
Lemma D.10. The size of the set T w, defined in Equation (D.1), is bounded as follows:

|T w| ď
2

κ
τ2T d log

ˆ

1 `
T

dλ

˙

.

The proof is deferred to Appendix D.2.6.

We are now ready to provide the proof of Theorem 4.5.

D.1. Main Proof of Theorem 4.5

Proof of Theorem 4.5. Throughout the proof of the theorem, assume the following event holds:

t@t ě 1,w‹ P Ww
t pδqu

Ť

t@t ě 1,w‹ P Ctpδqu , (D.3)

which occurs with a probability of at least 1 ´ 2δ by Corollary D.1 and D.2.

From the definition of T w (see Equation (D.1)), we decompose the regret as follows:

RegT pw‹q “

T
ÿ

t“1

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q

“
ÿ

tPT w

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q `

ÿ

tRT w

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q

ď |T w| `
ÿ

tRT w

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q (RtpS‹

t ,w
‹q ´RtpSt,w

‹q ď 1)

ď
2

κ
τ2T d log

ˆ

1 `
T

dλ

˙

`
ÿ

tRT w

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q, (D.4)

where the last inequality holds by Lemma D.10. Next, we concentrate on deriving a bound for the last term. We define
ĘUCBti as ĘUCBti :“ xJ

tiw
‹ ` 2βtpδq}xti}H´1

t
. Under the event in Equation (D.3), by Lemma D.3, we have

UCBti ď xJ
tiw

‹ ` 2βtpδq}xti}H´1
t

“: ĘUCBti.

Then, we define the overly optimistic expected revenue,
«

RtpStq, as

«

RtpStq :“

ř

iPSt
exppĘUCBtiqrti

1 `
ř

jPSt
exppĘUCBtjq

.

Using this definition and applying the optimism lemmas, we can derive an upper bound for the regret as follows:
ÿ

tRT w

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q ď

ÿ

tRT w

R̃tpStq ´RtpSt,w
‹q (Lemma D.4)

ď
ÿ

tRT w

«

RtpStq ´RtpSt,w
‹q. (Lemma D.5)

Now, we define a function Q̃ : R|St| Ñ R, such that for all u “ pu1, . . . , u|St|q
J P R|St|, Q̃puq “

ř|St|

k“1

exppukqrtik
1`

ř|St|

j“1 exppujq
.

Here, we denote St “ ti1, . . . , i|St|u for simplicity. Additionally, let ut “ puti1 , . . . uti|St|
qJ “ pĘUCBti1 , . . . ,ĘUCBti|St|

qJ

and u‹
t “ pu‹

ti1
, . . . u‹

ti|St|
qJ “ pxJ

ti1
w‹, . . . , xJ

ti|St|
w‹qJ.
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Then, by a second order Taylor expansion, we derive

ÿ

tRT w

«

RtpStq ´RtpSt,w
‹q “

ÿ

tRT w

Q̃putq ´ Q̃pu‹
t q

“
ÿ

tRT w

∇Q̃pu‹
t qJput ´ u‹

t q

loooooooooooooomoooooooooooooon

I1

`
1

2

ÿ

tRT w

put ´ u‹
t qJ∇2Q̃pūtqput ´ u‹

t q

looooooooooooooooooooooomooooooooooooooooooooooon

I2

, (D.5)

where ūt “ pūti1 , . . . , ūti|St|
qJ P R|St| is the convex combination of ut and u‹

t .

First, we bound the term I1.
ÿ

tRT w

∇Q̃pu‹
t qJput ´ u‹

t q

“
ÿ

tRT w

ÿ

iPSt

exppxJ
tiw

‹qrti
1 `

ř

kPSt
exppxJ

tkw
‹q

puti ´ u‹
tiq ´

ÿ

jPSt

exppxJ
tjw

‹qrtj
ř

iPSt
exppxJ

tiw
‹q

p1 `
ř

kPSt
exppxJ

tkw
‹qq2

puti ´ u‹
tiq

“
ÿ

tRT w

ÿ

iPSt

ptpi|St,w
‹qrtiputi ´ u‹

tiq ´
ÿ

iPSt

ÿ

jPSt

ptpi|St,w
‹qrtiptpj|St,w

‹qputj ´ u‹
tjq

“
ÿ

tRT w

ÿ

iPSt

ptpi|St,w
‹qrti

˜

puti ´ u‹
tiq ´

ÿ

jPSt

ptpj|St,w
‹qputj ´ u‹

tjq

¸

“
ÿ

tRT w

2βtpδq
ÿ

iPSt

ptpi|St,w
‹qrti

˜

}xti}H´1
t

´
ÿ

jPSt

ptpj|St,w
‹q}xtj}H´1

t

¸

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

ě0

ď 2βT pδq
ÿ

tRT w

ÿ

iPSt

ptpi|St,w
‹qrti

˜

}xti}H´1
t

´
ÿ

jPSt

ptpj|St,w
‹q}xtj}H´1

t

¸

, (βtpδq is non-decreasing)

where in the last inequality, we use the fact that βtpδq is non-decreasing and that the following holds:

ÿ

iPSt

ptpi|St,w
‹qrti

ˆ

}xti}H´1
t

´
ÿ

jPSt

ptpj|St,w
‹q}xtj}H´1

t

˙

“
ÿ

iPSt

ptpi|St,w
‹q}xti}H´1

t

ˆ

rti ´
ÿ

jPSt

ptpj|St,w
‹qrtj

loooooooooomoooooooooon

“RtpSt,w‹q

˙

ě 0. (Lemma D.6)

Let xt0 “ 0 and rt0 “ 0. For simplicity, we denote Ew
t rxtis “ Ej„ptp¨|St,wqrxtis, and Ew

t rrtis “ Ej„ptp¨|St,wqrrtis. Here,
Ew
t represents the expectation taken with respect to the distribution ptp¨|St,wq. Note that Ew

t rrtis “ RtpSt,wq. Then, we
can rewrite the above inequality in the following form:

ÿ

tRT w

∇Q̃pu‹
t qJput ´ u‹

t q

ď 2βT pδq
ÿ

tRT w

´

Ew‹

t

”

rti}xti}H´1
t

ı

´ Ew‹

t

”

rti

ı

Ew‹

t

”

}xtj}H´1
t

ı¯

(xt0 “ 0, rt0 “ 0)

“ 2βT pδq
ÿ

tRT w

Ew‹

t

„

´

rti ´ Ew‹

t rrtjs
¯

ˆ

}xti}H´1
t

´ Ew‹

t

”

}xtj}H´1
t

ı

˙ȷ

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Covariance between rti and }xti}
H

´1
t

given St

. (D.6)

By Lemma D.6, we know that rti ě RtpSt,w
‹q “ Ew‹

t rrtis for all i P St. Therefore, we can bound the term inside the
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expectation in (D.6) as follows:
´

rti ´ Ew‹

t rrtjs
looooooomooooooon

ě0 by Lemma D.6

¯´

}xti}H´1
t

´ Ew‹

t

”

}xtj}H´1
t

ı¯

ď

´

rti ´ Ew‹

t rrtjs
¯´

}xti}H´1
t

´ }Ew‹

t rxtjs }H´1
t

¯

(Jensen’s inequality)

ď

´

rti ´ Ew‹

t rrtjs
¯
›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

H´1
t

, (D.7)

where the last inequality holds due to the fact that }a} “ }a ´ b ` b} ď }a ´ b} ` }b} for any vectors a,b P Rd.
Plugging (D.7) into (D.6), we obtain

ÿ

tRT w

∇Q̃pu‹
t qJput ´ u‹

t q

ď 2βT pδq
ÿ

tRT w

Ew‹

t

„

prti ´ Ew‹

t rrtjsq
›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

H´1
t

ȷ

ď 2βT pδq

g

f

f

e

ÿ

tRT w

Ew‹

t

„

prti ´ Ew‹

t rrtjsq
2
ȷ

loooooooooooooomoooooooooooooon

“Vw‹

t rrtis“:σ2
t

g

f

f

e

ÿ

tRT w

Ew‹

t

„

}xti ´ Ew‹

t rxtjs}
2

H´1
t

ȷ

(Cauchy-Schwartz inequality)

“ 2βT pδq

d

ÿ

tRT w

σ2
t

d

ÿ

tRT w

ÿ

iPStYt0u

ptpi|St,w‹q }xti ´ Ew‹

t rxtjs}
2

H´1
t

(D.8)

where in the last equality, we define the variance of the rewards under w‹, given St, as σ2
t :“ Vw‹

t rrtis “

Ew‹

t

”

`

rti ´ Ew‹

t rrtjs
˘2
ı

. We define Htpw
‹q “ λ

e Id `
ř

sPrt´1szT w ∇2ℓspw
‹q. Using this definition, we further bound

the right-hand side of Equation (D.8) as follows:
ÿ

tRT w

ÿ

iPStYt0u

ptpi|St,w
‹q

›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

2

H´1
t

ď e
ÿ

tRT w

ÿ

iPStYt0u

ptpi|St,w
‹q

›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

2

Htpw‹q´1

(Lemma D.8)

ď e
ÿ

tRT w

ÿ

iPStYt0u

ptpi|St,w
‹q

›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

2

Htpw‹q´1

ď 2ed log

ˆ

1 `
eT

dλ

˙

, (Lemma D.7)

where when applying the elliptical potential lemma (Lemma D.7), we verify the condition }xti}
2
Htpw‹q´1 ď 1

2 for all i P St
and t R T w as follows:

}xti}
2
Htpw‹q´1 ď e}xti}

2
H´1

t
ď

e

12
ď

1

2
. (Lemma D.8, t R T w)

Therefore, we can bound the term I1 in Equation (D.5) as follows:

ÿ

tRT w

∇Q̃pu‹
t qJput ´ u‹

t q ď 2βT pδq

g

f

f

e

T
ÿ

t“1

σ2
t

d

2ed log

ˆ

1 `
eT

dλ

˙

. (D.9)

Now, we bound the term I2 in (D.5). We define a function Q : R|St| Ñ R, such that for all u “ pu1, . . . , u|St|q P R|St|,

Qpuq “
ř|St|

i“1
exppuiq

1`
ř|St|

j“1 exppujq
. Then, it is clear that

ˇ

ˇ

ˇ

B
2Q̃

BiBj

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

B
2Q

BiBj

ˇ

ˇ

ˇ
since rti P r0, 1s. Hence, we get

1

2

ÿ

tRT w

put ´ u‹
t qJ∇2Q̃pūtqput ´ u‹

t q ď
1

2

ÿ

tRT w

ÿ

iPSt

ÿ

jPSt

puti ´ u‹
tiq

B2Q̃

BiBj
putj ´ u‹

tjq

ď
1

2

T
ÿ

t“1

ÿ

iPSt

ÿ

jPSt

|uti ´ u‹
ti|

ˇ

ˇ

ˇ

ˇ

B2Q

BiBj

ˇ

ˇ

ˇ

ˇ

|utj ´ u‹
tj |. (rti P r0, 1s)
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Furthermore, we denote pipūtq “
exppūtiq

1`
ř|St|

k“1 exppūtkq
. Then, we have

1

2

T
ÿ

t“1

ÿ

iPSt

ÿ

jPSt

|uti ´ u‹
ti|

ˇ

ˇ

ˇ

ˇ

B2Q

BiBj

ˇ

ˇ

ˇ

ˇ

|utj ´ u‹
tj |

“
1

2

T
ÿ

t“1

ÿ

iPSt

ÿ

jPSt,j‰i

|uti ´ u‹
ti|

ˇ

ˇ

ˇ

ˇ

B2Q

BiBj

ˇ

ˇ

ˇ

ˇ

|utj ´ u‹
tj | `

1

2

T
ÿ

t“1

ÿ

iPSt

|uti ´ u‹
ti|

ˇ

ˇ

ˇ

ˇ

B2Q

BiBi

ˇ

ˇ

ˇ

ˇ

|uti ´ u‹
ti|

ď

T
ÿ

t“1

ÿ

iPSt

ÿ

jPSt,j‰i

|uti ´ u‹
ti|pipūtqpjpūtq|utj ´ u‹

tj | `
3

2

T
ÿ

t“1

ÿ

iPSt

puti ´ u‹
tiq

2pipūtq (Lemma D.9)

ď

T
ÿ

t“1

ÿ

iPSt

ÿ

jPSt

|uti ´ u‹
ti|pipūtqpjpūtq|utj ´ u‹

tj | `
3

2

T
ÿ

t“1

ÿ

iPSt

puti ´ u‹
tiq

2pipūtq

ď
1

2

T
ÿ

t“1

ÿ

iPSt

ÿ

jPSt

puti ´ u‹
tiq

2pipūtqpjpūtq `
1

2

ÿ

iPSt

ÿ

jPSt

putj ´ u‹
tjq

2pipūtqpjpūtq (AM-GM inequality)

`
3

2

T
ÿ

t“1

ÿ

iPSt

puti ´ u‹
tiq

2pipūtq

ď
5

2

T
ÿ

t“1

ÿ

iPSt

puti ´ u‹
tiq

2pipūtq.

Therefore, we can bound the term I2 in Equation (D.5) as follows:

1

2

ÿ

tRT w

put ´ u‹
t qJ∇2Q̃pūtqput ´ u‹

t q ď
5

2

T
ÿ

t“1

ÿ

iPSt

puti ´ u‹
tiq

2pipūtq

“ 10
T
ÿ

t“1

ÿ

iPSt

pipūtqβtpδq2}xti}
2
H´1

t
(definitions of ut and u‹

t )

ď 10
T
ÿ

t“1

max
iPSt

βtpδq2}xti}
2
H´1

t

ď 10βT pδq2
T
ÿ

t“1

max
iPSt

}xti}
2
H´1

t

ď
20

κ
βT pδq2d log

ˆ

1 `
T

dλ

˙

. (D.10)

Finally, by substituting (D.9) and (D.10) into (D.4), and setting λ “ 4, γt “ O
´

B
a

d logpt{δq `B2
¯

, and βT pδq “

O
´

a

d logpt{δq `B
¯

, we obtain

RegT pw‹q ď
2

κ
τ2T d log

ˆ

1 `
T

dλ

˙

` 2βT pδq

g

f

f

e

T
ÿ

t“1

σ2
t

d

2ed log

ˆ

1 `
eT

dλ

˙

`
20

κ
βT pδq2d log

ˆ

1 `
T

dλ

˙

“ O

¨

˝

´

d log T `B
a

d log T
¯

g

f

f

e

T
ÿ

t“1

σ2
t `

1

κ
B2d2 plog T q

2
`

1

κ
B4d log T

˛

‚.

By setting δ Ð δ{2, we complete the proof of Theorem 4.5.
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D.2. Proofs of Corollaries and Lemmas for Theorem 4.5

D.2.1. PROOF OF COROLLARY D.1

Proof of Corollary D.1. In Theorem 4.2, we consider the case where Wt “ W “ tw P Rd | }w}2 ď Bu for all t ě 1 and
the Hessian matrix is Hw

t .

Condition: supwPWt
|xJ
tipw ´ w‹q| ď α for all i P St ùñ α “ 2B.

We set α “ 2B, as shown below:

sup
wPWt

|xJ
tipw ´ w‹q| “ sup

wPW
|xJ
tipw ´ w‹q| ď sup

wPW
}xti}2}w ´ w‹}2 ď 2B.

Substituting α “ 2B (which gives η “ 1
2 ` 3

?
2B) into Theorem 4.2, while setting λw “ 12

?
2ηα, for t P T w, we obtain

}w‹ ´ ww
t }Hw

t
ď ζtpδq “ O

´

B
a

d logpt{δq `B2
¯

.

For t R T w, the confidence set Ww
t pδq, along with ww

t and Hw
t , remains unchanged. Thus, the proof is complete.

D.2.2. PROOF OF COROLLARY D.2

Proof of Corollary D.2. As with Corollary D.1, we prove this using Theorem 4.2. Let Wt “ Ww
t pδq and let the Hessian

matrix be Ht.

Condition: supwPWt
|xJ
tipw ´ w‹q| ď α for all i P St ùñ α “ 1

3
?
2

.

We set α “ 1
3

?
2

, as shown below:

sup
wPWt

|xJ
tipw ´ w‹q| “ sup

wPWw
t pδq

|xJ
tipw ´ w‹q|

ď max
xPXt

}x}pHw
t q´1

ˆ

max
wPWw

t pδq
}w ´ ww

t }Hw
t

` }ww
t ´ w‹}Hw

t

˙

(Hölder’s inequality)

ď
1

τt

ˆ

max
wPWw

t pδq
}w ´ ww

t }Hw
t

` }ww
t ´ w‹}Hw

t

˙

(t R T w)

ď
1

6
?
2ζtpδq

`

ζtpδq ` }ww
t ´ w‹}Hw

t

˘

(Definitions of τt and Ww
t pδq)

ď
ζtpδq

3
?
2ζtpδq

(Corollary D.1)

“
1

3
?
2
.

Plugging α “ 1
3

?
2

(which implies η “ 1
2 ` 3

?
2α “ 1) into Theorem 4.2, while setting λ “ 4η, for t R T w, we derive

}w‹ ´ w}Ht ď βtpδq “ O
´

a

d logpt{δq `B
¯

.

For t P T w, the confidence set Ctpδq, along with wt andHt, remains the same. This conclude the proof of Corollary D.2.

D.2.3. PROOF OF LEMMA D.6

Proof of Lemma D.6. By the definition of the optimal assortment and Lemma D.4, we have

RtpSt,w
‹q ď RtpS

‹
t ,w

‹q ď R̃tpS
‹
t q ď R̃tpStq.

Thus, it is sufficient to show that rti ě R̃tpStq for all i P St.
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We prove this by contradiction. Suppose there exists an item i P St such that rti ă R̃tpStq. If we remove item i from
the assortment St, it would result in higher expected revenue. This contradicts the optimality of St “ argmaxSPS R̃tpSq.
Hence, we conclude

rti ě R̃tpStq, @i P St,

which completes the proof.

D.2.4. PROOF OF LEMMA D.7

Proof of Lemma D.7. For simplicity, let Ew
t rxtjs “ Ej„ptp¨|St,wqrxtjs and xt0 “ 0. Then, we can express ∇2ℓspwq as

follows:

∇2ℓspwq “
ÿ

iPSs

pspi|Ss,wqxsix
J
si ´

ÿ

iPSs

ÿ

jPSs

pspi|Ss,wqpspj|Ss,wqxsix
J
sj

“
ÿ

iPSsYt0u

pspi|Ss,wqxsix
J
si ´

ÿ

iPSsYt0u

ÿ

jPSsYt0u

pspi|Ss,wqpspj|Ss,wqxsix
J
sj

“ Ew
s rxsix

J
sis ´ Ew

s rxsis pEw
s rxsisq

J

“ Ew
s

“

pxsi ´ Ew
s rxsjsqpxsi ´ Ew

s rxsjsq
J
‰

“
ÿ

iPSsYt0u

pspi|Ss,wqpxsi ´ Ew
s rxsjsqpxsi ´ Ew

s rxsjsq
J.

Using the definition Htpwq “ λId `
ř

sPrt´1szT w ∇2ℓspwq, it follows that for any update round s P rtszT w, we have

det pHs`1q “ det pHsq

¨

˝1 `
ÿ

iPSsYt0u

pspi|Ss,wq }xsi ´ Ew
s rxsjs}

2
Hspwq´1

˛

‚.

By the assumption that }xsi}
2
Hspwq´1ď 1

2 for all i P Ss, we know that
ř

iPSsYt0u pspi|Ss,wq }xsi ´ Ew
s rxsjs}

2
Hspwq´1ď 1.

Then, using the fact that z ď 2 logp1 ` zq for any z P r0, 1s, we obtain
ÿ

sPrtszT w

ÿ

iPSsYt0u

pspi|Ss,wq }xsi ´ Ew
s rxsjs}

2
Hspwq´1

ď 2
ÿ

sPrtszT w

log

¨

˝1 `
ÿ

iPSsYt0u

pspi|Ss,wq }xsi ´ Ew
s rxsjs}

2
Hspwq´1

˛

‚

“ 2
ÿ

sPrtszT w

log

ˆ

detpHs`1q

detpH1q

˙

“ 2 log

ˆ

detpHt`1q

detpH1q

˙

ď 2d log

ˆ

trpHt`1q

dλ

˙

ď 2d log

ˆ

1 `
t

dλ

˙

,

which concludes the proof.

D.2.5. PROOF OF LEMMA D.8

Proof of Lemma D.8. For any s P rt´1szT w, let Xs P R|St|ˆd be the matrix whose i’th row is xJ
si. Then, by the equivalent

notation of the loss (see Equation (A.1)), we have

∇2ℓspws`1q “ XJ
s ∇2

zℓ̄spzs`1qXs (Eqn. (A.1))

ĺ e3
?
2}zs`1´z‹

s}8XJ
s ∇2

zℓ̄spz
‹
sqXs (Proposition B.5)

ĺ eXJ
s ∇2

zℓ̄spz
‹
sqXs (}zs`1 ´ z‹

s}8 ď 1
3

?
2

)

“ e∇2ℓspw
‹q,
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where the last inequality holds because, for any s R T w, the following holds:

}zs`1 ´ z‹
s}8 “ max

iPSs

|xJ
sipws`1 ´ w‹q|

“ max
iPSs

}xsi}pHw
s q´1

`

}ws`1 ´ ww
s }Hw

s
` }ww

s ´ w‹}Hw
s

˘

(Hölder’s inequality)

ď
1

τs

`

}ws`1 ´ ww
s }Hw

s
` }ww

s ´ w‹}Hw
s

˘

(s R T w)

ď
1

6
?
2ζspδq

`

ζspδq ` }ww
s ´ w‹}Hw

s

˘

(Definitions of τs and ws`1 P Ww
s pδq)

ď
ζspδq

3
?
2ζspδq

(Corollary D.1)

“
1

3
?
2
.

Thus, we get

Ht “ λId `
ÿ

sPrt´1szT w

∇2ℓspws`1q ĺ λId ` e
ÿ

sPrt´1szT w

∇2ℓspw
‹q “ eHtpw

‹q.

To prove the other inequality, we use a similar line of reasoning:

∇2ℓspw
‹q “ XJ

s ∇2
zℓ̄spz

‹
sqXs ĺ e3

?
2}zs`1´z‹

s}8XJ
s ∇2

zℓ̄spzs`1qXs ĺ eXJ
s ∇2

zℓ̄spzs`1qXs “ e∇2ℓspws`1q,

which implies that

Ht “ λId `
ÿ

sPrt´1szT w

∇2ℓspws`1q ľ λId `
1

e

ÿ

sPrt´1szT w

∇2ℓspw
‹q ľ

1

e
Htpw

‹q.

This concludes the proof.

D.2.6. PROOF OF LEMMA D.10

Proof of Lemma D.10. Recall that by the definition of Hw
t , we have

Hw
t “ λId `

ÿ

sPT wztt,...,T u

∇2ℓspws`1q

“ λId `
ÿ

sPT wztt,...,T u

pspis|tisu,ws`1qxsisx
J
sis ´ pspis|tisu,ws`1qpspis|tisu,ws`1qxsisx

J
sis

“ λId `
ÿ

sPT wztt,...,T u

pspis|tisu,ws`1qpsp0|tisu,ws`1qxsisx
J
sis ,

where is is the index of the item such that xsis “ argmaxxPXs
}x}2

pHw
s q´1 . Then, we get

ÿ

tPT w

max
xPXt

}x}2pHw
t q´1 “

ÿ

tPT w

}xtit}2pHw
t q´1 (xtit “ argmaxxPXt

}x}2
pHw

t q´1 for t P T w)

ď
1

κ

ÿ

tPT w

ptpit|titu,wt`1qptp0|titu,wt`1q}xtit}2pHw
t q´1 (Definition of κ)

“
1

κ

ÿ

tPT w

min

"

1

2
, ptpit|titu,wt`1qptp0|titu,wt`1q}xtit}2pHw

t q´1

*

,

(}xtit}2
pHw

t q´1 ď 1
λw }xtit}2 ď 1

2 , λw ě 2)

ď
2

κ
d log

ˆ

1 `
T

dλ

˙

. (Lemma D.11)
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On the other hand, by the definition of the update rule in Algorithm 1, we have

ÿ

tPT w

max
xPXt

}x}2pHw
t q´1 ě

ÿ

tPT w

1

τ2t
ě

1

τ2T
|T w| . (τt is non-decreasing)

By combining the two results above, we obtain

|T w| ď
2

κ
τ2T d log

ˆ

1 `
T

dλ

˙

,

which concludes the proof.

D.3. Technical Lemmas

Lemma D.11 (Lemma F.2 and H.3 of Lee & Oh 2024). Let Ht “ λId `
řt´1
s“1 ∇2ℓspws`1q. Define x̃si :“ xsi ´

Ej„psp¨|Ss,ws`1qrxsjs. If }xsi}
2
H´1

s
ď 1

2 for all i P St and s P rts, then the following statements hold true:

(1)
řt
s“1

ř

iPSs
pspi|Ss,ws`1qpsp0|Ss,ws`1q}xsi}

2
H´1

s
ď 2d log

`

1 ` t
dλ

˘

,

(2)
řt
s“1

ř

iPSs
pspi|Ss,ws`1q}x̃si}

2
H´1

s
ď 2d log

`

1 ` t
dλ

˘

,

(3)
řt
s“1 maxiPSs

}xsi}
2
H´1

s
ď 2

κd log
`

1 ` t
dλ

˘

,

(4)
řt
s“1 maxiPSs

}x̃si}
2
H´1

s
ď 2

κd log
`

1 ` t
dλ

˘

.

E. Instance-Dependent Regret
As a special case, if the rewards are uniform (i.e., rti “ 1), we can establish an instance-dependent regret bound.

Proposition E.1 (Restatement of Proposition 4.10 Instance-dependent regret under uniform rewards). Define κ‹
t :“

ř

iPS‹
t
ptpi|S

‹
t ,w

‹qptp0|S‹
t ,w

‹q. Under the same conditions as Theorem 4.5 and assuming uniform rewards, the regret of
OFU-MNL++ is upper bounded by

RegT pw‹q “ O

¨

˝

´

d log T `B
a

d log T
¯

g

f

f

e

T
ÿ

t“1

κ‹
t `

1

κ
B2d2 plog T q

2
`

1

κ
B4d log T

˛

‚.

E.1. Proof of Proposition 4.10

In this section, we present the proof of Proposition 4.10. In the case of uniform rewards, where rti“1 for all i P rN s, the σ2
t

term can be upper-bounded by κ‹
t plus an additive term.

Proof of Proposition 4.10. From Theorem 4.5, we have

RegT pw‹q “ O

¨

˝

´

d log T `B
a

d log T
¯

g

f

f

e

T
ÿ

t“1

σ2
t `

1

κ
B2d2 plog T q

2
`

1

κ
B4d log T

˛

‚.
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When rewards are uniform, we can rewrite the
řT
t“1 σ

2
t term as follows:

T
ÿ

t“1

σ2
t “

T
ÿ

t“1

Ei„ptp¨|St,w‹q

”

`

rti ´ Ej„ptp¨|St,w‹qrrtjs
˘2
ı

“

T
ÿ

t“1

ÿ

iPSt

ptpi|St,w
‹qr2ti ´

˜

ÿ

iPSt

ptpi|St,w
‹qrti

¸2

“

T
ÿ

t“1

ÿ

iPSt

ptpi|St,w
‹qptp0|St,w

‹q (rti “ 1)

ď

T
ÿ

t“1

κ‹
t ` RegT pw‹q.

where the last inequality holds by the following lemma:

Lemma E.2 (Lemma 11 of Perivier & Goyal 2022). Let κ‹
t :“

ř

iPS‹
t
ptpi|S

‹
t ,w

‹qptp0|S‹
t ,w

‹q. Then, we have

T
ÿ

t“1

ÿ

iPSt

ptpi|St,w
‹qptp0|St,w

‹q ď

T
ÿ

t“1

κ‹
t ` RegT pw‹q.

Hence, we get

RegT pw‹q “ O

¨

˝

´

d log T `B
a

d log T
¯

g

f

f

e

T
ÿ

t“1

κ‹
t ` RegT pw‹q `

1

κ
B2d2 plog T q

2
`

1

κ
B4d log T

˛

‚.

Solving the above equation completes the proof of Proposition 4.10.

E.2. Discussion on Instance-Dependent Regret

In this subsection, we further discuss about the instance-dependent parameter κ‹
t and the variance of rewards σt.

True meaning of κ‹
t . The instance-dependent parameter κ‹

t , which appears in the regret bounds of many existing
(multinomial) logistic and GLM bandits (Abeille et al., 2021; Faury et al., 2022; Perivier & Goyal, 2022; Lee & Oh, 2024;
Sawarni et al., 2024), is indeed the variance of the uniform rewards given S‹

t . In contrast, σ2
t denotes the variance of general

rewards (including both uniform and non-uniform) for the offered assortment St. Under uniform rewards, as shown in the
analysis of Proposition 4.10, κ‹

t and σ2
t are closely related, as the assortment size remains the same and the rewards are

identical.

Possibility of Instance-Dependent Regret under Non-Uniform Rewards. Readers might expect an instance-dependent
regret bound for general non-uniform rewards. However, we cautiously argue that establishing such a bound in the non-
uniform case is non-trivial using existing analytical approaches. Unlike prior works on binary logistic bandits (Abeille et al.,
2021; Faury et al., 2022), uniform rewards MNL bandits (Perivier & Goyal, 2022; Lee & Oh, 2024), and generalized linear
bandits (Sawarni et al., 2024), the size and rewards of the offered assortment S‹ and the optimal assortment S‹

t are different.
This fundamental discrepancy makes it impossible to bound quantities related to St using those related to S‹

t .

F. Proof of Theorem 4.12
In this section, we provide the proof of Theorem 4.12. For ease of reference, Table F.1 summarizes the notations used for
OFU-M2NL.

We define Ltpwq as the negative log-likelihood of w with respect to data collected up to t´ 1, and pwt as the corresponding
maximum likelihood estimate (MLE) estimate:

Ltpwq :“
t´1
ÿ

s“1

ℓspwq “ ´

t´1
ÿ

s“1

ÿ

iPSs

yts log pspi|Ss,wq, pwt :“ argmin
wPW

Ltpwq.
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Table F.1: Symbols for OFU-M2NL

Ltpwq :“ ´
řt´1
s“1

ř

iPSs
yts log pspi|Ss,wq.

ŵt maximum likelihood estimate (MLE) estimate at round t
λMLE :“ 1

8B2 , regularization parameter for MLE

HMLE
t pwq :“

řt´1
s“1 ∇2ℓspwq ` λMLEId

ν‹
t parameter that satisfies 1

2 }w‹ ´ pwt}
2
∇2Ltpν‹

t q “ }w‹ ´ pwt}
2
ş1
0

p1´vq∇2Ltp pwt`vpw‹´ pwtqqdv

βMLE
t pδq :“ O

´

a

d logpBt{δq

¯

γMLE
t pδq :“

a

2βMLE
t pδq2 ` 1

CMLE
t pδq :“

␣

w P W : Ltpwq ´ Ltppwtq ď βMLE
t pδq2

(

w̃ti :“ argmaxwPCMLE
t pδq x

J
tiw, optimistic utility of item i at round t

R̃MLE
t pSq :“

ř

iPS exppxJ
tiw̃tiqrti

1`
ř

jPS exppxJ
tjw̃tjq

, optimistic expected revenue of assortment S at round t

σ2
t :“ Ei„ptp¨|St,w‹q

”

`

rti ´ Ej„ptp¨|St,w‹qrrtjs
˘2
ı

, variance of rewards given St at round t

And the confidence set is defined as follows:

CMLE
t pδq :“

␣

w P W : Ltpwq ´ Ltppwtq ď βMLE
t pδq2

(

,

where

βMLE
t pδq :“

d

log
1

δ
` d log

ˆ

max

"

e,
4eBpt´ 1q

d

*˙

.

The confidence radius βMLE
t pδq follows directly from Theorem 3.1 in Lee et al. (2024b). This result is derived by

incorporating the Lipschitz constant for the MNL loss, i.e., Lt “ maxwPW }∇Ltpwq}2 ď pt´ 1q }∇ℓtpwq}2 ď 2pt´ 1q

(under Assumption 3.1).

Lemma F.1 (Unified CS for generalized linear models (GLMs), Theorem 3.1 of Lee et al. 2024b). Let Lt :“
maxwPW }∇Ltpwq}2 be the Lipschitz constant of Ltp¨q, which may depend on tpxs, rsqu

t´1
s“1. Then, we have Prr@t ě

1,w‹ P CMLE
t pδqs ě 1 ´ δ, where

CMLE
t pδq :“

"

w P W : Ltpwq ´ Ltppwtq ď βMLE
t pδq2 “ log

1

δ
` d log

ˆ

max

"

e,
2eBLt
d

*˙*

.

Then, we offer an assortment St that maximizes the optimistic expected revenue R̃MLE
t pSq as follows:

St “ argmax
SPS

R̃MLE
t pSq “ argmax

SPS

ř

iPS exppxJ
tiw̃tiqrti

1 `
ř

jPS exppxJ
tjw̃tjq

, where w̃ti “ argmax
wPCMLE

t pδq

xJ
tiw. (F.1)

Additionally, we define the Hessian of the regularized loss at w as:

HMLE
t pwq :“

t´1
ÿ

s“1

∇2ℓspwq ` λMLEId, where λMLE “
1

8B2
.

Now, we present useful lemmas that will be used in the proof of Theorem 4.12.

Lemma F.2 (Restatement of Lemma 4.11, Improved MLE confidence bound). For any t P rT s, we define ν‹
t

such that 1
2 }w‹ ´ pwt}

2
∇2Ltpν‹

t q “ }w‹ ´ pwt}
2
ş1
0

p1´vq∇2Ltp pwt`vpw‹´ pwtqqdv and HMLE
t pν‹

t q :“ ∇2Ltpν‹
t q ` λMLEId “

řt´1
s“1 ∇2ℓspν

‹
t q ` λMLEId. Let λMLE “ 1

8B2 . Then, for any t ě 1, if w‹ P CMLE
t pδq and Assumption 3.1 holds, then we have

}w‹ ´ pwt}
2
HMLE

t pν‹
t q ď 2βMLE

t pδq2 ` 1
looooooomooooooon

“:γMLE
t pδq2

“ O pd logpBtqq .
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Algorithm F.1 OFU-M2NL, OFU-Maximum Likelihood Estimation MNL

1: Input: failure level δ, confidence radius βMLE
t pδq.

2: for round t “ 1, . . . , T do
3: Observe feature set Xt.
4: Calculate the norm-constrained MLE: pwt Ð argminwPW Ltpwq.
5: Update CMLE

t pδq Ð
␣

w P W : Ltpwq ´ Ltppwtq ď βMLE
t pδq2

(

.
6: Set w̃ti Ð argmaxwPCMLE

t pδq x
J
tiw for all i P rN s.

7: Offer St “ argmaxSPS R̃
MLE
t pSq and observe yt.

8: end for

The proof is provided in Appendix F.2. By Lemma F.2, we define the ellipsoidal version of the confidence radius as follows:

γMLE
t pδq :“

d

2 log
1

δ
` 2d log

ˆ

max

"

e,
4eBpt´ 1q

d

*˙

` 1 “ O
´

a

d logpBtq
¯

.

Additionally, we present useful technical lemmas.

Lemma F.3. For any t P rT s, w1,w2 P CMLE
t pδq, and ωti ě 0, we have

ÿ

iPSt

|ptpj|St,w1q ´ ptpj|St,w2q|ωti ď 4γMLE
t pδqmax

iPSt

ωtimax
iPSt

}xti}HMLE
t pν‹

t q´1 .

The proof is deferred to Appendix F.2.2.

Lemma F.4 (Elliptical potential count lemma, Lemma 4 of Kim et al. 2022). For X,L ą 0, let x1, . . . , xT P Rd be a
sequence of vectors with }xt}2 ď X for all t P rT s. Let Vt :“ λId `

řt´1
s“1 xsx

J
s for some λ ą 0. Let J Ď rT s be the set

of indices where }xt}
2
V ´1
t

ě L. Then,

|J | ď
2

logp1 ` Lq
d log

ˆ

1 `
X2

logp1 ` Lqλ

˙

.

F.1. Main Proof of Theorem 4.12

Proof of Theorem 4.12. We follow a reasoning process similar to that used in the proof of Theorem 4.5.

First, we define the set of large elliptical potential rounds as follows:

T MLE
0 :“

"

t P rT s : }xti}
2
HMLE

t pν‹
t q´1 ě

1

2
, @i P St

*

.

Let UCBti “ xJ
ti pwt ` γMLE

t pδq}xti}HMLE
t pν‹

t q´1 and ĘUCBti as ĘUCBti :“ xJ
tiw

‹ ` 2γMLE
t pδq}xti}HMLE

t pν‹
t q´1 . Then, for all

i P rN s and t ě 1, we have

xJ
tiw̃ti ´ xJ

tiw
‹ ď UCBti ´ xJ

tiw
‹ ď 2γMLE

t pδq}xti}HMLE
t pν‹

t q´1 , (Definition of w̃ti, Lemma F.2)

which implies xJ
tiw̃ti ď ĘUCBti. Thus, by Lemma D.5, we get

R̃MLE
t pStq ď

«

RMLE
t pStq, (F.2)

where
«

RMLE
t pStq :“

ř

iPSt
exppĘUCBtiqrti

1`
ř

jPSt
exppĘUCBtjq

.

Define a function Q̃ : R|St| Ñ R, such that for all u “ pu1, . . . , u|St|q
J P R|St|, Q̃puq “

ř|St|

k“1

exppukqrtik
1`

ř|St|

j“1 exppujq
. For

simplicity, we write St “ ti1, . . . , i|St|u. Furthermore, we denote ut “ puti1 , . . . uti|St|
qJ “ pĘUCBti1 , . . . ,ĘUCBti|St|

qJ

and u‹
t “ pu‹

ti1
, . . . u‹

ti|St|
qJ “ pxJ

ti1
w‹, . . . , xJ

ti|St|
w‹qJ.
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Then, by the elliptical potential count lemma (Lemma F.4), we get

T
ÿ

t“1

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q “

ˇ

ˇT MLE
t

ˇ

ˇ `
ÿ

tRT MLE
t

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q

ď
2

logp3{2q
d log

ˆ

1 `
1

logp3{2qλMLE

˙

`
ÿ

tRT MLE
t

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q. (F.3)

Moreover, we have
ÿ

tRT MLE
t

RtpS
‹
t ,w

‹q ´RtpSt,w
‹q ď

ÿ

tRT MLE
t

R̃MLE
t pStq ´RtpSt,w

‹q (Lemma D.4)

ď
ÿ

tRT MLE
t

«

RMLE
t pStq ´RtpSt,w

‹q (Eqn. (F.2))

“
ÿ

tRT MLE
t

Q̃putq ´ Q̃pu‹
t q

“
ÿ

tRT MLE
t

∇Q̃pu‹
t qJput ´ u‹

t q

looooooooooooooomooooooooooooooon

I3

`
1

2

ÿ

tRT MLE
t

put ´ u‹
t qJ∇2Q̃pūtqput ´ u‹

t q

loooooooooooooooooooooooomoooooooooooooooooooooooon

I4

, (F.4)

where ūt “ pūti1 , . . . , ūti|St|
qJ P R|St| is the convex combination of ut and u‹

t .

We first bound the term I3. For simplicity, let Ew
t rxtis “ Ej„ptp¨|St,wqrxtis, and Ew

t rrtis “ Ej„ptp¨|St,wqrrtis. Then, we
get

ÿ

tRT MLE
t

∇Q̃pu‹
t qJput ´ u‹

t q

“
ÿ

tRT MLE
t

ÿ

iPSt

exppxJ
tiw

‹qrti
1 `

ř

kPSt
exppxJ

tkw
‹q

puti ´ u‹
tiq ´

ÿ

jPSt

exppxJ
tjw

‹qrtj
ř

iPSt
exppxJ

tiw
‹q

p1 `
ř

kPSt
exppxJ

tkw
‹qq2

puti ´ u‹
tiq

“
ÿ

tRT MLE
t

ÿ

iPSt

ptpi|St,w
‹qrti

˜

2γMLE
t pδq}xti}HMLE

t pν‹
t q´1 ´

ÿ

jPSt

ptpj|St,w
‹q2γMLE

t pδq}xtj}HMLE
t pν‹

t q´1

¸

ď 2γMLE
T pδq

ÿ

tRT MLE
t

ÿ

iPSt

ptpi|St,w
‹qrti

˜

}xti}HMLE
t pν‹

t q´1 ´
ÿ

jPSt

ptpj|St,w
‹q}xtj}HMLE

t pν‹
t q´1

¸

“ 2γMLE
T pδq

ÿ

tRT MLE
t

Ew‹

t

„

´

rti ´ Ew‹

t rrtjs
¯

ˆ

}xti}HMLE
t pν‹

t q´1 ´ Ew‹

t

”

}xtj}HMLE
t pν‹

t q´1

ı

˙ȷ

(xt0 “ 0, rt0 “ 0)

ď 2γMLE
T pδq

ÿ

tRT MLE
t

Ew‹

t

„

´

rti ´ Ew‹

t rrtjs
¯
›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

HMLE
t pν‹

t q´1

ȷ

(Similar to Eqn.(D.7))

We further decompose the last term as follows:
ÿ

tRT MLE
t

Ew‹

t

„

´

rti ´ Ew‹

t rrtjs
¯
›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

HMLE
t pν‹

t q´1

ȷ

“
ÿ

tRT MLE
t

ÿ

iPSt

a

ptpi|St,w‹qptpi|St,ν‹
t q

´

rti ´ Ew‹

t rrtjs
¯
›

›

›
xti ´ Eν‹

t
t rxtjs

›

›

›

HMLE
t pν‹

t q´1

`
ÿ

tRT MLE
t

ÿ

iPSt

´

a

ptpi|St,w‹q ´
a

ptpi|St,ν‹
t q

¯

a

ptpi|St,w‹q

´

rti ´ Ew‹

t rrtjs
¯
›

›

›
xti ´ Eν‹

t
t rxtjs

›

›

›

HMLE
t pν‹

t q´1

`
ÿ

tRT MLE
t

ÿ

iPSt

ptpi|St,w
‹q

´

rti ´ Ew‹

t rrtjs
¯

ˆ

›

›

›
xti ´ Ew‹

t rxtjs
›

›

›

HMLE
t pν‹

t q´1
´

›

›

›
xti ´ Eν‹

t
t rxtjs

›

›

›

HMLE
t pν‹

t q´1

˙

. (F.5)
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Then, the first term in (F.5) can be bounded as follows:

ÿ

tRT MLE
t

ÿ

iPSt

a

ptpi|St,w‹qptpi|St,ν‹
t q

´

rti ´ Ew‹

t rrtjs
¯
›

›

›
xti ´ Eν‹

t
t rxtjs

›

›

›

HMLE
t pν‹

t q´1

ď

d

ÿ

tRT MLE
t

ÿ

iPSt

ptpi|St,w‹q prti ´ Ew‹

t rrtjsq
2

loooooooooooooooooooomoooooooooooooooooooon

“:σ2
t

g

f

f

e

ÿ

tRT MLE
t

ÿ

iPSt

ptpi|St,ν‹
t q

›

›

›
xti ´ Eν‹

t
t rxtjs

›

›

›

2

HMLE
t pν‹

t q´1

(Cauchy-Schwarz inequality)

ď

g

f

f

e

T
ÿ

t“1

σ2
t

d

2d log

ˆ

1 `
T

dλMLE

˙

. (Lemma D.7)

Note that when applying the elliptical potential lemma (Lemma D.7), we ensure that the condition }xti}
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. (Lemma D.7 and D.11)

Finally, we bound the last term in (F.5). Using the inequality }a} ´ }b} ď }a ´ b} for any vectors a,b P Rd, we get
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By combining the three results above, we can establish a bound for I3.
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. (F.6)

On the other hand, the term I4 in Equation (F.4) can be bounded by following the same process as in Equation (D.10) in
Appendix D.
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Plugging (F.6) and (F.7) into (F.3), and setting λMLE “ 1
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F.2. Proof of Lemmas for Theorem 4.12

F.2.1. PROOF OF LEMMA F.2

Proof of Lemma F.2. By using a Taylor expansion and applying the first-order optimality condition for a convex function,
we obtain
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By setting Lt “ 2pt´ 1q and λMLE “ 1
8B2 , and applying Lemma F.1, we derive
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which concludes the proof.
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F.2.2. PROOF OF LEMMA F.3

Proof of Lemma F.3. By the mean value theorem, there exists ξ “ p1 ´ cqw1 ` cw2 for some c P p0, 1q such that
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which concludes the proof.

G. Experiment Details and Additional Results
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Figure G.1: Cumulative regret for different values of B when d “ 10.

For each instance, we sample the true parameter w‹ uniformly from a d-dimensional Euclidean ball of radius B, denoted by
BdpBq. Similarly, each context feature xti is independently and identically distributed (i.i.d.) from a unit ball, denoted as
Bdp1q. This ensures that }w‹}2 ď B and }xti}2 ď 1, satisfying Assumption 3.1. The rewards are sampled independently in
each round from a uniform distribution, i.e., rti „ Unifp0, 1q. We set the number of items to N “ 50 and the maximum
assortment size to K “ 5. For each instance, we conducted 20 independent runs and reported the average cumulative regret
(Figures 1 and G.1) as well as the average runtime per round (Figure 2) for each algorithm. In our experiments, since the
threshold τt is too conservative in practice, we empirically tuned the hyperparameter τt for OFU-MNL++ by searching over a
certain range of values while maintaining its inverse relationship with α (i.e., a higher τt corresponds to a lower α).

As an additional experiment, Figure G.1 presents results for a larger value of d, specifically d “ 10. Our algorithms
continue to outperform other baselines. While the performance of OFU-MNL++ is somewhat sensitive to the values of B and
d, primarily due to the adaptive warm-up rounds, its asymptotic performance appears to be the best. Notably, the slope
of the regret curve is the smallest for large t. Additionally, OFU-MNL++ enjoys a constant computational cost, similar to
OFU-MNL+. In contrast, OFU-M2NL is the slowest among the algorithms, as it requires solving a convex optimization problem
to compute the optimistic parameter w̃ti, as described in Equation (F.1).
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