BoltzNCE: Learning Likelihoods for Boltzmann
Generation with Stochastic Interpolants and Noise
Contrastive Estimation

Rishal Aggarwal Jacky Chen
CMU-Pitt Computational Biology CMU-Pitt Computational Biology
Dept. of Computational & Systems Biology Dept. of Computational & Systems Biology
University of Pittsburgh University of Pittsburgh
Pittsburgh, PA 15260 Pittsburgh, PA 15260
rishal.aggarwal@pitt.edu jackychen@pitt.edu
Nicholas M. Boffi David Ryan Koes
Machine Learning Dept. Dept. of Computational & Systems Biology
Dept. of Mathematical Sciences University of Pittsburgh
Carnegie Mellon University Pittsburgh, PA 15260
Pittsburgh, PA 15213 dkoes@pitt.edu

nboffi@andrew.cmu.edu

Abstract

Efficient sampling from the Boltzmann distribution given its energy function is a
key challenge for modeling complex physical systems such as molecules. Boltz-
mann Generators address this problem by leveraging continuous normalizing flows
to transform a simple prior into a distribution that can be reweighted to match the
target using sample likelihoods. Despite the elegance of this approach, obtaining
these likelihoods requires computing costly Jacobians during integration, which
is impractical for large molecular systems. To overcome this difficulty, we train
an energy-based model (EBM) to approximate likelihoods using both noise con-
trastive estimation (NCE) and score matching, which we show outperforms the
use of either objective in isolation. On 2D synthetic systems where failure can
be easily visualized, NCE improves mode weighting relative to score matching
alone. On alanine dipeptide, our method yields free energy profiles and energy
distributions that closely match those obtained using exact likelihoods while achiev-
ing 100x faster inference. By training on multiple dipeptide systems, we show
that our approach also exhibits effective transfer learning, generalizing to new
systems at inference time and achieving at least a 6x speedup over standard MD
with only a bit of fine-tuning. While many recent efforts in generative modeling
have prioritized models with fast sampling, our work demonstrates the design
of models with accelerated likelihoods, enabling the application of reweighting
schemes that ensure unbiased Boltzmann statistics at scale. Our code is available
at https://github.com/RishalAggarwal/BoltzNCE.

1 Introduction

Obtaining the equilibrium distribution of molecular conformations defined by an energy function
is a fundamental problem in the physical sciences [1-3]. The Boltzmann distribution describes the
equilibrium probability density and is given by p(z) x exp(—F(x)/KpT) where E(z) is the energy
of molecular conformer x, K p is the Boltzmann constant, and 7" is temperature. Sampling from this
distribution is particularly difficult for molecular systems due to the non-convex nature of the energy

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/RishalAggarwal/BoltzNCE

Noise Generated Distribution Predicted Likelihoods Desired Distribution
aCx) Boltzmann €9 pe(x) = p(x) p(x) o e U/kaT
Emulator

P ——— ® py(circle) Reweight
e BoltzNCE g
— == B Wy (square) —

po(triangle) Weight=— 75

(YL X Y) e o o =

Figure 1: Overview. BoltzNCE offers an accelerated alternative to exact model likelihood compu-
tation. Samples from a prior are first transformed to a distribution of conformers by a Boltzmann
Emulator, which is easy to sample from but difficult to evaluate likelihoods for. The generated
samples are then reweighted with likelihoods estimated by an energy-based model (EBM), which we
train to approximate the emulator distribution with a hybrid score matching and noise contrastive
estimation scheme. This EBM gives access to likelihoods in a single function call, enabling us to
reweight to the target Boltzmann distribtion up to 100X faster than exact computation.

landscape, leading to the presence of widespread energy basins, metastability, and slow transitions.
Traditional approaches for sampling conformers, such as Markov chain Monte Carlo (MCMC) and
molecular dynamics (MD) [4, 5], often get trapped in these energy wells, which necessitates long
simulation timescales to produce uncorrelated samples [6]. Consequently, it is particularly inefficient
to obtain samples from independent metastable states.

In recent years, several generative deep learning methods have been proposed to address the molecular
sampling problem. One prominent class is Boltzmann Generators (BGs) [7-10], which transform a
simple prior distribution (e.g., a multivariate Gaussian) into a distribution over molecular conformers
that can be reweighted to approximate the Boltzmann distribution. When reweighting is not applied,
the model is referred to as a Boltzmann Emulator [8], whose primary aim is to efficiently sample
metastable states of the molecular ensemble. While often qualitatively reasonable, Boltzmann
Emulators alone fail to recover the true Boltzmann distribution and require the reweighting step for
exact recovery of the system’s equilibrium statistics.

To compute the likelihoods of generated samples, BGs are constrained to the class of normalizing
flows. While earlier methods built these flows using invertible neural networks [7, 11], more
recent approaches prefer using continuous normalizing flows (CNFs) [8, 12] due to their enhanced
expressitivity and flexibility in model design. Despite these advantages, computing likelihoods
for CNF-generated samples requires expensive Jacobian trace evaluations along the integration
path [13, 14]. This computational overhead limits their scalability, particularly for large-scale protein
systems. In this work, we ask the question:

Can the likelihood of large-scale scientific generative models be efficiently amortized to avoid the
prohibitive path integral?

Here, as a means to learn such a likelihood surrogate, we investigate the use of energy-based models
(EBMs). EBMs learn the energy function of a synthetic Boltzmann distribution, pg(z) « exp(Ep(x))
where Fjy is the energy to be learned [15]. Scalable training of EBMs remains a major challenge
due to the need for sampling from the model distribution, which often requires simulation during
training [16, 17]. As a result, developing efficient training algorithms for EBMs continues to be an
active area of research [15, 18-20].

We adopt noise contrastive estimation (NCE) [21], which trains a classifier to distinguish between
samples drawn from the target distribution and those from a carefully chosen noise distribution. The
key advantage of this approach is that it circumvents the need to compute intractable normalizing
constants [22, 23]. Despite this, NCE can suffer from the density-chasm problem [24, 25], whereby
the optimization landscape becomes flat when the data and noise distributions differ significantly [26].
To address this issue, we introduce an annealing scheme between a simple noise distribution and the
data distribution using stochastic interpolants [27]. Annealing mitigates the density chasm problem
by introducing intermediate distributions between noise and data, which facilitates the generation of
more informative samples. In particular, it ensures that negative samples lie closer to positive samples,
improving the effectiveness of NCE optimization [24, 28]. We further enhance the training process
by combining an InfoNCE [29] loss with a score matching [30] objective defined over the law of the

stochastic interpolant. Notably, our proposed method for training the EBM is both simulation-free
and avoids the computation of normalizing constants, making it scalable to large systems.

Contributions. On synthetic 2D systems, we show that training with both losses performs signif-
icantly better than either individually. For the alanine dipeptide system, our method recovers the
correct semi-empirical free energy surface while achieving a 100x speedup over exact likelihood
calculations. On other dipeptide systems, we further demonstrate the method’s ability to generalize
to previously unseen molecular systems. To summarize, our main contributions are:

* Training. We develop a scalable, simulation-free framework for training EBMs by combin-
ing stochastic interpolants, score matching, and noise contrastive estimation.

* Fast likelihoods. We show that learned likelihoods can replace expensive Jacobian compu-
tations in the reweighting step, recovering exact Boltzmann statistics.

* Empirical validation. We achieve 100x speedup on alanine dipeptide compared to exact
likelihoods, and demonstrate 6 x speedup over MD on unseen dipeptide systems.

2 Methodological Framework

In this work, we introduce a new class of generative models for sampling from a Boltzmann distribu-
tion that features accelerated likelihood computations (Figure 1). To this end, we train a standard
Boltzmann Emulator and an EBM, which each enable efficient sampling and likelihood evaluation,
respectively. Given access to an EBM approximating the output distribution of the Boltzmann
Emulator, we can evaluate sample likelihoods in just a single function call, enabling rapid reweighting
for accurate estimation of observables. We train these EBM models with a new hybrid approach that
we call BoltzNCE. As critical components of our approach, we first provide background on stochastic
interpolants and flow matching [27, 31], then show how these can be used to build Boltzmann
Emulators and finally, we introduce the innovations underlying the BoltzNCE method.

2.1 Background: stochastic interpolants and Boltzmann emulators

A stochastic interpolant [27, 32] is a stochastic process that smoothly deforms data from a fixed base
distribution pg into data sampled from the target distribution p; = p*. Under specific choices of the
hyperparameters, stochastic interpolants recover standard settings of diffusion models [30, 33], flow
matching [31], and rectified flows [34]. They can be used to learn generative models, because they
provide access to time-dependent samples along a dynamical process that converts samples from the
base into samples from the target. Concretely, given samples {z%}"_ ; with 2{ ~ p; sampled from
the target, we may define a stochastic interpolant as the time-dependent process

I = ayxo + By (H

Above, o : [0,1] = Rand § : [0, 1] — R are continuously differentiable functions satisfying the
boundary conditions g = 1,1 = 0, 9 = 0, and B; = 1. In the absence of domain knowledge, we
often take the base distribution to be a standard Gaussian, po = N(0, I).

The probability density p; = Law(1;) induced by the interpolant coincides with the density of a
probability flow that pushes samples from pgy onto p1,

Lt't = bt((ﬂt), bt(x) =]E[It ‘ It = LL’L (2)

where b, () is given by the conditional expectation of the time derivative of the interpolant at a fixed
point in space. The score s;(x) = V log p; () is further given by the conditional expectation [27]:

si(z) = oy "Rxg | I; =], 3)
which we will use to train our energy-based model as a likelihood surrogate.

Flow matching. Given a coupling p(xg,x1) between pg and pq, the vector field (2) can be
approximated with a neural network b via the regression problem

Ly(b) =E |[|b:(I) — L% |,)

where E denotes an expectation over (t, 2o, 1). The objective (4) can be further modified so that the

model is trained to predict the clean data x; instead of the vector field b [35, 36]. We refer the reader
to Appendix A for more details on the endpoint objective.

Once trained, the learned model can be used to generate samples Zy by solving the differential
equation

By = by(24), Zo ~ pPo- Q)
The log density log p associated with the generated samples £; can be calculated with the continuous
change of variables formula,

1
log p(21) = log po(x0) — / V - by(dy)dt. (6)
0

While (6) gives a formula for the exact likelihood, its computation is expensive due to the appearance
of the divergence of the estimated flow b.

Boltzmann Generators. Boltzmann Generators leverage generative models to sample conformers
and to compute their likelihoods, which enables reweighting the generated samples to the Boltzmann
distribution. In practice, these models can be built using the stochastic interpolant framework
described in (1), (2) and (4) given target data generated via molecular dynamics. We can generate
unbiased samples from the target distribution by first sampling £; ~ p1 by solving (5) and (6), and

then by reweighting with the importance weight w(2,) = exp(—z 7" E(Il))/p1(&1). With this weight,

we can also approximate any observable O under the Boltzmann d1str1but10n 4 using self-normalized
importance sampling [7, 8, 12]:

Sl w(#)Oo@])
Sty w(d)

While the likelihood integral (6) has been used in prior implementations of Boltzmann generators [8,
12], in general its computational expense prevents it from scaling to large molecular systems. In this
work, our aim is to amortize the associated cost by learning a second energy-based model that can
estimate the likelihoods log p; .

(O)u = Eaynp, [w(21)O(21)] =

@)

2.2 BoltzNCE

Our method is designed to calculate free energies and to enable the computation of observables via (7)
in an efficient and scalable manner. It proceeds in two stages: (i) standard flow training, and (ii)
amortization of the likelihood via EBM training. In the first stage, we train a Boltzmann emulator on
a dataset D of conformers using the stochastic interpolant framework described in Section 2.1. The
trained emulator is then used to generate samples Z; ~ p; via (5), leading to a dataset of generated
conformers D. In the second stage, we train an EBM on D to approximate the energy U of the
generated distribution,

p1(z) = exp(U(x))/Z, Z = /exp(U(x))da:. 8)

The generated samples are then reweighted to the Boltzmann distribution using (8) in (7).

Training the emulator. We train the Boltzmann Emulator using stochastic interpolants as described
in Section 2.1. Boltzmann Emulator models are trained using either the vector field (4) or the endpoint
objectives. The endpoint parameterization [35, 36] is where the network predicts the clean endpoint
1 rather than the velocity field directly. The corresponding velocity field for sampling is given by

be(x) = oy Hdpx + (Brow — Br)an (8, @) ©)

where &1 (¢,) is the network’s predicted endpoint at time ¢ given noisy sample x. A derivation
of this velocity field is provided in Appendix A. Since o; = 0, this velocity field diverges at
t = 1; in practice, we integrate from ¢t = 0 to t = 1 — le~3 to avoid this singularity. While the
endpoint parameterization works well in generating samples, it leads to unstable likelihoods due to
the singularity at t=1, a drawback that is addressed by the use of EBMs in the BoltzNCE method.

Once trained, we generate the dataset D by sampling &1 ~ p; via (5).

Training the EBM. Rather than learn a single energy function corresponding to p; as in (8), we
propose to define a second stochastic interpolant from the base to pq,

I = ayo + Bidn, (10)

and estimate the associated time-dependent energy function U, for p, = Law(ft),

pi(x) = exp (Ue(x)) / Z4, Zy = /exp(Ut(x))dm. (11)

By construction, we have that g; = py, though in general 5, # p; = Law(Z;). Given access to a
model U, of Uy, we can evaluate log 1 (x) up to the normalization constant Z; with a single function

evaluation U/, (z), eliminating the need for (6). We train U using a combination of denoising score
matching and an InfoNCE objective [29]. The score matching objective leverages (3) to yield

Lsw(0) = E [Jar VO + o] (12)

where the E is over the draws of (¢, zg, Z1) defining I;. To define the InfoNCE objective, we first
write down the joint distribution over (¢, I;) given by p(t,) = p(t)p:(x) for t ~ p(t). In practice,
we choose time uniformly, so that p(t) = 1 and (¢, z) = p¢(x). Given this joint density, we may
define the conditional distribution p(t|z) = p(t,z)/p(x) = pe(z)/p(x) where p(x) = [p(t, z)dt =
J pe(x)dt is the marginal distribution of z. This conditional distribution describes the probability
that a given observation x was a sample at time ¢. The InfoNCE objective maximizes the conditional
likelihood by minimizing its negative log-likelihood. We can write this intractable quantity as

_ £l pt(x) ~_F |lo eXP(Ut(ft)—loth) _ 2
= -z o (55 ~ -2 <fexp<0t/<ft>1og2t/>dt'>] Erulf 0

where the expectation is over the draws of (¢, zo, ;) defining I,. This expression depends on
unknown normalization constants Z; and involves an integral over time ¢’. To avoid explicit normal-

ization, we parameterize U, to directly approximate U, (x) — log Z;, absorbing the log-normalization
constant as a time-dependent bias. To approximate the integral, InfoNCE leverages a Monte Carlo ap-

proximation, leading to a multi-class classification problem: given a sample I;, we aim to distinguish
the true time ¢ from a set of negative times {tk}szl. This yields the tractable objective:

ﬁln oNCE U =—E |lo eXp(Ut(ft))A = >‘| . 14
one () [g(Et’e{t},}u{t}eXP(Ut'(It)) (14)

We train U by minimizing a weighted combination of both objectives:

Leoince(U) = Lsu(U) + Lintonce(U) (15)
Since the noise level changes continuously with ¢, only nearby times ¢’ ~ t have non-negligible
conditional likelihood j(#'|I;). We therefore sample negatives {f } from a narrow Gaussian centered
at t, providing informative contrast for learning fine-grained temporal discrimination. We note that
both objective functions are simulation-free after generation of D, as they only require sampling
the interpolant I,. While, in principle, the EBM could be trained on the original interpolant I; (1),
training on the generated interpolant I, (10) is preferable because it approximates the emulator’s

energy function and enhances transferability to new molecular systems where long-timescale MD
data is unavailable.

For more details on model training and inference, refer to Appendices B, E.8 and E.10.

3 Related Work

Boltzmann Generators. Boltzmann Generators have become an active line of research since their
initial development with invertible neural networks [7], having now been used to sample both molec-
ular systems [10, 11, 37-40] and lattice systems [10, 41-43]. Tan et al. [44] introduce a more stable
reweighting scheme that takes advantage of Jarzynski’s equality to attain the equilibrium distribution.

However, most of these methods have required input through system-specific featurizations such
as internal coordinates, hindering transferability. The emergence of CNFs and equivariant neural
network architectures has enabled the development of BGs on Cartesian coordinates [8, 12] thereby
not being system specific and enabling transferability. Despite these advancements, transferability has
so far only been demonstrated on small systems such as dipeptides, primarily due to the computational
limitations associated with likelihood evaluation at scale.

Boltzmann Emulators. Boltzmann Emulators, unlike BGs, are designed solely to produce high-
quality samples without reweighting to the Boltzmann distribution. Because they are not required to
be invertible, they can typically be applied to much larger systems. This flexibility also enables the
use of a wider range of generative approaches, including diffusion models. Boltzmann Emulators
have been employed to generate peptide ensembles [45], protein conformer distributions [35, 46—49],
small molecules [50-52], and coarse-grained protein structures [53, 54]. However, they are inherently
limited by the data distribution they were trained on. As a result, they are generally unsuitable
for generating unbiased samples from the Boltzmann distribution or for performing free energy
calculations independently. In this work, we aim to leverage the strengths of Boltzmann Emulators
and bridge the gap between Emulators and Generators using energy-based models (EBMs). While
EBMs may still yield biased estimates, they bring us closer to true Boltzmann statistics at a fraction
of the computational cost.

Energy-Based Models. Energy-Based Models (EBMs) are particularly appealing in the physical
sciences, as they describe density functions in a manner analogous to the Boltzmann distribution. This
similarity enables the use of various techniques from statistical physics to compute thermodynamic
properties of interest [39, 55]. Despite their promise, training EBMs remains a challenging task.
Recent advancements have introduced training objectives inspired by noise contrastive estimation [18,
20, 24, 25, 55, 56], contrastive learning [29, 57], and score matching [15, 58, 59]. OuYang et al.
[60] have also proposed an "energy-matching" objective to train a neural sampler on the Boltzmann
distribution; however, more work needs to be done to make this approach practical for molecules.

4 Experiments

In this section, we validate BoltzNCE on several synthetic low-dimensional systems as well as on
molecular conformer generation for dipeptides. Our experiments demonstrate three key results: (i)
Combining the denoising score matching (12) and InfoNCE (14) objectives to form (15) significantly
improves EBM quality compared to using either alone; (ii) BoltzZNCE enables endpoint-parameterized
emulators to function as Boltzmann Generators by decoupling likelihood estimation from the sampling
vector field, avoiding the numerical instability that makes Jacobian trace computation intractable; (iii)
The learned EBM provides accurate and efficient likelihood estimates, enabling the calculation of
Boltzmann statistics at speeds up to two orders of magnitude faster than exact likelihood computations.

4.1 Low-dimensional systems

The effectiveness of the score matching and InfoNCE loss functions (12) and (14) are tested on
low-dimensional synthetic systems. Specifically, we study an 8-mode Gaussian mixture in two
dimensions and the two-dimensional checkerboard distribution. The results for forward evaluation of
the trained EBMs are shown in Figure 2. We leverage a simple feedforward neural network that takes
the point 2 € R? as input and outputs a scalar value. KL-divergence values between the predicted
and ground truth densities are also reported in Table 1.

Objective Functions 8-Mode Gaussian Mixture Checkerboard
InfoNCE 0.2395 3.8478
Score Matching 0.2199 0.8384
Score Matching & InfoNCE 0.0150 0.1987

Table 1: Low-dimensional Systems: Quantitative Results. KL-divergence () when using different
objective functions to train the EBM. For both systems, using our combined objective (15) significantly
outperforms using either (12) or (14) individually.

True Density Score Matching Score Matching & NCE

Figure 2: Low-dimensional Systems: Qualitative Results. EBM density learned on synthetic two-
dimensional systems. (Above) An 8-mode Gaussian mixture. (Below) The checkerboard distribution.
In both cases, the true density is shown in the leftmost column, and the results obtained with different
methods are shown to the right. Using both objectives (right) provides the best performance.

Our results indicate that combining both objective functions leads to significantly improved perfor-
mance compared to using either alone. Intuitively, the InfoNCE loss appears to act as a regularizer
for the score matching objective, helping to improve the relative weighting of different modes in the
learned distribution. This effect is not observed when using the score matching loss on its own. For
subsequent experiments on molecules, both objective functions are used to train the EBM.

4.2 Alanine Dipeptide

As a more complex system, we first study the alanine dipeptide molecule. Our aim here is to obtain
the equilibrium distribution of the molecule as specified by the semi-empirical GFN-xTB force
field [61]. Running a simulation with this force field is computationally intensive, so we use the
same setup as Klein and Noé [8]. Conformers are generated using molecular dynamics with the
classical Amber ff99SBildn force field and subsequently relaxed using GFN-xTB. We use two dataset
variants: unbiased, corresponding to the original distribution, and biased, in which the positive ¢
state is oversampled for equal metastable state representation (Figure 6).

We train geometric vector perceptron (GVP)[62, 63] based Boltzmann Emulators using both the
vector field objective (4) (GVP-VF) and the endpoint objective (GVP-EP) on the unbiased and
biased datasets, and compare their performance to Equivariant Continuous Normalizing Flow (ECNF)
models from Klein and Noé [8] trained on the same datasets. Additionally, we use the Graphormer
architecture [64] to parameterize the EBM. Further details on data featurization, model architectures,
and hyperparameters are provided in Appendices C and E.6.

To evaluate Boltzmann
Table 2: Methods Overview Flow matching objectives and likelihood generation, we use mod-

estimation methods for different models tested on Alanine Dipeptide. els trained on the bi-
ased dataset, as these
Method FM Objective Likelihood Estimation yield more accurate esti-

mates of free energy dif-

ECNEF [8] Vector Field Jac-trace integral ferences. Free energy
GVP Vector field Vector Field Jac-trace integral differences between the
GVP Endpoint Endpoint Jac-trace integral positive and negative ¢
BoltzNCE Vector field Vector Field EBM forward pass metastable states are com-
BoltzNCE Endpoint Endpoint EBM forward pass

puted, since this transition
corresponds to a slow dy-
namical process (Appendix D.4, Figure 6). Ground-truth free energy values are obtained via umbrella
sampling simulations from Klein et al. [12]; further details on umbrella sampling are provided
in Appendix E.2. In addition, we compute the energy-based (£-W5) and torsion-based (T-W5)
Wasserstein-2 distances between the unbiased dataset and the generated (proposal or reweighted)
distributions.

Energy distribution Free energy projection

0.0: 1
6.0 e “ 4 B
0 oo MD relaxed samples k| — Unmbrelia sampling A
2 Boltzmann Emulator X100 ——— BoltsNCE reweighted A
ks 0.06 BoltzNCE reweighted ~=
10> 0.0 =
I =
S0 oo 206
3} hel g
= 0.03 z 4
20 € it
© 0.02 3
& =
= 0.0 =
. | 0
0.0 05 =100 80 60 =40 -2 0
Energy / kT

Figure 3: BoltzNCE: Qualitative Results. Results for BoltzZNCE on alanine dipeptide trained on
the biased dataset. We use a GVP vector field as the Boltzmann Emulator. BoltzNCE successfully
captures the energy distribution and the free energy projection. (Left) Ramachandran plot of generated
samples. (Middle) Energy histogram along with BoltzZNCE reweighting. (Right) Calculated free
energy surfaces for the angle ¢ on the right.

Method AF/kgT AFEm Prop. E-Wy Rew. E-W5 Prop. T-Wo Rew. T-Wy Inf. (h) Train (h)
Umbrella Sampling 4.10 £ 0.26 - - - - - - -
ECNF [8] 4.09 £ 0.05 0.01 £ 0.05 - - - - 9.37 3.85
ECNF (reproduced) 4.07 £0.23 0.03 £0.23 8.08 £0.56 0.37 +0.02 1.10+0.01 0.59 +0.00 9.37 3.85
GVP Endpoint 489 +2.61 0.79+261 619+ 1.08 2.88+0.01 1.12+0.01 058 £0.01 26.2 4.42

GVP Vector Field 438 +0.67 0.28 £0.67 7.20 £0.13 0.46 £0.05 1.09 +0.01 0.60 £0.00 184 4.42
BoltzNCE Endpoint 4.14+094 0.04 £094 6244052 278 £0.04 1.12+0.01 059£001 0.16 12.2
BoltzNCE Vector Field 4.08 +0.13 0.02 £ 0.13 7.124+0.15 0.27 £0.02 1.12+0.00 0.57 £ 0.00 0.09 12.2

Table 3: BoltzNCE: Quantitative Results. Dimensionless free energy difference, energy £-Wo
and torsion angle T-W5 Wasserstein-2 distances calculated by different Boltzmann Generator and
BoltzZNCE models. Standard deviations are shown across 5 runs. Free energy difference values for
umbrella sampling and ECNF taken from Klein and Noé [8], which we consider to be ground truth.
BoltzNCE Vector Field provides the best performance/inference time tradeoff as compared to all
other methods.

The ECNF, GVP-VF, and GVP-EP models estimate likelihoods using the Jacobian trace integral and
act as Boltzmann Generators. Energy-based models (EBMs) trained on samples generated by the
GVP-based emulators are also evaluated and referred to as BoltzNCE-VF and BoltzNCE-EP. The
specific flow-matching objectives and likelihood estimation methods for each model are summarized
in Table 2.

GVP models excel as Emulators but fail as Generators due to poor likelihood estimates. The
results for the Boltzmann Emulator models trained on the unbiased dataset are given in Appendix F.1.
In general, the two GVP models demonstrate better performance than the ECNF. The GVP-EP model
performs the best, making it a strong candidate for a Boltzmann Emulator, however, as shown below,
it fails as a Boltzmann Generator as its vector field (Eq. 9) diverges as ¢ — 1, which we find corrupts
its likelihood calculation.

All Boltzmann generation results are summarized in Table 3. Comparing the GVP and ECNF models,
we find that while GVP models match or exceed ECNF performance as emulators, they produce
less accurate free energy differences and exhibit higher reweighted £-W5 and T-W; scores. This
inaccuracy may stem from unreliable likelihood estimates produced during ODE integration, which
requires the divergence of the model with respect its input to be accurate and well-behaved. As a
result, Boltzmann Generators face additional design constraints to ensure stability and reliability
of their likelihood computation. In the following, we show how BoltzNCE resolves this issue by
learning likelihoods separately, decoupling emulator quality from likelihood tractability and enabling
greater flexibility in the design of the emulator.

BoltzNCE enables fast and accurate likelihood estimation for Emulators. In contrast, the
BoltzNCE models yield more accurate estimates of the free energy difference and achieve lower
reweighted £-W, and T-W; scores, with BoltzNCE-VF providing the best performance. This
indicates that the likelihoods predicted by BoltzZNCE are generally more reliable than those obtained
via the Jacobian trace integral. Representative energy histograms and free energy surfaces along the
slowest transition (¢ dihedral angle) for the BoltzZNCE-VF model are shown in Figure 3. For energy
histograms and free energy projections of other methods, refer to Appendix F. As demonstrated in

Energy Distribution

: MD Simulation
005 Boltzmann Emulator
0.04 BoltzNCE Reweighted
S
M 0.03 ‘

N
0.02 lL

0.01 d

000Z375—23500 —326 —300 —275 —250 —225 900

Energy / kgT

Free energy projection ¢ Free energy projection TICA
2] — MD — MD !
=== Boltzmann Emulator 10—~~~ Boltzmann Emulator I'
15{ === BoltzNCE Reweighted g "7 BoltzNCE Reweighted II

Free energy / kgT
Free energy / kT

—0.5 0.0

05
TICO

Figure 4: BoltzNCE Results on NY dipeptide. BoltzNCE inference results for NY dipeptide (top
left) after fine-tuning. Energy distribution (top right), free energy surfaces along the ¢ angle (bottom
left) and the first TICA component (bottom right). BoltzZNCE successfully captures the right energy
distribution and free energy projections for the dipeptide.

the figure, the BoltzZNCE method is able to accurately capture the free energy projection and energy
distribution for alanine dipeptide.

We report inference time costs in Table 3, including the time to generate and estimate likelihoods for
10% conformers. BoltzZNCE provides an overwhelming inference time advantage over the standard
Boltzmann Generator by two orders of magnitude while matching accuracy.

To further evaluate the accuracy of EBM likelihoods, we show that it is both more accurate and more
computationally efficient than the Hutchinson trace estimator (Appendix F.3). We also demonstrate
further flexibility in the design of the EBM training algorithm by comparing OT to independent
coupling (Appendix F.4). It is important to note, however, that BoltzNCE has an upfront cost of
training the EBM associated with it. In principle, this upfront cost could be reduced by training the
EBM in parallel on the original interpolant (1) and then fine-tuning on the generated interpolant (10).

4.3 Generalizability on dipeptides

Finally, we demonstrate BoltzNCE’s ability to generalize to unseen molecules using systems of
dipeptides. For this experiment, we use the same setup and dataset from Klein and Noé [8], which
was originally developed in Klein et al. [65]. The training set consists of classical force field
MD simulations of 200 dipeptides, each run for about 50 ns. Since this dataset may not have
reached convergence, we bias the dataset in a similar manner to alanine dipeptide to ensure equal
representation of the modes along the ¢ angle. For testing, we utilize 1 us long simulations of 7
randomly chosen dipeptides not present in the training set.

In this experiment, we benchmark BoltzZNCE against independent 1us MD runs and the TBG-
ECNF model [8] trained on the biased dataset. We use the BoltzZNCE-VF method as it achieved
the best performance on the alanine dipeptide system. We also compute time-lagged independent
components (TICA) [66] from the test MD simulations and plot the free energy projections along the
first component. For details on TICA, refer to Appendix E.5.

The inference procedure with BoltzNCE is modified to improve generalizability. Samples generated
from the flow-matching model are passed through a conformer matching and chirality checking
procedure to check validity of generated samples. For more details, refer to Appendices E.3 and E.4.
The EBM, on the other hand, is first pretrained using conformers of training peptides generated by the

Method @ AF Error E-Wo T-W, Inference Time (h)

MD Baseline 0.18+0.22 0.17 +£0.03 0.22 £ 0.03 24.04
TBG-ECNF* [8] 0.13£0.10 0.36+£0.12 0.34 +£0.06 123.07
BoltzNCE 043+021 1.08+0.65 0.44+0.13 4.005

Table 4: Generalizability Results. Generalizability of the BoltzNCE method in comparison to
TBG and MD simulations on systems of 7 dipeptides. *Fewer samples (30,000) used due to high
GPU compute time. BoltzNCE provides a significant time advantage over the other methods while
achieving good performance.

flow-matching model and then fine-tuned on the dipeptide of interest during inference. In addition,
we exclude the top 0.2% of importance weights during reweighting to reduce variance, following the
approach introduced in Tan et al. [44].

BoltzNCE yields accurate Boltzmann statistics at a fraction of MD/TBG computational cost.
Quantitative evaluations across seven dipeptide systems (Table 4) show that BoltzNCE closely repro-
duces Boltzmann-weighted energy distributions and free energy surfaces obtained from molecular
dynamics (MD), as illustrated for the NY dipeptide in Figure 4. Although the TBG-ECNF method
attains the highest accuracy in free energy estimation, it incurs orders-of-magnitude higher compu-
tational cost due to its reliance on exact likelihood calculations, thereby serving as an upper bound
on BoltzZNCE performance. In contrast, BoltzNCE achieves comparable accuracy by approximating
likelihoods at substantially lower computational expense.

Visual inspection of all test systems (Figure 10) confirms that this minor performance drop remains
acceptable, with BoltzZNCE exhibiting excellent agreement with MD-derived energy distributions and
free energy landscapes. A small reduction in £-W5 scores, primarily driven by a single outlier in the
NF dipeptide (Appendix G), does not affect overall fidelity. Collectively, these results demonstrate
that BoltzZNCE provides an efficient, scalable, and generalizable framework for amortized Boltzmann
sampling on unseen molecular systems, maintaining high thermodynamic accuracy at a fraction of
the computational cost.

5 Discussion

In this work, we introduce a novel, scalable, and simulation-free framework for training energy-based
models that integrates stochastic interpolants, InfoNCE, and score matching. We show that InfoNCE
and score matching act complementarily to enhance model performance. Our approach learns the
density of conformers sampled from a Boltzmann Emulator, eliminating the need for costly Jacobian
trace calculations and achieving orders-of-magnitude speedups. On alanine dipeptide, BoltzNCE
can even surpass the accuracy of ODE-based divergence integration. Across multiple dipeptide
systems, the method generalizes to unseen molecules with minimal fine-tuning, providing substantial
computational savings over conventional molecular dynamics. This framework bridges the gap
between Boltzmann Emulators and Generators, removing the dependence on invertible architectures
and expensive likelihood computations, while enabling high-fidelity, scalable Boltzmann sampling.

6 Limitations and Future Work

The present work is limited to dipeptide molecular systems. While on ADP the method demonstrates
excellent accuracy, the performance drops in the generalizability settings. This limitation could
likely be addressed through more extensive exploration of model architectures and hyperparameter
optimization, which we have only minimally investigated here. The method also has the potential to
be scaled to larger molecular systems; however, the accuracy of the method needs to be further tested
in higher-dimensional settings.

Training the energy-based model requires applying the score matching loss to its gradients, which
increases compute requirements beyond typical levels for neural networks training. Additionally,
since the likelihoods estimated by the EBM are approximate, a degree of mismatch between the
samples and their predicted likelihoods is inevitable.

10

Although the current work is limited to a molecular setting, we believe the proposed EBM training
framework could be broadly applicable in other domains where energy-based models are useful, such
as inverse problems in computer vision and robotics.

7 Acknowledgments

We thank Leon Klein for making the code and data for his original Boltzmann Generator and
Equivariant Flow Matching methods readily available.

This work is funded through R35GM 140753 from the National Institute of General Medical Sciences.
The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institute of General Medical Sciences or the National Institutes of Health.

References

[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493-500, 2024.

[2] Haiyang Zheng and Jin Wang. Alphafold3 in drug discovery: A comprehensive assessment of
capabilities, limitations, and applications. bioRxiv, pages 2025-04, 2025.

[3] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of

protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022:
500902, 2022.

[4] Benedict Leimkuhler. Molecular dynamics. In Encyclopedia of Applied and Computational
Mathematics, pages 931-940. Springer, 2015.

[5] David W Borhani and David E Shaw. The future of molecular dynamics simulations in drug
discovery. Journal of computer-aided molecular design, 26(1):15-26, 2012.

[6] John L Klepeis, Kresten Lindorff-Larsen, Ron O Dror, and David E Shaw. Long-timescale
molecular dynamics simulations of protein structure and function. Current opinion in structural
biology, 19(2):120-127, 2009.

[7] Frank Noé, Simon Olsson, Jonas Kohler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

[8] Leon Klein and Frank Noé. Transferable boltzmann generators. arXiv preprint
arXiv:2406.14426, 2024.

[9] Alessandro Coretti, Sebastian Falkner, Jan Weinreich, Christoph Dellago, and O Anatole von
Lilienfeld. Boltzmann generators and the new frontier of computational sampling in many-body
systems. arXiv preprint arXiv:2404.16566, 2024.

[10] Manuel Dibak, Leon Klein, Andreas Kriamer, and Frank Noé. Temperature steerable flows and
boltzmann generators. Physical Review Research, 4(4):L042005, 2022.

[11] Jonas Kohler, Andreas Kridmer, and Frank Noé. Smooth normalizing flows. Advances in Neural
Information Processing Systems, 34:2796-2809, 2021.

[12] Leon Klein, Andreas Krimer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36:59886-59910, 2023.

[13] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[14] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

11

[15] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

[16] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models.
Advances in neural information processing systems, 32, 2019.

[17] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy based models. arXiv preprint arXiv:2012.01316, 2020.

[18] Sumeet Singh, Stephen Tu, and Vikas Sindhwani. Revisiting energy based models as poli-
cies: Ranking noise contrastive estimation and interpolating energy models. arXiv preprint
arXiv:2309.05803, 2023.

[19] Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. arXiv
preprint arXiv:2003.05033, 2020.

[20] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on robot learning, pages 158—168. PMLR, 2022.

[21] Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 297-304. IMLR Workshop and Conference
Proceedings, 2010.

[22] Michael U Gutmann and Aapo Hyvirinen. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. The journal of machine learning
research, 13(1):307-361, 2012.

[23] C Dyer. Notes on noise contrastive estimation and negative sampling. arxiv. arXiv preprint
arXiv:1410.8251, 2014.

[24] Benjamin Rhodes, Kai Xu, and Michael U Gutmann. Telescoping density-ratio estimation.
Advances in neural information processing systems, 33:4905-4916, 2020.

[25] Bingbin Liu, Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Analyzing and improv-
ing the optimization landscape of noise-contrastive estimation. arXiv preprint arXiv:2110.11271,
2021.

[26] Holden Lee, Chirag Pabbaraju, Anish Sevekari, and Andrej Risteski. Pitfalls of gaussians as a
noise distribution in nce. arXiv preprint arXiv:2210.00189, 2022.

[27] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

[28] Omar Chehab, Aapo Hyvarinen, and Andrej Risteski. Provable benefits of annealing for
estimating normalizing constants: Importance sampling, noise-contrastive estimation, and
beyond. Advances in Neural Information Processing Systems, 36:45945-45970, 2023.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[31] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[32] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pages 23—40. Springer, 2024.

[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

12

[34] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[35] Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

[36] Hannes Stirk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. @ Harmonic self-
conditioned flow matching for multi-ligand docking and binding site design. arXiv preprint
arXiv:2310.05764, 2023.

[37] Peter Wirnsberger, Andrew J Ballard, George Papamakarios, Stuart Abercrombie, Sébastien
Racaniere, Alexander Pritzel, Danilo Jimenez Rezende, and Charles Blundell. Targeted free
energy estimation via learned mappings. The Journal of Chemical Physics, 153(14), 2020.

[38] Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schélkopf, and
José Miguel Herndndez-Lobato. Flow annealed importance sampling bootstrap. arXiv preprint
arXiv:2208.01893, 2022.

[39] Xingiang Ding and Bin Zhang. Deepbar: a fast and exact method for binding free energy
computation. The journal of physical chemistry letters, 12(10):2509-2515, 2021.

[40] Joseph C Kim, David Bloore, Karan Kapoor, Jun Feng, Ming-Hong Hao, and Mengdi Wang.
Scalable normalizing flows enable boltzmann generators for macromolecules. arXiv preprint
arXiv:2401.04246, 2024.

[41] Rasool Ahmad and Wei Cai. Free energy calculation of crystalline solids using normalizing
flows. Modelling and Simulation in Materials Science and Engineering, 30(6):065007, 2022.

[42] Kim A Nicoli, Christopher J Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel,
Shinichi Nakajima, and Paolo Stornati. Estimation of thermodynamic observables in lattice
field theories with deep generative models. Physical review letters, 126(3):032001, 2021.

[43] Maximilian Schebek, Michele Invernizzi, Frank Noé, and Jutta Rogal. Efficient mapping
of phase diagrams with conditional boltzmann generators. Machine Learning: Science and
Technology, 5(4):045045, 2024.

[44] Charlie B. Tan, Avishek Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, and Alexander
Tong. Scalable equilibrium sampling with sequential boltzmann generators. arXiv:2502.18462
[cs.LG],2025. URL https://arxiv.org/abs/2502.18462.

[45] Osama Abdin and Philip M Kim. Pepflow: direct conformational sampling from peptide energy
landscapes through hypernetwork-conditioned diffusion. bioRxiv, pages 202306, 2023.

[46] Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang,
Jianwei Zhu, Yaosen Min, et al. Predicting equilibrium distributions for molecular systems with
deep learning. Nature Machine Intelligence, 6(5):558-567, 2024.

[47] Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: Multiple
time-resolution models for molecular dynamics. Advances in Neural Information Processing
Systems, 36:36449-36462, 2023.

[48] Yan Wang, Lihao Wang, Yuning Shen, Yiqun Wang, Huizhuo Yuan, Yue Wu, and Quanquan
Gu. Protein conformation generation via force-guided se (3) diffusion models. arXiv preprint
arXiv:2403.14088, 2024.

[49] Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew YK Foong,
Victor Garcia Satorras, Osama Abdin, Bastiaan S Veeling, Iryna Zaporozhets, et al. Scalable
emulation of protein equilibrium ensembles with generative deep learning. Science, 389(6761):
eadv9817, 2025.

[50] Juan Viguera Diez, Sara Romeo Atance, Ola Engkvist, and Simon Olsson. Generation of

conformational ensembles of small molecules via surrogate model-assisted molecular dynamics.
Machine Learning: Science and Technology, 5(2):025010, 2024.

13

https://arxiv.org/abs/2502.18462

[51] Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. Advances in neural information processing

systems, 35:24240-24253, 2022.

[52] Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
generation. Advances in Neural Information Processing Systems, 36:549-568, 2023.

[53] Nicholas E Charron, Felix Musil, Andrea Guljas, Yaoyi Chen, Klara Bonneau, Aldo S Pasos-
Trejo, Jacopo Venturin, Daria Gusew, Iryna Zaporozhets, Andreas Krdamer, et al. Navigating
protein landscapes with a machine-learned transferable coarse-grained model. arXiv preprint
arXiv:2310.18278, 2023.

[54] Jonas Kohler, Yaoyi Chen, Andreas Kramer, Cecilia Clementi, and Frank Noé. Flow-matching:
Efficient coarse-graining of molecular dynamics without forces. Journal of Chemical Theory
and Computation, 19(3):942-952, 2023.

[55] Anish Sevekari, Rishal Aggarwal, Maria Chikina, and David Koes. Accelerating nce conver-
gence with adaptive normalizing constant computation. In ICML 2024 Workshop on Structured
Probabilistic Inference {\ &} Generative Modeling, 2024.

[56] Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via
infinitesimal classification. In International Conference on Artificial Intelligence and Statistics,
pages 2552-2573. PMLR, 2022.

[57] Hankook Lee, Jongheon Jeong, Sejun Park, and Jinwoo Shin. Guiding energy-based models via
contrastive latent variables. arXiv preprint arXiv:2303.03023, 2023.

[58] Shahar Yadin, Noam Elata, and Tomer Michaeli. Classification diffusion models: Revitalizing
density ratio estimation. arXiv preprint arXiv:2402.10095, 2024.

[59] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and memc. In International
conference on machine learning, pages 8489-8510. PMLR, 2023.

[60] RuiKang OuYang, Bo Qiang, Zixing Song, and José Miguel Herndndez-Lobato. Bnem: A boltz-
mann sampler based on bootstrapped noised energy matching. arXiv preprint arXiv:2409.09787,
2024.

[61] Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. Gfn2-xtb—an accurate and
broadly parametrized self-consistent tight-binding quantum chemical method with multipole
electrostatics and density-dependent dispersion contributions. Journal of chemical theory and
computation, 15(3):1652-1671, 2019.

[62] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL. Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411,
2020.

[63] Bowen Jing, Stephan Eismann, Pratham N Soni, and Ron O Dror. Equivariant graph neural
networks for 3d macromolecular structure. arXiv preprint arXiv:2106.03843, 2021.

[64] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877-28888, 2021.

[65] Leon Klein, Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian
Nowozin, Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular
dynamics by learning time-coarsened dynamics. Advances in Neural Information Processing
Systems, 36:52863-52883, 2023.

[66] John D Chodera and Frank Noé. Markov state models of biomolecular conformational dynamics.
Current opinion in structural biology, 25:135-144, 2014.

14

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International conference on machine learning, pages 9323-9332. PMLR, 2021.

Ian Dunn and David Ryan Koes. Accelerating inference in molecular diffusion models with
latent representations of protein structure. ArXiv, pages arXiv—2311, 2024.

Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de
novo molecule generation. arXiv:2404.19739 [q-bio.BM], 2024. URL https://arxiv.org/
abs/2404.19739.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph, 2023. URL https://arxiv.org/abs/2105.02605.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, levgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
Tong, and Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research,
22(78):1-8,2021. URL http://jmlr.org/papers/v22/20-451 . html.

Moritz Hoffmann, Martin Scherer, Tim Hempel, Andreas Mardt, Brian de Silva, Brooke E
Husic, Stefan Klus, Hao Wu, Nathan Kutz, Steven L Brunton, et al. Deeptime: a python library
for machine learning dynamical models from time series data. Machine Learning: Science and
Technology, 3(1):015009, 2021.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative
models with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods, 17(3):261-272,
2020.

Patrick Kidger, Ricky T. Q. Chen, and Terry J. Lyons. "hey, that’s not an ode": Faster ode
adjoints via seminorms. International Conference on Machine Learning, 2021.

15

https://arxiv.org/abs/2404.19739
https://arxiv.org/abs/2404.19739
https://arxiv.org/abs/2105.02605
http://jmlr.org/papers/v22/20-451.html

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims made in the abstract match experimental results section 4.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations and future work section has been included (section 6)

16

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: ~ All the information is present in the experimental section 4
and appendix (section B,C,E.6,E.8). The code and data is also available at
https://github.com/Rishal Aggarwal/BoltzNCE.

Guidelines:

* The answer NA means that the paper does not include experiments.

17

https://github.com/RishalAggarwal/BoltzNCE

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: The code and data is available at
https://github.com/RishalAggarwal/BoltzNCE.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

18

https://github.com/RishalAggarwal/BoltzNCE
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details have been specified in section 4 and in the appendix
sections CE.6, E.8.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Mean and standard deviations are provided across 5 runs for all metrics (section
4)

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources have been specified in training and inference time sections
in the appendix D,E.8.

Guidelines:

* The answer NA means that the paper does not include experiments.

19

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms with all guidelines and rules of the NeurIPS code of Ethics
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is more foundational research and does not have any impact directly
on society

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

20

https://neurips.cc/public/EthicsGuidelines

Justification: The paper does not contain any models/methods that could be considered a
risk

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors of all the data and benchmark models have been credited through
citations

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Reproducible code along with license is provided at
https://github.com/Rishal Aggarwal/BoltzNCE.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

21

paperswithcode.com/datasets
https://github.com/RishalAggarwal/BoltzNCE

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Endpoint Objective

Stochastic interpolants anneal between z¢ ~ N (0,I) and 1 ~ p.(z) with:

Iy = o + By (16)
solving for x¢:
T = It - /th]. (17)
Q

I evolves according to the vector field given by the conditional expectation:

bt(.’E) = OttE [iL‘0|It = IL’] + ,BtE [:171|It = IE] (18)

Substituting 17 in 18 we get:

bo(r) = el = @IEOE“'A =) | GE [31|L, = 4] (19)
be(x) = a; Y(awx + (Beay — B)E [x1]1, = x]) (20)

Similarly, the model estimate of the vector field is given by:

bot(x) = oy (i + (Brow — By)dn(t,x)) @21

Where 21 (¢, I;) is the predicted endpoint by the model. The objective is then given by:

T
Lpp = /0 1bg,¢ (1) — be(1y)]|*dt 22
T o
Lep = / E lllﬁto‘;—tﬁt(@(t, L) = a)[?| dt @3
0

B EBM training algorithm

Input time and

sample

InfoNCE loss function

< 1 exp(Eg(ti,xi))
T PN CAGRD)

Energy based Model

Score Matching loss

——L—q

I Negative time I
t’
|

Figure 5: Energy Based Model training workflow

23

A diagrammatic representation of the method used for training the energy-based model is shown in
Figure 5. The model takes a sample = and time point ¢ as input and outputs predicted energy Fy(¢, x).
The gradient of the output with respect to the sample V. Ey(t,) is used for the score matching loss.
The same sample is also passed with negative time points {¢'}, and the predicted energies Ey(t', x)
are used along with the previously output energies Fy (¢, x) for the InfoNCE loss.

We also provide a pseudocode block for training the energy-based model with stochastic interpolants,
InfoNCE, and score matching in algorithm block 1.

Algorithm 1: Training EBM with stochastic interpolants, InfoNCE, and score matching

Input: Energy-Based model 8, samples from prior X, generated samples X1, interpolant
functions «y, B, negative time sampling variance o

for epoch < 1 to epoch,,,, do

for batch (CCo, Zl) in (Xo, Xl) do

(z9,Z1) < coupling function(zg,Z1)

sample ¢ ~ 1/(0,1)

It « apzo + B

Lsu = § Lo |V E(t", 1) + 2

sample t' ~ N (t,0?)

1N exp(Eo(t",1}"))
EInfoNCE — N Zn:l 10g exp(Eg (t",It"))-&-exp(Eg(t’",LZ‘))

L <+ Lsm + LinfoNCE
0 < Update(0, VL)

O:ltpllt: Updated model parameters 6

C Data featurization and Model Architecture

C.1 Data featurization

The data is featurized such that all atom types are defined according to the peptide topology. For
transferable models, amino acid identity and positional information are included along with atomic
features. Molecular structures are represented as fully connected graphs, and both models operate
directly on the Cartesian coordinates of the atoms.

C.2 Geometric Vector Perceptrons

Boltzmann Emulators are parameterized with an SE(3)-equivariant graph neural network that lever-
ages geometric vector perceptrons (GVPs) [62]. Briefly, a GVP maintains a set of equivariant vector
and scalar features per node that is updated in an SE(3)-equivariant/invariant manner via graph
convolutions. We utilize this architecture as it has been shown to have improved performance over
equivariant graph neural networks (EGNNs) [67] in molecular design tasks [68].

For our models, we use a modified version of the GVP which has been shown to increase performance
as described in Dunn and Koes [69]. The message passing step is constructed by applying the GVP
message passing operation defined in Jing et al. [63].

(s) (v) o . 50) -2’
(m;55;, m ;) = wM([hi, L dy;], vi: [d(l) :]) (24
2]
Here mgi) y and mz(s_)> . are the vector and scalar messages between nodes i, j. h;, d;; are the scalar

features, edge features, and a radial basis embedding respectively, while x represents the coordinates
of the node. For the detailed Node Position Update and Node Feature Update operations, refer to
Appendix C of Dunn and Koes [69].

24

C.3 Graphormer Operations

Our EBMs are implemented using the graphormer [64] architecture, which has demonstrated state-
of-the-art performance in molecular property prediction tasks. Graphormers function similarly to
standard transformers, with the key difference being the incorporation of an attention bias derived
from graph-specific features. In 3D-graphormers, this attention bias is computed by passing a
Euclidean distance matrix through a multi-layer perceptron (MLP).

Graphformers are neural network architectures where layer-wise GNN components are nested
alongside typical transformer blocks [70]. For our EBMs, we follow the implementation of the
Graphformer with one minor modification. For the original Graphformer, each attention head is

calculated as: .

head = softmax(QK

Vd

where B is a learnable bias matrix. In our implementation, B is calculated by passing the graph’s
euclidean distance matrix through an MLP.

n B) 1% (25)

D Metrics

D.1 NLL

To calculate the NLL of the holdout conformers, we take (6) and evaluate the ODE in the reverse
direction for a given sample. This provides the NLL of the sample. NLL values are reported over
batches of 1 x 10% samples.

D.2 Energy - W2

In order to quantify the difference in energy distributions between generated molecules and MD
relaxed samples, we calculate the Wasserstein-2 distance between the two distributions. This can be
intuitively thought of as the cost of transforming one distribution to another using optimal transport.
Mathematically, we solve the optimization process with the loss:

1
E-Wy = (iI;f/c(z,y)2 dﬂ'(x,y)>2 (26)

where 7(x, y) represents a coupling between two pairs (z,y) and ¢(z, y) is the euclidean distance.
We use the Python Optimal Transport package in our implementation [71]. £-W5 values are reported
over batches of 1 * 10° samples.

D.3 Angle - W2

Similar to the £-W5 metric, we seek to quantify the differences in the distributions of dihedral angles
generated and those from MD relaxed samples. Here, following the convention defined in Tan et al.
[44], we define the optimal transport in torsional angle space as:

1
T-Wy = (inf/c(z,y)2 dﬂ(x,y))Q (27)

where 7(x, y) represents a coupling between two pairs (x, y). The cost metric on torsional space is
defined as:

c(w,y) = (Z((xi - yi>%7r)2> (28)
where (z,y) € [—m,7)2

Similar to Energy-W?2 calculations, we use the Python Optimal Transport package for implementa-
tion [71]. T-W, values are computed in radians over batches of 1 x 10° samples.

25

D.4 Free energy difference
We believe the free energy projection of a system is a relevant baseline for the following two reasons:

* It represents a high dimensional integral of probability: The equation of a free energy
projection along a reaction coordinate is given by:

F(r'y=—-KgTInp(r") (29)

where p(r’) is the probability density of observing the system at position 7’ along the
coordinate,

p(r') = %/6(7"(95) —r)e“V@)/KBT) gy (30)

In principle, if we solve the above integral along all points of the reaction coordinate, we
solve a (D — 1) dimensional integral, where 2 € R”. Thus, this serves as a good metric on
how well the model matches the ground truth R” distribution.

For dipeptides, the process of going from the negative ¢ angle to the positive ¢ angle is
considered a slow process as there are regions of high energy/low probability in between the
two. Therefore, this serves as an ideal reaction coordinate to study dipeptide systems.

* Domain relevance: Applied studies in the biophysical/biochemical/structural biology
domain work on elucidating the free energy projection along a reaction coordinate. This
helps the researchers identify the relative stability of different modes along the coordinate as
well as the rate of reaction along the coordinate.

Free energy differences are computed between the positive and negative metastable states of the ¢
dihedral angle. The positive state is defined as the region between 0 and 2, while the negative state
encompasses the remaining range. The free energy associated with each state is estimated by taking
the negative logarithm of the reweighted population count within that state.

The code for calculating the free energy difference is as follows:

left = 0.

right = 2

hist, edges = np.histogram(phi, bins=100, density=True,weights=weights)
centers = 0.5%(edges[1:] + edges[:-1])

centers_pos = (centers > left) & (centers < right)

free_energy_difference = -np.log(hist[centers_pos].sum()/
hist[~centers_pos].sum())

Where phi is a numpy array containing the ¢ angles of the generated dataset (¢ € (—m,7]) and

weights is an array containing the importance weight associated with it.

D.5 Inference times

Inference time for free energy estimation is measured over 1 x 10° samples. Specifically, we use a
batch size of 500 and generate 200 batches of conformers. During sample generation, Boltzmann
Generators also compute the Jacobian trace. All run times are recorded on NVIDIA L40 GPUs.

Reported values represent the mean of five independent runs for alanine dipeptide and the average
across individual runs on the seven test-system dipeptides in the generalization setting.

E Technical Details

E.1 Dataset Biasing

Since transitioning between the negative and positive ¢ is the slowest process, with the positive ¢
state being less probable, we follow the convention of Klein and Noé [8], Klein et al. [12] and use a

26

Experiment Model Type Architecture Parameters

Alanine Dipeptide Flow Matching ECNF 147,599
Alanine Dipeptide ~ Flow Matching GVP 108,933
Alanine Dipeptide Energy-Based Model ~ Graphormer 4,879,949
Dipeptides (2AA) Flow Matching ECNF 1,044,239
Dipeptides (2AA) Flow Matching GVP 735,109

Dipeptides (2AA) Energy-Based Model ~ Graphormer 6,102,153

Table 5: Model size of different neural network architectures used in this work.

version of the dataset with bias to achieve nearly equal density in both states, which helps in obtaining
a more accurate estimation of free energy. To achieve the biased distribution, weights based on the
von Mises distribution, f, s, are incorporated and computed along the ¢ dihedral angle as

wlp) =7 fom(p | p=1k=10)+1 €1y

Where r is the ratio of positive and negative ¢ states in the dataset. To achieve dataset biasing,
samples are drawn based on this weighted distribution.

E.2 Umbrella sampling

Umbrella sampling is a physics-based method used to estimate the free energy profile along a reaction
coordinate. It involves selecting a set of points along the coordinate, performing separate simulations
around each point using a biasing potential, typically a harmonic restraint, and then combining the
resulting data to reconstruct an unbiased free energy landscape. The biasing potential keeps the
system near the target point while also promoting sampling of regions that are otherwise rarely visited
due to energy barriers.

For alanine dipeptide, Klein et. al[12] ran umbrella sampling simulations with the GFN2-xtb force-
field. We utilize the data from the same simulation and treat it as the ground truth value of the free
energy projection.

E.3 Conformer matching

For the generalizability experiments, the bonded graph of a generated sample is inferred using
empirical bond distances and atom types in a similar manner to Klein and Noé [8]. The inferred
graph is then compared with a reference graph of the molecule and the sample is discarded if the two
graphs are not isomorphic.

E.4 Correcting for chirality

Since SE(3) equivariant neural networks are invariant to mirroring, the Emulator models tend to
generate samples from both chiral states. To account for this, we fix chirality post-hoc following the
convention set by Klein and Noé [8], Klein et al. [12].

E.5 Time-lagged Independent Component Analysis (TICA)

TICA is a dimensionality reduction technique introduced for analyzing time-series data. In general,
it is used to identify directions that maximize the autocorrelation at a chosen lag time. Projecting
data onto TICA components yields lower dimensional representations that preserve the system’s
slowest timescales. Similar to Klein and Noé [8], we construct TICA components using the deeptime
library [72] at a lag time of 0.5 ns.

E.6 Model hyperparameters
Each GVP-Boltzmann Emulator model consists of one message-passing GVP layer and one update
GVP layer. The alanine dipeptide (ADP) emulators use 5 hidden layers with vector gating, whereas

the dipeptide emulators use 9. ADP emulators are configured with 64 scalar features and 16 vector
features, while the dipeptide emulators use 128 scalar and 32 vector features.

27

The Graphormer-based potential models are instantiated with 256-dimensional node embeddings and
matching 256-unit feed-forward layers within each transformer block, with a total of 8 layers for
ADP and 10 layers for dipeptides. Self-attention is applied with 32 heads over these embeddings, and
interatomic distances are encoded using 50 Gaussian basis kernels. The total parameter counts for
each model used in this work are reported in Table 5.

E.7 Endpoint training weights

The Endpoint loss function for training the Boltzmann Emulator is given by:

O{
Lop = Evta01), o1 am~Cionay | 122 @1 (1,1) =)12 (32)

Note that, the coefficients % become divergent near ¢ — 1 as 31 = 0. Therefore, in practice,
we threshold the min and the max value of these coefficients as follows:

5tat Be

t,, = min(max(0.005, | ——— a), 100) (33)
t
And optimize the following objective:
LEPmod = Einta(0.1), (0,01)~Clao,rr) [twllE1(t, 1) — z1]?] (34)

E.8 Training protocols

Emulator models for ADP were trained for 1,000 epochs, while those for dipeptides were trained for
12 epochs. Both were trained using the Adam optimizer with a learning rate of 0.001 and a batch
size of 512. A learning rate scheduler was employed to reduce the rate by a factor of 2 after 20
consecutive epochs without improvement, down to a minimum of 1le~®. An Exponential Moving
Average (EMA) with 5 = 0.999 was applied to the models and updated every 10 iterations. For
ADP, batches were coupled using mini-batch optimal transport[73], while for dipeptides independent
coupling with rotational alignment was employed. Mini-batch optimal transport was computed using
the SciPy linear_sum_assignment function [74]. All models were trained on NVIDIA L40 GPUs
with a batch size of 512.

The EBMs in both settings are trained with independent coupling. For ADP, the training set consists
of 100,000 conformers generated by the emulator, while for dipeptides the training set includes
50,000 conformers generated by the emulator across the 200 dipeptides in the dataset. The ADP
EBM is trained for 1,000 epochs, whereas the dipeptide EBM is trained for 10 epochs.

For ADP, the negative time point is sampled from a Gaussian distribution with a standard deviation of
0.025, while for dipeptides it is sampled from a Gaussian with a standard deviation of 0.0125. Both
models are optimized using Adam with a learning rate of 0.001. The learning rate is reduced by half
after 30 consecutive evaluations/epochs without improvement, down to a minimum of 1e~5. Training
is performed with a batch size of 512.

E.9 Interpolant Formulation

We specify the interpolant process following the design choices explored in Ma et al. [32]. The
Emulator models are trained with linear interpolants while the energy-based models use trigonometric
interpolants, both of which satisfy the constraints to generate an unbiased interpolation process.

Linear : oy =1 —t, By =1t 35)

1 1
Trigonometric: a; = cos(§7nf)7 B = sin(iwt) (36)

Trigonometric interpolants are called general vector preserving interpolants (GVP) in Ma et al. [32].
However, we change the naming of this notation to avoid confusion with geometric vector perceptrons
(GVP), which are repeatedly discussed in our paper.

28

MD_ Relaxed

.t

, Biased MD Relaxed

Iy =

Freecenergy / kgT

0.0

Figure 6: Alanine Dipeptide System A visualization of the alanine dipeptide system. Cartoon
representation of the alanine dipeptide (left) with its rotatable dihedral angles labeled, Ramachandran
plots of unbiased (center) and biased (right) datasets. The biased MD upweights the low frequency
mode along the ¢ dihedral.

Energy distribution

GVP Vector F

GVP Endpoint,_

1 GVP Vector Field
0.09 1 GVP Endpoint

=

Free energy / kT

Free e?lergy / kgT

=

0.0 f

0 —100 =

w0 = =
Energy / kgT'

Figure 7: Evaluation of different emulator models. The Ramachandran plots of dihedral angles of
both endpoint and vector field models are displayed on the left, and center. We see that the energy
distributions (right) of both endpoint and vector field emulators as well as a previous method, ECNF,
deviate from the distribution of the MD data. However, the Endpoint model distribution deviates the
least.

E.10 Integration scheme

All models were integrated with the adaptive step size DOPRIS5 solver implemented in the Torchdiffeq
package [75]. The tolerance atol and rtol values were set to 1e~ for alanine dipeptide and 1e~*
for systems of dipeptides. Vector field model integrals are evaluated from O to 1, while endpoint
models are evaluated from 0 to 1 — 1e~2 in order to avoid the numerical instability that occurs with
endpoint parametrization at time ¢ = 1.

F Additional Results

F.1 Vector Field Vs Endpoint Objectives

Inference results for the Boltzmann Emulators are presented in Table 6 and Figure 7. In this section,
we aim to quantify what training objective makes the best emulator and, surprisingly, whether a better
emulator will always make a better generator.

Method E-Wy T-Wy NLL NLL std

ECNF 6.22+0.12 0.27£0.01 —125.53+0.10 5.09 £ 0.09
GVP Vector Field 4.99+0.50 027+0.02 —-12542+0.15 6.92 + 0.62
GVP Endpoint 311 +0.70 0.26 £0.02 —92.04+324 175.12£35.51

Table 6: Boltzmann Emulator results. Comparison of NLL and W5 metrics of Boltzmann Emulators
across 5 runs (&£ indicates standard deviation). GVP Endpoint emulator captures the energy and
torsional target distribution the best. The ECNF model provides the best NLL values despite having
the worst W, metric values, indicating likelihood integration errors for the GVP models. This is also
demonstrated with the higher intra-run NLL std deviation values for the GVP models.

29

Energy distribution Free energy projection

0.08 MD relaxed samples ~ L p— Umbrella sampling
’ Boltzmann Emulator § 12} === BG Vector field reweighted I,\\
BG Vector field reweighted 10|
- 0.06 ~
1 e
o 5 °
S 0.04 g 6
\ o
0.02 g 9
_I E3
0.00== L. 7 G 0
—120 —100 —80 —60 —40 —20 0
Energy / kgT
Energy distribution Free energy projection
0.12) MD relaxed samples e 175 — Umbrella sampling
Boltzmann Emulator m —== BG Endpoint reweighted e
0.10] - . . 15.0! ° \
BG Endpoint reweighted ~ - II \
£ 0.8 ~125 ! \
a EJ: 10.0
Zom S
[
0.04 © 50
<5}
0.02 Ii—‘ 2.5
0.0
0.00°= 120 —100 —80 —60 —40 —20 0
Energy / kgT
Energy distribution Free energy projection
14
0.07] MD relaxed samples & | — Umbrella sampling N
0.06 Boltzmann Emulator oy 12} ——~ BoltzNCE reweighted ,I \‘
BoltzNCE endpoint reweighted = 10
0.05 : ~
€3 8
M 0.04 g '
< 0.03] qé 0
|
0.02 ©
s 9
0.01 =
— 0
U0 — =100 —s0 -0 -0 —20 0

Energy / kgT

Figure 8: Energy histograms and free energy projections with confidence intervals for the GVP-Vector
Field (top), GVP-Endpoint (center) and BoltzNCE-Endpoint (bottom) models.

The energy (£-W5) and torsion angle (T-W5) Wasserstein-2 distances quantify the discrepancy
between the distributions of energies and torsional angles of generated conformers and those in
the dataset. The results show that while the T-W, distance remains relatively consistent across all
methods, the GVP models capture the dataset’s energy distribution better, with the Endpoint model
showing the best performance (Figure 7) indicating that it is a very good Boltzmann Emulator on this
dataset.

The ECNF and GVP-VF models are comparable on the Negative Log Likelihood (NLL) metric,
whereas the GVP-EP model yields the worst values. It is important to note, however, that the endpoint
vector field (Eq. 9) diverges at time-point 1. Consequently, the likelihoods for the GVP-EP model
were evaluated starting from a later time point ¢ = 1 — 1e 3. Furthermore, the divergence at ¢ — 1
can lead to inaccurate likelihood estimates due to instability in the ODE integration. The standard
deviation of NLL values within each run is also reported, and the large variance observed for the
GVP-EP model further highlights the potential unreliability of its likelihood computations.

F.2 Boltzmann Generator Results

Energy histograms and free energy projections for GVP Vector Field, GVP Endpoint, and BoltzNCE
Endpoint methods are shown in Figure 8. The free energy values and energy histograms match up
best with the BoltzZNCE Endpoint method.

F.3 EBM in comparison to the Hutchinson trace estimator

Likelihoods predicted by the EBM are directly compared to the ground truth likelihoods obtained
from applying the change of variable equation on the flow matching generated samples. Note

30

EBM Prediction vs Jacobian Trace Integral Hutchinson Estimate vs Jacobian Trace Integral

Jacobian Trace Integral
Jacobian Trace Integral

-20 -10 20 30 % 100 110 120 130 140 150

o 10
EBM Prediction Hutchinson Estimate

Figure 9: Likelihood Calculation scatter plots: log likelihoods estimated by the EBM and Hutchin-
son estimator vs ground truth estimates from the continuous change of variable equation. EBM
predicts likelihoods at high level of accuracy.

Metric EBM Hutchinson Hutchinson Hutchinson Hutchinson
1 call 2 calls 4 calls 8 calls

Spearman (1) 0.93 0.87 0.88 0.88 0.87

Time () 0.5s 8 min 28 min 23 min 23 min

Table 7: Likelihood estimation results: Correlation between likelihood estimation methods and
exact likelihoods. EBM performs best.

that the likelihoods estimated by the EBM only estimate the exact likelihoods up to a constant.
The Hutchinson trace estimator is also implemented as a comparative benchmark. The Spearman
correlation and time required to estimate likelihoods for 10,000 samples is reported in table 7.

The EBM output exhibits strong agreement with the exact likelihoods. Furthermore, the EBM
outperforms the Hutchinson estimator, achieving better correlation while being over two orders of
magnitude faster at inference on 10,000 samples. Interestingly, increasing the number of estimator
calls in the Hutchinson method does not improve its correlation. Due to the use of an adaptive
step-size ODE solver, 4 and 8 estimator calls are actually faster than 2 calls.

F.4 Coupling Function Benchmark
To evaluate the effect of different coupling functions on EBM training, we compare independent

coupling to mini-batch OT coupling on ADP. The results are presented in Table 8. The results indicate
that both coupling functions can be used to train the EBM and both achieve similar performance.

Method AF Error E-Ws T-Ws
Independent Coupling 0.02 £0.13 0.27+0.02 0.57 £ 0.00
OT Coupling 0.03£0.12 0.23+£0.04 0.56 £ 0.005

Table 8: Coupling Benchmark. Coupling functions test to train the EBM model on ADP. Both cou-
pling functions provide similar performance, indicating that the training algorithms are independent
of coupling functions.

G Dipeptides generalizability results

Quantitative results on the 7 test systems of dipeptides are reported in Table 9. Representative
energy histograms and free energy surfaces for the dipeptides are shown in Figure 10. In general,
BoltzNCE is able to approximate the right distribution within acceptable error limits at 6x compute
time improvement over MD simulations.

31

Method Dipeptide AF Error E-Wy, T-W,

MD AC 0.048 0.192 0.213
TBG-ECNF AC 0.009 0.202 0.290
BoltzNCE AC 0.356 0431 0.318
MD ET 0.069 0.152 0.182
TBG-ECNF ET 0.187 0492 0.341
BoltzNCE ET 0.222 1.329 0.280
MD GN 0.545 0.122 0.171
TBG-ECNF GN 0.355 0.198 0.267
BoltzNCE GN 0.502 1.374 0.296
MD M 0.504 0.142 0.269
TBG-ECNF M 0.026 0.430 0.362
BoltzNCE M 0.688 0.459 0.454
MD KS 0.044 0.138 0.232
TBG-ECNF KS 0.133 0474 0.434
BoltzNCE KS 0.477 0419 0.626
MD NY 0.0003 0.198 0.229
TBG-ECNF NY 0.034 0.491 0.425
BoltzNCE NY 0.090 1.293 0.591
MD NF 0.072 0.221 0.214
TBG-ECNF NF 0.102 0.275 0.301
BoltzNCE NF 0.701 2318 0.536

Table 9: Dipeptides results. Quantitative results of different methods on all 7 dipeptide systems.
BoltzNCE delivers acceptable performance while offering a substantial time advantage.

32

0.07 Encrgy Distribution Free energy projection ¢ Free energy projection TICA
=MD Sinulation — D I D
0.06 &~ R
— Bultm}eum Emulator 020 —== Boltzmann Emulator Ec'qm, \ === Boltzmann Emulator
0.03 1 BoltzNCE Reweighted | =& | ___ Bjt,NCE Reweighted i Y —== BoltzNCE Reweighted
. ~1) —~125
B ooy 2 2510
< 0.03 T 10 E 5
<)
5] (<5}
0.02 s g %
0.01 G: SLT: 2.5
000—=5) 180 —160 —TI0 —120 —100 —80 —60 ‘ o 5 y ;
E / k T —L0 —0.8 —0.6 —0.4 —0.2 0.0 0.2
nergy / kg
Energy Distribution — Free energy projection TICA
0.06 L\ Free energy projection @ sl
D Simulation — MD
75| — MD &6
0.05 1 Boltzmann Emulator B 179) Q| === Boltzmann Emulator ~ _
1 Bolt/NCE Reweighted || 2 15.0) 7 Doltmann Enulator =25 ~=~ BoltzNCE Reweighted ,*”
0.04 Ol g -== BoltzNCE Reweighted ~ A 8 cighted »
. ~] \ /
O 0.03 |5 @g
= g g
3} :j 2|
0
—350 7325 —300 —1.00 —0.50 =025 0.00 0.25 0.50 0.75
Energy / kT
st Lo Free ener; rojection TICA
Energy Distribution Free energy projection ¢ o &Y Proj
0.07] B D Simulation e Y — \p o T M H
0.06 [Boltzmann Emulator Q90| ==~ Boltzmann Emulator ,&G T B"hzma"f' Emnulator ,
1 BoltzNCE Reweighted i —=~ BoltzNCE Reweighted ~_} 77 BoltzNCE Reweighted /
15 =000
004 2 204
= 5 g
Z 1 =
5] [}
[o2
g =
£ =2}
0| 0
S04 =02 00 02 01 06
Energy / kT TICO
- Distributi Lo Free ener; rojection TICA
Energy Distribution Free energy projection o 8Y proj
D Simulation ; N
s 20, — MD
0.03 3
' Boltzmann Emulator Er'q === Boltzmann Emulator £
0.04 [BolteNCE Reweighted | =% .} ——~ BoltzNCE Rewcighted -
=
g 4
=
[}
L o
o === Boltzmann Emulator
= . / ~=~ BoltzNCE Rexeighted
00——=F"—150 —1% -0 =% =0 =5 —T0 05 00 05 10 _15 20 25 30
Energy / kT TICO
Energy Distribution Free energy projection ¢ o Free energy projection TICA
. D Simulation % \p e | — MD /
009 1 Boltmam Bvietor | S~ B Emator B -~ Boltamam Emiror fit
0.0 [BoltzNCE Reweighted i 12—~ BoltuNCE Reweighted =] == BolNCE Reweighted i
= 10) i
0.0 % o ;85
e 5} <y
0.02 g9 5}
o 4 o
5] O 2
0.01 . =
[=
0.00 0 0

=275 =250 =225 =200 —175 —150 —125

Energy / kT
Energy Distribution

—0.50 —0.25 0.00 0.25 0.50 0.7 1.00

TICO
Free energy projection TICA

0.06] Free energy projection ¢ 16 -
D Simulation . — MD i
2000 — \p & 14 i
0.05) 1 Boltzmann Emulator Esq”,’ Bot f— \ @12 — == Boltzmann Emulator I
R 5 === Boltzmann Emulator g\ o o H
1 BoltaNCE Reweighted | <& 0| ~_ b NCe n gt g\ = BoltzNCE Reweighted]
— \ 10)
o 12, \ = l'
56 &0 5|
= 10. <
2. = 6
T < 4
= 2 = 2 7
000 —=535"2500 —2r5 —20 =225 =200 =175 0 [— i
P 5 ol 75 7 05 00 05 5 20 75

Energy / kT

Figure 10: Qualitative results on dipeptides. Energy histograms and free energy projections along
the ¢ dihedral angle and the first TICA component for test dipeptides. In order from top to bottom,
the figures represent results on the following dipeptides: AC, ET, GN, IM, KS, NF. In all cases,
BoltzNCE achieves good approximations of the energy distribution and free energy surfaces.

33

	Introduction
	Methodological Framework
	Background: stochastic interpolants and Boltzmann emulators
	BoltzNCE

	Related Work
	Experiments
	Low-dimensional systems
	Alanine Dipeptide
	Generalizability on dipeptides

	Discussion
	Limitations and Future Work
	Acknowledgments
	Endpoint Objective
	EBM training algorithm
	Data featurization and Model Architecture
	Data featurization
	Geometric Vector Perceptrons
	Graphormer Operations

	Metrics
	NLL
	Energy - W2
	Angle - W2
	Free energy difference
	Inference times

	Technical Details
	Dataset Biasing
	Umbrella sampling
	Conformer matching
	Correcting for chirality
	Time-lagged Independent Component Analysis (TICA)
	Model hyperparameters
	Endpoint training weights
	Training protocols
	Interpolant Formulation
	Integration scheme

	Additional Results
	Vector Field Vs Endpoint Objectives
	Boltzmann Generator Results
	EBM in comparison to the Hutchinson trace estimator
	Coupling Function Benchmark

	Dipeptides generalizability results

