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Abstract

Autoregressive generative models naturally generate variable-length sequences,
while non-autoregressive models struggle, often imposing rigid, token-wise struc-
tures. We propose Edit Flows, a non-autoregressive model that overcomes these
limitations by defining a discrete flow over sequences through edit operations—
insertions, deletions, and substitutions. By modeling these operations within a
Continuous-time Markov Chain over the sequence space, Edit Flows enable flex-
ible, position-relative generation that aligns more closely with the structure of
sequence data. Our training method leverages an expanded state space with auxil-
iary variables, making the learning process efficient and tractable. Empirical results
show that Edit Flows outperforms both autoregressive and mask models on image
captioning and significantly outperforms the mask construction in text and code
generation.

1 Introduction

Non-autoregressive models have become the standard across high-dimensional modalities, thanks to
their ability to produce coherent and globally consistent outputs. Recent advances include MovieGen
(Polyak et al., 2025) for video, Audiobox (Vyas et al., 2023) for audio, and Stable Diffusion 3
(Esser et al., 2024) for images. This trend extends to discrete code and text generation as well:
recent diffusion-based models such as LLaDa (Nie et al., 2025), DREAM (Ye et al., 2025), and
Mercury (Ermon et al., 2025) show that fully parallel generation can match or even surpass strong
autoregressive baselines on certain open-ended language tasks. Despite these advances, current
non-autoregressive models rely on rigid, factorized representations with fixed token positions. They
work by iteratively unmasking or replacing tokens in the target sequence. Critically, they cannot add
or remove tokens: two fundamental operations for modeling sequential data.

In this paper, we propose Edit Flows, a novel non-autoregressive framework that models generation as
a discrete flow over the space of sequences via edit operations—insertions, deletions, and substitutions.
We frame sequence generation as a stochastic process governed by a Continuous-time Markov Chain
(CTMC) over full sequences, in contrast to the usual factorized representation with absolute token
positions (Figure 1). The model learns to estimate the rate of each possible edit operation conditioned
on the current sequence (Figure 2). This enables modeling based on relative token positions and
eliminates the need for masking or padding tokens during training or inference. Moreover, Edit Flows
naturally accommodate variable-length sequences. In contrast to existing non-autoregressive models
that generate tokens in fixed lengths or rely on heuristic semi-autoregressive sampling (Nie et al.,
2025), Edit Flows can produce longer or shorter outputs adaptively, depending on the context.

Despite the conceptual simplicity of modeling sequence transitions through edits, training such
models is non-trivial. A direct optimization of full sequence-level stochastic processes typically
demands costly computations. To address this, we introduce a Flow Matching-based (Lipman et al.,
2024) training procedure that augments the state space with auxiliary variables that determine one
possible chain of edits that leads to the target sequence. By sampling these auxiliary variables in
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Figure 1: Edit Flow sampling process. Starting with
x0 containing random tokens or an empty sequence,
the model applies edits to xt and reaches a cohesive
sentence at time t = 1.
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Figure 2: Edit Flow model inputs and out-
puts. Given xt, the model predicts the rate
of each possible edit.

each training iteration (without exposing them to the model), we obtain a tractable training objective
and the model automatically learns to infer these auxiliary variables.

Empirically, Edit Flows show a strong and consistent improvement over fixed-length discrete flow and
diffusion models (Campbell et al., 2024b; Gat et al., 2024; Shi et al., 2024) across several benchmarks,
including image-to-text generation at 280M parameter scale (MS-COCO, Image Captioning 3M),
code generation at 1.3B parameter scale (HumanEval, MBPP), and open-ended text benchmarks at
1.3B parameter scale (HellaSwag, ARC, PIQA, OBQA, WinoGrande). On image-to-text generation,
Edit Flows outperformed all baselines, including the autoregressive model, and on code generation, it
has a relative improvement of 138% over the mask model. We summarize our contributions:

▷ We introduce Edit Flows, a non-autoregressive generation framework expanding upon the
Discrete Flow Matching recipe, with native support for variable-length sequences via edit
operations—insertions, substitutions, and deletions.

▷ We construct a sequence-level probability path, enabling CTMC-based modeling directly
over sequences of varying lengths, unlike prior work focused on token-level transitions.

▷ We demonstrate the effectiveness of Edit Flows on large-scale benchmarks in image caption-
ing, open-ended text benchmarks, and code generation.

2 Preliminaries
2.1 Continuous-time Markov Chains
To form the basis of our discrete generative model (Campbell et al., 2024b; Gat et al., 2024; Hold-
errieth et al., 2024; Shaul et al., 2024), we make use of Continuous-time Markov Chains (CTMC)
over a discrete space X . These are Markov processes that generate trajectories (Xt)t∈[0,1] and is
characterized by a rate ut denoting the infinitesimal transition probabilities between states

P(Xt+h = x|Xt = xt) = δxt(x) + hut(x|xt) + o(h) (1)

where o(h) satisfies limh→0
o(h)
h = 0n. Sampling from a CTMC can be done by iteratively applying

the update formula (1). The rate ut(x|xt) denotes the infinitesimal probabilities of transitioning from
a state xt to any other state x at time t, and for (1) to be a proper probability mass function, we need
both sides to sum to one. Hence, ut needs to satisfy

ut(x|xt) ≥ 0 for all x ̸= xt,
∑

x ut(x|xt) = 0, (2)

typically referred to as the rate conditions. Note this enforces ut(xt|xt) = −
∑

x ̸=xt
ut(x|xt).
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We say a rate ut “generates” a probability path pt if the time marginals of the associated CTMC are
samples from pt, i.e., Xt ∼ pt. Concretely, they should satisfy the Kolmogorov forward equation,

∂

∂t
pt(x) =

∑
y

ut(x|y)pt(y) =
∑
y ̸=x

ut(x|y)pt(y)︸ ︷︷ ︸
flow into x

−
∑
y ̸=x

ut(y|x)pt(x)︸ ︷︷ ︸
flow out of x

. (3)

That is, the change in probability of being in state x is the total infinitesimal probability flowing into
x from other states minus the total infinitesimal probability flowing out of x, determined by the rate.

2.2 Discrete Flow Matching
Discrete Flow Matching (DFM; Campbell et al. 2024b; Gat et al. 2024) is a conceptually simple
framework for learning a CTMC-based generative model to transport from a source (e.g. noise)
distribution p(x) to a target (e.g. data) distribution q(x) over a discrete space x ∈ X . For now,
consider a discrete space over sequences of fixed length N , so X = T N where T = {1, . . . ,M}
denotes a vocabulary of size M containing a discrete set of token values.

Discrete FM training relies on prescribing a coupling distribution π(x0, x1) that samples pairs (x0, x1)
where the marginals are p and q, i.e.,∑

x0
π(x0, x1) = q(x1),

∑
x1

π(x0, x1) = p(x0). (4)

The simplest case is of course the independent coupling π(x0, x1) = p(x0)q(x1). Further, we would
also prescribe a conditional CTMC characterized by a conditional rate

ut(x|xt, x0, x1) generating pt(x|x0, x1), s.t. p0(x|x0, x1) = δx0(x), p1(x|x0, x1) = δx1(x) (5)

where δ denotes Kronecker’s delta function. That is, the conditional probability path pt(x|x0, x1)
interpolates between two points from the source and target. DFM then trains a generative model that
transports according to the marginal probability path pt(x), which interpolates between the source
and target distributions.

pt(x) =
∑

x0,x1
pt(x|x0, x1)π(x0, x1) implying p0(x) = p(x), p1(x) = q(x). (6)

It can be shown that the marginal rate

ut(x|xt) = Ept(x0,x1|xt)ut(x|xt, x0, x1) (7)

generates the marginal probability path pt(x), i.e. ut(x|xt) characterizes a CTMC that transports
from the source p to the target data distribution q. In order to train a model to approximate (7), prior
works have used cross-entropy (Gat et al., 2024; Campbell et al., 2024b) and evidence lower bounds
(Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Shaul et al., 2024) as training objectives, all of
which are captured by the family of Bregman divergences (Holderrieth et al., 2024).

Token-wise mixture paths. The prescription of (4) and (5) is then left as a design choice. Most
existing works have focused on the factorized token-wise conditional path (Gat et al., 2024)

pt(x
i|xi

0, x
i
1) = (1−κt)δxi

0
(xi)+κtδxi

1
(xi), ut(x

i|xi
t, x

i
0, x

i
1) =

κ̇t

1−κt

(
δxi

1
(xi)− δxi

t
(xi)

)
, (8)

where κt is a scheduler that satisfies κ0 = 0, κ1 = 1. The multi-dimensional case is to consider only
states that differ by one token, expressed concisely as

pt(x|x0, x1) =
∏N

i=1 pt(x
i|xi

0, x
i
1), ut(x|xt, x0, x1) =

∑
i δxt

(x¬i)ut(x
i|xi

t, x
i
0, x

i
1), (9)

where δxt
(x¬i) =

∏
j ̸=i δxj

t
(xj) is a shorthand for denoting that all dimensions except i are the same.

That is, this rate is factorized in that it only describes token-wise changes, though sampling can be
done in parallel (1). This is a particular advantage of using a continuous-time framework, requiring
only a per-dimension parameterization of the model, at the cost of using an iterative procedure for
sampling. It has been difficult to generalize beyond the token-wise paths as it can quickly become
intractable to prescribe a conditional CTMC (5) for training that has more general transitions over
sequence space (Shaul et al., 2024).

Mask construction. As noted by many existing works (Austin et al., 2021; Lou et al., 2024;
Campbell et al., 2024b), the simplifying case of considering the source distribution to be a mask
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Figure 3: Computing the loss starts with the two aligned sequences z0 and z1. Locations where
zi0 = ε require an insertion operation, locations where zi1 = ε require a deletion and locations where
zi0 ̸= zi1 require a substitution. zt is sampled by applying a subset of the operations to z0 depending
on the scheduler. Then, xt is obtained by removing all ε tokens from zt. The Monte-Carlo estimate
of the loss contains the model output uθ

t (x|xt) in two terms: the negated sum of all the edit rates and
the logarithms of the remaining edits between zt and z1.

distribution has significant theoretical and practical benefits. That is, setting p0(x) = δm(x), wherem
is a special mask token not found in the original vocabulary. Theoretically, this drastically simplifies
the construction (Sahoo et al., 2024; Shi et al., 2024) and practically has been shown to scale (Nie
et al., 2025; Ye et al., 2025; Ermon et al., 2025). The main benefits come from requiring only learning
transitions between the mask token and the other tokens, with no transitions between tokens from the
original vocabulary. However, this construction still has multiple downsides, as it does not make full
use of the CTMC framework and is equivalent to an any-order autoregressive model (Hoogeboom
et al., 2022; Pannatier et al., 2024) though usually implemented with non-causal attention. As with all
token-wise path constructions, the most glaring downside is the lack of inherent support for variable-
length generation. To handle variable length outside of the modeling framework, padding can be
done during training but the excessive padding makes the model over-confident in predicting padding
tokens, an issue that currently relies on semi-autoregressive sampling to get around (Nie et al., 2025).

3 Edit Flows
3.1 Edit Flows: a continuous-time Markov chain using edit operations
We design a new CTMC-based generative model through the Discrete Flow Matching framework
using edit operations to enable variable length generation, while encompassing existing constructions
as special cases. Let T be as defined previously to be a vocabulary of size M . Then our state space is
defined as the set of all possible sequences up to some maximum length N , i.e., X =

⋃N
n=0 T n.

We will now describe the Edit Flow model which is a CTMC that operates directly on the space of
sequences, and discuss tractable training using a generalization of the DFM recipe later in Section 3.2.
Specifically, we parameterize the rate of a CTMC uθ

t . For two sequences x, xt ∈ X , uθ
t (x|xt) is

allowed non-zero only if x and xt differ by one edit operation. An edit operation is one of either
insertion, deletion, or substitution, which we use to transition between sequences in our generative
model. Specifically, given a sequence x with variable length n(x), we define the edit operations that
can be performed on x concretely as follows.

▶ Let ins(x, i, a), x ∈ X , i ∈ {1, . . . , n(x)}, a ∈ T , be the sequence resulting from inserting the
token value a to the right side of position i of the sequence x, resulting in

ins(x, i, a) = (x1, . . . , xi, a, xi+1, . . . , xn(x)). (10)

▶ Let del(x, i), x ∈ X , i ∈ {1, . . . , n(x)}, be the sequence resulting from deleting the i-th token
from the sequence x, resulting in

del(x, i) = (x1, . . . , xi−1, xi+1, . . . , xn(x)). (11)

▶ Let sub(x, i, a), x ∈ X , i ∈ {1, . . . , n(x)}, a ∈ T , be the sequence resulting from substituting
the token value a into position i of the sequence x, resulting in

sub(x, i, a) = (x1, . . . , xi−1, a, xi+1, . . . , xn(x)). (12)
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Generated tokens: t = 0 t = 1

def is_prime(n: int) -> bool:
"""Check if a number is prime or not.
"""
if n < 2: return False
for i in range(2, n):

if n % i == 0: return False
return True

A small white dog wearing a black hat
on top of its head.

Figure 4: Edit Flow generation examples with X0 = ∅ (i.e. insert-only model). The tokens are color
coded to denote the timestep that they were generated in. Left: Coding model conditioned on the
function signature. Right: Image captioning model conditioned on the image.

These edit operations define the support of the rate uθ
t (·|xt). Figure 1 shows an example of a

CTMC transitioning through sequences using edit operations. Since insertions, deletions, and
substitutions result in sequences that are mutually exclusive, we can parameterize each separately.

uθ
t (ins(x, i, a)|x) = λins

t,i(x)Q
ins
t,i(a|x) for i ∈ {1, . . . , n(x)} (13)

uθ
t (del(x, i)|x) = λdel

t,i(x) for i ∈ {1, . . . , n(x)} (14)

uθ
t (sub(x, i, a)|x) = λsub

t,i (x)Q
sub
t,i (a|x) for i ∈ {1, . . . , n(x)} (15)

With this parameterization, the λt,i ≥ 0 are the total rates of inserting, deleting, or substituting any
token at position i and determines the chances of each operation occurring; Qins

t,i(a|x) and Qsub
t,i (a|x)

are the (normalized) distributions over token values if an insertion or substitution occurs at position i.
Equations (13)-(15) ensure rates are non-negative and the summation to satisfy (2) is more tractable:

uθ
t (xt|xt) = −

∑n(xt)
i=1 λins

t,i(xt)−
∑n(xt)

i=1 λdel
t,i(xt)−

∑n(xt)
i=1 λsub

t,i (xt). (16)

Figure 2 shows the model outputs corresponding to (13)-(15).

Special cases. The framework of Edit Flows actually generalizes many existing constructions, as
one can restrict the rates to recover existing discrete generative models. For instance, the token-wise
probability paths (8) are substitution-only, i.e. λins

t,i = λdel
t,i = 0, with the mask construction having

an additional constraint λsub
t,i (x) = 0 if xi ̸= m. As such, the token-wise CTMCs are incapable of

increasing or decreasing sequence length. An autoregressive model can also be recovered by only
allowing insertions to occur at the rightmost location, i.e., all rates are zero except λins

t,n(x). As such,
the model is incapable of making corrections to the existing sequence other than inserting new tokens
in a prescribed order. It can be seen that Edit Flows is a simple yet natural generalization of these
existing discrete generative modeling constructions.

3.2 Training Edit Flows

Since Edit Flows generalizes beyond the token-wise paths that have been previously explored, it
cannot easily make use of existing cross-entropy or evidence lower bound objectives for training,
as these are difficult or intractable to derive. The main difficulty in deriving a conditional rate (5)
that lies in X is the need to account for all possible transitions that can transport from one sequence
to another, such as multiple possible insertions that transition to the equivalent sequence. Instead,
we propose an extension of the DFM training recipe to include an auxiliary Markov process, and in
doing so, resulting in allowing Bregman divergences for training Edit Flows.

Discrete Flow Matching with auxiliary Markov processes. Suppose we wish to train a CTMC
that lies in a space X and it follows the marginals of a CTMC that lies in an augmented space
(x, z) ∈ X × Z with a probability path pt(x, z). We show that it is possible to recover the CTMC
that transports directly in X , automatically inferring the auxiliary process in Z . This is concisely
formalized in the following Theorem 3.1. Further details and proofs are provided in Appendix B. We
note that in contrast to the original Flow Matching derivation (Lipman et al., 2024), this result shows
that we can marginalize over time-dependent processes, not just time-independent variables. Finally,
this result is more generally applicable than just training Edit Flows; we showcase another application
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of Theorem 3.1 in Appendix C.1 to train with localized propagation rates which incentivizes localized
edits, going beyond existing independent probability paths.
Theorem 3.1 (Flow Matching with Auxiliary Processes). Let ut(x, z|xt, zt) be a rate over the
augmented space of X × Z that generates pt(x, z), then

ut(x|xt) ≜
∑

z Ept(zt|xt)ut(x, z|xt, zt) generates pt(x) ≜
∑

z pt(x, z), (17)

and furthermore, for any Bregman divergence Dϕ(a, b) = ϕ(a)− ϕ(b)− ⟨a− b, d
dbϕ(b)⟩ defined by

a convex function ϕ, we have that

d

dθ
Ext,zt∼pt(x,z)Dϕ

(∑
z ut(·, z|xt, zt), u

θ
t (·|xt)

)
= d

dθExt∼pt(x)Dϕ

(
ut(·|xt), u

θ
t (·|xt)

)
. (18)

Training with an auxiliary alignment process. As previously mentioned, it is difficult to directly
construct a conditional rate (5) for Edit Flows, even if given points x0 and x1, as there can be multiple
sets of edit operations that transitions from x0 to x1. Instead, we can consider an augmented space
where a simpler construction exists. In particular, we will define an auxiliary process using alignments.

Given two sequences x0 and x1, an alignment can be used to define a precise set of edit operations
that transform x0 to x1. In general, there are many possible alignments for every pair of sequences.
For example, below are illustrations of three example alignments between the words ‘kitten’ and
‘smitten’ (the most optimal, a sub-optimal padding-to-the-right strategy, and the least optimal):

K ε I T T E N
↓ ↓
S M I T T E N

K I T T E N ε ε ε ε ε ε ε
↓ ↓ ↓ ↓ ↓ ↓
S M I T T E N ε ε ε ε ε ε

K I T T E N ε ε ε ε ε ε ε
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
ε ε ε ε ε ε S M I T T E N

The special token ε is a blank token that is not added to the vocabulary, i.e., it is not part of the input
or output of the model. Instead, we will only use it to define an auxiliary process that will provide a
training signal for Edit Flows via Theorem 3.1. As can be seen, given an alignment, we can recover
edit operations as tuples (a→ b) with a, b ∈ T ∪ {ε}, interpreted as an insertion if a = ε, a deletion
if b = ε, or a substitution if a ̸= ε and b ̸= ε.

Formally, let us define the space of aligned sequences as Z = (T ∪ {ε})N . Furthermore, we define
the function frm-blanks : Z → X as the operation of stripping away all the ε tokens. Note that since
this is a many-to-one function, this implies |X | < |Z|. Following the DFM recipe, we would need to
prescribe a coupling π and a conditional CTMC that transports from point to point. Given samples
from the source x0 ∼ p(x) and target x1 ∼ q(x) in X , we can directly construct aligned sequences
z0 and z1 in Z , e.g., by randomly padding the sequences, or by solving for the optimal alignment
that corresponds to the minimal edit distance. This defines a coupling π(z0, z1) over the auxiliary
variables satisfying the correct marginal distributions

p(x) =
∑

z0

∑
z1
π(z0, z1)δfrm-blanks(z0)(x), q(x) =

∑
z0

∑
z1
π(z0, z1)δfrm-blanks(z1)(x). (19)

Then, given z0, z1 ∼ π, we define a conditional probability path over the augmented space of X ×Z

pt(x, z|x0, z0, x1, z1) = pt(x, z|z0, z1) = pt(z|z0, z1)δfrm-blanks(z)(x), (20)

where pt(z|z0, z1) is a token-wise mixture probability path (8). A conditional rate that transports
along the augmented probability path is then given by (see Lemma B.2)

ut(x, z|xt, zt, z0, z1) = δfrm-blanks(z)(x)
∑N

i=1
κ̇t

1−κt
(δzi

1
(zi)− δzi

t
(zi))δzt(z

¬i) (21)

Note that this rate only transports between sequences xt → x that differ by one edit operation,
perfectly mapping to Edit Flow’s transitions (13)-(15). Applying Theorem 3.1, the marginal rate that
transports from p(x) to q(x) can be expressed as

ut(x|xt) =
∑

z Ept(z0,z1,zt|xt)ut(x, z|xt, zt, z0, z1), (22)

which we learn using a Bregman divergence as the training loss (see Appendix B.1), simplifying to

L(θ) = E
t,

π(z0,z1)

pt(xt,zt|z0,z1)

∑
x ̸=xt

uθ
t (x|xt)−

N∑
i=1

1[zi
1 ̸=zi

t]

κ̇t

1− κt
log uθ

t (x(zt, i, z
i
1)|xt)

 (23)

where x(zt, i, z
i
1) = frm-blanks(z

1
t , . . . , z

i−1
t , zi1, z

i+1
t , . . . , zNt ), which directly corresponds to one of

6



the edit operations in (13)-(15). This loss can be interpreted as minimizing all the output rates of the
model, while having a weighted cross-entropy over edit operations that bring xt closer to x1.

Interestingly, even when trained with the least optimal alignment, which deletes all tokens from x0

and inserts all tokens in x1, the trained model has a preference towards minimizing the number of
edits during its generation process (see Appendix F), learning a non-trivial coupling between x0

and x1. This is analogous to the kinetic energy minimization that is observed for Flow Matching in
continuous space (Shaul et al., 2023).

3.3 Algorithms and advanced techniques for Edit Flows

In this section, we provide details on the sampling procedure and advanced techniques that make use
of the Edit Flows framework. We only provide a summary of each technique here, focusing on the
resulting algorithmic procedures and high-level intuition; complete details are in Appendix C.

Sampling. Sampling from the model requires transporting a source sample X0 ∼ p to time t = 1,
simulating the CTMC defined with the learned rate uθ

t . Following previous works (Campbell et al.,
2022; Gat et al., 2024), we leverage the first-order approximation in (1). Sampling thus iterates:
with current state Xt and step size h, independently determine whether each insertion, deletion and
substitution, occurs with probability hλt,i(Xt), then perform all edit operations simultaneously.

Classifier-free guidance. We considered a few approaches to add classifier-free guidance (CFG;
Ho and Salimans 2022) to Edit Flows. The scheme that we found to be the most reliable, and which
we use throughout all experiments, is to apply CFG independently to λ and Q.

Sharpening Q. We also explored ad-hoc adjustments to the Q distributions, such as temperature,
top-p and top-k sampling, generally intended to sharpen the distribution over the most likely values.

Reverse rates. We can also formulate and learn a CTMC that transports from q to p. We call this
a reverse rate ⃗uθ

t as we apply it in reverse time, from t = 1 to t = 0. Combining the forward and
reverse rates allows us to introduce a stationary component that corrects the samples but does not
modify the distribution of the samples, introducing extra inference-time computation for the ability to
self-correct during sampling. When applied in practice, we take a step forwards in time with uθ

t to
t+ h(1 + αt) for αt > 0 followed by a step in reverse time with ⃗uθ

t+h(1+αt) back to t+ h.

Localized edit operations. The default rates that we use for the alignments zt have been factorized
per token (21), resulting in independent edit operations. While this allows the use of conditional
rates from prior work (8), this could be problematic for Edit Flows as when the sequence length
becomes large, noisy sequences xt will consist of non-neighboring tokens. Instead, we propose
a non-factorized locality-based construction in which if an edit operation has occurred, it incites
nearby edit operations to occur, thereby encouraging locally consistent subsequences in xt. We
construct this by creating a novel auxiliary CTMC that locally propagates the occurrence of edit
operations in Z space, and applying Theorem 3.1 to easily obtain a tractable training objective. All
details can be found in Appendix C.1. We find localized Edit Flow models to be especially more
performant at generating long sequences, leading to a 48% increase in Pass@1 on code generation.

4 Related work
Discrete diffusion and flows for language modeling. Generative models based on iterative refine-
ment such as diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow models (Lipman et al.,
2024) have seen their fair share of discrete adaptations. Both aim to learn a CTMC-based generative
model but approach the construction differently. Discrete diffusion models typically start with a
corruption process which is then reversed (Austin et al., 2021; Lou et al., 2024). Discrete flow models,
in contrast, aim to transport between two distributions with an interpolating scheme (Campbell et al.,
2024b; Gat et al., 2024). With the DFM framework, Shaul et al. (2024) also proposed new ways of
constructing general discrete token-wise paths. However, despite the large design space, none have
been able to reliably surpass the simple mask construction, which has been the core focus of many
recent works (Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024; Zheng et al., 2024), motivated by
the success of masked language modeling (Devlin et al., 2019; Ghazvininejad et al., 2019; Yang et al.,
2019; Chang et al., 2022). In particular, the mask construction has shown to perform well at scale,
though it is currently still shy of autoregressive models on code generation tasks and requires heuristic
or semi-autoregressive sampling schemes (Nie et al., 2025; Ye et al., 2025; Ermon et al., 2025). In
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stark contrast, we explored in the opposite direction, making full use of the CTMC-based construction
instead of simplifying it. This allowed us to generalize the existing DFM construction to enable
variable-length generation and construct a model using position-relative edits as a generative process.

Non-autoregressive variable length generation. When the generative modeling framework does
not inherently allow variable length generation, such as many non-autoregressive approaches, the
stereotypical method of handling it is to utilize a separate length prediction model (e.g. Lee et al.
2018). More integrated approaches have considered edit operations, though many of the existing con-
structions are heuristic-based and do not show that they properly sample from the target distribution.
Levenshtein Transformer (Gu et al., 2019b) and DiffusER (Reid et al., 2022) are edit-based sequence
generation models. They consider a sequential expert policy that performs a series of edits at each
step, and the model is trained through imitation learning. Unlike Edit Flows, DiffusER uses a causal
masked model (Aghajanyan et al., 2022) to fill in insertions and substitutions autoregressively and is
trained to match a discrete-time corruption process that is sequentially simulated. Chan et al. (2020)
considers sequence alignments using only deletion operations and leverages marginalization over
latent alignments. Gu et al. (2019a) and Stern et al. (2019) propose insertion-only models that sequen-
tially predict what and where to insert tokens. The most similar work to ours is perhaps Campbell
et al. (2024a), who proposed modeling inserts in a jump diffusion framework, relying on generator
theory and evidence lower bounds for training. However, extending this direct derivation approach to
more than a singular insertion, and to introduce deletions and substitutions, is very challenging and
arguably intractable; an issue that we got around by making simple use of Theorem 3.1.

Relative positions for language modeling. There is a growing trend to incorporate only relative
positional information into neural network architectures (Liutkus et al., 2021; Press et al., 2021;
Peebles and Xie, 2023; Su et al., 2024; Ding et al., 2024). However, on the methods side, there has not
yet been a shift due to non-autoregressive models mainly using a token-wise construction. As such,
every token generated must also account for the exact position (e.g., exact number of neighboring
mask tokens) when deciding on a token value. Edit Flows is one of the first models to use only
relative and localized operations in the method construction, sample generation time, and in the
architecture. Beyond the capability of variable length generation, enabling the use of position-relative
generation may be a key advancement and could be the underlying reason that allows Edit Flows to
outperform methods based on absolute positioning.

Iterative editing models. Several prior works on constrained generation employ iterative editing or
sampling procedures. Welleck et al. decouple an existing language generator from a learned iterative
corrector that refines its outputs, whereas Edit Flows uses a single model to begin from a random
or null sequence and directly generate outputs through a sequence of discrete token edits. Miao
et al. (2019) employ Metropolis–Hastings sampling over insertion/deletion/replacement operations
to satisfy lexical constraints; by contrast, Edit Flows deterministically takes a fixed number of
flow-matching steps from noise to data without an acceptance criterion. Qin et al. (2022) propose
COLD decoding, an energy-based approach that iteratively refines whole sequences via Langevin
dynamics under constraints, whereas Edit Flows incrementally edits tokens rather than resampling
full sequences. Finally, Sha (2020) formulates lexically-constrained generation as a gradient-guided
optimization problem using a differentiable fluency objective to guide edits, but Edit Flows requires
no external objective or backpropagation at test time. These contrasts underscore that Edit Flows
integrates generation and editing within a single flow-matching model, rather than relying on separate
generation and correction modules or auxiliary sampling schemes.

5 Experiments
We experimentally validate the performance of Edit Flows on multiple text generation tasks, including
image-to-text generation using 280M models, text and code generation benchmarks with 1.3B models.

Baselines. We primarily compare against a state-of-the-art Autoregressive model (Vaswani et al.,
2017; Touvron et al., 2023) with standard left-to-right generation, and Mask DFM (Gat et al., 2024)
which is the most relevant and best performing non-autoregressive framework currently for text
generation, equivalent to discrete mask diffusion models.

Models. We test two variants of our models with different p(X0). For the default Edit Flow
we use p = δ∅ so that the flow generates using a combination of insertions and deletions,
with the forward and reverse rates, respectively. A variant Uniform X0 + Edit Flow use
X0 = (X1, X2, . . . , X100) where Xi ∼ pemp, with pemp being the (marginalized) empirical dis-
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Method MS COCO Image Captioning 3M

METEOR CIDEr SPICE ROUGE-L CIDEr SPICE

VLP§ (Zhou et al., 2020) 28.4 117.7 21.3 24.3 77.5 16.5
ClipCap§ (Mokady et al., 2021) 27.1 108.3 20.1 26.7 87.2 18.5

Llama3 Autoregressive 25.7 95.5 19.6 25.2 85.8 17.8
Mask DFM 25.3 95.6 19.2 27.4 96.2 20.3
Edit Flow (Ours) 27.4 108.1 21.1 29.0 101.9 21.7
Localized Edit Flow (Ours) 27.4 105.1 22.1 28.3 99.7 20.8

Table 1: Image captioning benchmarks using Llama3 280M models. §These works used pretrained
models that were trained on larger amount of data and cannot be directly compared; they are shown
for reference only. Colors show the best and second best among each metric.

Method HellaSwag ARC-E ARC-C PIQA OBQA WinoGrande

Llama3 Autoregressive 49.5 71.0 36.3 76.0 30.4 62.1
Mask DFM 38.3 55.4 27.8 65.3 22.6 52.3
Edit Flow (Ours) 49.0 63.1 33.0 68.8 28.6 53.6

Table 2: Zero-shot text benchmarks using Llama3 1.3B parameter models trained on DCLM-baseline
1.0 (Li et al., 2024).

tribution of the tokens in the training set. When constructing the alignment between z0 and z1, 50
of the initial tokens are deleted and the other 50 are substituted, with the remaining tokens inserted.
Finally, a Localized Edit Flow that makes use of a localized propagation process Appendix C.1,
which encourages localized edits during generation.

Architecture and hyperparameters. We use 280M and 1.3B parameter variants of the Llama
architecture (Grattafiori et al., 2024; Touvron et al., 2023) for all of our models and baselines. The
maximum sequence length during training is set to 1024 tokens for all models. The Autogressive
baseline uses causal attention, while the Mask DFM and Edit Flow models use full self-attention,
including an additional token encoding the value of t. For Edit Flow, we use FlexAttention (Dong
et al., 2024) to handle batches of variable lengths, allowing us to not require special padding tokens
and significantly increasing token efficiency during training. In our experiments, Edit Flows are able
ingest 3× more training data per iteration while using the same compute and memory as Mask DFM.
We train all models and baselines using the same compute budget for fair comparison. We use a cubic
scheduler κt = t3 for Edit Flows and Mask DFM, which we found to perform better than the linear
scheduler as also observed by Gat et al. (2024). Further hyperparameter details are in Appendix E.

Method HumanEval HumanEval+ MBPP

Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10

Autoregressive (Gat et al., 2024) 14.3 21.3 17.0 34.3
Llama3 Autoregressive† 17.0 34.7 14.0 28.6 25.6 45.4

N
on

-A
R

Mask DFM (Gat et al., 2024) 6.7 13.4 6.7 20.6
Mask DFM (Oracle Length) (Gat et al., 2024) 11.6 18.3 13.1 28.4
Mask DFM† 9.1 17.6 7.9 13.4 6.2 25.0
Uniform X0 + Edit Flow (Ours) 9.7 24.3 9.7 19.5 9.4 33.4
Edit Flow (Ours) 12.8 24.3 10.4 20.7 10.0 36.4
Localized Edit Flow (Ours) 14.0 22.6 10.4 18.9 14.8 34.0

Table 3: Code generation benchmarks using Llama3 1.3B parameter models trained on the CodeLlama
(Roziere et al., 2023) datamix. †Superscript denotes our own implementation. We highlight the best
non-autoregressive models, where colors show the best and second best among each metric.
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Image captioning. We train on the task of image to text generation, using image captioning
datasets for training and validation. Specifically, we train from scratch on the MS COCO dataset
(Lin et al. 2014; CC-BY 4.0) and an image captioning dataset containing 3M image-caption pairs.
Results are shown in Table 1, where we also provide prior works as references that used large
pretrained models. By training on the larger Image Captioning 3M dataset, our models can match
the performance of these references. We see that for generation of short sequences such as captions,
non-autoregressive models can be better than autoregressive models. Furthermore, we see a sizeable
improvement in performance from using our Edit Flow models. We attribute this improvement to
the native capabilities of handling variable lengths. We see that the Localized Edit Flow performs
on par but does not outperform the default Edit Flow, which is expected for short length generation.
Examples of the generation process are shown in Figure 5.

Text benchmarks. For text benchmarks, we trained our models using the DCLM baseline 1.0
(Li et al. 2024; CC-BY 4.0) dataset. We show the results for common text benchmarks in Table 2.
Following (Nie et al., 2025), we perform CFG during evaluation, which has multiple ways to be
extended when applied to general CTMC processes. The Edit Flow model is significantly better
than the Mask DFM model, but it is slightly behind Autoregressive.

Code benchmarks. For the code generation benchmarks, we used the CodeLlama datamix (Roziere
et al., 2023). Results are shown in Table 3. As additional baselines, we compare against the results
reported by Gat et al. (2024), which includes an oracle where the ground truth length is provided
to the model. Interestingly, we see that Edit Flows can outperform even the model with oracle
length provided. We note that on such large scale data sets, the lengths of the sequence seen during
training are not very informative and we need to crop sequences to a maximum length anyhow (see
Figures 9,10); however, the ability of Edit Flows to generate and process using only relative positions
still gives Edit Flow a superior edge. Furthermore, our Edit Flow models are competitive with the
Autoregressive model reported by Gat et al. (2024), though it still falls short compared to our own
implementation. An interesting result is that the Localized Edit Flow model significantly outperforms
the other non-autoregressive models on MBPP, which is known to require generating long sequences
of code, with a relative improvement of 48% at Pass@1 over the non-localized Edit Flow and a 138%
relative improvement over Mask DFM.

6 Limitations

We identify two key limitations in our empirical results.

The pre-training configuration we employed favors autoregressive models. During autoregressive
training, the model is exposed to all possible conditioning contexts within the input sequence. In
contrast, we selected a random subset of the input to serve as conditioning. If this randomly chosen
subset does not closely align with the evaluation scenario, the resulting learning signal may be
diminished.

The text benchmarks used in our study focus on likelihood estimation rather than text generation.
Since non-autoregressive models lack a closed-form expression for likelihood, we relied on the
best available alternative—a noisy estimate of the ELBO. Although this provides a reasonable
approximation, these benchmarks do not directly assess the quality of the generated text produced by
the models.

7 Conclusion

Edit Flows operate using position-relative edit operations and naturally support variable-length
generation. By modeling sequence generation as a CTMC, our approach captures expressive sequence-
level transition dynamics without relying on rigid, factorized processes. Empirically, Edit Flows show
consistent improvement over the mask construction across a range of large scale benchmarks. In our
initial results, they surpass autoregressive models in image captioning and but fall slightly behind
them in text-benchmarks and code generation. However, many training pipelines and benchmarks
are designed for autoregressive models, and we believe that further efforts can significantly boost
performance.
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A Qualitative Examples

Input Image Edit Flow caption generation process
dog
dog.
dog television.
dog a television.
doges an animal a television.
A doges of an animal a television.
A brown and doges of an animal a television.
A brown and dog watches of an animal a television.
A brown and white dog watches of an on a television.
A brown and white dog watches an image of an animal on a television.

black
black hat
aring black hat
dogaring black hat head.
dogaring black hat on head.
A dogaring black hat on top head.
A dog wearing black hat on top head.
A white dog wearing black hat on top of head.
A white dog wearing a black hat on top of head.
A small white dog wearing a black hat on top of its head.

a
a tree
a tree a
a a tree a
a of a tree a
a close of on a tree a
a close up of birds on a tree branch a
a close up of birds on a tree branch a pot
a close up of birds on a tree branch with a pot

over
over.
lies over a.
lies over a street.
Anlies over a street.
Anlies over a street cars.
Anlies over street with cars.
An flies over street with cars.
An air flies over street with cars.
An airplane flies over street with cars.
An airplane flies over a street with cars.

Figure 5: Example input images and the stochastic sequential generation of captions from an Edit
Flows model.
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Generated tokens: t = 0 t = 1

def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number - int(number - 0.0)

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""
sum = 0
product = 1

if not numbers:
return sum, product

for index, number in enumerate(numbers):
sum += index
product *= number

return sum, product

def sum_product_empty(numbers: List[int]) -> Tuple[int, int]:
"""
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""

if __name__ == ’__main__’:
print(sum_product()
print(sum_product_empty([6]))

def string_sequence(n: int) -> str:
""" Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
’0’
>>> string_sequence(5)
’0 1 2 3 4 5’
"""
numbers = []
# add numbers to sequence
numbers += [str(value) for value in range(n+1)]
# space delimited
return str(’ ’.join(numbers))

Figure 6: Edit Flow generation examples with X0 = ∅ (i.e. insert-only model) without a divergence-
free component. 100 sampling steps. The function signature and the docstring serve as prompts.
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Initial State (Step 0):

def i s _ p r i m e ( n : i n t ) −> bool :
i f n <= 1 :

re turn True
f o r i in range ( 2 , n ) :

i f i % n == 0 :
re turn True

re turn F a l s e

Intermediate State (Step 150):

def i s _ p r i m e ( n : i n t ) −> bool :
i f n <= 1 :

re turn F a l s e
f o r i in range ( 2 , n ) :

i f . % n == 0 :
re turn F a l s e

True
,
6

Final State (Step 300):

def i s _ p r i m e ( n : i n t ) −> bool :
i f n <= 1 :

re turn F a l s e
f o r i in range ( 2 , n ) :

i f n % i == 0 :
re turn F a l s e

re turn True

Figure 7: Edit Flow error correction example for correcting the is_prime function. The initial
implementation is incorrect, because the three return statement are negated. The model starts from an
incorrect implementation, makes 117 edits over 300 steps, and reaches the correct final state. Note
that intermediate states may contain extra tokens that are later deleted.

B Theorems and proofs

Theorem 3.1 (Flow Matching with Auxiliary Processes). Let ut(x, z|xt, zt) be a rate over the
augmented space of X × Z that generates pt(x, z), then

ut(x|xt) ≜
∑

z Ept(zt|xt)ut(x, z|xt, zt) generates pt(x) ≜
∑

z pt(x, z), (17)

and furthermore, for any Bregman divergence Dϕ(a, b) = ϕ(a)− ϕ(b)− ⟨a− b, d
dbϕ(b)⟩ defined by

a convex function ϕ, we have that

d

dθ
Ext,zt∼pt(x,z)Dϕ

(∑
z ut(·, z|xt, zt), u

θ
t (·|xt)

)
= d

dθExt∼pt(x)Dϕ

(
ut(·|xt), u

θ
t (·|xt)

)
. (18)

Proof. For the first part of the theorem (17), since ut(x, z|xt, zt) generates pt(x, z), they satisfy the
Kolmogorov forward equation

∂

∂t
pt(x, z) =

∑
xt

∑
zt

pt(xt, zt)ut(x, z|xt, zt),
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then we can show ut(x|xt) and pt(x) also satisfy the Kolmogorov forward equation

∂

∂t
pt(x) =

∑
z

∂

∂t
pt(x, z) =

∑
z

∑
xt

∑
zt

pt(xt, zt)ut(x, z|xt, zt)

=
∑
xt

∑
z

∑
zt

ut(x, z|xt, zt)
pt(xt, zt)

pt(xt)︸ ︷︷ ︸
ut(x|xt)

pt(xt)

=
∑
xt

pt(xt)ut(x|xt).

Additionally, ut(x, z|xt, zt) satisfies the rate conditions by assumption. Assume pt(xt) > 0. Then∑
x ut(x|xt) =

∑
zt
(
∑

x

∑
z ut(x, z|xt, zt)1(pt(xt, zt) > 0))pt(xt,zt)

pt(xt)
= 0. Further, ut(x|xt) ≥ 0

when x ̸= xt and pt(xt) > 0 because ut(x, z|xt, zt) ≥ 0 when (x, z) ̸= (xt, zt) and pt(xt, zt) > 0.
Terms with pt(xt, zt) = 0 do not contribute in the sum. So ut(x|xt) satisfies the rate conditions.

For the second part of the theorem (18), note that

Ext,zt∼pt(x,z)

∑
x

∑
z

ut(x, z|xt, zt)
d

du
ϕ(uθ

t (x|xt))

=
∑
xt

∑
zt

∑
x

∑
z

pt(xt, zt)

pt(xt)
pt(xt)ut(x, z|xt, zt)

d

du
ϕ(uθ

t (x|xt))

=
∑
xt

∑
x

pt(xt)ut(x|xt)
d

du
ϕ(uθ

t (x|xt))

= Ext∼pt(x)

∑
x

ut(x|xt)
d

du
ϕ(uθ

t (x|xt))

then we can directly prove the result

d

dθ
Ext,zt∼pt(x,z)Dϕ

(∑
z

ut(·, z|xt, zt), u
θ
t (·|xt)

)

=
d

dθ
Ext,zt∼pt(x,z)

[
ϕ(
∑

z ut(·, z|xt, zt))− ϕ(uθ
t (·|xt))− ⟨

∑
z ut(·, z|xt, zt)− uθ

t (·|xt),
d
duϕ(u

θ
t (·|xt))

]
=

d

dθ
Ext,zt∼pt(x,z)

[
−ϕ(uθ

t (·|xt))−
∑

x

∑
z ut(x, z|xt, zt)

d
duϕ(u

θ
t (x|xt)) +

∑
x u

θ
t (x|xt)

d
duϕ(u

θ
t (x|xt))

]
=

d

dθ
Ext∼pt(x)

[
ϕ(ut(·|xt))− ϕ(uθ

t (·|xt))−
∑

x ut(x|xt)
d
duϕ(u

θ
t (x|xt)) +

∑
x u

θ
t (x|xt)

d
duϕ(u

θ
t (x|xt))

]
=

d

dθ
Ext∼pt(x)

[
ϕ(ut(·|xt))− ϕ(uθ

t (·|xt))− ⟨ut(x|xt)− uθ
t (x|xt),

d

du
ϕ(uθ

t (x|xt))⟩
]

=
d

dθ
Ext∼pt(x)Dϕ(ut(·|xt), u

θ
t (·|xt))

To apply theorem 3.1, we require a rate ut(x, z|xt, zt) in the augmented space ofX×Z that generates
pt(x, z). The following lemma can simplify this construction.

Lemma B.1 (Rates that generate pt(x, z) = p(x|z)pt(z)). Let pt(x, z) be a distribution over
augmented space of X ×Z where pt(x|z) = p(x|z) is time-independent. Let ut(z|zt) be a rate over
Z that generates pt(z). Then

ut(x, z|xt, zt) = (1− δzt(z))p(x|z)ut(z|zt) + δxt
(x)δzt(z)ut(z, zt) (24)

is a rate over augmented space of X × Z that generates pt(x, z).
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Proof. We first check rate conditions (2) for ut(x, z|xt, zt). When (x, z) ̸= (xt, zt) and pt(xt, zt) >
0, ut(x, z|xt, zt) = (1− δzt(z))p(x|z)ut(z|zt) ≥ 0 because pt(zt) > 0. Then∑

x,z

ut(x, z|xt, zt) =
∑
x,z

(1− δzt(z))p(x|z)ut(z|zt) + δxt
(x)δzt(z)ut(z, zt)

=
∑
z

ut(z|zt)− ut(zt|zt) + ut(zt|zt)

=
∑
z

ut(z|zt)

= 0.

where the last equality uses that ut(z|zt) is a rate over Z and again pt(xt, zt) > 0 =⇒ pt(zt) > 0.

Now we show ut(x, z|x, zt) also satisfies the Kolmogorov forward equation (3) for pt(x, z) which
proves the result∑

xt,zt

ut(x, z|xt, zt)pt(xt, zt)

=
∑
xt,zt

(
(1− δzt(z))p(x|z)ut(z|zt) + δxt

(x)δzt(z)ut(z, zt)

)
pt(xt, zt)

= p(x|z)
∑
zt

ut(z|zt)pt(zt)− ut(z|z)pt(x, z) + ut(z|z)pt(x, z)

= p(x|z) ∂
∂t

pt(z)

=
∂

∂t
pt(x, z).

When the relationship between x given auxiliary z is not only time-independent, but also deterministic,
this Lemma B.1 leads to the following Lemma stated inline in the main text
Lemma B.2 (Rates that generate pt(x, z) = δf(z)(x)pt(z)). Let pt(x, z) = δf(z)(x)pt(z) be a
distribution over augmented space of X × Z where pt(x|z) = δf(z)(x) is time-independent and
deterministic. Let ut(z|zt) be a rate over Z that generates pt(z). Then

ut(x, z|xt, zt) = δf(z)(x)ut(z|zt) (25)
is a rate over augmented space of X × Z that generates pt(x, z).

Proof. From Lemma B.1, the rate in equation (24) generates this pt(x, z) using ut(z|zt). Because
we only use this rate when pt(xt, zt) > 0, this rate will always be evaluated at xt = f(zt) giving

ut(x, z, f(zt), zt) = (1− δzt(z))p(x|z)ut(z|zt) + δf(zt)(x)δzt(z)ut(z, zt)

= δf(z)(x)ut(z|zt) + δzt(z)
(
−δf(z)(x) + δf(zt)(x)

)
ut(z|zt)

= δf(z)(x)ut(z|zt).

B.1 A Bregman divergence as the training loss for Edit Flows

Given velocities ut(·, z|xt, zt) and uθ
t (·|xt) that satisfy the rate conditions, we define

ϕ(ut(·|xt)) =
∑
x ̸=xt

ut(x|xt) log ut(x|xt). (26)

The Bregman divergence corresponding to this ϕ is:

Dϕ(f(·|xt), g(·|xt)) = ϕ(f(·|xt))− ϕ(g(·|xt))−
∑
x ̸=xt

(f(x|xt)− g(x|xt))(1 + ln g(x|xt))

=
∑
x ̸=xt

(
−f(x|xt)− f(x|xt) ln

g(x|xt)

f(x|xt)
+ g(x|xt)

)
(27)
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Therefore the training loss for Edit Flows with this ϕ can be written

L(θ) = Et,π(z0,z1),pt(xt,zt|z0,z1)Dϕ

(∑
z

ut(·, z|xt, zt), u
θ
t (·|xt)

)

= Et,π(z0,z1),pt(xt,zt|z0,z1)

[
−
∑

z,x̸=xt

ut(x, z|xt, zt, z0, z1) +
∑
x ̸=xt

uθ
t (x|xt)

−
∑

z,x̸=xt

ut(x, z|xt, zt, z0, z1) log
uθ
t (x|xt)

ut(x, z|xt, zt, z0, z1)

]

= −Et,π(z0,z1),pt(xt,zt|z0,z1)

[
uθ
t (xt|xt) +

∑
z

∑
x ̸=xt

ut(x, z|xt, zt, z0, z1) log u
θ
t (x|xt)

]
+ const.

(28)

C Advanced techniques for Edit Flows

Sampling. Sampling from the model requires transporting a source sample X0 ∼ p to time t = 1,
simulating the CTMC defined with the learned rate uθ

t . Exact simulation (Gillespie, 1976, 1977) is
intractable as it requires integration of uθ

t . With the Edit Flow parameterization (13)-(15), the exact
probability of an edit operation characterized by the rate λt,i occurring within an interval (t, t+ h) is

1− e−
∫ t+h
t

λt,i(Xt)dt ≈ hλt,i(Xt). (29)

Following previous works (Campbell et al., 2022; Gat et al., 2024), we leverage the first-order
approximation. Sampling thus iterates the following procedure: with current state Xt and step size h,
independently determine the probability of each insertion, deletion and substitution, then perform all
edit operations simultaneously.

1. For each position i, sample whether to insert with probability hλins
t,i(Xt) and whether to

delete or substitute with probability h(λins
t,i(Xt) + λdel

t,i(Xt)). Since deletions and substitu-
tions at the same position are exclusive, if either occurs, select deletion with probability
λdel
t,i(Xt)/(λ

del
t,i(Xt) + λsub

t,i (Xt)), otherwise substitution.

2. If insertion or substitution at i, sample the new token value from Q
ins/sub
t,i (·|Xt).

3. t← t+ h

Classifier-free guidance. We considered three approaches to add classifier-free guidance to Edit
Flows. Classifier-free guidance (CFG) considers training a model with and without conditioning c
and combining those two models at sampling time using a weighting hyperparameter w.

Our first approach is weighted rate CFG which follows Nisonoff et al. 2024 and uses (for x ̸= xt and
within one edit operation)

ũt(x|xt, c) ≜ ut(x|xt)
1−wut(x|xt, c)

w = λ̂t,i(xt, c)Q̃t,i(a|xt, c) (30)

with λ̂t,i(xt, c) = λt,i(xt)
1−wλt,i(xt|c)w

∑
a Qt,i(a|xt)

1−wQt,i(a|xt, c)
w

Q̃t,i(a|xt, c) ∝ Qt,i(a|xt)
1−wQt,i(a|xt, c)

w (31)

where λt,i and Qt,i are for the specific edit operation taking xt → x.

Our second fixed rate CFG which uses ũt(x|xt, c) ≜ λt(xt, c)Q̃t(a|xt, c).

Our third approach is naïve rate CFG which uses ũt(x|xt, c) ≜ λ̃t,i(xt, c)Q̃t(a|xt, c) where
λ̃t(xt, c) = λt,i(xt|c)1+wλt,i(xt)

−w.

Note that these CFG methods only differ in how the modified λt,i is constructed, impacting the
probability of an edit operation. For all of our benchmarks, the naïve rate CFG consistently performed
the best, with fixed rate CFG very close in performance; however, the weighted rate CFG was
consistently worse than either options. When CFG is applied in conjunction with reverse rates, we
applied CFG to both the forward and reverse rates.
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Reverse rates. A CTMC Markov process can also be defined via reverse time simulation from
t = 1 to t = 0 using rates ⃗ut

P(Xt−h = x|Xt = xt) = δxt(x) + h ⃗ut(x|xt) + o(h) (32)

where o(h) satisfies limh→0
o(h)
h = 0. This equation is identical to forward-time simulation (1)

except that the transition is from t to t− h instead of t to t+ h. Like (1), in order for (32) to define a
valid probability distribution, reverse rates ⃗ut must obey the rate conditions in (2).

A rate ⃗ut "generates" a probability path pt if the time marginals of the associated reverse-time
simulation are samples from pt, i.e., Xt ∼ pt. Concretely, they should satisfy the Kolmogorov
forward equation in reverse (i.e., with a minus sign)

− ∂

∂t
pt(x) =

∑
y

⃗ut(x|y)pt(y) =
∑
y ̸=x

⃗ut(x|y)pt(y)︸ ︷︷ ︸
reverse flow into x

−
∑
y ̸=x

⃗ut(y|x)pt(x)︸ ︷︷ ︸
reverse flow out of x

. (33)

We can construct ⃗ut that generates pt (and in fact is a CTMC with the same joint distribution) from
ut that generates pt via the following procedure. Assume ut generates pt. For x ̸= x′, consider that
the probability flux from x in forward time towards x′ equals the probability flux from x′ to x in
reverse time as follows

⃗ut(x|x′)pt(x
′)︸ ︷︷ ︸

reverse flux from x′ into x

= ut(x
′|x)pt(x)︸ ︷︷ ︸

flux from x into x′

. (34)

Inserting into the Kolmogorov forward equation satisfied by ut

∂

∂t
pt(x) =

∑
y ̸=x

ut(x|y)pt(y)−
∑
y ̸=x

ut(y|x)pt(x)

=
∑
y ̸=x

⃗ut(y|x)pt(x)−
∑
y ̸=x

⃗ut(x|y)pt(y)

= −
∑
y

⃗ut(x|y)pt(y), (35)

so ⃗ut generates pt.

Now consider ut + ⃗ut, which satisfies (2) and is probability-preserving such that
∑

xt
(ut(x|xt) +

⃗ut(x|xt))pt(xt) = 0. If we perform forward simulation with this rate using (1) starting from
x ∼ pt(x) and sampling x′, we maintain that x′ ∼ pt(x). This allows corrector steps that can correct
errors in the marginal distribution via repeatedly applying such a step without updating time.

We also have that (1+α)ut+α ⃗ut for α ≥ 0 generates pt in forward time. This combination rate can
be simulated via stepping forward from xt to xt+h(1+α) using ut and then backwards to xt+h using
⃗ut+h(1+α). To see this is equivalent for small h, let y = xt+h(1+α) and consider the distribution of

xt+h after the combination of these two steps∑
y

(
δy(xt+h) + hα ⃗ut+h(1+α)(xt+h|y) + o(h)

)
(δy(x) + h(1 + α)ut(y|xt) + o(h))

= δxt(xt+h) + h (α ⃗ut(xt+h|xt) + (1 + α)ut(xt+h|xt)) + o(h). (36)

C.1 Localized propagation paths

Edit Flows leverage an underlying conditional probability path pt(z|z0, z1) and associated rates
ut(z|zt), so far given by the factorized token-wise mixture. Let us further generalize this probability
path and associated rate to be non-factorized, applying auxiliary variables again. We first re-express
this probability path through an auxiliary boolean variable m ∈ {false, true}N :

pt(z|z0, z1) =
∑
m

pt(m|z0, z1)pt(z|m, z0, z1), (37)

where pt(z|m, z0, z1) =

N∏
i=1

1[¬mi]δzi
0
(zi) + 1[mi]δzi

1
(zi), (38)
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t=0

t=1

C

B C D

A B C D I

A B C D E I J

A B C D E F H I J K

A B C D E F G H I J K L

Figure 8: Illustration of the localized generation path. Tokens that are neighboring to existing tokens
have a much higher likelihood of getting inserted next. Tokens that are not next to already inserted
tokens (e.g. token I) have a small, but non-zero likelihood of getting inserted in the current timestep.

where 1[·] is the indicator function and returns one if the input is true, zero otherwise. That is, mi

indicates whether zi is equal to zi0 or zi1. In the case of pt(m|z0, z1) being be a factorized distribution,
this would recover the factorized probability path (8).

pt(m|z0, z1) =
N∏
i=1

pt(m
i|z0, z1), pt(m

i|z0, z1) = 1[¬mi](1− κt) + 1[mi]κt (39)

This helps ensure that the conditional rates can be constructed easily. However, this could be prob-
lematic for Edit Flows as when the sequence length becomes large, noisy sequences xt will consist
of non-neighboring tokens. Instead, we will propose a non-factorized locality-based construction
in which if mj is true, it incites nearby values (mj−1 and mj+1) to transition their value to true,
thereby encouraging nearby neighbors to have similar values.

Let us consider an extended space of boolean variables denoted by M ∈ {true, false}N×N and
consider N independent CTMC processes, starting at all values being false. For each row Mi, we
create a process where Mi,i first switches to true according to a time-dependent rate λindep

t and this
then propagates to neighboring values according to a propagation rate λprop. This can be concisely
expressed as the following CTMC process for each Mi.

ut(M
i,j |Mi

t) =
(
λindep
t δij + 1[Mi,j−1

t ∨Mi,j+1
t ]λ

prop
)
(1[Mi,j ] − δMi,j

t
(Mi,j)), Mi

0 = false,

(40)
where δij = 1 if i = j and δij = 0 otherwise. Breaking this down, λindep

t is an independent
rate for switching Mi,i to true regardless of the value of Mt at other positions—if we only have
this independent part, then this formulation will be equivalent to the factorized case—and λprop is
the rate for the off-diagonals Mi,j if a neighbor is true, responsible for propagating along local
neighborhoods—for simplicity, this part is time independent. We then map from this extended space
to the space of m by the mapping:

mj
t = M1,j

t ∨M2,j
t ∨ · · · ∨MN,j

t (41)

That is, mj
t is true if any value in the column of M:,j

t is true.

Augmented rate. We now have a rate ut(M|Mt, z0, z1) that generates pt(M|z0, z1) and can apply
Lemma B.2 twice to determine rate ut(z,m,M|zt,mt,Mt, z0, z1) that generates pt(z,m,M|z0, z1).
The target summed rate we need for training a localized path model (where we consider z as observed
and (m,M) as auxiliary) is for z ̸= zt∑

m,M

ut(z,m,M|zt,mt,Mt, z0, z1) (42)

=

{
δzj

1
(zj)

(
λindep
t +

∑
i 1[Mi,j−1

t ∨Mi,j+1
t ]λ

prop
)

if z and zt differ only in j-th token

0 otherwise
(43)

To utilize specifically for localized edit flows, we extend our rates again to generate
pt(x, z,m,M|z0, z1) and the rate needed for training localized edit flows, prior to the sum over
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additional auxiliary z, is simply (42) multiplied by δfrm-blanks(z)(x). Following the same steps as before,
the edit flow training loss using localized rates is:

L(θ, λ) = −Et,π(z0,z1),pt(xt,zt,mt,Mt|z0,z1)

[
uθ
t (xt|xt) +

N∑
i=1

1[zi
1 ̸=zi

t]
λeff
i,t log u

θ
t (x(zt, z1, i), xt)

]
(44)

where x(zt, z1, i) = frm-blanks(z
1
t , . . . , z

i−1
t , zi1, z

i+1
t , . . . , zNt ) and λeff

i,t = λindep
t +∑

l 1[Ml,i−1
t ∨Ml,i+1

t ]λ
prop.

Parameterization. For λindep
t , we can reuse the same form from the factorized case defined by a

scheduler κt,

λindep
t =

κ̇t

1− κt
, κ0 = 0, κ1 = 1 (45)

which allows us to ensure that mi
1 = true for all i and whose integral can be obtained easily. For

λprop, we choose an appropriate constant, the value of which corresponds to the expected number of
propagations within a unit interval of time.

Sampling. In order to allow efficient training, we need to sample (mt,Mt) for a given t without
simulating the CTMC (40). The construction of (40) is designed explicitly to allow efficient sampling.
Since the CTMC processes are independent for each Mi, we can simulate them independently.
Furthermore, for every Mi,j the source of the propagation can only be from Mi,i. Thus, we can make
use of the following 2-step sampling algorithm given t:

1. For each i, independently sample the time t∗i ∈ [0, 1] that each Mi,i would switch to true

based on the independent rate λindep
t . If t∗i ≤ t, then Mi,i

t is set to true.
2. For each i such that t∗i ≤ t, sample the number of neighbors to the left and right that are

switched to true due to propagation with rate λprop from Mi,i during the time interval [t∗i , t].

Afterwards, we can set mj
t = M1,j

t ∨M2,j
t ∨ · · · ∨MN,j

t .

Step 1 of this sampling algorithm requires determining the time of the switch t∗. This is equivalent to
finding the occurrence time of an inhomogeneous Poisson process with intensity function λindep

t . This
can be done via the inverse method (Rasmussen, 2018) as follows.

1. Sample u ∼ Unif(0, 1)

2. Compute t∗ s.t. u = exp{−
∫ t∗

0
λindep
t dt}

For the parameterization in (45), we can analytically derive this.

t∗ = κ−1 (u) where u ∼ Unif(0, 1) (46)

Step 2 of the sampling algorithm consists of determining how many neighbors get propagated from
each source Mi,i within a certain time interval [t∗i , t]. Since neighbors on the same side can only
get propagated sequentially, this is equivalent to determining the number of occurrences from a
homogeneous Poisson process with intensity λprop. The formula for this is

Ni ∼ Pois(· ; λprop∆ti), where ∆ti = t− t∗i (47)

We would sample two variables i.i.d. Nl
i and Nr

i for the number of neighbors propagated to the left
and to the right of Mi,i, respectively. The logic for Mi,j

t can be concisely expressed as

Mi,j
t = Mi,i

t ∧
[ (

(j < i) ∧ (j ≥ i− Nl
i)
)
∨ ((j > i) ∧ (j ≤ i+ Nr

i ))
]
. (48)

All computations within each step of the sampling algorithm can be completely parallelized, resulting
in fast sampling of mt.
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Figure 11: Effect of CFG scale at sampling time
on the code generation benchmark using the 1.3B
parameter Edit Flow model.
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Figure 12: Effect of the number of sampling steps
on the code generation benchmark using the 1.3B
parameter Edit Flow model.

D Training data analysis
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Figure 9: 54% of the training data consists of
sequences of length < 1024 and 57% of these are
self contained sequences (meaning that they start
with a <BOS> token and have < 1024 tokens in
total).
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Figure 10: 50% of the training data consists of
sequences of length < 1024 and 72% of these are
self contained sequences (meaning that they start
with a <BOS> token and have < 1024 tokens in
total).

E Further experimental details

Training: All models were trained of 500,000 steps with batch size of 4096 distributed across
16× 8 H100 GPUs, which resulted in 2T tokens used for the Autoregressive and Mask DFM models.
Since the Edit models do not use compute for tokens that are missing from the sequence, they are
considerably more compute efficient. They were able to ingest 6T tokens during the same 500,000
training steps.

Architecture: Table 4 shows the details of the architecture and optimizer used in our experiments.

Conditioning: A beginning of each sequence in the training set is designated to be conditioning.
The portion of the sequence used as conditioning is randomly chosen to be c3 where c ∼ U [0, 1].
For 10% of the sequences, we drop the conditioning to allow for unconditional prediction and CFG
scaling at inference time.

Image conditioning: To condition our model on an image input, we follow Liu et al. (2024) and
use an early fusion approach of appending image embeddings as prompts to our sequence models.
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Hyperparameter 280M configuration 1.3B configuration

Vocabulary size 32k 32k
Model dimension 1024 2048
Conditioning dimension 32 64
Number of layers 12 16
Number of heads 16 32
Number of KV heads 8 8
Feed-forward dimension 1740 3072
Feed-forward hidden dimension 6963 12288

Training steps 500k 500k
Batch size 4096 4096
Optimizer AdamW AdamW
Learning rate 3e-4 3e-4
Beta 1 0.9 0.9
Beta 2 0.95 0.95
Warmup steps 2000 2000
Learning rate schedule cosine cosine

Table 4: Details of the Llama3 architecture and optimizer used in our experiments. Conditioning
dimension is used in the text and code experiments: it denotes the dimensionality of an the embedding
carrying the binary signal whether a given token is part of the conditioning or not.

Sampler Hyperparameter Autoregressive Mask DFM Edit Flow Uniform X0 + Edit Flow

Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10

Sampling steps 1000 1000 10000 5000 5000 5000
Classifier-free guidance 1.5 1.5 0.5 0.5 0.5 1.0
Temperature 0.0 1.0 0.8 0.8 0.8 0.8t+ 1.0(1− t) 0.8t+ 1.0(1− t) 0.8
Divergence-free component 5t0.25(1− t)0.5 10t0.25(1− t)0.5 60t1.5(1− t)0.5 150t1.0(1− t)0.25 10.0t0.25(1− t)0.25 10.0t0.5(1− t)1.0

Top p 0.0 0.7 - - 0.5 0.3 0.7 0.9
Top k 1 - 2 2 - - - -
Reverse CFG -0.5 -1.0
Reverse temperature 0.5 0.2
Reverse top p 0.8 0.8

Table 5: Sampling parameters used in the code experiments. The parameters were tuned by running
random search (N=200 runs for pass@1 and N=20 runs for pass@10) on the HumanEval benchmark.
The HumanEval results were then re-computed using a new random seed to avoid evaluation set
leakage.

We use frozen CLIP embeddings (Radford et al., 2021) for computing image embeddings and then
map it to the same dimension as the sequence model with a 1-layer MLP projector.

Sampling: For the pass@1 and pass@10 benchmarks, we tuned the sampling parameters (tempera-
ture, top_p, sampling steps, CFG, divergence-free component) for each model separately with the
goal of maximizing performance. Figures 11 and 12 show the impact of CFG scale and the number
of sampling steps on generation quality. Table 5 shows the sampling parameters used for evaluation
in the code benchmarks.

Mask DFM: The Mask DFM baseline is trained using the ELBO objective (Shaul et al., 2024)
in the image captioning experiments and using the cross-entropy objective (Gat et al., 2024) in the
code and text experiments. Training data that does not meet the sequence length 1024 used by the
model is padded using a padding token. This padding token, if generated by the model, is removed at
inference time.

Text benchmarks: Table 6 shows the CFG scales tuned for the text benchmarks.
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Method HellaSwag ARC-E ARC-C PIQA OBQA WinoGrande

Mask DFM 0.0 0.5 0.0 0.5 0.0 0.0
Edit Flow 1.0 0.5 0.5 0.5 1.0 0.5

Table 6: CFG scales used in the text benchmarks. We only tuned CFG scale: we swept the values 0.0,
0.5, 1.0, 2.0, 5.0 and 10.0 on every benchmark and report the best results.

F Model preference for minimal edits

Similar to continuous flow matching, the generated coupling p1(x1|x0) may differ from the coupling
used during training, denoted as π(x1|x0). The model learns a coupling that involves fewer edits than
the average observed training. To illustrate this, we applied edit flows to a toy dataset that includes
only insert and delete operations, with no substitutions. The distributions of π(x0) and π(x1) are
both uniform over strings of length 4 containing only the characters A and B (as shown in Figure 14).
The probability path is defined such that every character in x0 gets deleted and every character in x1

gets inserted (least optimal alignment). The coupling at training time is uniform.

However, the model does not retain the uniform coupling from training. Figure 14 demonstrates that
it prioritizes x0, x1 pairings that require the fewest edits. For example, x0 = AAAA is 20× more
likely to generate x1 = AAAA (requiring no edits) than x1 = BBBB (requiring 4 insertions and
4 deletions). Generally, the cells with the highest values of p1(x1|x0) correspond to pairings that
require only a few edits, while the lowest values correspond to pairings that require many edits.
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Figure 14: Comparison of the training time coupling (π(x1|x0)) with the coupling learned by the
edit flow (pθ(x1|x0)). The model prioritizes pairings that require few edits.
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def get_z(ids: list[int]) -> tuple[list[int], list[int ]]:
num_substitutions = min(len(ids), target_num_substitutions)
num_deletions = target_num_deletions + target_num_substitutions - num_substitutions
x_0 = x_0 = np.random.randint(low=0, high=vocab_size , size=num_deletions + num_substitutions ). tolist ()
sub_id = 0
z = (

[epsilon_0_id] * (len(ids) - num_substitutions)
+ [epsilon_1_id] * num_deletions
+ [sub_id] * num_substitutions

)
random.shuffle(z)

z_0: list[int] = []
z_1: list[int] = []
ids_index = 0
x_0_index = 0
for token in z:

if token == epsilon_1_id:
z_0.append(x_0[x_0_index ])
z_1.append(epsilon_1_id)
x_0_index += 1

elif token == epsilon_0_id:
z_0.append(epsilon_0_id)
z_1.append(ids[ids_index ])
ids_index += 1

elif token == sub_id:
z_0.append(x_0[x_0_index ])
z_1.append(ids[ids_index ])
x_0_index += 1
ids_index += 1

return z_0 , z_1

def get_z_t(z_0: list[int], z_1: list[int], kappa: float) -> list[int]:
return [

token_0 if np.random.uniform () > kappa else token_1
for token_0 , token_1 in zip(z_0 , z_1)

]

# Training loop
for sample in training_samples:

tokens: list[int] = encode(sample , bos=False)
z_0 , z_1 = get_z(tokens)
z_0 = [bos_id] + z_0
z_1 = [bos_id] + z_1
t: float = np.random.uniform ()
kappa: float = t # Using a linear schedule
dkappa: float = 1.0
z_t: list[int] = get_z_t(z_0 , z_1 , kappa)
x_t: list[int] = remove_epsilon(z_t)
x_t_tensor: torch.Tensor = torch.tensor(x_t).to(device)

# Forward pass
insert_lambda , insert_q , delete_lambda , substitute_lambda , substitute_q = model(

x_t_tensor , t
)

# Calculate loss
loss_term_1: torch.Tensor = torch.sum(

insert_lambda + delete_lambda + substitute_lambda
)
loss_term_2: torch.Tensor = torch.tensor (0.0, device=device)
x_t_index: int = -1 # Corresponding index in x_t
for token_t , token_1 in zip(z_t , z_1):

if token_t != epsilon_0_id and token_t != epsilon_1_id:
x_t_index += 1

if token_t == epsilon_0_id and token_1 != epsilon_1_id:
# Missing token must be inserted
loss_term_2 = loss_term_2 - (dkappa / (1 - kappa)) * torch.log(

insert_lambda[x_t_index] * insert_q[x_t_index , token_1]
)

elif token_t != epsilon_0_id and token_1 == epsilon_1_id:
# Extra token must be deleted
loss_term_2 = loss_term_2 - (dkappa / (1 - kappa)) * torch.log(

delete_lambda[x_t_index]
)

elif (
token_t != epsilon_0_id
and token_1 != epsilon_1_id
and token_t != token_1

):
# Incorrect token must be substituted
loss_term_2 = loss_term_2 - (dkappa / (1 - kappa)) * torch.log(

substitute_lambda[x_t_index] * substitute_q[x_t_index]
)

loss: torch.Tensor = loss_term_1 + loss_term_2
optimizer.zero_grad ()
loss.backward ()
optimizer.step()

Figure 13: Simplified training code for Edit Flows. The helper functions get_z and get_z_t generate
noisy and target token sequences, while the training loop computes the loss and updates the model
parameters. For brevity, we did not include features such as batching, conditioning on a random
portion of the sequence and scaling the model outputs by the rate.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our theoretical and empirical results support the itemized claims made in the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We highlight the limitations of our approach in a dedicated section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our theoretical results are rigorously stated and proved in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental results section combined with the experimental details and
code in the supplementary material give sufficient details to reproduce our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All the data we used is already open-source. Regarding the source-code, we
are not able to publish it at this time due to our organization’s policy. We hope overcome the
administrative challenges and publish our code in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed explanations in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We support our claims with a range of experimental results, but the error bars
are not commonly reported for these benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these details in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: We read and comply with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work does not have novel societal impact beyond that of already existing
generative models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our data is open source and we do not plan on releasing our models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This work does not re-use code or models from third parties. Data is properly
credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing or human experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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