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ABSTRACT

Real-world Multi-hop Question Answering (QA) often involves ambiguity that
is inseparable from the reasoning process itself. This ambiguity creates a distinct
challenge, where multiple reasoning paths emerge from a single question, each re-
quiring independent resolution. Since each sub-question is ambiguous, the model
must resolve ambiguity at every step. Thus, answering a single question requires
handling multiple layers of ambiguity throughout the reasoning chain. We find
that current Large Language Models (LLMs) struggle in this setting, typically
exploring wrong reasoning paths and producing incomplete answers. To facili-
tate research on multi-hop ambiguity, we introduce MultI-hop Reasoning with
AmbiGuity Evaluation for Illusory Questions (MIRAGE), a benchmark designed
to analyze and evaluate this challenging intersection of ambiguity interpretation
and multi-hop reasoning. MIRAGE contains 1,142 high-quality examples of am-
biguous multi-hop questions, categorized under a taxonomy of syntactic, general,
and semantic ambiguity, and curated through a rigorous multi-LLM verification
pipeline. Our experiments reveal that even state-of-the-art models struggle on MI-
RAGE, confirming that resolving ambiguity combined with multi-step inference
is a distinct and significant challenge. To establish a robust baseline, we propose
CLarifying Ambiguity with a Reasoning and InstructiON (CLARION), a multi-
agent framework that significantly outperforms existing approaches on MIRAGE,
paving the way for more adaptive and robust reasoning systems.

1 INTRODUCTION

Multi-hop Question Answering (QA) requires models to construct a reasoning chain by connecting
information scattered across multiple documents (Trivedi et al., 2022; Yang et al., 2018; Ho et al.,
2020b). While ambiguity is a well-recognized challenge in QA (Min et al., 2020), its impact becomes
even more pronounced in multi-hop settings. Unlike single-hop QA, where ambiguity can be re-
solved from a single context and question, multi-hop QA involves multiple plausible sub-questions,
each of which may be ambiguous. This requires the QA model to perform sub-question-specific
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Figure 1: Performance drops under ambiguity and multi-hop (left), multi-hop ambiguity prevalence
in real-world (right).
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Human

Question: When was the element discovered by a Nobel Chemistry laureate first 
officially recognized by the international union? 2-hop Syntactic Ambiguous

Sub Question 1 Which element discovered by a Nobel Chemistry laureate is being referred to?

Interpretation 1

... Marie Curie reported the discovery of two 
new elements, Polonium in July 1898 and 

Radium in December 1898... 

Interpretation 2

Sub Question 2

LLM

Which element discovered by Marie Curie, a Nobel 
Chemistry laureate is being referred to?

Which element discovered by Glenn Seaborg, a Nobel 
Chemistry laureate is being referred to?

When was the element discovered first officially recognized by the international union?

"Radium and Polonium were both discovered in 1898 by Marie and Pierre Curie. Polonium was reported 
in July and Radium in December of that year. Their names quickly entered scientific use, but they were 

formally standardized as Po and Ra by the International Union of Pure and Applied Chemistry during the 
nomenclature unification efforts in the 1920s."

Missing Answer

...Glenn T. Seaborg discovered several 
transuranium elements, including Plutonium 

(1940), Curium (1944), and Americium (1944)...

Figure 2: An example where an LLM fails to resolve a 2-hop syntactic ambiguous question.

ambiguity resolution across all possible interpretations to arrive at the correct answer. Hence, the
precision of the early reasoning process is critical, as errors will propagate through the entire subse-
quent ambiguity-resolution process. A failure at this stage can lead to a final answer that is not only
incomplete but also fundamentally flawed. Previous research has underexplored this area, despite its
prevalence in user conversational queries (Lee et al., 2024; Tanjim et al., 2025).

Instead, existing work has addressed these challenges along separate directions: developing multi-
hop QA benchmarks that emphasize compositional reasoning without ambiguity, and creating
ambiguity-focused QA benchmarks that are limited to single-hop contexts. Empirical results (Fig-
ure 1, left) show that ambiguous questions in MuSiQue (Trivedi et al., 2022) and multi-hop questions
in ASQA (Stelmakh et al., 2022) both cause substantial performance degradation, underscoring the
inherent difficulty of this setting. Moreover, an analysis of real-world user queries from the lmsys-
chat-1m corpus (Zheng et al., 2024) (Figure 1, right) reveals that 48.4% of questions are ambiguous,
17.7% involve multi-hop reasoning, and 13.3% exhibit both. These findings demonstrate that ambi-
guity in multi-hop QA is common and unresolved, highlighting the need for benchmarks that test
both reasoning and ambiguity. Moreover, when faced with multi-hop ambiguous questions, even
strong LLMs tend to resolve ambiguity for only a single sub-question, pruning away alternative in-
terpretations needed for the other hops. For instance, as shown in Figure 2, the model commits to a
single reading of sub-question 1: the Curie branch (radium/polonium) and retrieves only evidence for
that path, overlooking the equally valid Seaborg–transuranium route. Because each reading induces
a different document set and recognition timeline, this bias toward one sub-question interpretation
prunes alternative reasoning paths and yields a partial answer, illustrating the difficulty of a 2-hop
syntactically ambiguous query (see §2.1). This tendency to collapse interpretation-specific multi-
hop reasoning paths into a single trajectory leads to answers that are incomplete and fail to fully
address the user’s information needs.

To address the challenges of ambiguity in multi-hop QA, we introduce MultI-hop Reasoning with
AmbiGuity Evaluation for Illusory Questions (MIRAGE), a benchmark specifically crafted to eval-
uate multi-hop ambiguity scenarios. We construct MIRAGE from the MuSiQue dataset (Trivedi
et al., 2022), which provides compositional multi-hop questions with dependency-linked hops across
diverse domains. We apply a multi-LLM pipeline to detect ambiguity types in MuSiQue and filter
instances by checking alignment between clarified interpretations, supporting evidence, and answers
to ensure quality and objectivity.

To enable a comprehensive evaluation of this task, each of the 1,142 examples in MIRAGE pro-
vides the ambiguity type, a set of corresponding clarified questions, supporting evidence with short
answers, and a long-form answer that integrates all valid interpretations. Leveraging MIRAGE, we
conduct a comprehensive empirical study to assess how well current state-of-the-art models han-
dle multi-hop ambiguity. We find that strong LLMs systematically struggle to manage multiple
reasoning paths simultaneously and often commit prematurely to a single interpretation, leading
them to ignore equally valid lines of reasoning and ultimately produce incomplete or one-sided
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Type Definition LLM Action Typical Cues

Syntactic The query can be syntactically parsed in
different ways.

Resolve Pronouns, ellipsis, PP attachment,
coordination, quantifier scope.

General The query focuses on specific information,
but a broader, closely related query may
better capture the user’s true information
need.

Generalize Comparatives/superlatives, vague
heads, “overview vs. details”.

Semantic The query may include homonyms. A word
can be both a common noun and a named
entity or an entity name can refer to multi-
ple distinct entities.

Interpret Homonyms/aliases, acronym colli-
sions, entity-name clashes.

Table 1: Taxonomy of multi-hop ambiguity QA, pairs definition with LLM action, detection cues.

answers. These results provide strong empirical evidence that resolving ambiguity that is deeply
integrated with a multi-step inference process is a distinct and largely unsolved challenge, confirm-
ing the necessity of our benchmark. To address this challenge and establish a robust baseline for
the MIRAGE benchmark, we propose CLarifying Ambiguity with a Reasoning and InstructiON
(CLARION). CLARION adopts a two-stage, multi-agent approach that clarifies ambiguity, then
retrieves per interpretation, improving results on MIRAGE. Through benchmarking MIRAGE with
various frameworks, we validate the unique challenges it poses and underscore the need for more
adaptive, ambiguity-aware reasoning systems. In summary, (1) we introduce MIRAGE, the first
benchmark for multi-hop ambiguous QA, featuring 1,142 rigorously annotated examples and a uni-
fied evaluation protocol that spans detection, clarification, retrieval, and answer generation; and (2)
we propose CLARION, a multi-agent framework that establishes a solid baseline on MIRAGE.

2 MULTI-HOP AMBIGUOUS QA

Multi-hop ambiguous QA concerns questions that decompose into a sequence of sub-questions
(hops), where each hop admits multiple plausible interpretations. Therefore, answering requires
hop-wise disambiguation: at each hop, the system must choose among competing interpretations
before proceeding to the next hop, with each choice conditioning subsequent retrieval and reason-
ing as in Figure 2. Following prior ambiguity definition (Tang et al., 2025; Tanjim et al., 2025), we
classify multi-hop ambiguous QA into three types: syntactic, general, and semantic (Table 1).

2.1 AMBIGUITY TAXONOMY FOR MULTI-HOP QA

To systematically analyze and address the challenges of multi-hop ambiguous QA, we extend the
standard taxonomy of ambiguity into a setting where each type interacts with multi-step reasoning.
Table 1 summarizes three categories—syntactic, semantic, and general—along with (i) their defini-
tions, (ii) the reasoning actions required of an LLM (Resolve, Generalize, Interpret), and (iii) the
types of evidence or cues that help detect and handle each category in a multi-hop QA context.

Multi-hop Syntactic Ambiguity Multi-hop syntactic ambiguity arises when a question admits
multiple well-formed syntactic parses due to uncertainty in sentence structure; each parsed ques-
tion is a multi-hop question. Common triggers include prepositional phrase attachment (e.g.,
“with/at/in”), pronoun coreference, coordination scope (“and/or”), and quantifier scope. For exam-
ple, “I saw the man with a telescope” permits (i) an instrument reading (the speaker used a telescope)
and (ii) an attribute reading (the man had the telescope). Each interpretation leads to a different chain
of reasoning, so the LLM’s primary action here is RESOLVE—disambiguating the structure.

Multi-hop General Ambiguity Multi-hop general ambiguity occurs when a query’s scope is too
narrow for the underlying information need, causing early commitment and pruning of otherwise
valid hops. Typical triggers include over-specified constraints, overly fine entity/region granularity,
and restrictive modifiers. Consider “In which year did the city center host the Olympics?” When
the implied intent is to recover the host year(s) for the broader metropolitan area, where events
are distributed across venues, the city-center reading prematurely narrows the plan. The correct
multi-hop plan is: (i) resolve the geographic scope to the metropolitan area, (ii) enumerate Olympic
events/venues in that area, and (iii) align them with host year(s). If the system commits to “city

3
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What is the capital of the country 
where Paris, France is located?

What is the capital of the 
country where Paris is 

located?”

Multi-LLM

Step 1: Ambiguity Detection 
& Clarifying Questions Generation

Step 2: Collecting Documents Step 3: Generating Short & Long Answers

Y Y Y Y

Semantic Ambiguity DetectionIs_ambiguous? (Y / N)

LLM 

Clarifying Questions Generation

LLM 

What is the capital of the country 
where Paris, Texas (USA) is located?

𝑪𝑸𝟏

𝑪𝑸𝟐

What is the capital of the 
country where Paris, Texas 

(USA) is located?

What is the capital of the 
country where Paris, 

France is located?

Question Decomposition

In which 
Country

(…)

What Is 
the capital

(…)

2-hop

In which 
Country

(…)

What Is 
the 

capital
(…)

𝑪𝑸𝟏 𝑪𝑸𝟐

Evidence Retrieval

… …

Rerank with CQs 

… …

What is the capital of the 
country where Paris, Texas 

(USA) is located?

What is the capital of the 
country where Paris, 

France is located?

𝑪𝑸𝟏 𝑪𝑸𝟐 Short Answer Generation

Retrieved Documents

Reranked Documents

(Short Answer, Supporting Passage)

Paris (capital        
of France)

Washington, D.C. 
(capital of USA)

Long Answer Generation

Paris, France has the capital city Paris, 
while Paris, Texas in the United States 

corresponds to the capital Washington, 
D.C.

User Question

Step 4: Filtering

MIRAGE
(Raw)

MIRAGE
(High Quality)

Filter with LLMs
Y Y Y

Is_it_aligned? (Y / N)

Figure 3: Overview of the four-stage MIRAGE dataset construction pipeline, which uses a multi-
LLM framework to convert MusiQue into multi-hop ambiguous QA benchmark.

center,” it prunes steps (i)–(ii) and never retrieves the necessary evidence. In this category, the model
should first GENERALIZE (scope adjustment and intent refocusing). Please refer to Appendix J for
detailed detection signals of multi-hop general ambiguity.

Multi-hop Semantic Ambiguity Multi-hop semantic ambiguity arises when the same words map
to multiple meanings or entities (polysemy, homonymy, entity collision), producing different multi-
hop reasoning paths. Common triggers include ambiguous names, acronyms, and brand–common-
noun overlaps. For example, given a phrase “Apple revenue in 2012”, the system must determine
whether the intended meaning is Apple Inc. or the fruit. In this category, the LLM’s primary action
is INTERPRET (sense/entity selection): choose the intended meaning or entity using contextual cues
(topic, domain, time).

3 MIRAGE: A BENCHMARK FOR MULTI-HOP AMBIGUOUS QA

We introduce MIRAGE, a benchmark explicitly designed to jointly evaluate ambiguity resolution
and multi-hop reasoning in question answering. We process ambiguous questions from MuSiQue
through four stages to build MIRAGE: (1) Ambiguity detection and clarification, which relies on a
full-agreement consensus from four distinct LLMs; (2) Interpretation-specific document collection,
decomposition, and re-ranking; (3) Generation of short answers for each interpretation and a final
integrated long answer; and (4) A multi-LLM filtering stage to verify the alignment and quality of
the instances.

3.1 DATASET CONSTRUCTION

We build MIRAGE from MuSiQue’s validation set and a subset of its training set. Unlike recent
multi-hop benchmarks (Zhu et al., 2024; He et al., 2024) that are narrow in domain or inflate hops
with list-style questions (e.g., top-5), MuSiQue enforces connected, dependency-linked reasoning
across diverse domains. We first filter out questions from MusiQue that lack ambiguity and retain
only those judged as ambiguous by our multi-stage pipeline. Let Qbase be the set of base multi-
hop questions. We consider three ambiguity types T = {Syntactic,General,Semantic}. We use a
set of off-the-shelf LLMs as detectors; for a question q ∈ Qbase, type t ∈ T , and detector m, let
ym,t(q) ∈ {0, 1} denote whether q is judged ambiguous of type t.

Detecting Ambiguous Questions Given a multi-hop user question from MuSiQue, we provide
definitions of each ambiguity type and ask multiple LLMs to detect type-wise ambiguity. Because
different LLMs vary in their ability to detect ambiguity, we employ four detectors: gpt-4.1 (Achiam
et al., 2023), llama-4-maverick (AI, 2025), qwen3-235b-a22b (Yang et al., 2025), and claude-sonnet-
4 (Anthropic, 2025). We keep a type label only when the detectors are fully in agreement.
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Stage Syntactic General Semantic Total

MuSiQue (Original) 24,834 24,834 24,834 –
After Detection & Clarification 8,642 11,703 9,544 29,889
After Answer Generation 6,675 8,433 7,034 22,142
Before Filtering 1,239 1,440 1,651 4,330
After Filtering (Final) 176 232 734 1,142

Avg. Hops 2.95 2.10 2.54 -
Avg. Question Length 18.27 15.73 15.33 -

Table 2: Stage-wise drop and final statistics for MIRAGE. Top: samples retained after each stage.
Bottom: final per-type statistics.

Let M be the detector set (|M| = 4). For a question q and type t ∈ T , detector m ∈ M outputs
ym,t(q) ∈ {0, 1}. We define the full-agreement rule

ϕt(q) = I

(
1

|M|

∑
m∈M

ym,t(q) = 1

)
, T (q) = { t ∈ T | ϕt(q) = 1 },

where T (q) denotes the ambiguity types assigned to q. Under this rule, we assign a type t only if all
four detectors judge q ambiguous of type t, reducing single-model bias and yielding fair, objective,
high-quality labels.

Generating Clarified Questions For each (q, t) with t ∈ T (q), we use gpt-4.1 to generate clar-
ified questions that resolve the type-t ambiguity while preserving the user’s information need, de-
noted as C(q, t) = {c1, . . . , cn} with n ≥ 2. We utilize these clarified questions as retrieval inputs.

Collecting Documents To generate answers, we require evidence obtained via retrieval over clar-
ified questions. However, clarified questions can remain multi-hop, and directly questioning with a
specific multi-hop form may narrow the search scope and miss relevant documents. To mitigate this,
we again use gpt-4.1 to decompose each clarified question c ∈ C(q, t) into atomic sub-questions
S(c) = {s1, . . . , sk}. For every s ∈ S(c), we retrieve up to 10 candidate documents from English
Wikipedia1. We then pool candidates D(c) =

⋃
s∈S(c) D(s), and if |D(c)| < 10, we perform an

additional retrieval process with the clarified question c itself to back-fill more evidence. Next, we
perform embedding-based re-ranking with Qwen3-8B-Embedding (Zhang et al., 2025b) by com-
puting similarity between the clarified question and document passages. Finally, we sort D(c) in
descending order of this score to prioritize evidence aligned with the clarified interpretation.

Generating Short and Long Answers Given each clarified question c and its ranked candidate
documents D(c), we use gpt-4.1 to produce a short factual answer only when the retrieved evidence
clearly supports it; otherwise, we omit the short answer and drop that clarified item. For retained
cases, we also record the passage used for generating the short answer. Finally, for the original
question Qbase, we utilize gpt-4.1 to write a single-sentence long answer that connects the two short
answers into a coherent statement while preserving the clarified interpretations and pointing to their
supporting passages. For the detailed prompts for construction stages, refer to Appendix K.

Filtering Before filtering, we make sure short answers stay short. If either clarified question has
a short answer longer than 10 tokens, we cut it down to a much shorter form by utilizing gpt-4.1.
After that, we remove cases where the two short answers end up being the same, so the quality of
short answers is kept high. After this stringent filtering, the final MIRAGE dataset consists of 1,142
examples. For the final filtering stage, we exclude gpt-4.1—already used in Steps 2 and 3—and
instead employ llama-4-maverick, qwen3-235b-a22b, and claude-sonnet-4. Each candidate instance,
including the question, clarified questions, ambiguity type, supporting passages, short answers, and
long answers, is independently checked for alignment in all fields. We retain only those cases where
all three models unanimously judged the instance as fully aligned, using the same criteria as our
human evaluation protocol. Table 2 shows statistics and reports key characteristics of MIRAGE.

1https://dumps.wikimedia.org/
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3.2 DATASET ANALYSIS AND VALIDATION

Ambiguity and Hop Count We measure the difference in average hop counts between ambigu-
ous and unambiguous questions by extracting from the MuSiQue training set. Among these, we
sample each 1,000 ambiguous and unambiguous questions. As in Table 2, the average hop count for
ambiguous questions is 2.441, while for unambiguous questions it is 2.074. This result indicates that
ambiguous questions generally involve more hops, making them inherently more challenging and
underscoring the importance of addressing them effectively.

Evaluation Protocol Syntactic General Semantic

Is the user question {type}-ambiguous? 83.0→94.0
(+11.0)

88.0→92.0
(+4.0)

93.0→94.0
(+1.0)

Do the clarified questions resolve the
specified type of ambiguity?

81.0→91.0
(+10.0)

75.0→96.0
(+21.0)

87.0→95.0
(+8.0)

Does the long answer include the short
answers without contradiction?

90.0→97.0
(+7.0)

86.0→98.0
(+12.0)

91.0→97.0
(+6.0)

All fields are valid 67.0→89.0
(+22.0)

67.0→90.0
(+23.0)

77.0→92.0
(+15.0)

Table 3: Human evaluation before vs. after applying the filtering method.

Dataset Quality Assessment To assess dataset quality, we ask five annotators and use a majority-
vote scheme. We first sample 20 instances per ambiguity type (60 total) and obtain binary (YES/NO)
judgments for each item in our protocol, yielding 300 judgments in total (5 annotators × 60 items).
As shown in Table 3, annotators evaluate whether (i) the question exhibits ambiguity of the specified
type, (ii) the clarified question resolves the original ambiguity, and (iii) the generated long answer
contains the corresponding short answers. We repeat the same evaluation after our final filtering on
a new 60-instance sample (again 300 judgments) and observe consistent improvements across all
criteria. For criterion (i), the average YES rate across the three types increases from 88.0% (pre-
filtering) to 93.3% (post-filtering), a gain of +5.3 percentage points. For criterion (ii), it rises from
81.0% to 94.0% (+13.0). For criterion (iii), it increases from 89.0% to 97.3% (+8.3). These results
support the effectiveness of our filtering pipeline and the overall quality of MIRAGE for evaluating
multi-hop ambiguity.

Distribution of Ambiguity Types As shown in Table 2, syntactic types are often discarded since
different parses collapse into identical short answers or show inconsistent type assignments after
clarification. General cases are frequently too broad, leading to alignment failures, so these two
types are filtered more heavily, and the final dataset is skewed toward semantic ambiguity.

4 CLARION: AN AGENTIC FRAMEWORK FOR MULTI-HOP AMBIGUOUS QA

To effectively tackle the multi-hop QA, we propose CLARION (CLarifying Ambiguity with a Rea-
soning and InstructiON), a two-stage agentic framework designed to systematically detect, disam-
biguate, and answer multi-hop ambiguous questions. CLARION mitigates these failures by separat-
ing the task into two distinct phases: Planning and Acting as outlined in Figure 4.

Planning Agent The Planning Agent serves as a planning module that analyzes the input question
before any retrieval or answering. It performs three sequential operations: (1) Ambiguity Detection:
the agent determines whether the question contains ambiguity. If the question is unambiguous, it is
immediately passed to the Acting Agent. (2) Ambiguity Type Classification: if ambiguity is de-
tected, the question is categorized into one of three predefined types: Syntactic, General, or Seman-
tic. (3) Question Clarification: based on the detected type, the agent rewrites the original question
into clarified variants that resolve the ambiguity while preserving the information need. These clar-
ified questions constitute the execution plan for downstream reasoning.

Acting Agent The Acting Agent executes the reasoning plan through a ReAct-style prompting (Yao
et al., 2023) scheme, unfolding in a Thought → Action → Observation loop. At each iteration, the
agent selects one of three actions: (1) Search: retrieve external documents when additional evidence

6
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Current
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Figure 4: Overview of our CLARION framework. A Planning Agent resolves ambiguity, and an
Acting Agent executes a ReAct loop to generate the final answer.

is needed; (2) Planning: re-invoke detection, type classification, or clarification if the current plan
is insufficient; (3) Answer: synthesize the final output once enough evidence has been gathered.
To ensure reliable parsing and automated execution, all actions generated by the agent must be in
JSON format. Furthermore, to prevent infinite loops and ensure computational tractability, the ReAct
prompting is limited to a maximum of five iterations. If this limit is reached without a resolution, the
agent is compelled to execute the Answer action, formulating the best possible response based on
the information gathered thus far. We provide Implementation details and the full prompt templates
used at each stage in Appendix G and Appendix K, respectively.

5 EXPERIMENTS AND RESULTS

We benchmark MIRAGE using three standard baselines for solving multi-hop and ambiguous QA
under open domain QA settings and our proposed CLARION. We first describe the setup, then
report overall results (Table 4), followed by an ablation that isolates the contribution of Detection
and Clarification, and additional analysis.

Models We utilize three strong LLMs, qwen3-235b-a22b-2507 (Yang et al., 2025), gemini-2.5-
flash (Comanici et al., 2025), and deepseek-chat-v3.1 (Liu et al., 2024), which are widely used in
real-world scenarios to assess how these practical models handle MIRAGE. Because both multi-hop
and ambiguous QA fall under the open-domain QA setting, solving them requires access to exter-
nal knowledge sources. Thus, we adopt search-based baselines as our general solution paradigm.
All baselines share the same embedding model for retrieval (qwen3-embedding-8b) and identical
retrieval hyperparameters (fixed top-k), ensuring a fair and consistent comparison across models.

Evaluation metrics We use three metrics that evaluate the model’s long and short answers. STR-
EM measures explicit coverage between the model’s long answer and the set of gold short answers.
After simple text normalization, it checks what fraction of gold short answers are literally contained
in the model output. Disambig-F1 measures extractability between the model’s long answer and
each clarified question. A frozen extractive QA scorer reads the model’s long answer as context and
tries to extract an answer for each clarified question. We compute token-level F1 against the gold
short answers and average. LLM-as-a-Judge (Gu et al., 2024) measures long answer quality between
the predicted and gold long answers under the original user question. A judge assigns LLM scores for
Relevance, Faithfulness, Informativeness, and Correctness (0–5), and we report the Overall (Mean)
score.

Baselines (1) No Retrieval: LLM-only inference without any external context. We use a single
prompt to ask the model to answer accurately and concisely. (2) NaiveRAG (Lewis et al., 2020): A
standard retrieve-then-read pipeline that encodes the original question, retrieves top-k passages from
the datastore, then generates an answer based on the retrieved contexts, which remains a widely used
and strong baseline for open-domain QA. We ask the model to rely on passages when they clearly
contain the answer and otherwise use background knowledge. (3) DIVA (In et al., 2025): A three-
stage diversify-verify-adapt RAG framework. DIVA rewrites the ambiguous question into a few con-
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Model Method Short Answer Long Answer

STR-EM Disambig-F1 Avg LLM-as-a-Judge

Qwen-3-235b

No Retrieval 20.98 21.19 21.09 3.083
NaiveRAG 25.10 26.20 25.65 2.752
DIVA 28.82 22.73 25.78 3.015
CLARION (Ours) 38.73 28.38 33.56 3.474
CLARION w/o clarification 25.10 25.56 25.33 2.922
CLARION w/o clarification & detection 22.94 24.02 23.48 2.782

Gemini-2.5

No Retrieval 15.59 20.10 17.85 2.307
NaiveRAG 22.16 28.63 25.40 2.297
DIVA 18.82 20.29 19.56 2.303
CLARION (Ours) 29.12 26.30 27.71 2.752
CLARION w/o clarification 24.12 22.54 23.33 2.609
CLARION w/o clarification & detection 23.82 22.04 22.93 2.573

DeepSeek-v3.1

No Retrieval 17.75 18.72 18.24 2.683
NaiveRAG 20.20 25.03 22.62 2.084
DIVA 18.82 20.66 19.74 2.636
CLARION (Ours) 31.47 27.03 29.25 3.042
CLARION w/o clarification 23.63 22.99 23.31 2.927
CLARION w/o clarification & detection 24.51 24.31 24.41 2.906

Table 4: MIRAGE benchmark results across diverse methods and models. Best scores per model are
shown in bold, and second-best scores are underlined.

crete interpretations and retrieves separately for each interpretation while deduplicating passages to
collect complementary evidence. DIVA labels the evidence as Useful/Partial-Useful/Useless for the
interpretations and adapts the answer policy—use only the passages when useful; otherwise, back
off to a concise general-knowledge answer. Diva represents the robust among ambiguity-oriented
RAG frameworks, explicitly rewriting questions into interpretations and aggregating evidence.

Validating the LLM Judge We validate the use of
the LLM judge for our main experiments by compar-
ing its 0–5 scores with human ratings on 300 items
across four criteria. We measure (i) linear association
with Pearson r, (ii) rank consistency with Spearman ρ
and Kendall τb, and (iii) grade-level agreement on the
0–5 scale via Quadratic Weighted Kappa (QWK). As
shown in Figure 5, we observe consistently strong corre-
lations across all families; QWK further indicates grade-
aligned agreement, supporting the LLM judge as a valid
proxy for our main experiments. For full details on the
human evaluation protocol, see Appendix I.

Faithfulness

Informativeness

RelevanceCorrectness 0.45 0.50 0.55 0.60 0.65

Pearson r
Spearman 
Kendall b
QWK

Figure 5: Correlation between LLM and
human judgments.

Main Results As shown in Table 4, our proposed CLARION consistently outperforms both LLM-
only and RAG-based baselines on MIRAGE. Ablation studies further confirm the contribution of
each component: removing either Detection or Clarification lowers performance, with the largest
drop observed when Clarification is omitted. This indicates that identifying ambiguity and explicitly
rewriting the question to cover plausible interpretations is crucial for aligning retrieval with user
intent and for robust multi-hop ambiguous QA.

6 RELATED WORK

Ambiguity in QA Ambiguity in Open Domain QA arises when a question is polysemous or
context-dependent, permitting multiple reasonable interpretations. In such ambiguous QA settings,
systems should either (i) transform the user’s input into a set of disambiguated questions that col-
lectively cover the plausible readings (question clarification (Min et al., 2020)), or (ii) pose targeted
clarifying questions to get the user’s intent (asking clarifying questions (Zhang & Choi, 2025; Zhang
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Benchmark Scale Tasks Multi-hop? Short Ans.? Long Ans.? Ambig. Type
Diversity?

AmbigQA 14,042 Ambiguous QA ✗ ✓ ✗ ✗

CAMBIGNQ 5,653 Ambiguity Detection, Clarifying
Question Generation ✗ ✓ ✗ ✗

CondAmbigQA 200 Conditional Ambiguous QA ✗ ✓ ✗ ✗

ASQA 5,301 Long-form QA ✗ ✓ ✓ ✗

AmbigDocs 36,098 Ambiguous QA ✓ ✓ ✗ ✗

MIRAGE (Ours) 1,142
Multi-hop Ambiguity Detection,
Multi-hop Clarifying Question

Generation, Multi-hop Long-form QA
✓ ✓ ✓ ✓

Table 5: Comparison of ambiguous QA benchmarks and MIRAGE.

et al., 2025a)), and, in either case, (iii) produce long-form answers that explicitly address each in-
terpretation (long-form QA (Stelmakh et al., 2022)). AmbigQA (Min et al., 2020) has formalized
this problem setting and introduced both a dataset and an evaluation protocol. In the long-form
QA paradigm, ASQA (Stelmakh et al., 2022) explicitly requires the long answer that synthesizes
multiple plausible interpretations of an ambiguous question into a single, comprehensive response.
SituatedQA (Zhang & Choi, 2021) systematizes context-dependent ambiguity by conditioning an-
swers on external situational factors (e.g., time and location). More recently, AmbigDocs (Lee et al.,
2024) have been proposed that deliberately include ambiguous entity names and provide mutually
conflicting evidence sets, evaluating whether models can resolve entity-level ambiguity and produce
internally consistent answers. To address ambiguity, Many recent RAG-based pipelines (Tanjim
et al., 2025) extend the workflow by first disambiguating the ambiguous question and then answer-
ing each clarified question. Tree of Clarifications (Kim et al., 2023) augments this process with
external retrieval, expanding interpretations along a branching structure. These approaches do fine
on single-hop cases, but they fall short on multi-hop questions where each step adds more ambigu-
ity. DIVA (In et al., 2025) introduces a diversify–verify–adapt framework that rewrites ambiguous
questions into concrete interpretations, retrieves evidence for each, and synthesizes a comprehensive
answer by integrating diverse supporting passages. DIVA is effective for single-hop ambiguity, but
it is not designed to resolve ambiguity and reasoning dependencies in multi-hop settings.

Multi-hop QA Multi-hop QA requires extracting and connecting evidence from multiple doc-
uments (He et al., 2024; Zhu et al., 2024; Tang & Yang, 2024). HotpotQA (Yang et al., 2018)
designs multi-hop by using Wikipedia-based questions that prompt models to retrieve one or more
articles and explicitly sentence-level supporting facts. These questions demand reasoning that spans
across multiple sources. 2WikiMultihopQA (Ho et al., 2020a) refines multi-hop explainability by
providing both structured and unstructured evidence along with reasoning paths. MuSiQue (Trivedi
et al., 2022) constructs problems where “connected reasoning” is essential by composing single-hop
questions that depend on one another. It underscores that many multi-hop datasets can be solved
by shallow shortcuts that skip real composition, making MuSiQue more challenging. Unlike prior
ambiguous QA benchmarks such as AmbigQA (Min et al., 2020), ASQA (Stelmakh et al., 2022),
CAMBIGNQ (Lee et al., 2023), and CondAmbigQA (Li et al., 2025), which primarily target ambi-
guity in single-hop questions, MIRAGE explicitly addresses ambiguity in a multi-hop setting. It is
accompanied by a robust baseline (see Section 4) for systematic assessment and future development.
In addition, MIRAGE provides a richer set of subtasks spanning multi-hop ambiguity detection, clar-
ification, and QA. As summarized in Table 5, this design introduces a new challenge for ambiguous
QA by requiring models to resolve and reason over ambiguity that spans multiple hops.

7 CONCLUSION

We introduce MIRAGE, a benchmark that explicitly targets ambiguity in multi-hop QA. We release
1,142 carefully annotated questions with type-specific clarifications, evidence-backed short/long an-
swers, and supporting passages. We further provide a unified evaluation protocol that jointly assesses
ambiguity detection, clarification, retrieval, and answer generation within a single framework. Fi-
nally, we propose CLARION, a robust baseline on MIRAGE, showing that powerful models struggle
when ambiguity and multi-hop reasoning coincide.
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Ethics Statement MIRAGE benchmark is constructed entirely from publicly available data
sources (MuSiQue, Wikipedia), ensuring that no personally identifiable or private information is
present. We use a multi-LLM consensus pipeline for ambiguity detection and filtering, reducing the
risk of individual model bias or hallucination. Expert contributors with their consent conduct all hu-
man annotation, and no unfair labor practices are involved. While our dataset and evaluation pipeline
strive to minimize bias, users should be aware that language models may still inherit subtle biases
from the underlying data. We encourage responsible use and further analysis of potential risks when
applying MIRAGE or derived models in real-world settings.

Reproducibility Statement To ensure reproducibility, we release the entire MIRAGE dataset and
all experimental settings, including prompt templates and evaluation scripts. Detailed descriptions
of the construction pipeline and model configurations are provided in the main paper. All LLMs and
retrieval tools used in this study are publicly available or accessible via APIs.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We write the manuscript ourselves and an LLM (ChatGPT-5) is used solely for refinement—style,
clarity, and grammar. It is not used for ideation or content generation.

B LIMITATION AND FUTURE STEPS

Dataset Balance and Augmentation While MIRAGE covers all three ambiguity types, the cur-
rent dataset has fewer general and syntactic ambiguity cases than semantic ones. This distribution
reflects real-world multi-hop queries as sampled from MuSiQue, but future work could augment
and further balance these categories to facilitate more fine-grained analysis and targeted method
development.

CLARION Framework Complexity CLARION demonstrates strong performance but introduces
additional system complexity due to its multi-agent structure and planning-acting cycle. Although
this complexity enables richer ambiguity resolution, future work could explore lighter-weight or
more efficient designs without sacrificing effectiveness, making deployment and integration even
more practical.

Toward More Robust Solutions Despite CLARION’s effectiveness, MIRAGE surfaces the on-
going difficulty of achieving complete and faithful resolution for all multi-hop ambiguous queries.
Our results showcase both the progress and the remaining gaps in current methods, providing a solid
foundation and clear direction for continued innovation in this important area.

C DOMAIN DIVERSITY OF MIRAGE

We tag the topic of each question using gpt-oss-120b and report the distribution in Table 6. As
shown in Table 6, MIRAGE covers a broad range of subject areas. The most frequent topics in-
clude “History”, “Geography&Places”, and “Politics&Government”, indicating diverse coverage
beyond any single domain.

Domain Ratio

Science & Technology 2.79
Math & Logic 0.07
History 30.88
Geography & Places 20.44
Politics & Government 10.16
Business & Economics 2.49
Society & Culture 1.76
Arts & Literature 4.32
Entertainment (Film/TV/Games) 8.59
Music 7.48
Sports 6.44
Religion & Philosophy 2.31
Medicine & Health 0.18
Nature & Environment 1.57
UNKNOWN 0.51

Total 100%

Table 6: MIRAGE domain coverage.
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Model Method Short Answer

STR-EM Disambig-F1 Avg

Qwen3-235b-a22b-250

No Retrieval 70.98 36.56 53.77
NaiveRAG 83.14 41.34 62.24
DIVA 73.53 37.54 55.54
CLARION (ours) 92.94 50.33 71.64
CLARION w/o clarification 85.69 42.58 64.13
CLARION w/o clarification & detection 84.31 42.30 63.30

Gemini-2.5-Flash

No Retrieval 66.86 34.79 50.82
NaiveRAG 76.86 39.30 58.08
DIVA 66.47 35.69 51.08
CLARION (ours) 89.61 48.02 68.81
CLARION w/o clarification 88.43 46.09 67.26
CLARION w/o clarification & detection 87.65 46.04 66.84

DeepSeek-Chat-v3.1

No Retrieval 70.59 35.57 53.08
NaiveRAG 67.84 34.85 51.34
DIVA 75.10 25.54 50.32
CLARION (ours) 90.98 47.99 69.48
CLARION w/o clarification 87.45 46.16 66.81
CLARION w/o clarification & detection 88.82 46.23 67.53

Table 7: ASQA results across methods and models. We report STR-EM / Disambig-F1 in %. Best
per model in bold, second-best underlined.

D ASQA BENCHMARK RESULTS

As shown in Table 7, in ASQA, our agentic approach consistently delivers the strongest short-
answer performance across models. With detection + clarification enabled, CLARION achieves
the best per-model averages—e.g., Qwen3-235b-a22b-250: 71.64 vs. 62.24 (NaiveRAG) and 55.54
(DIVA); Gemini-2.5-Flash: 68.81 vs. 58.08 and 51.08; DeepSeek-Chat-v3.1: 69.48 vs. 51.34 and
50.32. Improvements appear in both STR-EM (coverage of gold short answers) and Disambig-F1
(extractability for clarified questions), indicating that explicitly detecting ambiguity and rewriting
the query steers retrieval to interpretation-aligned evidence rather than memorized or mixed con-
texts. Ablations verify the contribution of each component, with the largest drop when clarification
is removed—highlighting that planning for ambiguity before acting is crucial even on single-hop-
oriented datasets like ASQA. Together, these trends support our claim that agentic planning and
acting modules are broadly beneficial beyond MIRAGE and strengthen answer completeness and
precision in ambiguous QA settings.

E ANALYSIS ON CLARIFICATION STEPS

To analyze why clarification yields substantial performance gains, we measure token-level F1 for
each sample by comparing (i) answers generated from the original user question before clarification
(BASE) and (ii) answers generated from clarified queries (CLAR1, CLAR2) against the dataset’s
gold answers. Figure 6 visualizes the per-query slope of ∆F1 = F1CLAR − F1BASE, showing
that the average F1 after clarification consistently exceeds the BASE condition. This gain arises
because the clarification step resolves ambiguity in the original question, steering retrieval toward
evidence passages that directly support the correct interpretation. Consequently, the LLM produces
more accurate and complete answers, indicating that clarification is not a mere paraphrase but an
effective disambiguation-driven retrieval mechanism that significantly improves F1.
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Figure 6: Overview of the MIRAGE Construction Process.

F CASE STUDY

F.1 MIRAGE CONSTRUCTION

In this subsection, we present a short case study of meaningful instances that are removed during
the final filtering stage, as shown in Table 8. These cases are dropped because, after shortening the
short answers, both clarified interpretations collapsed into the same string. Although the rule keeps
answer quality high, it also removes valid ambiguous cases.

Syntactic Two clarified questions differ in grammatical structure (“in the birthplace of” vs. “in
the place where ... was born”), but both shorten to the same short answer. General Two clarified
questions ask about different ways of defining Antarctica’s border, yet both reduce to the same
numeric answer. Semantic Two clarified questions focus on different semantic aspects (actor identity
vs. character role), but shortening collapsed both to the same name.

Type QID Clarified Query 1 Clarified Query 2 SA1 SA2

Syntactic 4hop1 8294
15324 26424
581618

Who founded the
chain of music-
themed restaurants
whose first es-
tablishment was
located in the birth-
place of the person
who ejected the
Benedictines in
1559?

Who founded the
chain of music-
themed restaurants
with its first es-
tablishment in the
place where the
person who ejected
the Benedictines in
1559 was born?

Isaac Ti-
grett

Isaac Ti-
grett

General 2hop 100274
14948

What latitude
marks the northern
border of Antarc-
tica?

At what latitude
is the continen-
tal boundary of
Antarctica defined?

60° S 60° S

Semantic 2hop 725611
52870

Which actor from
Michael Collins
appears in The
Phantom Menace,
and which charac-
ter do they portray?

In The Phan-
tom Menace,
which character
is played by an ac-
tor who was also in
Michael Collins?

Liam Nee-
son

Liam Nee-
son

Table 8: Failure cases during MIRAGE construction due to short-answer shortening collisions.
After shortening, both short answers collapsed to identical strings, causing removal even though the
clarified queries represent distinct interpretations.
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F.2 CLARION FAILURE CASES

Despite its strong performance, CLARION still fails on certain ambiguous multi-hop queries. Ta-
ble 9 shows representative failure cases across all three ambiguity types. In each case, CLARION’s
prediction collapses to a single interpretation without resolving ambiguity, so the system generates
only one short answer and misses the gold interpretations. This results in complete mismatches (0 on
STR-EM and Disambig-F1). These errors illustrate how mis-specified sub-questions or over-broad
interpretations derail reasoning and retrieval, leading to a complete mismatch against gold answers.

Type Original Query Predicted Long
Answer

Gold Long Answer Fail Reason

Semantic What city shares
a border with the
place where the
person who went to
the state known for
its Mediterranean
climate during the
gold rush worked?

Stockton Brooklyn and Tra-
verse City share
borders with the rel-
evant places.

Collapsed to a sin-
gle interpretation;
failed to clarify
multiple possible
places.

Syntactic Who won the Indy
Car Race in the
largest populated
city of the state
where Yuma’s Li-
brary District is
located?

Mario Andretti
(Phoenix, 1993)

Álex Palou and
Hélio Castroneves

Relied on historical
fact lookup; failed
to disambiguate
event scope and
multiple winners.

General Who brought the
language Hokkien
to the country on
the natural boundary
between the coun-
try that hosted the
tournament and the
country where A
Don is from?

The Hoklo
(Hokkien) people

Dutch colonial ad-
ministration and
Hokkien-speaking
immigrants during
Spanish colonization

Did not resolve
broad/general
query; simplified
to one actor instead
of multiple sources.

Table 9: Representative CLARION failure cases. CLARION often fails to clarify ambiguous
sub-questions and collapses to a single short answer, leading to zero scores on both STR-EM and
Disambig-F1.

G IMPLEMENTATION DETAILS

As shown in Table 10, we report our implementation details for our MIRAGE construction pipeline
and running CLARION.

API Access and Infrastructure All LLM calls were made using the OpenRouter API. Experiments
were run on a workstation equipped with an RTX 6000 Ada GPU.

Models We use four off-the-shelf LLMs as ambiguity detectors: GPT-4.1 (OpenAI), Llama-4-
Maverick (Meta), Qwen3-235b (Alibaba), and Claude-Sonnet-4 (Anthropic). For generating clar-
ified questions and answers, we exclusively use GPT-4.1. For LLM-as-a-judge filtering, we employ
Llama-4-Maverick, Qwen3-235b, and Claude-Sonnet-4.

Decoding and Prompting All LLM calls (for both detection and generation) were run with temper-
ature set to 0.0 and a maximum token limit of 512. All prompts and task templates are described in
detail in Appendix K.

Retrieval Pipeline For evidence retrieval, we use FAISS for fast vector search over Wikipedia pas-
sages. Query and document embeddings are computed with the Qwen3-8B-Embedding model. Re-
trieval is performed with a fixed top-k of 10 per query.
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Item Value / Setting

API OpenRouter API
Detection Model GPT-4.1, Llama-4-Maverick, Qwen3-235b, Claude-Sonnet-4
Generator Model GPT-4.1
Filtering Model Llama-4-Maverick, Qwen3-235b, Claude-Sonnet-4
LLM-as-a-Judge Model GPT-4.1
Temperature 0.0 (detection), 0.0 (generation)
Max Tokens 512 (detection), 512 (generation)
Evaluation Protocol See Appendix I and Table 3
Embedding Model Qwen3-8B-Embedding
Retriever FAISS
Top-k 10
Agent Max Search Iteration 5
GPU RTX 6000 Ada

Table 10: Implementation details.

Agentic Reasoning For CLARION, the agent’s maximum search iteration is set to 5. The planning
agent performs ambiguity detection, type classification, and clarification as described in Section 4;
the acting agent executes search and answer steps up to the iteration limit.

Filtering and Evaluation Protocol After answer generation, candidate instances are filtered using
three LLMs (excluding GPT-4.1 to prevent overfitting). An instance is retained only if all models
unanimously judged every field (question, clarifications, type, evidence, answers) as fully aligned,
following the same protocol as human evaluation (see Appendix I and Table 3 for details).

H LLM JUDGE-DETAILED SCORE

Method Model LLM-as-a-Judge (0–5)

Relevance Faithfulness Informativeness Correctness

LLM-only

No Retrieval
Qwen-3-235b 3.324 3.147 2.931 2.931
Gemini-2.5 2.643 2.439 1.912 2.233
DeepSeek-v3.1 3.067 2.706 2.480 2.480

RAG-based baselines

Naive RAG
Qwen-3-235b 2.961 2.988 2.357 2.829
Gemini-2.5 2.525 2.620 1.643 2.543
DeepSeek-v3.1 2.325 2.408 1.516 2.259

Diva
Qwen-3-235b 3.073 3.465 2.565 3.084
Gemini-2.5 2.531 2.694 1.727 2.382
DeepSeek-v3.1 2.918 2.851 2.292 2.596

CLARION (ours)

CLARION

(w/o clarification & detection)

Qwen-3-235b 3.057 2.957 2.496 2.696
Gemini-2.5 2.673 2.963 2.039 2.702
DeepSeek-v3.1 3.075 3.159 2.635 2.839

CLARION

(w/o clarification)

Qwen-3-235b 3.184 3.084 2.608 2.890
Gemini-2.5 2.712 2.963 2.133 2.700
DeepSeek-v3.1 3.089 3.136 2.699 2.843

CLARION
Qwen-3-235b 3.600 3.551 3.502 3.271
Gemini-2.5 2.843 3.106 2.302 2.824
DeepSeek-v3.1 3.228 3.177 2.943 2.882

Table 11: LLM-as-a-Judge sub-criteria. All scores are on a 0–5 scale.
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As shown in Table 11, we report the scores of each sub-criterion under the LLM-as-a-Judge evalua-
tion for the baselines and for CLARION. Consistent with our main experiments, CLARION gener-
ally achieves higher judge scores across most criteria.

I HUMAN EVALUATION PROTOCOLS

Criterion Description

Relevance Does the long answer fully address both clarified queries and include all rele-
vant short answers, without digression?

Faithfulness Is the answer consistent with the intent and facts in the original query, clarified
queries, and short answers?

Informativeness Does the answer provide additional useful background, explanations, or ac-
tionable guidance to fulfill the user’s needs?

Correctness Are all facts accurate, with no errors or omissions in the key information?

Table 12: Human evaluation protocol for long answer quality. Used for correlation analysis in Fig-
ure 5.

For the correlation analysis presented in Figure 5, we develop a dedicated human evaluation protocol
to systematically assess long answer quality. Annotators rate each answer using the detailed criteria
shown in Table 12, with explicit written instructions for each aspect. This protocol is introduced
exclusively for the evaluation setup in Figure 5, ensuring that all human judgments are directly
comparable with the figure’s correlation metrics.

J DETECTION CUE FOR GENERAL AMBIGUITY

General ambiguity arises when a query is over-specified (e.g., exact dates, versions, quoted spans)
so that retrieval narrows the user’s true intent. We use three complementary signals. First, total hits
H(q) flags abnormally small result sets, indicating a narrowed scope. Second, the KL divergence
DKL(Ptop ∥ Pcorpus) measures how skewed the top-snippet word distribution is relative to the back-
ground corpus, revealing over-reliance on special tokens (dates, numbers, quoted phrases). Third,
the relax delta ratio ρ(q) = H(relax(q))

H(q) is an intervention-style cue: it asks how much the hit count
jumps when we remove exactly one constraint (a date, a number, or a quoted span). In combination,
H(q) low, DKL high, and ρ(q) high strongly suggest over-specialization–induced recall failure,
whereas low H(q) with low ρ(q) points to genuinely sparse topics rather than over-specification.
These cues reduce false positives and guide the LLM toward expert, evidence-aware judgments.
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K PROMPT TEMPLATES

This section summarizes the prompt templates used to construct MIRAGE. For each ambiguity
type, we provide templates for detection, clarification, answer generation (short/long), and query
decomposition from Figures 7 to 15.

You are a linguistics expert.

1) Read the sentence below.
2) Decide whether it is syntactically ambiguous under any of the 18 phenomena.
3) If ambiguous, list all applicable phenomenon numbers (ascending).

Phenomena (1–18)

1. PP Attachment (including instrument vs. attribute ”with”); 2. Relative-Clause
Attachment; 3. Coordination Scope (and/or); 4. Comparative Attachment / Ellipsis;
5. Quantifier / Negation Scope; 6. Dangling / Misplaced Modifier; 7. Genitive-Chain
Attachment; 8. Complement vs. Adjunct; 9. Gerund vs. Participle; 10. Ellipsis /
Gapping; 11. If-clause Attachment; 12. Right-Node Raising; 13. Adjective Stacking
/ Coordination; 14. Inclusive vs. Exclusive ”or”; 15. Adverbial Attachment (VP vs.
S); 16. Focus / Only-scope; 17. Apposition vs. Restriction; 18. Degree / Comparative
subdeletion.

Question: QUESTION

Output (JSON): ”is ambiguous”: ”Y”, ”categories”: [1, 3, 7] // [] if ”N”

Keys must be exactly ”is ambiguous” and ”categories”. No extra text.

Figure 7: Prompt template for syntactic ambiguity detection.

You are a linguistics expert.

The question below is syntactically ambiguous. Write at least MIN VERSIONS distinct
clarified questions, each encoding a different structural reading (attachment, scope, etc.).
Preserve the topic; each rewrite must be fully unambiguous; concise, natural English.

Question: QUESTION

Output (JSON): ”clarified queries”: [”...”, ”...”]

Key exactly ”clarified queries”; provide at least 2 strings; no other keys.

Figure 8: Prompt template for syntactic clarification.

You are a linguistics expert.

1) Read the search query and three RAW metric values.
2) Decide if the query shows general ambiguity (over-specific constraints harming recall).
3) Output ONLY the JSON object in the required format.

A query with general ambiguity (over-specific) is narrowly constrained (dates, version
numbers, quoted strings, etc.), likely missing the broader intent.

Metrics
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Total hits: Result count for the literal query.
KL divergence: D KL between top-k snippet unigrams and the whole corpus.
Relax delta ratio: Largest fold-increase in hits after removing one numeric/date/quoted
constraint.

Question: QUESTION

Raw metric values

Total hits: TOTAL HITS
KL divergence: KL DIVERGENCE
Relax delta ratio: RELAX DELTA RATIO

Output (JSON): ”is ambiguous”: ”Y” // ”N” if not general

Use expertise; no hard thresholds. No markdown, code fences, or extra keys.

Figure 9: Prompt template for general (over-specific) ambiguity detection.

You are an information-retrieval and linguistics expert.

Rewrite the query below into at least MIN VERSIONS broader, faithful variants that surface
the user’s core intent and remove needless specificity or indirections.

How to clarify

1) Identify the core question (fact or relationship truly sought).
2) Resolve or drop cascading indirections (replace ”the country where X was born” with the
direct entity if obvious; else use a neutral placeholder).
3) Remove or soften excessive constraints (exact dates, versions, quoted titles).
4) Keep the answer type the same; do not over-broaden. Write concise English.

Question: QUESTION

Output (JSON): ”clarified queries”: [”...”, ”...”]

Key must be exactly ”clarified queries”; provide at least 2 strings; no extra keys.

Figure 10: Prompt template for general clarification.

You are a linguistics expert.

Semantically ambiguous lacks sufficient context so multiple reasonable meanings or referents
are possible (unclear pronoun, vague time, polysemy, etc.).

1) Read the sentence.
2) Output ”Y” if semantically ambiguous, else ”N”.
Question: QUESTION

Output (JSON): ”is ambiguous”: ”Y” // ”N” if unambiguous

Key must be exactly ”is ambiguous”. No extra text.

Figure 11: Prompt template for semantic ambiguity detection.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

You are a linguistics expert.

Rewrite the semantically ambiguous question into at least 2 distinct clarified questions, each
resolving a different interpretation. Preserve the original topic. Add only minimal context
(time, referent, sense) to make each unambiguous. Concise English.

Question: QUESTION

Output (JSON): ”clarified queries”: [”...”, ”...”]

Key exactly at least 2 ”clarified queries”; no other keys.

Figure 12: Prompt template for semantic clarification.

You are an extractive QA assistant.

Given a question and one passage, return the shortest exact span in the passage that answers
the question. If no answer, return an empty string.

Question: QUESTION

Passage: PASSAGE

Output (JSON): ”short answer”: ”...”

Extractive only (verbatim span); no justification or extra text.

Figure 13: Prompt template for short answer generation (extractive).

You are an expert open-domain QA assistant.

Combine two validated short answers (A1, A2) to create a single, coherent long answer to the
original ambiguous question (OQ). If both can be true, merge into 1–3 fluent sentences. Do not
invent facts beyond A1 and A2.

Return only JSON that matches the schema: SCHEMA

Question: QUESTION

Clarified Q1 — Short Answer A1

CQ1
A1 = A1

Clarified Q2 — Short Answer A2

CQ2
A2 = A2

Output (JSON): ”long answer”: ”...”

Figure 14: Prompt template for long answer generation (merge A1 + A2).

You are an information-retrieval expert.
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Break the complex question into the minimal set of atomic, single-hop sub-questions in the
exact order needed to fully answer it.

- Output each sub-question as a Markdown bullet starting with ”* ”.
- Each sub-question must ask for exactly one fact or relationship.
- No explanations or extra text.
Question: QUESTION

Output (JSON): ”sub query”: ”...”

Figure 15: Prompt template for query decomposition (ordered single-hop bullets).

You are an expert at analyzing query ambiguity.
Your task is to determine whether a query is ambiguous and to classify the ambiguity type.

Analyze the following query and decide:

1. Provide brief reasoning.
2. Is the query ambiguous?
3. Which specific aspects make it ambiguous?
4. What extra information would clarify it?
5. Classify the ambiguity as one of: ”syntactic”, ”general”, ”semantic”, or ”none”.

Definitions:

* syntactic: multiple plausible grammatical parses (attachment/scope/coordination/pronoun
reference).
* general: over-specific query where a broader, closely related formulation better matches the
user’s need.
* semantic: syntax is clear but meaning/intent admits multiple valid interpretations via world
knowledge.

Query: {query}

Return STRICT JSON:

”reasoning”: ”string”,
”is ambiguous”: true/false,
”ambiguity type”: ”syntactic” | ”general” | ”semantic” | ”none”,
”ambiguous aspects”: [”...”],
”clarification needed”: ”string”

Figure 16: Prompt template for ambiguity detection and typing (strict JSON).

You are an expert at clarifying ambiguous queries.
Given the original query and an ambiguity analysis, rewrite the query into two specific,
actionable, and faithful clarified versions.

Original Query: {query}
Ambiguity Analysis (JSON): {analysis}

Write STRICT JSON:

”reasoning”: ”why these clarifications resolve the ambiguity”,
”clarified query1”: ”string”,
”clarified query2”: ”string”
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Figure 17: Prompt template for generating two clarified queries from an ambiguity analysis.

You are a research assistant following ReAct (Reasoning, Acting, Observing).

Available Actions:

* SEARCH[query] → run a search using the configured method
* ANSWER[planning] → run a planning agent
* ANSWER[text] → provide a final answer now

Constraints:

* Max searches allowed: max searches
* Searches used so far: current searches
* Do not reuse the exact same search query as previously used in context.

Task Query: {query}
Previous Context:
{context}

Instructions:

1. THINK about the next best step.
2. If more evidence is needed, choose SEARCH[very specific query].
3. If sufficient, choose ANSWER[concise, well-supported answer].
4. If you have already reached the maximum allowed searches, you must output
ANSWER[...] now.

Respond in EXACT format:
THOUGHT: <your internal reasoning, one short paragraph>
ACTION: SEARCH[...specific query...] OR
ACTION: PLANNING[...call planning agent...] OR
ACTION: ANSWER[...final answer...]

Figure 18: Prompt template for ReAct-style retrieval and answering with a bounded search budget.
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