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Abstract

Contrastive learning has shown great potential001
in unsupervised sentence embedding tasks, e.g.,002
SimCSE (Gao et al., 2021). However, these003
existing solutions are heavily affected by super-004
ficial features like the length of sentences or005
syntactic structures. In this paper, we propose006
a semantic-aware contrastive learning frame-007
work for sentence embeddings, termed Pseudo-008
Token BERT (PT-BERT), which is able to ex-009
plore the pseudo-token space (i.e., latent seman-010
tic space) representation of a sentence while011
eliminating the impact of superficial features012
such as sentence length and syntax. Specifi-013
cally, we introduce an additional pseudo token014
embedding layer independent of the BERT en-015
coder to map each sentence into a sequence016
of pseudo tokens in a fixed length. Leverag-017
ing these pseudo sequences, we are able to018
construct same-length positive and negative019
pairs based on the attention mechanism to per-020
form contrastive learning. In addition, we uti-021
lize both the gradient-updating and momentum-022
updating encoders to encode instances while023
dynamically maintaining an additional queue024
to store the representation of sentence embed-025
dings, enhancing the encoder’s learning per-026
formance for negative examples. Experiments027
show that our model outperforms the state-of-028
the-art baselines on six standard semantic tex-029
tual similarity (STS) tasks. Furthermore, ex-030
periments on alignments and uniformity losses,031
as well as hard examples with different sen-032
tence lengths and syntax, consistently verify033
the effectiveness of our method.034

1 Introduction035

Sentence embedding serves as an essential tech-036

nique in a wide range of applications, including037

semantic search, text clustering, text classification,038

etc. (Kiros et al., 2015; Logeswaran and Lee, 2018;039

Conneau et al., 2017; Cer et al., 2018; Reimers040

and Gurevych, 2019; Gao et al., 2021). Contrastive041

learning works on learning representations such042

A caterpillar was caught by me

Yesterday Jack and Mary got married Yesterday Mary married Jack

He tore up the book The book was shredded by him

I caught a caterpillar

Positive Instance Negative Instance 

A caterpillar was caught by me

Yesterday Jack and Mary got married Yesterday Jack and Mary got married

He tore up the book He tore up the book

A caterpillar was caught by me

A caterpillar was caught by me

Yesterday Jack and Mary got married Yesterday Mary Jack and got married

He tore up the book Book tore he up

A caterpillar caught me

Synonymous statements to human (Our consideration)

Discrete augmentation (CLEAR, etc.)

Continuous augmentation (SimCSE, etc.)

Figure 1: In a realistic scenario, negative examples have
the same length and structure, while positive examples
act in the opposite way. In comparison, discrete aug-
mentation obtains positive instances with word deletion
or reordering (Wu et al., 2020; Meng et al., 2021), which
may misinterpret the meaning. The continuous method
treats embeddings o the same original sentence as posi-
tive examples and augments sentences with the different
encoding functions (Carlsson et al., 2021; Gao et al.,
2021).

that similar examples stay close whereas dissimilar 043

ones are far apart, and thus is suitable for sentence 044

embeddings due to its natural availability of sim- 045

ilar examples. Incorporating contrastive learning 046

in sentence embeddings improves the efficiency 047

of semantic information learning in an unsuper- 048

vised manner (He et al., 2020; Chen et al., 2020) 049

and has been shown to be effective on a variety 050

of tasks (Reimers and Gurevych, 2019; Gao et al., 051

2021; Zhang et al., 2020). 052

In contrastive learning for sentence embeddings, 053

a key challenge is how to construct positive in- 054

stances. Both discrete and continuous augmenta- 055

tion methods have been studied recently. Meth- 056

ods in (Wu et al., 2018; Meng et al., 2021) (e.g., 057

CLEAR) perform discrete operations directly on 058

the original sentences, such as word deletion and 059
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sentence shuffling, to get positive samples. How-060

ever, these methods may lead to unacceptable se-061

mantic distortions or even complete misinterpre-062

tations of the original statement. In contrast, the063

SimCSE method (Gao et al., 2021) obtains two dif-064

ferent embeddings in the continuous embedding065

space as a positive pair for one sentence through066

different dropout masks (Srivastava et al., 2014)067

in the neural network for representation learning.068

Nonetheless, this method overly relies on superfi-069

cial features existing in the dataset like sentence070

lengths and syntactic structures and may pay less071

reflection on meaningful semantic information. As072

an illustrative example, the sentence-pair in Fig. 1073

“A caterpillar was caught by me.” and “I caught a074

caterpillar.” appear to organize differently in ex-075

pression but convey exactly the same semantics.076

To overcome these drawbacks, in this paper,077

we propose a semantic-aware contrastive learn-078

ing framework for sentence embeddings, termed079

Pseudo-Token BERT (PT-BERT), that is able to080

capture the pseudo-token space (i.e., latent seman-081

tic space) representation while ignoring effects of082

superficial features like sentence lengths and syn-083

tactic structures. Inspired by previous work on084

prompt learning and sentence selection (Li and085

Liang, 2021; Liu et al., 2021; Humeau et al., 2020),086

which create a pseudo-sequence and have it serve087

the downstream tasks, we present PT-BERT to train088

pseudo token representations and then to map sen-089

tences into pseudo token spaces based on an atten-090

tion mechanism.091

In particular, we train additional 128 pseudo092

token embeddings, together with sentence em-093

beddings extracted from the BERT model (i.e.,094

gradient-encoder), and then use the attention mech-095

anism (Devlin et al., 2019) to map the sentence096

embedding to the pseudo token space (i.e., se-097

mantic space). We use another BERT model (i.e.,098

momentum-encoder) to encode the original sen-099

tence, adopt a similar attention mechanism with100

the pseudo token embeddings, and finally output101

a continuously augmented version of the sentence102

embedding. We treat the representations of original103

sentence encoded by the gradient-encoder and the104

momentum-encoder as a positive pair. In addition,105

the momentum-encoder also generates negative ex-106

amples, dynamically maintains a queue to store107

these negative examples, and updates them over-108

time. By projecting all sentences onto the same109

pseudo sentence, the model greatly reduces the110

dependence on sentence length and syntax when 111

making judgments and makes the model more fo- 112

cused on the semantic level information. 113

In our experiments, we compare our results with 114

the previous state-of-the-art work. We train PT- 115

BERT on 106 randomly sampled sentences from 116

English Wikipedia and evaluate on seven standard 117

semantic textual similarity (STS) tasks (Agirre 118

et al., 2012, 2013, 2014, 2015, 2016) (Marelli et al., 119

2014). Besides, we also compare our approach 120

with a framework based on an advanced discrete 121

augmentation we proposed. We obtain a new state- 122

of-the-art on standard semantic textual similarity 123

tasks with our PT-BERT, which achieves 77.74% of 124

Spearman’s correlation. To show the effectiveness 125

of pseudo tokens, we calculate the align-loss and 126

uniformity loss (Wang and Isola, 2020) and verify 127

our approach on a sub-dataset with hard examples 128

sampled from STS-(2012-2016). 129

2 Related Work 130

In this section, we discuss related studies with 131

repect to the contrastive learning framework and 132

sentence embedding. 133

2.1 Contrastive Learning for Sentence 134

Embedding 135

Contrastive learning and MoCo. Contrastive 136

learning (Hadsell et al., 2006) has been used with 137

much success in both natural language processing 138

and computer vision (Yang et al., 2019; Klein and 139

Nabi, 2020; Chen et al., 2020; He et al., 2020; Gao 140

et al., 2021). In contrast to generative learning, 141

contrastive learning requires learning to distinguish 142

and match data at the abstract semantic level of the 143

feature space. It focuses on learning common fea- 144

tures between similar examples and distinguishing 145

differences between non-similar examples. In order 146

to compare the instances with more negative exam- 147

ples and less computation, memory bank (Wu et al., 148

2018) is proposed to enhance the performance un- 149

der the contrastive learning framework. While with 150

a large capacity to store more samples, the mem- 151

ory bank is not consistent enough, which could not 152

update the "key" during comparison. Momentum- 153

Contrast (MoCo) (He et al., 2020) uses a queue to 154

maintain the dictionary of samples which allows 155

the model to compare the query with more keys for 156

each step and ensure the consistency of the frame- 157

work. It updates the parameter of the dictionary in 158

a momentum way. 159
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Discrete and continuous augmentation. By160

equipping discrete augmentation that modifies sen-161

tences directly on token level with contrastive learn-162

ing, significant success has been achieved in obtain-163

ing sentence embeddings. Such methods include164

word omission (Yang et al., 2019), entity replace-165

ment (Xiong et al., 2020), trigger words (Klein and166

Nabi, 2020) and traditional augmentations such as167

deletion, reorder and substitution (Wu et al., 2020;168

Meng et al., 2021). Examples with diverse ex-169

pressions can be learned during training, making170

the model more robust to expressions of different171

sentence lengths and styles. However, these ap-172

proaches are limited because there are huge dif-173

ficulties in augmenting sentences precisely since174

a few changes can make the meaning completely175

different or even opposite.176

Researchers have also explored the possibil-177

ity of building sentences continuously, which178

instead applies operation in embedding space.179

CT-BERT (Carlsson et al., 2021) encodes same180

sentence with two different encoders. Unsup-181

SimCSE (Gao et al., 2021) compares the represen-182

tations of the same sentence with different dropout183

masks among the mini-batch. These approaches184

continuously augment sentences while retaining185

the original meaning. However, positive pairs seen186

by SimCSE always have the same length and struc-187

ture, whereas negative samples are likely to act188

oppositely. As a result, sentence length and struc-189

ture are highly correlated to the similarity score of190

examples. During training, the model has never191

seen positive samples with diverse expressions, so192

that in real test scenarios, the model would be more193

inclined to classify the synonymous pairs with dif-194

ferent expressions as negatives, and those sentences195

with the same length and structures are more likely196

to be grouped as positive pairs. This may cause a197

biased encoder.198

2.2 Pseudo Tokens199

In the domain of prompt learning (Liu et al., 2021;200

Jiang et al., 2020; Li and Liang, 2021; Gao et al.,201

2020), the way to create prompt can be divided into202

two types, namely discrete and continuous ways.203

Discrete methods usually search the natural lan-204

guage template as the prompt (Davison et al., 2019;205

Petroni et al., 2019), while the continuous way al-206

ways directly works on the embedding space with207

"pseudo tokens" (Liu et al., 2021; Li and Liang,208

2021). In retrieval and dialogue tasks, the current209

Sub-dataset original
STS12 66.54 68.40
STS13 78.50 82.41
STS14 68.76 74.38
STS15 70.27 80.91
STS16 71.31 78.56

Table 1: SimCSE’s results on sub-dataset from STS12-
16, comparing with original results.

SimCSE32 SimCSE64 SimCSE128

Avg. 76.25 75.20 75.29

Table 2: Different acceptable sequence length of Sim-
CSE would affect the result on STS tasks.

approach adopts "pseudo tokens", namely "poly 210

codes" (Humeau et al., 2020), to jointly encode the 211

query and response precisely and ensure the infer- 212

ence time when compared with the Cross-Encoders 213

and Bi-Encoders (Wolf et al., 2019; Mazaré et al., 214

2018; Dinan et al., 2019). The essence of these 215

methods is to create a pseudo-sequence and have 216

it serve the downstream tasks without the need for 217

humans to understand the exact meaning. The pa- 218

rameters of these pseudo tokens are independent of 219

the natural language embeddings, and can be tuned 220

based on a specific downstream task. In the fol- 221

lowing sections, we will show the idea to weaken 222

the model’s consideration of sentence length and 223

structures by introducing additional pseudo token 224

embeddings on top of the BERT encoder. 225

3 Methods 226

In this section, we introduce PT-BERT, which pro- 227

vides novel contributions on combining advantages 228

of both discrete and continuous augmentations to 229

advance the state-of-art of sentence embeddings. 230

We first present the setup of problems with a thor- 231

ough analysis on the bias introduced by the textual 232

similarity theoretically and experimentally. Then 233

we show the details of Pseudo-Token representa- 234

tion and our model’s architecture. 235

3.1 Preliminary 236

Consider a sentence s, we say that the augmenta- 237

tion is continuous if s is augmented by different 238

encoding functions, f(·) and f ′(·). Sentence em- 239

beddings h = f(s) and h′ = f ′(s) are obtained 240

by these two functions. With a slight change of 241

the encoding function (e.g., encoders with different 242

dropout masks), h′ can be seen as a more precisely 243
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Pseudo sentence Instance

Momentum Encoder

Momentum update

Pseudo sentence

1,2,…,m

1,2,…,m

1,2,…,m

That’s good.

Virgo wrote his memoirs in 1939.

Tomorrow will be better.

Instance

m

Pseudo sentence embedding

Embedding
BERT

Attention

m

Weighted pseudo sentence embedding

Attention
Sentence

embedding

Encoder

Q

K, V

K, V

Q

Final embedding

Queue

Cosine similarity loss 

Gradient

Figure 2: The model is divided into two parts, the upper part (Encoder) updates the learnable parameters with
gradient, while the bottom (Momentum Encoder) inherits parameters from the upper part with momentum-updating.
We repeatedly input the same sequence of pseudo tokens while processing the original sentences. An additional
BERT attention mapping the pooler-output of BERT to pseudo sequence representation, extending the sentence
embedding to a fixed length and mapping the syntactic structure to the style of the pseudo sentence. The two
attentions in the figure are the same and with identical parameters.

augmented version of h compared with the discrete244

augmentation. Semantic information of h′ could245

be the same as h. Therefore, h and h′ are a pair of246

positive examples and we could randomly sample247

a sentence to construct negative example pairs.248

Previous state-of-the-art models (Gao et al.,249

2021) adopt the continuous strategy that augments250

sentences with dropout (Srivastava et al., 2014).251

Through careful observation, we find that all the252

positive examples in SimCSE have the same length253

and structure while negative examples act oppo-254

sitely. In this way, SimCSE will inevitably take255

these two factors as hints during test. To further256

verify this conjecture, we sort out the positive pairs257

with a length difference of more than five words258

and negative pairs of less than two words from259

STS-(2012-2016).260

Table 1 shows that the performance of SimCSE261

plummets on this dataset. Besides, we also find262

that SimCSE truncates all training corpus into 32263

tokens, which shortens the discrepancy of the sen-264

tence’s length. After we scale the max length that265

SimCSE could accept from 32 to 64 and 128, the266

performance degrades significantly during the test267

even though the model is supposed to learn more268

from the complete version of sentences. The rea- 269

son for this result may lie in the fact that, without 270

truncation, all positive pairs still have the same 271

length, whereas the difference in length between 272

the negative and positive ones is enlarged. There- 273

fore, the encoder will rely more on sentence length 274

and make the wrong decision. 275

3.2 Pseudo-Token BERT 276

We realize it is vital to train an unbiased encoder 277

that captures the semantics and also would not in- 278

troduce intermediate errors. This motivates us to 279

propose the PT-BERT, as evidence shows that the 280

encoder may fail to make predictions when trained 281

on a biased dataset with same-length positive pairs, 282

by learning the spurious correlations that work only 283

well on the training dataset (Arjovsky et al., 2019; 284

Nam et al., 2020). 285

Pseudo-Token representations. The idea of PT- 286

BERT is to reduce the model’s excessive depen- 287

dence on textual similarity when making predic- 288

tions. Discrete augmentation achieves this goal by 289

providing both positive and negative examples with 290

diverse expressions. Therefore the model does not 291
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jump to conclusions based on sentence length and292

syntactic structure during the test.293

Note that we achieve this same purpose in a294

seemingly opposite way: mapping the representa-295

tions of both positive and negative examples to a296

pseudo sentence with the same length and structure.297

We take an additional embedding layer outside298

the BERT encoder to represent a pseudo sentence299

{0, 1, ...,m} with fixed length m and unchangeable300

syntax. This embedding layer is fully independent301

of the BERT encoder, including the parameters and302

corresponding vocabulary. Random initialization303

is applied to this layer, and the parameter will be304

updated during training. The size of this layer de-305

pends on the length of pseudo sentences. Besides,306

adopting the attention mechanism (Vaswani et al.,307

2017; Bahdanau et al., 2015; Gehring et al., 2017),308

we take the pseudo sentence embeddings as the309

query while key and value are the sentence em-310

beddings obtained from the BERT encoder. This311

allows the pseudo sentence to attend to the core312

part and ignore the redundant part while keeping313

the fixed length and pseudo syntactic structure.314

Fig. 2 illustrates the framework of PT-BERT. De-315

noting the pseudo sentence embedding as P and the316

sentence embedding encoded by BERT as Y, we317

obtain the weighted pseudo sentence embedding of318

each sentence by mapping the sentence embedding319

to the pseudo tokens with attention:320

Z′
i = Attention(PWQ,YiW

K,YiW
V) (1)321

Attention(Q,K,V) = softmax(
QKT

√
dk

)V,

(2)

322

where dk is the dimension of the model, WQ, WK,323

WV are the learnable parameters with Rdk×dk , i324

denotes the i-th sentence in the dataset. Then we325

obtain the final embedding hi with the same atten-326

tion layer by mapping pseudo sentences back to327

original sentence embeddings:328

hi = Attention(YiW
Q,Z′

iW
K,Z′

iW
V). (3)329

Finally, we compare the cosine similarities be-330

tween the obtained embeddings of h and h′ using331

Eq. 4 , where h′ are the samples encoded by the332

momentum-encoder and stored in a queue.333

Model architecture. Instead of inputting the334

same sentence twice to the same encoder, we follow335

the architecture proposed in Momentum-Contrast336

(MoCo) (He et al., 2020) such that PT-BERT can ef- 337

ficiently learn from more negative examples. Sam- 338

ples in PT-BERT are encoded into vectors with 339

two encoders: gradient-update encoder (the upper 340

encoder in Fig. 2) and momentum-update encoder 341

(the momentum encoder in Fig. 2). We dynamically 342

maintain a queue to store the sentence representa- 343

tions from momentum-update encoder. 344

This mechanism allows us to store as much neg- 345

ative samples as possible without re-computation. 346

Once the queue is full, we replace the "oldest" neg- 347

ative sample with a "fresh" one encoded by the 348

momentum-encoder. 349

Similar to the works based on continuous aug- 350

mentation, at the very beginning of the framework, 351

PT-BERT takes input sentence s and obtained hi 352

and h′
i with two different encoder functions. We 353

measure the loss function with: 354

ℓi = − log
esim(hi,h

′
i)/τ∑M

j=1 e
sim(hi,hj′ )/τ

, (4) 355

where hi denotes the representations extracted 356

from the gradient-update encoder, h′
i represents 357

the sentence embedding in the queue, and M is the 358

queue size. Our gradient-update and momentum- 359

update encoder is based on the pre-trained language 360

model with the same structure and dimensions as 361

BERT-base-uncased (Devlin et al., 2019). The mo- 362

mentum encoder will update its parameters similar 363

to MoCo: 364

θk ← λθk + (1− λ)θq, (5) 365

where θk is the parameter of the momentum- 366

contrast encoder that maintains the dictionary, θq 367

is the query encoder that updates the parameters 368

with gradients, and λ is a hyperparameter used to 369

control the updating process. 370

4 Experiments 371

In this section, we perform the standard semantic 372

textual similarity (STS) (Agirre et al., 2012, 2013, 373

2014, 2015, 2016) tasks to test our model. For 374

all tasks, we measure the Spearman’s correlation 375

to compare our performance with SimCSE (Gao 376

et al., 2021). In the following, we will describe the 377

training procedure in detail. 378

4.1 Training Data and Settings 379

Datasets. Following SimCSE, We train our 380

model on 1-million sentences randomly sampled 381
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Discrete Augmentation

CLEAR 49.00 48.90 57.40 63.60 65.60 72.50 75.60 61.80
MoCo 68.35 81.42 73.34 81.63 78.61 76.40 68.50 75.46
MoCo+reorder 66.14 80.06 73.14 81.35 76.01 73.99 65.76 73.78
MoCo+duplication 65.88 82.24 73.34 81.49 77.48 76.29 68.86 75.08
MoCo+deletion 67.86 81.43 72.8 81.48 77.84 76.91 69.46 75.40
MoCo+SRL 68.92 82.20 73.67 81.58 78.73 77.63 71.07 76.26

Continuous Augmentation
CT-BERT 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
PT-BERTbase 71.20 83.76 76.34 82.63 78.90 79.42 71.94 77.74

Table 3: Sentence embedding performance on STS tasks with Spearman’s correlation measured. We highlight the
highest number for each methods. CLEAR (Wu et al., 2020) is trained on both English Wikipedia and Book Corpus
with 500k steps with their own version of pre-trained models. Result of CT-BERT (Carlsson et al., 2021) is based
on the settings of SimCSE (Gao et al., 2021)

Models STS-B dev
SimCSE-BERTbase + None 82.50
SimCSE-BERTbase + Crop 77.80
SimCSE-BERTbase + Deletion 75.90
MoCo-BERTbase + None 82.03
MoCo-BERTbase + Reorder 81.89
MoCo-BERTbase + Duplication 81.82
MoCo-BERTbase + Deletion 82.97
MoCo-BERTbase + SRL 82.40
PT-BERTbase 84.50

Table 4: Results on STS-B development sets. Results of
SimCSE (Gao et al., 2021) are reported from original
paper.

from English Wikipedia, and evaluate the model382

every 125 steps to find the best checkpoints. Note383

that we do not fine-tune our model on any dataset,384

which indicates that our method is completely un-385

supervised.386

Hardware and schedule. We train our model on387

the machine with one NVIDIA V100s GPU. Fol-388

lowing the settings of SimCSE (Gao et al., 2021),389

it takes 50 minutes to run an epoch.390

4.2 Implementations391

In this subsection, we implement PT-BERT based392

on Huggingface transformers (Wolf et al., 2020)393

and initialize it with the released BERTbase (Devlin394

et al., 2019). We initialize a new embedding for395

pseudo tokens with 128×768. During training, we396

create a pseudo sentence {0, 1, 2, ..., 127} for every397

input and map the original sentence to this pseudo398

sentence by attention. With batches of 64 sentences 399

and an additional dynamically maintained queue of 400

256 sentences, each sentence has one positive sam- 401

ple and 255 negative samples. Adam (Kingma and 402

Ba, 2014) optimizer is used to update the model pa- 403

rameters. We also take the original dropout strategy 404

of BERT with rate p = 0.1. We set the momentum 405

for the momentum-encoder with λ = 0.885. 406

4.3 Evaluation Setup 407

We evaluate the fine-tuned BERT encoder on STS- 408

B development sets every 125 steps to select the 409

best checkpoints. We report all the checkpoints 410

based on the evaluation results reported in Ta- 411

ble 4. The training process is fully unsupervised 412

since no training corpus from STS is used. Dur- 413

ing the evaluation, we also calculate the trends of 414

alignment-loss and uniformity-loss. Losses were 415

compared with SimCSE (Gao et al., 2021) under 416

the same experimental settings. After training 417

and evaluation, we test models on 7 STS tasks: 418

STS 2012-2016 (Agirre et al., 2012, 2013, 2014, 419

2015, 2016), STS Benchmark (Cer et al., 2017) 420

and SICK-Relatedness (Marelli et al., 2014). We 421

report the result of Spearman’s correlation for all 422

the experiments. 423

4.4 Main Results and Analysis 424

We first compare PT-BERT with our baseline: 425

MoCo framework + BERT encoder (MoCo-BERT). 426

MoCo-BERT could be seen as a version of PT- 427

BERT without pseudo token embeddings. Then we 428

apply traditional discrete augmentations such as re- 429
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
(a) Ablation studies on pseudo sequence length

L-64 67.04 82.04 73.65 81.12 78.64 77.35 71.33 75.88
L-90 68.94 82.08 74.53 81.22 79.06 78.01 71.49 76.48
L-128(Ours) 71.20 83.76 76.34 82.63 78.90 79.42 71.94 77.74
L-256 67.09 82.25 72.63 81.48 78.55 77.30 69.53 75.55
L-360 68.90 82.21 73.77 81.31 77.50 77.22 69.32 75.75

(b) Ablation studies on queue size
Q-192 70.29 83.78 75.98 82.13 78.48 78.91 72.53 77.44
Q-256(Ours) 71.20 83.76 76.34 82.63 78.90 79.42 71.94 77.74
Q-320 71.71 83.36 75.00 82.99 78.76 79.17 72.85 77.69

(c) Evaluations on hard sentence pairs with different length
SimCSE 66.54 78.50 68.76 70.27 71.31 - - 71.08
PT-BERT 72.02 80.24 72.92 74.50 72.50 - - 74.44

Table 5: Evaluation results of ablation studies and hard sentence pairs.

order, duplication, and deletion on this framework.430

We also compare our work with CLEAR (Wu et al.,431

2020) that substitutes and deletes the token spans.432

Besides, we argue that the performance of these433

methods is too weak. We additionally propose434

an advanced discrete augmentation approach that435

produces positive examples with the guidance of436

Semantic Role Labeling (SRL) (Gildea and Juraf-437

sky, 2002) information, instead of random deletion438

and reordering. SRL-guided augmentation could439

compensate the errors caused by these factors, act-440

ing as a combination of deletion, duplication, and441

reordering with better accuracy. For the sentences442

with multiple predicates, we keep all the sets with443

order [ARG0, PRED, ARGM − NEG, ARG1]444

and concatenate them into a new sequence. For the445

sentences without recognized predicate-argument446

sets, we keep the original sentence as positive ex-447

amples. In addition to the work based on discrete448

approaches, we also compare with SimCSE (Gao449

et al., 2021) which continuously augment sentences450

with dropout. In Table 3, PT-BERT with 128451

pseudo tokens further pushed the state-of-the-art452

results to 77.74% and significantly outperformed453

SimCSE over six datasets.454

In Fig 3, we observe that PT-BERT also achieves455

better alignment and uniformity against SimCSE,456

which indicates that pseudo tokens really help the457

learning of sentence representations. In detail,458

alignment and uniformity are proposed by (Wang459

and Isola, 2020) to evaluate the quality of repre-460

sentations in contrastive learning. The calculation461

of these two metrics are shown in the following462
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Figure 3: Alignment and uniformity loss plot for PT-
BERT and SimCSE. We visualize the checkpoints every
125 training steps. For both measurements, lower num-
bers are better.
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formulas:463

Lalignment = E
(x,x+)∼ppos

||f(x)− f(x+)||2, (6)464

Luniformity = E
(x,y)∼pdata

e−2||f(x)−f(y)||2 , (7)465

where (x, x+) is the positive pair, (x, y) is the pair466

consisting of any two different sentences in the467

whole sentence set, f(x) is the normalized repre-468

sentation of x. We employ the final embedding h469

to calculate these scores.470

According to the above formulas, lower align-471

ment loss means a shorter distance between the472

positive samples, and low uniformity loss implies473

the diversity of embeddings of all sentences. Both474

are our expectations for the representations based475

on contrastive learning. To evaluate our model’s476

performance on alignment and uniformity, we477

compare it with SimCSE on the STS-benchmark478

dataset (Cer et al., 2017), and the result is shown479

in Figure 3. The result demonstrates that PT-BERT480

outperforms SimCSE on these two metrics: our481

model has a lower alignment and uniformity than482

SimCSE in almost all the training steps, which in-483

dicates that the representations produced by our484

model are more in line with the goal of the con-485

trastive learning.486

5 Analysis487

5.1 Ablation Studies488

In this section, we first investigate the impact of489

different sizes of pseudo token embeddings. Then490

we would like to report the performance difference491

caused by queue size under the MoCo framework.492

Pseudo Sentence Length Different lengths of493

pseudo tokens can affect the ability of the model to494

express the sentence representations. By mapping495

the original sentences to various lengths of pseudo496

tokens, the performance of PT-BERT could be dif-497

ferent. In this section, we keep all the parts except498

the pseudo tokens and their embeddings unchanged.499

We scale the pseudo sequence length from 64 to500

360. Table 5(a) shows a comparison between dif-501

ferent lengths of pseudo sequence in PT-BERT. We502

find that during training, PT-BERT performs bet-503

ter when attending to pseudo sequences with 128504

tokens. Too few pseudo tokens do not fully ex-505

plain the semantics of the original sentence, while506

too many pseudo tokens increase the number of507

parameters and over-express the sentence.508

Queue Size The introduction of more negative 509

samples would make the model’s training more re- 510

liable. By training with different queue sizes, we 511

report the result of PT-BERT with different perfor- 512

mances due to the number of negative samples. In 513

Table 5(b), queue size q = 4 performs best. How- 514

ever, the difference in performance between the 515

three sets of experiments is not large, suggesting 516

that the model can learn well as long as it can see 517

enough negative samples. 518

5.2 Exploration on Hard Examples with 519

Different Length 520

To prove the effectiveness of PT-BERT that could 521

weaken the hints caused by textual similarity, we 522

further test PT-BERT on the sub-dataset introduced 523

in Sec. 3.1. We sorted out the positive pairs with 524

a length difference of more than five words and 525

negative pairs of less than two words from STS- 526

(2012-2016). PT-BERT significantly outperforms 527

SimCSE with 3.36% Spearman’s correlation, in- 528

dicating that PT-BERT could handle these hard 529

examples better than SimCSE. This further proves 530

that PT-BERT could debias the spurious correla- 531

tion introduced by sentence length and syntax, and 532

focus more on the semantics. 533

6 Conclusion 534

In this paper, we propose a semantic-aware con- 535

trastive learning framework for sentence embed- 536

dings, termed PT-BERT. Our proposed PT-BERT 537

approach is able to weaken textual similarity infor- 538

mation, such as sentence length and syntactic struc- 539

tures, by mapping the original sentence to a fixed 540

pseudo sentence embedding. We provide analysis 541

of these factors on methods based on continuous 542

and discrete augmentation, showing that PT-BERT 543

augments sentences more accurately than discrete 544

methods while considering more semantics instead 545

of textual similarity than continuous approaches. 546

Lower uniformity loss and alignment loss prove 547

the effectiveness of PT-BERT and further experi- 548

ments also show that PT-BERT could handle hard 549

examples better than existing approaches. 550

Providing a new perspective to the continuous 551

data augmentation in sentence embeddings, we be- 552

lieve our proposed PT-BERT has great potential 553

to be applied in broader downstream applications, 554

such as text classification, text clustering, and sen- 555

timent analysis. 556
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