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Abstract001

Conventional retrieval-augmented generation002
(RAG) systems employ rigid retrieval strate-003
gies that create: (1) knowledge blind spots004
across domain boundaries, (2) reasoning frag-005
mentation when processing interdependent con-006
cepts, and (3) contradictions from conflicting007
evidence sources. Motivated by these limita-008
tions, we introduce PathwiseRAG, which ad-009
dresses these challenges through: intent-aware010
strategy selection to eliminate blind spots, dy-011
namic reasoning networks that capture sub-012
problem interdependencies to overcome frag-013
mentation, and parallel path exploration with014
adaptive refinement to resolve conflicts. The015
framework models query intent across semantic016
and reasoning dimensions, constructs a directed017
acyclic graph of interconnected sub-problems,018
and explores multiple reasoning trajectories019
while continuously adapting to emerging ev-020
idence. Evaluation across challenging bench-021
marks demonstrates significant improvements022
over state-of-the-art RAG systems, with aver-023
age accuracy gains of 4.9% and up to 6.9% on024
complex queries, establishing a new paradigm025
for knowledge-intensive reasoning by trans-026
forming static retrieval into dynamic, multi-027
dimensional exploration.028

1 Introduction029

Large language models (LLMs) have transformed030

natural language processing yet struggle with031

knowledge-intensive tasks requiring factual pre-032

cision and multi-step reasoning. Retrieval-033

augmented generation (RAG) approaches address034

these limitations by incorporating external knowl-035

edge. Existing RAG systems operate through a036

simplistic pipeline—retrieve documents via static037

vector similarity or keyword matching, then gen-038

erate answers—creating three critical limitations039

that PathwiseRAG addresses. First, static retrieval040

produces knowledge blind spots: when answering041

"How did quantum computing impact cryptogra-042

phy?", retrievers miss crucial connections between043

quantum algorithms and specific encryption vulner- 044

abilities. Second, conventional RAG cannot model 045

interdependent concepts—ideas that gain signifi- 046

cance only in relation to others—across documents; 047

understanding financial crises requires connecting 048

mortgage securities, default swaps, and regulations 049

that current systems process in isolation. Third, 050

these systems cannot adapt retrieval based on in- 051

termediate findings; discovering an unexpected 052

quantum breakthrough should trigger deeper ex- 053

ploration of affected cryptographic protocols, but 054

current RAG lacks this adaptive capability. Previ- 055

ous improvements like query decomposition and 056

iterative retrieval still fundamentally treat informa- 057

tion acquisition as a linear, predetermined process 058

rather than the dynamic, branching exploration re- 059

quired for complex knowledge tasks. This rigid 060

approach severely limits RAG’s applicability in 061

high-value domains where the ability to navigate 062

interdependent knowledge dimensions is essential 063

but technically challenging to implement. 064

PathwiseRAG reconceptualizes RAG as a dy- 065

namic, multi-dimensional exploration process 066

through a three-stage pipeline: (1) a dual-stream 067

intent analyzer that models both semantic content 068

and reasoning requirements to select appropriate re- 069

trieval strategies; (2) a reasoning network construc- 070

tor that organizes interdependent sub-problems as 071

a directed acyclic graph; and (3) a parallel path 072

exploration mechanism that continuously adjusts 073

the network as new evidence emerges. 074

Evaluation on HotpotQA, StrategyQA, and Com- 075

plexWebQuestions demonstrates substantial im- 076

provements over state-of-the-art RAG systems, 077

with average absolute gains of 4.9% in answer ac- 078

curacy, reaching 6.9% on the most complex queries. 079

Ablation studies confirm each component’s critical 080

contribution, with multi-path reasoning and intent 081

analysis proving most important. 082

Our key contributions include: (1) intent-aware 083

strategy selection through dual-stream analysis; (2) 084
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Figure 1: PathwiseRAG: multi-dimensional exploration and integration framework. (a) query-intent analysis &
strategy selection, (b) multi-path reasoning network construction, (c) parallel path exploration with multi-level
knowledge integration.

dynamic reasoning networks for decomposing com-085

plex queries; and (3) parallel path exploration with086

adaptive refinement. These advances transform087

static RAG into a dynamic, multi-dimensional ex-088

ploration process for complex knowledge-intensive089

tasks.090

2 Related Work091

2.1 Retrieval-Augmented Generation092

Traditional RAG systems primarily utilize text-093

based retrieval (Lewis et al., 2020; Izacard and094

Grave, 2021), but recent approaches have expanded095

to multimodal data sources. Liu et al. (Liu et al.,096

2025) introduced a hierarchical multi-agent frame-097

work for heterogeneous data sources, while Gupta098

et al. (Gupta et al., 2024) highlighted limitations of099

single-source retrieval for complex queries. Graph-100

based approaches like LightRAG (Guo et al., 2024)101

and advanced graph structures (Dong et al., 2024)102

enhance textual interdependencies but often sac-103

rifice fine-grained details that PathwiseRAG pre-104

serves.105

2.2 Multi-Agent Frameworks 106

Agent-based RAG architectures improve system 107

modularity and query processing (Jeong, 2024; Han 108

et al., 2025). Chan et al. (2024) (Chan et al., 2024) 109

focused on query refinement to improve retrieval 110

quality, while Su et al. (2024) (Su et al., 2024) de- 111

veloped a system for real-time information needs. 112

PathwiseRAG extends these frameworks through 113

coordinated reasoning paths and intent-driven strat- 114

egy selection that existing approaches typically 115

lack. 116

2.3 Knowledge Integration 117

Recent works have developed specialized tech- 118

niques for knowledge integration. Mavromatidis 119

and Karypis (2024) (Mavromatids and Karypis, 120

2024) introduced GNN-RAG for enhanced reason- 121

ing, while Wu et al. (2024) (Wu et al., 2024) devel- 122

oped a domain-specific graph RAG for medicine. 123

For multimodal data, Xia et al. (2024) (Xia et al., 124

2024) created a versatile RAG system for medi- 125

cal vision-language models, and Edge et al. (2024) 126

(Edge et al., 2024) proposed a GraphRAG approach 127
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transitioning from local to global integration. Path-128

wiseRAG advances beyond these fixed integration129

strategies through its adaptive three-level process.130

2.4 Adaptive Exploration131

Adaptive exploration strategies have emerged as132

critical for complex information retrieval. Procko133

and Ochoa (2024) (Procko and Ochoa, 2024) high-134

lighted the benefits of topological relationships for135

document modeling, while Su et al. (2024) (Su136

et al., 2024) and Toro et al. (2024) (Toro et al.,137

2024) introduced dynamic RAG systems that adapt138

retrieval patterns based on emerging needs. Path-139

wiseRAG extends these approaches through com-140

prehensive intent analysis and parallel path explo-141

ration that existing methods lack.142

3 Methodology143

3.1 Framework Overview144

Algorithm 1 PathwiseRAG Algorithm
Require: Query q, document corpus D, strategy set S
Ensure: Generated answer A
1: Iq ← IntentAnalysis(q)
2: s∗ ← argmaxs∈S S(s, Iq)
3: G0 = (V0, E0, ω0)← Network(q, Iq, s∗)
4: P0 = {p1, p2, ..., pk} ← GeneratePaths(G0)
5: for t = 0 to T − 1 do
6: Execute in parallel for all pi ∈ Pt:
7: Dt

i ← Retrieve(pi,D, θs∗)
8: Kt

i ← ϕinternal(D
t
i)

9: Kt ← ϕcross({Kt
i}ki=1)

10: Gt+1 ← Φ(Gt,K
t, γ)

11: Pt+1 ← δ(Pt, Gt+1)
12: end for
13: K ← ϕglobal({Kt}T−1

t=0 )
14: A← Generate(q,K)
15: return A

PathwiseRAG implements a three-stage explo-145

ration pipeline (Fig. 1) for complex query process-146

ing. Algorithm 1 outlines the core execution flow:147

First, dual-stream intent analysis extracts repre-148

sentation Iq from query q, capturing both semantic149

elements (entities, relations) and reasoning require-150

ments (inference type τ , depth δ, domains D). This151

representation guides optimal strategy selection s∗152

from strategy set S.153

Second, a directed acyclic graph G0 =154

(V0, E0, ω0) structures the reasoning process,155

where V0 represents subproblems, E0 represents de-156

pendencies, and ω0 assigns priority weights. This157

network decomposes complex queries into k paral-158

lel reasoning paths P0 = {p1, p2, ..., pk}.159

Third, during T iterations, each path pi retrieves160

relevant documents Dt
i using strategy parameters161

θs∗ . Retrieved information undergoes hierarchi- 162

cal integration: path-internal (ϕinternal), cross-path 163

(ϕcross), and global synthesis (ϕglobal). The rea- 164

soning network dynamically updates (Gt+1 = 165

Φ(Gt,K
t, γ)) based on discovered information, 166

where γ controls adjustment frequency, enabling 167

adaptive exploration of complex information 168

spaces. 169

3.2 Query Intent Analysis and Strategy 170

Selection 171

Query intent analysis forms the foundation of Path- 172

wiseRAG, enabling retrieval strategies tailored to 173

underlying information needs. As illustrated in 174

Fig. 7, we implement a dual-stream neural archi- 175

tecture (detailed in Appendix A.2) that processes 176

queries through parallel computational pathways: 177

Intent(q) = Fconcat[Semantic(q),Reasoning(q)]
(1) 178

The semantic analysis extracts and combines 179

three key elements to capture the query’s informa- 180

tional context: 181

SemanticAnalysis(q) = {E,R,T} (2) 182

where E = {e1, e2, ..., en} represents key en- 183

tities extracted through attention-weighted token 184

classification, R = {r1, r2, ..., rm} contains re- 185

lation triples (ei, rtype, ej) identified via pairwise 186

classification over entity combinations, and T cap- 187

tures temporal markers through specialized token 188

detection. These elements collectively form a struc- 189

tured semantic representation of the query’s con- 190

tent. 191

The reasoning analysis identifies the query’s log- 192

ical structure through pattern recognition: 193

ReasoningAnalysis(q) = {τ, δ,D} (3) 194

The reasoning type τ is classified into one of 195

{causal, comparative, procedural, hypothetical, fac- 196

tual}, depth δ is assessed as {low, medium, high}, 197

and domains D = {d1, d2, ..., dk} are identified 198

through multi-label classification. These elements 199

together characterize the reasoning requirements 200

of the query. 201

The information need graph Ginfo = (V,E′,C) 202

structures query elements into a coherent represen- 203

tation. This graph is constructed by first mapping 204

extracted entities to nodes V, connecting them with 205
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edges E′ based on identified relations, and organiz-206

ing them into domain clusters C using domain clas-207

sification. The graph is further enriched with im-208

plicit relationships from external knowledge bases209

and transitive closures to capture logical connec-210

tions not explicitly stated in the query.211

The optimal retrieval strategy is selected by scor-212

ing candidate strategies against query intent:213

S(sk, q) = αMI(sk, Iq) + βMB(sk, Bq)

+ γMD(sk, Dq) + εMC(sk, Cq).
(4)214

Each component metric (MI , MB , MD, MC)215

evaluates a specific aspect of strategy-query align-216

ment, including intent matching, breadth compati-217

bility, depth alignment, and critical aspect coverage,218

respectively. Detailed formulations and theoreti-219

cal justifications for these metrics are provided in220

Appendix A.3.221

The strategy with the highest score is selected:222

s∗ = argmax
sk∈S

S(sk, q), where S is the set of223

available strategies including Dense Precision Re-224

trieval, Deep Chain Retrieval, Multi-Aspect Par-225

allel Exploration, Comparative Matrix Retrieval,226

and Temporal-Ordered Retrieval as detailed in Ap-227

pendix A.2. For the selected strategy, specific re-228

trieval parameters θs∗ are generated to control exe-229

cution dynamics.230

3.3 Multi-Path Reasoning Network231

Construction232

Following strategy selection, PathwiseRAG con-233

structs a structured reasoning network to guide234

multi-path exploration. The subproblem decom-235

position process is defined as:236

D : q 7→ S(q) = {s1, s2, . . . , sn} (5)237

Each subproblem si = (ci, ti, ri) contains con-238

tent focus ci, type ti, and retrieval approach ri. The239

decomposition uses a trained classifier:240

S(q) = {si|Cdecomp(q, i) > τdecomp, 1 ≤ i ≤ m}
(6)241

where Cdecomp(q, i) computes the probability that242

position i in query q represents a logical breakpoint243

for subproblem decomposition, and τdecomp is a244

confidence threshold.245

These subproblems form a directed acyclic graph246

G = (V,E, ω), where V corresponds to subprob-247

lems, E indicates dependencies, and ω : V → R+248

assigns priority scores. The priority score ω(vi) 249

combines relevance to the query, estimated diffi- 250

culty, and predicted information gain. 251

The edges representing dependencies are deter- 252

mined by: 253

E = {(vi, vj)|Ddep(si, sj) > τdep, i ̸= j} (7) 254

where Ddep(si, sj) evaluates whether resolving 255

subproblem si is logically prerequisite to address- 256

ing sj , and τdep is the dependency threshold. 257

Multiple reasoning paths are extracted from this 258

graph, with each path defined as: 259

Pi = {q → vi,1 → vi,2 → · · · → vi,ki} (8) 260

where vi,j is the j-th node in path i, and ki is the 261

path length. Paths are extracted using a modified 262

search algorithm that prioritizes nodes with higher 263

ω values while ensuring path diversity. 264

PathwiseRAG employs dynamic path adjustment 265

during execution: 266

Gt+1 = Φ(Gt, Rt, γ) (9) 267

where Gt is the network at iteration t, Rt repre- 268

sents retrieval results, and γ controls adjustment 269

frequency. The adjustment function Φ combines 270

operations to add nodes for knowledge gaps, up- 271

date edge weights, remove redundant paths, and 272

strengthen nodes with high information gain. This 273

dynamic adaptation enables PathwiseRAG to refine 274

its reasoning process as information is discovered. 275

3.4 Parallel Path Exploration and Knowledge 276

Integration 277

The parallel path exploration mechanism simulta- 278

neously executes multiple retrieval strategies P = 279

{p1, p2, ..., pm} to capture different information di- 280

mensions. Each path employs a specific strategy 281

si = ⟨Θi, ri, fi⟩, where Θi represents retrieval pa- 282

rameters, ri is the retrieval model, and fi is the 283

ranking function. Each strategy transforms the orig- 284

inal query into a path-specific query qi = τi(q, αi), 285

where τi is a transformation function and αi are 286

path-specific parameters. 287

PathwiseRAG utilizes specialized retrievers tar- 288

geting different information patterns. The Dense 289

Precision Retriever implements semantic search 290

through vector embeddings: 291

scoredense(q, d) =
eq · ed
|eq||ed|

(10) 292
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where eq and ed are embedding vectors for query293

and document. The Sparse Pattern Retriever imple-294

ments lexical matching through BM25:295

scoreBM25(q, d) =
∑
t∈q

IDF(t)
f(t, d) (k1 + 1)

f(t, d) + k1(1− b)

· 1

1 +
k1b

f(t, d)

|d|
avgdl

.

(11)296

where t is a term, f(t, d) is term frequency in297

document d, IDF(t) is inverse document frequency,298

|d| is document length, avgdl is average document299

length, and k1, b are tunable parameters.300

For queries benefiting from both approaches, the301

Hybrid Fusion Retriever combines them with adap-302

tive weighting:303

scorehybrid(q, d) = λ scoredense(q, d)

+ (1− λ) scoresparse(q, d).
(12)304

where λ ∈ [0, 1] is a query-dependent interpola-305

tion weight determined by the query characteristics.306

The knowledge integration module consolidates307

retrieved information through a three-level process.308

Path-internal integration transforms documents into309

coherent path-specific representations:310

Di = ϕinternal({di1, di2, ..., din}) (13)311

where Di is the consolidated knowledge from312

path i, {di1, di2, ..., din} are the documents re-313

trieved by path i, and ϕinternal is an integration314

function implemented as a multi-stage pipeline of315

clustering similar documents, extracting key in-316

formation, and contextualizing with respect to the317

query.318

Cross-path integration handles information com-319

plementarity and contradiction resolution:320

K = ϕcross({D1,D2, ...,Dm}) (14)321

where K represents the integrated knowledge322

across paths and ϕcross is a function that performs323

knowledge merging through entity alignment, rela-324

tion matching, and contradictory information detec-325

tion. This function utilizes knowledge graph align-326

ment techniques to identify semantic relationships327

between information pieces retrieved via different328

paths.329

Global knowledge synthesis organizes informa- 330

tion into a coherent structure: 331

R = ϕglobal(K, q) (15) 332

where R represents the final synthesized result, 333

and ϕglobal structures information into a hierarchi- 334

cal representation based on the reasoning structure 335

extracted from query q. This function produces a 336

structured summary that preserves logical relation- 337

ships while ensuring information completeness. 338

For handling conflicting information, Pathwis- 339

eRAG employs a weighted voting mechanism: 340

confidence(ci) =
n∑

j=1

wj · I(dj supports ci) (16) 341

where ci represents a candidate claim, wj is the 342

reliability weight of document dj computed based 343

on source credibility and information recency, and 344

I(·) is an indicator function that returns 1 if docu- 345

ment dj supports claim ci and 0 otherwise. 346

To optimize exploration efficiency, Pathwis- 347

eRAG implements dynamic path adjustment: 348

p
(t+1)
i = δ(p

(t)
i ,R(t), q) (17) 349

where p
(t)
i represents path i at iteration t, R(t) 350

is the intermediate result, and δ is the adjustment 351

function. This function performs three key opera- 352

tions: (1) query reformulation based on informa- 353

tion gaps identified in R(t), (2) parameter tuning to 354

optimize retrieval precision or recall based on prior 355

iteration results, and (3) path priority adjustment to 356

allocate computational resources toward the most 357

promising exploration directions. 358

This parallel exploration and integration frame- 359

work enables PathwiseRAG to navigate complex 360

information spaces while maintaining coherence, 361

effectively addressing limitations of traditional 362

single-strategy RAG systems. 363

4 Experiments 364

4.1 Experimental Setup 365

Datasets. PathwiseRAG is evaluated on three 366

challenging question–answering benchmarks. Hot- 367

potQA (Yang et al., 2018) is a 113k-question, 368

Wikipedia-based multi-hop dataset considered un- 369

der the distractor split with ten candidate docu- 370

ments per query. StrategyQA (Geva et al., 2021) 371

contains 2,780 yes/no questions that demand im- 372

plicit multi-step reasoning and strategic evidence 373
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gathering. ComplexWebQuestions (Talmor and Be-374

rant, 2018) comprises 34,689 queries requiring375

decomposition and synthesis of information from376

multiple web sources.377

Metrics. Performance is reported using five378

complementary indicators. Answer Accuracy mea-379

sures the percentage of correctly answered ques-380

tions. Answer Precision captures the factual ex-381

actness of generated responses, whereas Answer382

Recall quantifies their coverage of all relevant as-383

pects. On the retrieval side, Retrieval Coverage de-384

notes the proportion of gold evidence successfully385

retrieved, and Retrieval Precision@k evaluates the386

precision of the top-k documents supplied to the387

generator.388

4.2 Comparative Performance389

Table 1 presents the main results comparing Path-390

wiseRAG with baselines across the three datasets.391

PathwiseRAG demonstrates consistent improve-392

ment over all baseline approaches across multiple393

metrics, with particularly strong performance in394

complex reasoning scenarios.395

PathwiseRAG achieves significant performance396

improvements over the strongest baseline, partic-397

ularly on tasks requiring strategic reasoning and398

multi-aspect information synthesis. This advantage399

stems from three key mechanisms: intent-aware400

retrieval that precisely aligns with query reason-401

ing demands, parallel exploration that broadens402

the evidence search space, and adaptive integration403

that resolves conflicts while preserving coherence404

across information sources.405

Figure 2 illustrates how performance varies with406

query complexity, showing that PathwiseRAG’s407

advantage over baselines increases as query com-408

plexity grows.409

Figure 2: Performance comparison by query complex-
ity. PathwiseRAG’s advantage increases with question
complexity, demonstrating its effectiveness for multi-
dimensional exploration tasks.

4.3 Ablation Study 410

To understand the contribution of each component 411

in PathwiseRAG, The paper conducts an ablation 412

study by removing key components and measur- 413

ing the resulting performance. Table 2 shows the 414

results on the HotpotQA dataset. 415

The ablation study indicates that Multi-Path Rea- 416

soning is indispensable: eliminating this compo- 417

nent reduces answer accuracy by 6.9%, confirming 418

the necessity of parallel exploration in complex re- 419

trieval scenarios. Intent Analysis proves almost as 420

crucial, with a 6.3% decline when omitted, empha- 421

sising the benefit of modelling both semantic con- 422

tent and reasoning structure. Removing Strategy 423

Selection lowers accuracy by 5.6%, illustrating the 424

importance of aligning the retrieval approach with 425

query intent, while disabling Path Adjustment costs 426

4.2%, underscoring the value of dynamically refin- 427

ing reasoning trajectories during execution. Finally, 428

bypassing Multi-Level Integration results in a 3.8% 429

drop, highlighting the contribution of structured 430

synthesis across heterogeneous evidence sources. 431

4.4 Subproblem Decomposition Effectiveness 432

We analyze our subproblem decomposition ap- 433

proach against alternative methods on complex 434

queries from HotpotQA. Figure 3 illustrates this 435

comparison. 436

Figure 3: Comparison of different subproblem decom-
position approaches, showing accuracy and information
coverage.

The intent-aware decomposition in Pathwis- 437

eRAG achieves higher accuracy (80.3%) compared 438

to no decomposition (73.1%), question-only de- 439

composition (76.4%), and template-based decom- 440

position (75.8%). This improvement comes from 441

better alignment with the implicit reasoning struc- 442

ture of complex questions, leading to more com- 443

prehensive information retrieval. Figure 4 shows a 444

qualitative comparison of different decomposition 445

approaches. 446
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Table 1: Performance comparison of PathwiseRAG against baseline approaches across three datasets.

Method HotpotQA StrategyQA ComplexWebQA

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

Standard RAG (Lewis et al., 2020) 67.4 73.5 65.2 71.6 74.8 67.5 69.3 72.1 66.8
Self-RAG (Asai et al., 2023) 72.8 79.3 70.6 75.2 78.6 71.4 73.6 77.3 71.2
QD-RAG (Press et al., 2023) 74.5 80.1 72.3 77.8 81.5 73.9 75.2 79.4 73.5
FLARE (Jiang et al., 2024) 75.3 81.6 73.8 78.5 82.3 74.7 76.1 80.8 74.3
GraphRAG (Feng et al., 2024) 76.2 82.4 74.5 79.1 83.7 75.3 77.3 81.5 75.8
HM-RAG (Liu et al., 2025) 78.4 84.2 76.8 80.6 85.3 77.1 79.5 83.7 77.9

PathwiseRAG (Ours) 82.7 87.9 80.4 84.3 88.5 81.7 83.8 86.6 82.1

Table 2: Ablation study showing the impact of remov-
ing key components from PathwiseRAG (HotpotQA
dataset).

Model Variant Accuracy % Change

Full PathwiseRAG 82.7 -

w/o Intent Analysis 76.4 -6.3
w/o Strategy Selection 77.1 -5.6
w/o Multi-Path Reasoning 75.8 -6.9
w/o Path Adjustment 78.5 -4.2
w/o Multi-Level Integration 78.9 -3.8

Figure 4 shows a qualitative comparison of dif-447

ferent decomposition approaches.448

4.5 Path Adjustment Effectiveness449

To evaluate the effectiveness of dynamic path ad-450

justment, the paper analyzes how PathwiseRAG451

adapts reasoning paths during query execution. Fig-452

ure 5 visualizes the reasoning network before and453

after path adjustment for a complex query about454

the 2008 financial crisis.455

Analysis shows that the path–adjustment mecha-456

nism uncovers previously unseen relationships be-457

tween initially independent sub-problems in 72 %458

of complex queries, while pruning or deprioritising459

about 18 % of the reasoning paths generated at the460

outset. These dynamics enlarge retrieval coverage461

by 23 % relative to static exploration and cut in-462

formation redundancy by 31 %, yielding a more463

coherent and efficient evidence set.464

Table 3 quantifies the impact of path adjustment465

on various quality metrics across different question466

types.467

Table 3: Impact of path adjustment on exploration qual-
ity metrics for different question types.

Question Type Coverage Redundancy Coherence

Causal Analysis +26.3% -34.7% +28.5%
Comparative Analysis +19.8% -27.3% +23.1%
Historical Context +24.5% -33.6% +27.8%
Scientific Explanation +21.7% -28.9% +25.4%

4.6 Parameter Sensitivity Analysis 468

Figure 6: Sensitivity of PathwiseRAG performance to
key parameters: (a) number of reasoning paths, (b) hy-
brid fusion parameter λ, (c) path adjustment frequency
γ, and (d) documents per path.

The paper investigates how key parameters affect 469

the performance of PathwiseRAG. Figure 6 shows 470

the sensitivity of answer accuracy to variations in 471

four critical parameters: the number of reasoning 472

paths, the hybrid fusion parameter λ, the path ad- 473

justment frequency γ, and the number of retrieved 474

documents per path. 475

Sensitivity analysis reveals that: (1) accuracy 476

saturates beyond 3-4 reasoning paths; (2) perfor- 477

mance remains stable for hybrid-fusion weight 478

λ ∈ [0.4, 0.7]; (3) moderate path-refinement rates 479

7



Figure 4: Example of subproblem decomposition using different methods. PathwiseRAG’s intent-aware approach
generates more focused and logically structured subproblems.

Figure 5: Visualization of reasoning network before (left) and after (right) path adjustment for a complex query.
Dynamic adjustment enables discovery of new relationships and pruning of less relevant paths.

(γ = 0.3-0.6) balance adaptability and stabil-480

ity; and (4) retrieval effectiveness plateaus at 5-481

7 documents per path. These findings confirm482

PathwiseRAG’s resilience to moderate parame-483

ter variations, enabling deployment across diverse484

information-retrieval scenarios without extensive485

tuning.486

5 Conclusion487

This paper introduced PathwiseRAG, a framework488

that reconceptualizes retrieval-augmented genera-489

tion as a dynamic, multi-dimensional exploration490

process. PathwiseRAG addresses fundamental491

limitations of conventional RAG systems through492

intent-aware strategy selection, dynamic reasoning493

networks, and parallel path exploration with adap-494

tive refinement. Experimental evaluation demon-495

strates significant performance improvements, with496

average accuracy gains of 4.9% across challenging497

benchmarks and up to 6.9% on complex queries. 498

The key innovation lies in transforming RAG 499

from a static, pipeline-based process into an adap- 500

tive exploration system that models query intent 501

across semantic and reasoning dimensions while 502

continuously refining its approach based on dis- 503

covered information. This paradigm shift is partic- 504

ularly valuable for knowledge-intensive domains 505

where interdependent concepts must be integrated 506

across disciplinary boundaries. 507

A complexity analysis in Appendix A.4 shows 508

PathwiseRAG’s performance gains justify its com- 509

putational costs through optimizations that main- 510

tain efficiency while enabling sophisticated reason- 511

ing. Future work includes extending to multimodal 512

tasks, developing domain-specific patterns, and op- 513

timizing for resource-constrained environments. 514
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Limitations515

This work introduces PathwiseRAG as a multi-516

dimensional exploration and integration frame-517

work that addresses limitations of conventional518

RAG systems for complex queries. While our519

approach demonstrates significant improvements520

across multiple benchmarks, several limitations521

remain. First, the computational cost of parallel522

path exploration is higher than traditional single-523

path approaches, potentially limiting applicability524

in resource-constrained environments. Second, our525

implementation primarily focuses on textual infor-526

mation; extending PathwiseRAG to multimodal527

contexts may require substantial adaptations. Third,528

while our framework demonstrates robustness to529

moderate parameter variations, optimal configura-530

tion may still require domain-specific tuning for531

specialized applications. Fourth, the intent anal-532

ysis component may not fully capture extremely533

nuanced or implicit reasoning requirements in cer-534

tain contexts. Finally, while we observe consistent535

performance improvements across the evaluated536

benchmarks, domain-specific applications may re-537

quire specialized knowledge integration mecha-538

nisms beyond our current implementation. Future539

work should address these limitations while explor-540

ing applications in domain-specific expert systems,541

multimodal reasoning, and continuous learning sce-542

narios.543
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A Appendix 662

A.1 Theoretical Analysis of PathwiseRAG 663

Performance Bounds 664

This section provides a comprehensive theoreti- 665

cal foundation for the performance guarantees of 666

PathwiseRAG. The analysis builds upon principles 667

from information theory, ensemble learning, and 668

probabilistic concentration inequalities to establish 669

rigorous bounds on the expected performance im- 670

provement. 671

Let Q represent the universe of all possible 672

queries, and f : Q → R+ be a complexity function 673

that maps each query q ∈ Q to a non-negative real 674

number representing its complexity. The complex- 675

ity function is computed as: 676

f(q) = λ1 · Csemantic(q) + λ2 · Creasoning(q) 677

+ λ3 · Cdomain(q) (18) 678

where Csemantic(q) quantifies the semantic 679

complexity (number of entities and relations), 680

Creasoning(q) measures reasoning steps required, 681

Cdomain(q) represents domain diversity, and λi are 682

normalization weights determined through calibra- 683

tion on a reference query set. 684

For any query q, the retrieval performance func- 685

tion P (q, s) is defined as the utility of the retrieved 686

information using strategy s, quantified through: 687

P (q, s) = µ1 · Precisions(q) 688

+ µ2 · Recalls(q) + µ3 · Relevances(q)
(19)

689

where precision measures factual accuracy, re- 690

call captures completeness, relevance quantifies 691

alignment with query intent, and µi are importance 692

weights. For conventional RAG systems employing 693

a single retrieval strategy s0, the expected perfor- 694

mance is E[P (q, s0)]. 695

PathwiseRAG employs N parallel reasoning 696

paths, each using a query-specific strategy si de- 697

rived from intent analysis. The expected perfor- 698

mance improvement of PathwiseRAG over conven- 699

tional RAG is defined as: 700

∆(f(q)) = E[P (q,PathwiseRAG)]− E[P (q, s0)]
(20) 701

To establish a lower bound on ∆(f(q)), it is 702

necessary to analyze how each additional reasoning 703

path contributes to performance improvement. 704
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Theorem 1. For queries with complexity f(q),705

PathwiseRAG achieves an expected retrieval im-706

provement of ∆(f(q)) over conventional RAG sys-707

tems, where:708

∆(f(q)) ≥ α · f(q) · (1− e−βN ) (21)709

where α > 0 is a constant related to the quality of710

intent analysis, β > 0 is a constant related to path711

diversification effectiveness, and N is the number712

of parallel reasoning paths.713

Proof. The proof proceeds in three steps: (1) es-714

tablishing the performance contribution of each715

path, (2) analyzing path diversity effects, and (3)716

deriving the exponential convergence bound.717

Let Pi(q) represent the performance of the i-th718

reasoning path for query q. For a query with com-719

plexity f(q), the intent analysis system produces720

strategies with performance proportional to query721

complexity:722

E[Pi(q)]− E[P (q, s0)] ≥ γ · f(q) (22)723

where γ > 0 is a constant representing the mini-724

mum performance improvement from intent-driven725

strategy selection. The value of γ is calculated as:726

γ =
1

|Qval|
∑

q∈Qval

maxs∈S P (q, s)− P (q, s0)

f(q)

(23)727

where Qval is a validation query set, and S is the728

set of available retrieval strategies. This captures729

the average normalized performance gain achiev-730

able through optimal strategy selection.731

When multiple reasoning paths operate in par-732

allel, their contributions are not simply additive733

due to information overlap. Let Ii represent the734

information retrieved by path i. The marginal con-735

tribution of path j given paths 1, 2, ..., j − 1 is:736

∆j = E[Utility(I1 ∪ I2 ∪ ... ∪ Ij)]737

− E[Utility(I1 ∪ I2 ∪ ... ∪ Ij−1)] (24)738

Due to the path diversification strategy, each path739

is designed to explore different aspects of the infor-740

mation space. The expected marginal contribution741

can be quantified as:742

∆j ≥ γ · f(q) ·
j−1∏
i=1

(1− ρi,j) (25)743

where ρi,j ∈ [0, 1] represents the information 744

overlap between paths i and j, computed as: 745

ρi,j =
|Ii ∩ Ij |
|Ii ∪ Ij |

(26) 746

This Jaccard similarity measures the proportion 747

of shared information between paths. The path con- 748

struction algorithm ensures ρi,j ≤ ρmax < 1 for 749

all i ̸= j by maximizing strategy diversity through 750

intent-guided selection. 751

The average overlap ρ across all path pairs is 752

calculated as: 753

ρ =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρi,j (27) 754

Using the Hoeffding-type inequality for bounded 755

random variables, it can be established that the 756

expected improvement from using N paths is: 757

∆(f(q)) ≥ γ · f(q) ·
N∑
j=1

j−1∏
i=1

(1− ρi,j) (28) 758

For analytical tractability, assuming uniform 759

overlap ρi,j = ρ and solving the geometric series: 760

∆(f(q)) ≥ γ · f(q) · 1− (1− ρ)N

ρ
(29) 761

For small values of ρ, using the approximation 762

(1− ρ)N ≈ e−ρN yields: 763

∆(f(q)) ≥ γ · f(q) · 1− e−ρN

ρ
(30) 764

Setting α = γ
ρ and β = ρ, the final bound is 765

obtained: 766

∆(f(q)) ≥ α · f(q) · (1− e−βN ) (31) 767

Here, α represents the quality-adjusted maxi- 768

mum performance gain achievable through intent 769

analysis, and β represents the effective path diversi- 770

fication rate, determined by the information overlap 771

between paths. 772

The parameters in the theoretical bound have 773

clear interpretations and concrete calculation meth- 774

ods in the PathwiseRAG framework: 775

α = γ
ρ : This parameter encapsulates the maxi- 776

mum potential performance improvement per unit 777

of query complexity, adjusted for path overlap. The 778
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numerator γ is empirically estimated using the val-779

idation set as described above. The denominator ρ780

is the average information overlap between paths.781

In practical implementations, α is calculated as:782

α =

1
|Qval|

∑
q∈Qval

maxs∈S P (q,s)−P (q,s0)
f(q)

2
N(N−1)

∑N−1
i=1

∑N
j=i+1

|Ii∩Ij |
|Ii∪Ij |

(32)783

For the PathwiseRAG implementation, empiri-784

cal estimation yielded α ≈ 0.085, indicating that785

for each unit of query complexity, the system can786

achieve up to an 8.5% performance improvement787

when using a sufficient number of paths.788

β = ρ: This parameter represents the effective789

diversification rate between reasoning paths, cal-790

culated as the average Jaccard similarity between791

retrieved document sets from different paths:792

β =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

|Ii ∩ Ij |
|Ii ∪ Ij |

(33)793

Empirical measurements across benchmark794

datasets yielded β ≈ 0.23, indicating that approxi-795

mately 23% of information overlaps between paths796

on average. This value can be interpreted as the797

"diversification efficiency" of the path generation798

algorithm.799

N : The number of parallel reasoning paths em-800

ployed by PathwiseRAG, which is a configurable801

parameter. The bound shows that performance im-802

provements follow a law of diminishing returns as803

N increases, eventually converging to a maximum804

improvement of α · f(q).805

The theoretical parameters were empirically val-806

idated by measuring performance gains across dif-807

ferent query complexity levels and path counts. For808

example, with the estimated values α ≈ 0.085 and809

β ≈ 0.23, the model predicts a performance im-810

provement of approximately 6.8% for queries with811

complexity score f(q) = 3 using N = 4 paths,812

which aligns with the observed experimental re-813

sults.814

This theoretical analysis demonstrates that Path-815

wiseRAG’s multi-path exploration approach pro-816

vides systematic advantages for complex queries,817

with the magnitude of improvement scaling with818

query complexity f(q) and converging as the num-819

ber of paths increases.820

A.2 Architecture Details 821

The Dual-Stream Intent Analysis module (Figure 7) 822

processes queries through parallel semantic under- 823

standing and reasoning requirement streams with 824

LoRA adapters (r=8). The Semantic Stream uses 825

Multi-head Latent Attention (MLA) followed by 826

normalization and SwiGLU feed-forward networks, 827

extracting information via entity and relation pool- 828

ing. The Reasoning Stream identifies complexity 829

and reasoning types through attention pooling and 830

pattern detection. A Multi-Head Cross-Stream Inte- 831

gration Module combines these outputs via bidirec- 832

tional attention, producing an Intent Representation 833

Vector that guides retrieval. 834

PathwiseRAG employs multiple retrieval strate- 835

gies: Dense Precision Retrieval for factual queries, 836

Deep Chain Retrieval for logical connections, 837

Multi-Aspect Parallel Exploration for broad infor- 838

mation needs, Comparative Matrix Retrieval for 839

systematic comparisons, and Temporal-Ordered 840

Retrieval for chronological sequencing. 841

The Path-Aware Integrator resolves contradic- 842

tions across paths based on source reliability, con- 843

structs knowledge graphs from identified entities 844

and relationships, and organizes information ac- 845

cording to detected reasoning requirements. This 846

integration balances coherence and comprehensive 847

coverage through reliability-weighted information 848

from multiple paths. 849

A.3 Strategy-Query Alignment Metrics 850

This section provides comprehensive details on the 851

formulation, computation, and theoretical founda- 852

tions of the strategy-query alignment metrics used 853

in PathwiseRAG’s strategy selection mechanism. 854

A.3.1 Intent Matching Metric (MI ) 855

The intent matching metric MI quantifies the se- 856

mantic and functional compatibility between a re- 857

trieval strategy and query intent through a prin- 858

cipled combination of embedding similarity and 859

probabilistic distribution alignment: 860

MI(sk, Iq) =
eTskeIq

||esk || · ||eIq ||
· 861

exp(−λIdKL(Psk ||PIq)) (34) 862

The first term computes cosine similarity be- 863

tween strategy embedding esk and intent embed- 864

ding eIq , capturing semantic alignment in a normal- 865

ized vector space. These embeddings are derived 866
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Figure 7: Dual-Stream Intent Analysis architecture with parallel Semantic Understanding and Reasoning Require-
ment streams, each employing specialized attention mechanisms and LoRA adapters (r=8).

from esk = Encoderstrategy(sk) ∈ Rd and eIq =867

Encoderintent(Iq) ∈ Rd, where both encoders are868

fine-tuned transformer networks that map strategies869

and intents to a shared d-dimensional representa-870

tion space (d = 768 in our implementation).871

The second term employs Kullback-Leibler di-872

vergence to measure the information-theoretic dis-873

tance between strategy and intent probability dis-874

tributions: dKL(Psk ||PIq) =
∑

i Psk(i) log
Psk

(i)

PIq (i)
,875

where Psk and PIq represent discrete probability876

distributions over the types of information a strat-877

egy can retrieve and the types of information a878

query requires, respectively. These distributions879

are estimated over a taxonomy of information cate-880

gories (e.g., factual, temporal, causal, procedural).881

The exponential transformation exp(−λIdKL) con-882

verts divergence to similarity, with λI serving as a883

scaling factor.884

This dual approach integrates geometric (em-885

bedding) and probabilistic perspectives, making886

MI robust to semantic nuances while capturing the887

underlying information distribution requirements.888

The multiplicative formulation ensures that both se-889

mantic alignment and distributional compatibility890

must be high for a strong match score.891

A.3.2 Breadth Compatibility Metric (MB) 892

The breadth compatibility metric MB evaluates 893

how well a strategy’s coverage scope addresses the 894

breadth of information required by a query: 895

MB(sk, Bq) = 1− exp(−λB · |Csk ∩ Cq|/|Cq|)
(35) 896

Here, Csk represents the set of content dimen- 897

sions a strategy can effectively cover, and Cq rep- 898

resents the set of content dimensions required by 899

the query. These dimensions include aspects such 900

as historical context, technical detail, and compara- 901

tive analysis, drawn from a standardized dimension 902

taxonomy. The intersection ratio |Csk ∩ Cq|/|Cq| 903

measures the proportion of query dimensions cov- 904

ered by the strategy. 905

The exponential saturation function 1 − 906

exp(−λB · x) models diminishing returns, reflect- 907

ing the empirical observation that coverage gains 908

become less impactful as more dimensions are ad- 909

dressed. This non-linear transformation awards 910

proportionally higher scores for covering critical 911

initial dimensions, ensures scores approach but 912

never reach 1.0 unless coverage is complete, and 913

penalizes strategies with insufficient breadth more 914

severely than those with slight coverage gaps. The 915
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scaling parameter λB controls the rate of saturation916

in the coverage-to-score mapping.917

A.3.3 Depth Alignment Metric (MD)918

The depth alignment metric MD assesses the com-919

patibility between a strategy’s exploration depth920

capabilities and a query’s reasoning depth require-921

ments:922

MD(sk, Dq) = exp(−λD · |dsk − dq|) (36)923

where dsk ∈ [1, 5] represents a strategy’s depth924

capability on a 5-point scale, and dq ∈ [1, 5] rep-925

resents the query’s required depth. The absolute926

difference |dsk − dq| quantifies depth mismatch,927

with smaller values indicating better alignment.928

The exponential transformation exp(−λD ·929

|dsk −dq|) implements a soft penalty for depth mis-930

matches, with λD controlling penalty severity. This931

formulation produces a perfect score of 1.0 when932

depths exactly match and imposes increasingly se-933

vere penalties as the depth gap widens. Importantly,934

it penalizes both under-depth (when dsk < dq) and935

over-depth (when dsk > dq), the latter accounting936

for efficiency concerns and potential information937

overload.938

Depth values are determined by a calibrated scor-939

ing function dq =
∑n

i=1wi · fi(q), where fi rep-940

resents features including reasoning steps, interde-941

pendencies, and conceptual complexity, while wi942

represents corresponding weights learned through943

ordinal regression on a labeled dataset of queries944

with expert-assigned depth ratings.945

A.3.4 Critical Aspect Coverage Metric (MC)946

The critical aspect coverage metric MC ensures947

that essential query elements receive adequate at-948

tention:949

MC(sk, Cq) =
1

|Kq|
∑
k∈Kq

1(k ∈ Coverage(sk))

(37)950

where Kq represents the set of critical query951

aspects extracted through importance analysis,952

Coverage(sk) is the set of aspects the strategy can953

effectively address, and 1(·) is the indicator func-954

tion that returns 1 if an aspect is covered and 0955

otherwise.956

Critical aspects are identified through a combina-957

tion of structural and semantic analyses: Kq =958

{ai|ImportanceScore(ai, q) > τcritical}, where959

ImportanceScore combines syntactic centrality 960

in the query’s dependency parse tree, semantic 961

salience based on attention weights in a pretrained 962

language model, and domain-specific importance 963

determined through a knowledge graph. 964

The coverage determination 1(k ∈ 965

Coverage(sk)) employs a learned classifier 966

that predicts whether strategy sk can adequately 967

address aspect k based on strategy characteristics 968

and aspect requirements. This binary judgment 969

enables a straightforward calculation of the 970

proportion of critical aspects covered by a given 971

strategy. 972

A.3.5 Theoretical Properties 973

The composite scoring function S(sk, q) exhibits 974

several desirable theoretical properties that jus- 975

tify its formulation. It provides completeness by 976

comprehensively covering the key dimensions of 977

strategy-query alignment (intent, breadth, depth, 978

and critical aspects). The metrics demonstrate or- 979

thogonality by capturing distinct and complemen- 980

tary aspects of alignment, minimizing redundancy 981

in the overall assessment. The function ensures 982

monotonicity, as improvements in any aspect of 983

strategy-query alignment result in higher scores. 984

Finally, the boundedness property is maintained 985

through normalization of all metrics to the range 986

[0,1], ensuring balanced integration without any 987

dimension disproportionately influencing the final 988

score. 989

The weighting coefficients α, β, γ, and ε al- 990

low for customization of the relative importance 991

of each dimension based on specific application re- 992

quirements or domain characteristics. This flexible 993

formulation provides a theoretically sound basis for 994

PathwiseRAG’s adaptive strategy selection mecha- 995

nism. 996

A.4 Computational Complexity and 997

Efficiency Analysis 998

This section provides a rigorous analysis of Path- 999

wiseRAG’s computational complexity and effi- 1000

ciency trade-offs compared to conventional RAG 1001

systems. 1002

The time complexity of PathwiseRAG can be 1003

analyzed by examining its core components in 1004

sequence. The intent analysis phase requires 1005

O(L · d+ |S| · d) operations, where L represents 1006

query length in tokens, d denotes embedding di- 1007

mension, and |S| corresponds to the cardinality of 1008

the strategy set. For reasoning network construc- 1009
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tion, the complexity scales as O(n2) with n sub-1010

problems, reflecting the cost of computing pairwise1011

dependencies between subproblems. The parallel1012

path exploration phase incurs O(N · R · k) com-1013

plexity, where N denotes the number of paths, R1014

represents retrieval iterations, and k is the docu-1015

ments retrieved per path. Knowledge integration1016

requires O(D · log(D)+N2 ·E) operations, where1017

D = N ·R · k represents total retrieved documents1018

and E denotes average entities per document, with1019

the logarithmic term reflecting sorting operations1020

and the quadratic term representing cross-path en-1021

tity alignment.1022

The aggregate time complexity is thus:1023

T (PathwiseRAG) = O(L · d+ |S| · d+ n21024

+N ·R · k +D · log(D)1025

+N2 · E) (38)1026

By comparison, standard RAG implementations1027

exhibit O(L · d + k +D) time complexity, high-1028

lighting PathwiseRAG’s additional computational1029

requirements. This computational cost is justified1030

through an efficiency ratio η, defined as:1031

η =
∆Performance/Performance0

∆Computational_Cost/Computational_Cost0
(39)1032

where ∆Performance quantifies absolute accu-1033

racy improvement and ∆Computational_Cost mea-1034

sures additional computational resources. Empiri-1035

cal measurements across benchmark datasets yield1036

η ≈ 1.73, indicating PathwiseRAG delivers 73%1037

more improvement per unit of additional computa-1038

tion than would be expected from linear scaling.1039

The space complexity analysis reveals mem-1040

ory requirements dominated by several key data1041

structures. Strategy embeddings occupy O(|S| · d)1042

space. The reasoning network representation re-1043

quires O(n2 + n · d) for graph connectivity and1044

node feature storage. Path representations con-1045

sume O(N · P · d) memory, where P denotes av-1046

erage path length. Retrieved documents require1047

O(N · R · k · L′) space, with L′ representing av-1048

erage document length. The integrated knowledge1049

graph occupies O(D · E) space. The total space1050

complexity is therefore:1051

S(PathwiseRAG) = O(|S| · d+ n2 + n · d1052

+N · P · d+N ·R · k · L′1053

++D · E) (40)1054

By comparison, standard RAG implementations 1055

exhibit O(d+ k · L′) space complexity. 1056

Several optimization strategies mitigate compu- 1057

tational overhead in practical deployments. Dy- 1058

namic path pruning terminates exploration along 1059

unproductive paths when information gain falls be- 1060

low a threshold τgain, reducing effective path count 1061

by 32% on average. Adaptive retrieval dynamically 1062

adjusts k based on path importance weight ω(pi), 1063

calculated as: 1064

ω(pi) = α · InfoGain(pi) + β · PathDiversity(pi)
(41) 1065

where InfoGain measures new information con- 1066

tributed by path pi and PathDiversity quantifies 1067

exploration of unique knowledge dimensions. This 1068

adaptive retrieval reduces document processing by 1069

37% compared to fixed-parameter approaches. Par- 1070

allel execution leverages the independent nature of 1071

path exploration, with empirical speedup approach- 1072

ing 0.85 · C for C computational cores. Incremen- 1073

tal knowledge integration computes partial doc- 1074

ument representations ϕdoc(di) and merges them 1075

efficiently, avoiding redundant computations across 1076

iterations. 1077

These optimizations enable PathwiseRAG to 1078

achieve practical execution times 0.8-2.5× that of 1079

standard RAG on commodity hardware (8-core 1080

CPU, 32GB RAM), with the multiplier depend- 1081

ing on query complexity. For complex reasoning 1082

tasks, the significant performance improvements 1083

justify this moderate computational overhead. 1084

The system demonstrates favorable scaling prop- 1085

erties with respect to corpus size. Retrieval time 1086

scales logarithmically with corpus size |C| due to 1087

efficient index structures: 1088

Tretrieval(|C|) = O(log(|C|) + k) (42) 1089

This scaling behavior was verified experimen- 1090

tally across document collections ranging from 103 1091

to 107 documents, where retrieval time increased 1092

by only 68% despite a 10,000× expansion in cor- 1093

pus size. This logarithmic scaling ensures Pathwis- 1094

eRAG remains practical for enterprise-scale knowl- 1095

edge repositories. 1096

A.5 Reasoning Examples 1097

Figure 8 demonstrates causal reasoning about quan- 1098

tum computing’s influence on cryptography stan- 1099

dards. PathwiseRAG constructs retrieval paths 1100
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Figure 8: Causal Reasoning Example: Quantum computing’s influence on post-2020 cryptography standards,
showing the detailed causal chain identified by PathwiseRAG.

examining quantum computing evolution, cryp-1101

tographic vulnerabilities, and post-quantum stan-1102

dards development. The response maps specific1103

breakthroughs (IBM’s 127-qubit processor) to cryp-1104

tographic developments (NIST’s quantum-resistant1105

algorithms) with precise vulnerability assessments.1106

Figure 9 illustrates comparative reasoning be-1107

tween IPv4-to-IPv6 transition strategies in differ-1108

ent networks. PathwiseRAG provides quantitative1109

differences in adoption patterns (76.31110

Figure 10 shows hypothetical reasoning about1111

quantum computers breaking encryption by 2030.1112

The analysis includes technical feasibility proba-1113

bilities, sector-specific vulnerability indices, eco-1114

nomic impact modeling, and response timeline pro-1115

jections, enabling evidence-based scenario analy-1116

sis.1117

Figure 11 demonstrates multi-step reasoning an-1118

alyzing the 2008 financial crisis. PathwiseRAG1119

constructs a causal chain from market behaviors1120

to regulatory responses with quantitative metrics1121

(subprime lending increase from 91122

Figure 12 showcases procedural reasoning for1123

preventing catastrophic forgetting in machine learn-1124

ing. The response provides mathematical formula-1125

tions, implementation procedures with parameter1126

recommendations, comparative performance met-1127

rics, and memory-computation tradeoffs.1128
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Figure 9: Comparative Reasoning Example: IPv4-to-IPv6 transition strategies between enterprise and service
provider networks, demonstrating systematic comparison with quantitative metrics.

Figure 10: Hypothetical Reasoning Example: Scenario analysis of quantum computers breaking encryption by
2030, with probability estimates and sector-specific impact assessment.
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Figure 11: Multi-Step Reasoning Example: Analysis of 2008 financial crisis causes and regulatory impacts,
demonstrating complex causal chains with quantitative metrics.
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Figure 12: Procedural Reasoning Example: Techniques for preventing catastrophic forgetting in continual learning,
with implementation details and performance metrics.
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