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ABSTRACT

Probabilistic modeling of the combinatorially explosive tree topology space has
posed a significant challenge in phylogenetic inference. Previous approaches of-
ten necessitate pre-sampled tree topologies, limiting their modeling capability
to a subset of the entire tree space. A recent advancement is ARTree, a deep
autoregressive model that offers unrestricted distributions for tree topologies. How-
ever, the repetitive computations of topological node embeddings via Dirichlet
energy minimization and the message passing over all the nodes can be expensive,
which may hinder its application to data sets with many species. This paper pro-
poses ARTreeFormer, a novel approach that harnesses attention mechanisms to
accelerate ARTree. By introducing attention-based recurrent node embeddings,
ARTreeFormer allows the reuse of node embeddings from preceding ordinal tree
topologies and fast vectorized computation as well. This, together with a local
message passing scheme, significantly improves the computation speed of ARTree
while maintaining great approximation performance. We demonstrate the effec-
tiveness and efficiency of our method on a benchmark of challenging real data
phylogenetic inference problems.

1 INTRODUCTION

Unraveling the evolutionary relationships among species stands as a core problem in the field of
computational biology. This complex task, called phylogenetic inference, is abstracted as the statistical
inference on the hypothesis of shared history, i.e., phylogenetic trees, based on collected molecular
sequences (e.g., DNA, RNA) of the species of interest and a model of evolution. Phylogenetic
inference finds its diverse applications ranging from genomic epidemiology (Dudas et al., 2017;
du Plessis et al., 2021; Attwood et al., 2022) to the study of conservation genetics (DeSalle & Amato,
2004). Classical approaches for phylogenetic inference includes maximum likelihood (Felsenstein,
1981), maximum parsimony (Fitch, 1971), and Bayesian approaches (Yang & Rannala, 1997; Mau
et al., 1999; Larget & Simon, 1999), etc. Nevertheless, phylogenetic inference remains a hard
challenge partially due to the combinatorially explosive size ((2N − 5)!! for unrooted bifurcating
trees with N species) of the phylogenetic tree topology space (Whidden & Matsen IV, 2015; Dinh
et al., 2017), which makes many common principles in phylogenetics, e.g., maximum likelihood and
maximum parsimony, to be NP-hard problems (Chor & Tuller, 2005; Day, 1987).

Recently, the prosperous development of machine learning provides an effective and innovative
approach to phylogenetic inference, and many efforts have been made for expressive probabilistic
modeling of the tree topologies (Höhna & Drummond, 2012; Larget, 2013; Zhang & Matsen IV, 2018;
Xie & Zhang, 2023). A notable example among them is ARTree (Xie & Zhang, 2023), which provides
a rich family of tree topology distributions and achieves state-of-the-art performance on benchmark
data sets. Given a specific order on the leaf nodes (also called the taxa order), ARTree generates
a tree topology by sequentially adding a new leaf node to an edge of the current subtree topology
at a time, according to an edge decision distribution modeled by graph neural networks (GNNs),
until all the leaf nodes have been added. Compared with previous methods such as conditional clade
distribution (CCD) (Larget, 2013) and subsplit Bayesian networks (SBNs) (Zhang & Matsen IV,
2018), an important advantage of ARTree is that it enjoys unconfined support over the entire tree
topology space. However, to compute the edge decision distribution in each leaf node addition
step, ARTree requires expensive repetitive computations of topological node embeddings based on
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Dirichlet energy minimization and message passing over all the nodes, making it prohibitive for
phylogenetic inference for large numbers of species, as observed in Xie & Zhang (2023).

With the emergence of transformer architectures (Vaswani et al., 2017) in recent years, numerous
studies have demonstrated their promising performances in graph representation learning (Yun
et al., 2019; Ying et al., 2021; Rampášek et al., 2022). In this paper, we propose ARTreeFormer,
which enables faster ancestral sampling and probability evaluation compared to ARTree, leveraging
transformer architectures. More specifically, we substitute the time-consuming node embedding
module with a learnable recurrent node embedding module, which computes the node embeddings
for the newly added nodes using the attention-based graph-level information of the preceding subtree
topologies. To further reduce the computational cost of the message passing module, we design
an attention-based local message passing scheme that only updates the embedding vectors of the
neighbors of those newly added nodes. Moreover, unlike ARTree, all these modules in ARTreeFormer
can be easily vectorized across different tree topologies and different nodes. This way, ARTreeFormer
is capable of generating/evaluating a batch of tree topologies simultaneously, while ARTree can
only do this one by one. In experiments, we demonstrate that ARTreeFormer achieves comparable
results but around 10× generation speed and 3× training speed than ARTree on a benchmark
of challenging maximum parsimony, tree topology density estimation, and variational Bayesian
phylogenetic inference problems.

2 BACKGROUND

Phylogenetic posterior The common structure for describing evolutionary history is a phylogenetic
tree, which consists of a bifurcating tree topology τ and the associated non-negative branch lengths q.
The tree topology τ , which contains leaf nodes for the observed species and internal nodes for the
unobserved ancestor species, represents the evolutionary relationship among these species. A tree
topology can be either rooted or unrooted. In this paper, we only discuss unrooted tree topologies, but
the proposed method can be easily adapted to rooted tree topologies. The branch lengths q quantify
the evolutionary intensity along the edges on τ . An edge is called a pendant edge if it connects one
leaf node to an internal node.

Each leaf node on τ corresponds to a species with an observed biological sequence (e.g., DNA, RNA,
protein). Let Y = {Y1, . . . , YM} ∈ ΩN×M be the observed sequences (with characters in Ω) of M
sites over N species. A continuous-time Markov chain is commonly assumed to model the transition
probabilities of the characters along the edges of a phylogenetic tree (Felsenstein, 2004). Under
the assumption that different sites evolve independently and identically, the likelihood of observing
sequences Y given a phylogenetic tree (τ, q) takes the form

p(Y |τ, q) =
M∏
i=1

∑
ai

η(air)
∏

(u,v)∈E

Pai
ua

i
v
(quv), (1)

where ai ranges over all extensions of Yi to the internal nodes with aiu being the character assignment
of node u (r represents the root node), E is the set of edges of τ , quv is the branch length of the edge
(u, v) ∈ E, Pjk(q) is the transition probability from character j to k through an edge of length q,
and η is the stationary distribution of the Markov chain. Assuming a prior distribution p(τ, q) on
phylogenetic trees, Bayesian phylogenetic inference then amounts to properly estimating the posterior
distribution

p(τ, q|Y ) =
p(Y |τ, q)p(τ, q)

p(Y )
∝ p(Y |τ, q)p(τ, q). (2)

Variational Bayesian phylogenetic inference By positing a phylogenetic variational family
Qϕ,ψ(τ, q) = Qϕ(τ)Qψ(q|τ) as the product of a tree topology model Qϕ(τ) and a conditional
branch length model Qψ(q|τ), variational Bayesian phylogenetic inference (VBPI) converts the in-
ference problem (2) into an optimization problem. More specifically, VBPI seeks the best variational
approximation by maximizing the following multi-sample lower bound

LK(ϕ,ψ) = EQϕ,ψ(τ1:K ,q1:K) log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)
, (3)
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where Qϕ,ψ(τ
1:K , q1:K) =

∏K
i=1 Qϕ,ψ(τ

i, qi). In addition to the likelihood p(Y , τ, q) in the
numerator of equation (3), one may also consider the parsimony score defined as the minimum
number of character-state changes among all possible sequence assignments for internal nodes, i.e.,

P(τ ;Y ) =

M∑
i=1

min
ai

∑
(u,v)∈E

I(aiu ̸= aiv), (4)

where the notations are the same as in equation (1) (Zhou et al., 2024). The parsimony score P(τ ;Y )
can be efficiently evaluated by the Fitch algorithm (Fitch, 1971) in linear time.

The tree topology model Qϕ(τ) can take subsplit Bayesian networks (SBNs) (Zhang & Matsen IV,
2018) which rely on subsplit support estimation for parametrization, or ARTree (Xie & Zhang, 2023)
which is an autoregressive model using graph neural networks (GNNs) that provides distributions
over the entire tree topology space. A diagonal lognormal distribution is commonly used for the
branch length model Qψ(q|τ) whose locations and scales are parameterized with heuristic features
(Zhang & Matsen IV, 2019; Zhang, 2020) or learnable topological features (Zhang, 2023). More
details about VBPI can be found in Appendix C.

ARTree for tree topology generation As an autoregressive model for tree topology generation,
ARTree (Xie & Zhang, 2023) decomposes a tree topology into a sequence of leaf node addition
decisions and models the involved conditional probabilities with GNNs. The corresponding tree
topology generating process can be described as follows. Let X = {x1, . . . , xN} be the set of
leaf nodes with a pre-defined order. The generating procedure starts with a simple tree topology
τ3 = (V3, E3) that has the first three nodes {x1, x2, x3} as the leaf nodes (which is unique), and
keeps adding new leaf nodes according to the following rule. Given an intermediate tree topology
τn = (Vn, En) that has the first n < N elements in X as the leaf nodes, i.e., an ordinal tree topology
of rank n as defined in Xie & Zhang (2023), a probability vector qn ∈ R|En| over the edge set En is
first computed via GNNs. Then, an edge en ∈ En is sampled according to qn and the next leaf node
xn+1 is attached to it to form an ordinal tree topology τn+1. This procedure will continue until all
the N leaf nodes are added. Although a pre-defined leaf node order is required, Xie & Zhang (2023)
shows that the performance of ARTree exhibits negligible dependency on this leaf node order. See
more details on ARTree in Appendix B.

3 PROPOSED METHOD

Although ARTree enjoys unconfined support over the entire tree topology space and provides a more
flexible family of variational distributions, it suffers from expensive computation costs (see Appendix
E in Xie & Zhang (2023)) which makes it prohibitive for phylogenetic inference when the number of
species is large. In this section, we first discuss the computational cost of ARTree and then describe
how it can be accelerated using attention-based techniques.

3.1 COMPUTATIONAL COST OF ARTREE

In the n-th step of leaf node addition, ARTree includes the node embedding module and message
passing module for computing the edge decision distribution, detailed below. Throughout this section,
we use “node embeddings” (with dimension N ) for the node information before message passing and
“node features” (with dimension d) for those in and after message passing.

Node embedding module The topological node embeddings {fn(u) ∈ RN |u ∈ Vn} of an ordinal
tree topology τn = (Vn, En) in Xie & Zhang (2023) are obtained by first assigning one-hot encodings
to the leaf nodes and then minimizing the global Dirichlet energy

ℓ(fn, τn) :=
∑

(u,v)∈En

∥fn(u)− fn(v)∥2 , (5)

which is typically done by the two-pass algorithm (Zhang, 2023) (Algorithm 2 in Appendix B). This
algorithm requires a traversal over a tree topology, which cannot be efficiently vectorized across
different nodes due to its serial nature. Moreover, this cannot be vectorized across different trees
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since this traversal depends on a specific tree topology shape. The complexity of computing the
topological node embeddings is O(Nn). Finally, a multi-layer perceptron (MLP) is applied to all the
node embeddings to obtain the node features with dimension d enrolled in the computation of the
following modules.

Message passing module Assume the the initial node features are {f0
n(u) ∈ Rd|u ∈ Vn} at the

beginning of message passing. In the l-th round, these node features are updated by aggregating the
information from their neighborhoods through

ml
n(u, v) = F l

message(f
l
n(u), f

l
n(v)), (6a)

f l+1
n (v) = F l

updating

(
{ml

n(u, v);u ∈ N (v)}
)
, (6b)

where the l-th message function F l
message and updating function F l

updating consist of MLPs. These two
functions are applied to the features of all the nodes on τn, called global message passing by us,
which require O(nd2) operations and is computationally inefficient especially when the number of
leaf nodes is large.

Figure 2 (left) demonstrates the run time and floating points operations (FLOPs) of ARTree as the
number of leaf nodes N varies. As N increases, the total run time of ARTree grows rapidly and the
node embedding module dominates the total time (≈ 65%), which makes ARTree prohibitive when
the number of leaf nodes is large. The reason behind this is that compared to other modules, the node
embedding module can not be easily vectorized w.r.t. different tree topologies and different nodes,
resulting in great computational inefficiency (more than 10 seconds for generating 60 100-leaf trees).

3.2 ATTENTION-BASED EDGE DECISION DISTRIBUTION

In this section, we propose ARTreeFormer, which introduces attention-based recurrent node embed-
dings and a local message passing scheme to accelerate the training and sampling in ARTree. Denote
the node features for the ordinal tree topology τn = (Vn, En) at the n-th step of the generating
process as {fn(u) ∈ Rd|u ∈ Vn} =: Fn ∈ R(2n−3)×d. We start from the smallest ordinal tree
topology τ3 by setting f3(x1), f3(x2), f3(x3) ∈ Rd to be learnable parameters. In what follows, we
present our approach for modeling the edge decision distribution at the n-th step.

Recurrent node embedding module Instead of re-computing the topological node embeddings
which wastes the information from the previously generated tree topologies, ARTreeFormer tries to
learn the node embeddings from this information with a deep graph model. To achieve this, it first
uses the attention mechanism to compute a graph representation vector rn ∈ Rd, i.e.,

r̄n = Fgraph(qn,Fn,Fn), (7a)
rn = Rgraph(r̄n), (7b)

where Fgraph is the graph pooling function implemented as a multi-head attention block (Vaswani
et al., 2017), Rgraph is the graph readout function implemented as a 2-layer MLP, and qn ∈ Rd is a
learnable query vector. Here, the multi-head attention block M = MHA(Q,K, V ) is defined as

Hi = softmax

(
(QWQ

i )(KWK
i )′√

d/h

)
· (VWV

i ), (8a)

M = CONCAT(H1, . . . ,Hh)W
O, (8b)

where WQ
i ,WK

i ,WV
i ∈ Rd× d

h and WO ∈ Rd×d are learnable matrices, h is the number of heads,
and CONCAT is the concatenation operator along the node feature axis. Intuitively, we have used a
global vector qn to query all the node features and obtained a representation vector rn for the whole
tree topology τn. We emphasize that equation (7) enjoys time complexity O(nd+ d2) instead of the
O(n2d+ nd2) of common multi-head attention blocks, as qn is a one-dimensional vector.

We now compute the edge decision distribution to decide where to add the next leaf node, similarly to
ARTree. To incorporate global information into the edge decision, we utilize the global representation
vector rn to compute the edge features. Concretely, the feature of an edge e = (u, v) is formed by

pn(e) = Fedge ({fn(u), fn(v)}) , (9a)
rn(e) = Redge (CONCAT(pn(e), rn) + bn) , (9b)
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Figure 1: An illustration of ARTreeFormer for growing an ordinal tree topology τ4 of rank 4 to an
ordinal tree topology τ5 of rank 5.

where Fedge is an invariant edge pooling function implemented as an elementwise maximum operator,
Redge is the edge readout function implemented as a 2-layer MLP with scalar output, and bn is the
sinusoidal positional embedding (Vaswani et al., 2017) of the time step n. Then one can calculate the
edge decision distribution Qϕ(·|e<n) using

Qϕ(·|e<n) = Discrete(αn), αn = softmax ([rn(e)]e∈En
) , (10)

and grow τn to τn+1 by attaching the next leaf node xn+1 to the sampled edge (Algorithm 3).

We then make use of the graph representation vector rn to compute the embedding vectors of the newly
added nodes, while keeping the embedding vectors of other nodes unchanged. In ARTreeFormer, the
node embedding for newly added leaf node xn+1 is given by

fn(xn+1) = Femb(rn), (11)
where the embedding function Femb is set to be a 2-layer MLP. Note that we still use a subscript n
for the node embeddings fn as one additional message passing module is needed to form fn+1. To
assign an embedding vector to the newly added internal node w which is connected to xn+1 through
a pendant edge, we minimize the local Dirichlet energy of w defined as

ℓ(fn, τn+1, w) :=
∑

(u,w)∈En+1

∥fn(u)− fn(w)∥2 (12)

in contrast to minimizing the global Dirichlet energy (5) in ARTree. This way, the embedding vector
for the node w is just the arithmetic mean of the embedding vectors of its neighbors.

Local message passing module To further reduce the computation cost caused by applying the
message passing module in equation (6) to all the nodes, ARTreeFormer adopts a local updating
scheme in the neighborhood of the newly added internal node w, similarly to Han et al. (2023).
Specifically, letting F local

n := {fn(u)|u ∈ N (w)} ∈ R4×d, the local message passing scheme takes
the form

F̄ local
n = Fmessage

(
F local

n ,F local
n ,F local

n

)
, (13)

where F̄ local
n = {f̄n(u)|u ∈ N (w)} is the updated local node features and the message function

Fmessage is a multi-head attention block described in equation (8) whose time complexity is O(d2).
Here, the computational complexity of the message passing module is downscaled by a factor of n
compared to ARTree since only local node features are updated. Finally, the node features fn+1 for
the tree topology τn+1 are given by

fn+1(u) =

{
f̄n(u), u ∈ N (w),
fn(u), u /∈ N (w).

(14)

The above two modules circularly continue until an ordinal tree topology of N , τN , is constructed,
whose ARTreeFormer-based probability is defined as

Qϕ(τN ) =

N−1∏
n=3

Qϕ(en|e<n), (15)

where ϕ are the learnable parameters and Qϕ(en|e<n) is defined in equation (10).
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Figure 2: Left: Runtime and FLOPs for generating 100 tree topologies using ARTree. Middle:
Runtime and FLOPs for generating 100 tree topologies using ARTreeFormer. Right: The runtime of
ARTreeFormer for generating 100 tree topologies with or without vectorization. All tests are run on a
single 2.4 GHz CPU.

Algorithm 1: Growing an ordinal tree topology τn to τn+1 with ARTreeFormer
Input: An ordinal tree topology τn = (Vn, En) with n leaf nodes; the node features Fn of τn.
Output: An ordinal tree topology τn+1 = (Vn+1, En+1) with n+ 1 leaf nodes; the node

features Fn+1 of τn+1.
# node embedding module
Compute the graph representation vector rn using Fn as in equation (7);
Compute the edge features rn(e) for all e ∈ En with Fn and rn as in equation (9);
Compute the edge decision distribution Qϕ(·|e<n) with the edge features as in equation (10);
Sample an edge decision en from Qϕ(·|e<n) and grow τn to τn+1 as described in Algorithm 3;
Compute the features of the newly added nodes by minimizing local Dirichlet energy (12);
# message passing module
Update the local node features using the attention mechanism as described in equation (13);
Obtain Fn+1 by replacing the local node features in Fn with the update ones, as in equation (14).

Model Node embedding

Compl. Vec. Compl.

ARTree O(N3) O(N2+α)
ARTreeFormer O(N2d+Nd2) O(N1+αdα +Nd2α)

Model Message passing

Compl. Vec. Compl.

ARTree O(N2d2) O(N1+αd2α)
ARTreeFormer O(Nd2) O(Nd2α)

Table 1: Computational complexity (Compl.) and computa-
tional complexity with vectorized operations (Vec. Compl.)
of generating an N -leaf tree topology. α ∈ (0, 1) refers to
the accelerated order of vectorized linear operations.

Compared to ARTree, the greatly im-
proved computational efficiency of
ARTreeFormer mainly comes from
two aspects. First, the learnable
node embedding module as well as
local Dirichlet energy minimization
in ARTreeFormer can be easily vec-
torized across different tree topolo-
gies and different nodes, since they
do not rely on the specific tree topol-
ogy shape nor require traversals over
the tree topologies. Second, the lo-
cal message passing in ARTreeFormer
avoids applying deep models to all
the node features, in contrast with the
global message passing in ARTree.
Figure 2 (left, middle) shows that the run time and FLOPs of ARTreeFormer are significantly
reduced to 10% of ARTree. To further verify the vectorization capability of ARTreeFormer, we
compare the runtime for generating tree topologies with or without vectorization (i.e., simultaneously
or sequentially) in Figure 2 (right), where vectorization greatly improves computational efficiency.
Summing up all the involved complexities for n = 3, . . . , N gives Table 1. Although α can be small
in practice (i.e., fast computation of batched tensors), the complexity of ARTree’s node embedding
module is still higher than O(N2), while those of other modules are reduced to approximately equal
to or less than O(N). This validates the observation that the topological node embedding dominates
the computation time. Further discussion on Table 1 can be found in Appendix B.3.
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Several previous efforts (Yun et al., 2019; Ying et al., 2021; Rampášek et al., 2022) have demonstrated
the power of transformers for graph representation learning. Especially, Han et al. (2023) considers
variational inference on graphs with a transformer-based autoregressive generative model. Our
approach differs from them in the following aspects. First, the learnable node embedding based on
the attention mechanism is novel and overcomes the non-vectorizable bottleneck of ARTree. Second,
we incorporate message passing and local Dirichlet energy minimization within the neighborhood
structure, specifically designed for phylogenetic trees. Third, adapting graph techniques to phylo-
genetic trees is not straightforward and requires careful design, and we are the first to show that
this simplified attention-based architecture exhibits strong approximation capacity with considerably
reduced computational cost. More discussions on the related works in the field of phylogenetic
inference are deferred to Appendix A.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness and efficiency of ARTreeFormer on three benchmark
tasks: maximum parsimony, tree topology density estimation (TDE), and variational Bayesian
phylogenetic inference (VBPI). Although the pre-selected leaf node order in ARTreeFormer may not
be related to the relationships among species, this evolutionary information is already contained in the
training data set (for TDE) or the target posterior distribution (for maximum parsimony and VBPI),
and thus can be learned by ARTreeFormer. Noting that the main contribution of ARTreeFormer is
improving the tree topology model, we select the first two tasks because they only learn the tree
topology distribution and can better demonstrate the superiority of ARTreeFormer. The third task,
VBPI, is selected as a standard benchmark task for Bayesian phylogenetic inference and evaluates
how well ARTreeFormer collaborates with a branch length model. It should be emphasized that we
mainly pay attention to the computational efficiency improvement of ARTreeFormer and only expect
it to attain similar accuracy with baseline methods.

Experimental setup For TDE and VBPI, we perform experiments on eight data sets which we will
call DS1-8. These data sets, consisting of sequences from 27 to 64 eukaryote species with 378 to
2520 site observations, are commonly used to benchmark phylogenetic MCMC methods (Hedges
et al., 1990; Garey et al., 1996; Yang & Yoder, 2003; Henk et al., 2003; Lakner et al., 2008; Zhang &
Blackwell, 2001; Yoder & Yang, 2004; Rossman et al., 2001; Höhna & Drummond, 2012; Larget,
2013; Whidden & Matsen IV, 2015). For the Bayesian setting in MrBayes runs (Ronquist et al.,
2012) (an MCMC software for Bayesian phylogenetic inference), we assume a uniform prior on the
tree topologies, an i.i.d. exponential prior Exp(10) on branch lengths, and the simple JC substitution
model (Jukes et al., 1969). We use the same ARTreeFormer structure across all the data sets for all
three experiments. Specifically, we set the dimension of node features to d = 100, following Xie &
Zhang (2023). The number of heads in all the multi-head attention blocks is set to h = 4. All the
activation functions for MLPs are exponential linear units (ELUs) (Clevert et al., 2015). We add a
layer normalization block after each linear layer in MLPs and before each multi-head attention block
(Xiong et al., 2020). We also add a residual block after the multi-head attention block in the message
passing step, which is standard in transformers. The taxa order is set to the lexicographical order
of the corresponding species names. All models are implemented in PyTorch (Paszke et al., 2019)
and optimized with the Adam (Kingma & Ba, 2015) optimizer. All the experiments are run on an
Intel Xeon Platinum 8358 processor. The learning rate for ARTreeFormer is set to 0.0001 in all the
experiments.

4.1 MAXIMUM PARSIMONY PROBLEM

We first test the performance of ARTreeFormer on solving the maximum parsimonious prob-
lem. We reformulate this problem as a Bayesian inference task with the target distribution
P (τ) = exp(−P(τ,Y ))/Z, where P(τ,Y ) is the parsimony score defined in equation (4) and
Z =

∑
τ exp(−P(τ,Y )) is the normalizing constant. To fit a variational distribution Qϕ(τ), we

maximize the following (annealed) multi-sample lower bound (K = 10) in the t-th iteration

L(ϕ) = EQϕ(τ1:K) log

(
1

K

K∑
i=1

exp (−βtP(τi,Y ))

Qϕ(τi)

)
, (16)
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Figure 3: Performances of ARTree and ARTreeFormer on various tasks. Left: The estimated log
probability logQ(τ) versus the parsimony score P(τ,Y ) on DS1. For different tree topologies with
the same parsimony score, the mean of the estimated log probabilities is plotted as a dot with the
standard deviation as the error bar. Middle: The 10-sample lower bound (LB) and the negative
parsimony score (NP) as a function of the CPU time on DS1. Right: The training time (per 10
iterations) and evaluation time (per computing the probabilities of 100 tree topologies) of ARTree
and ARTreeFormer across eight benchmark data sets for TDE. The results are averaged over 100 runs
with the standard deviation as the error bar.

Table 2: KL divergences to the ground truth of different methods across eight benchmark data sets.
The “Sampled trees” column shows the numbers of unique tree topologies in the training sets. The
“GT trees” column shows the numbers of unique tree topologies in the ground truth. The results
are averaged over 10 replicates. The results of SBN-EM, SBN-EM-α are from Zhang & Matsen IV
(2018), and the results of SBN-SGA and ARTree are from Xie & Zhang (2023). For each data set,
the best result is marked in black bold font and the second best result is marked in brown bold font.

Data set # Taxa # Sites Sampled trees GT trees KL divergence to ground truth

SBN-EM SBN-EM-α SBN-SGA ARTree ARTreeFormer

DS1 27 1949 1228 2784 0.0136 0.0130 0.0504 0.0045 0.0067
DS2 29 2520 7 42 0.0199 0.0128 0.0118 0.0097 0.0102
DS3 36 1812 43 351 0.1243 0.0882 0.0922 0.0548 0.0777
DS4 41 1137 828 11505 0.0763 0.0637 0.0739 0.0299 0.0320
DS5 50 378 33752 1516877 0.8599 0.8218 0.8044 0.6266 0.6681
DS6 50 1133 35407 809765 0.3016 0.2786 0.2674 0.2360 0.2478
DS7 59 1824 1125 11525 0.0483 0.0399 0.0301 0.0191 0.0271
DS8 64 1008 3067 82162 0.1415 0.1236 0.1177 0.0741 0.0667

where Qϕ(τ
1:K) =

∏K
i=1 Qϕ(τ

i) and βt is the annealing schedule. We set βt = min{t/200000, 1}
and collect the results after 400000 parameter updates. We use the VIMCO estimator (Mnih &
Rezende, 2016) to estimate the stochastic gradients of L(ϕ).
The first two plots in Figure 3 show the performances of different methods for the maximum parsimony
problem on DS1. We run the state-of-the-art parsimony analysis software PAUP∗ (Swofford, 2003)
to form the ground truth, which contains tree topologies with parsimony scores ranging from 4040 to
the optimal score 4026. The left plot of Figure 3 shows that both ARTreeFormer and ARTree can
identify the most parsimonious tree topology found by PAUP∗ and provide comparably accurate
posterior estimates. In the middle plot of Figure 3, the horizontal gap between two curves reflects
the ratio of times needed to reach the same lower bound or negative parsimony score. We see that
ARTreeFormer is around three times faster than ARTree.

4.2 TREE TOPOLOGY DENSITY ESTIMATION

We further investigate the capacity of ARTreeFormer for modeling tree topologies on the TDE task.
To construct the training data set, we run MrBayes (Ronquist et al., 2012) on each data set with
10 replicates of 4 chains and 8 runs until the runs have ASDSF (the standard convergence criteria
used in MrBayes) less than 0.01 or a maximum of 100 million iterations, collect the samples every
100 iterations, and discard the first 25%, following Zhang & Matsen IV (2018). The ground truth
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Figure 4: Performances of different methods for VBPI. Left: the 10-sample lower bound as a
function of the number of iterations on DS1. The ARTreeFormer∗ refers to the de-attention version
of ARTreeFormer which does not contain multi-head attention in forming recurrent node embeddings
and message passing. Middle: the variational approximation v.s. the ground truth of the marginal
distribution of tree topologies on DS1. Right: Training time (per 10 iterations) and sampling time
(per sampling 100 tree topologies) across different data sets. The results are averaged over 100 runs
with the standard deviation as the error bar.

distributions are obtained from 10 extremely long single-chain MrBayes runs, each for one billion
iterations, where the samples are collected every 1000 iterations, with the first 25% discarded as
burn-in. We train ARTreeFormer via maximum likelihood estimation using stochastic gradient ascent.
We compare ARTreeFormer to ARTree and SBN baselines: i) for SBN-EM and SBN-EM-α, the
SBN model is optimized using the expectation-maximization (EM) algorithm, as done in Zhang &
Matsen IV (2018); ii) for SBN-SGA and ARTree, the corresponding models are fitted via stochastic
gradient ascent, similar to ARTreeFormer. For SBN-SGA, ARTree, and ARTreeFormer, the results
are collected after 200000 parameter updates with a batch size of 10.

The right plot in Figure 3 shows a significant reduction in the training time and evaluation time of
ARTreeFormer compared to ARTree on DS1-8. The KL divergences between the ground truth and
the probability estimation are reported in Table 2. Although ARTreeFormer has a simplified model
structure for node features, it performs on par or better than ARTree, and consistently outperforms
the SBN baselines, across all data sets. See the probability estimation on individual tree topologies
and an ablation study about the hyperparameters in Appendix D.

4.3 VARIATIONAL BAYESIAN PHYLOGENETIC INFERENCE

Our last experiment is on VBPI, where we examine the performance of ARTreeFormer on tree
topology posterior approximation (Section 2). Following Xie & Zhang (2023), we use the following
annealed unnormalized posterior as our target at the t-th iteration

p(τ, q|Y , βi) ∝ p(Y |τ, q)βtp(τ, q), (17)

where βt = min{1, 0.001 + t/200000} is the annealing schedule. We set K = 10 for the multi-
sample lower bound (3) and use the VIMCO estimator (Mnih & Rezende, 2016) and reparametrization
trick (Kingma & Welling, 2014) to obtain the gradient estimates for the tree topology parameters and
the branch lengths parameters respectively. The results are collected after 400000 parameter updates.
To be fair, for all three VBPI-based methods (VBPI-SBN, VBPI-ARTree, and VBPI-ARTreeFormer),
we use the same branch length model that is parametrized by GNNs with edge convolutional operator
and learnable topological features as done in Zhang (2023). We also consider three alternative
approaches (ϕ-CSMC (Koptagel et al., 2022), GeoPhy (Mimori & Hamada, 2023)) that provide
unconfined tree topology distributions and one MCMC based method (MrBayes) as baselines.

The left plot in Figure 4 shows the lower bound as a function of the number of iterations on DS1. We
see that although ARTreeFormer converges slower than SBN and ARTree at the beginning, it quickly
catches up and reaches a similar lower bound in the end. The result of ARTreeFormer∗ demonstrates
the effectiveness of the attention mechanism in modeling the tree topologies. The middle plot in
Figure 4 shows that both ARTree and ARTreeFormer can provide accurate variational approximations
to the ground truth posterior of tree topologies, and both of them outperform SBNs by a large margin.
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Table 3: Marginal likelihood estimates (in units of nats) of different methods across eight benchmark
data sets for Bayesian phylogenetic inference. The marginal likelihood estimates for ARTreeFormer
are obtained by importance sampling with 1000 particles from the variational approximation and are
averaged over 100 independent runs with standard deviation in the brackets. The results of MrBayes
SS which serve as the ground truth are from Zhang & Matsen IV (2019). The results of other methods
are reported in their original papers.

Data set DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
# Taxa 27 29 36 41 50 50 59 64
# Sites 1949 2520 1812 1137 378 1133 1824 1008

ϕ-CSMC (Koptagel et al., 2022) -7290.36(7.23) -30568.49(31.34) -33798.06(6.62) -13582.24(35.08) -8367.51(8.87) -7013.83(16.99) N/A -9209.18(18.03)
GeoPhy (Mimori & Hamada, 2023) -7111.55(0.07) -26368.44(0.13) -33735.85(0.12) -13337.42(1.32) -8233.89(6.63) -6733.91(0.57) -37350.77(11.74) -8660.48(0.78)
VBPI-SBN (Zhang, 2023) -7108.41(0.14) -26367.73(0.07) -33735.12(0.09) -13329.94(0.19) -8214.64(0.38) -6724.37(0.40) -37332.04(0.26) -8650.65(0.45)
VBPI-ARTree (Xie & Zhang, 2023) -7108.41(0.19) -26367.71(0.07) -33735.09(0.09) -13329.94(0.17) -8214.59(0.34) -6724.37(0.46) -37331.95(0.27) -8650.61(0.48)
VBPI-ARTreeFormer (ours) -7108.40(0.21) -26367.71(0.09) -33735.09(0.08) -13329.94(0.20) -8214.63(0.40) -6725.09(0.44) -37331.96(0.26) -8650.62(0.49)

MrBayes SS (Xie et al., 2011) -7108.42(0.18) -26367.57(0.48) -33735.44(0.50) -13330.06(0.54) -8214.51(0.28) -6724.07(0.86) -37332.76(2.42) -8649.88(1.75)

In the right plot of Figure 4, we see that the computation time of ARTreeFormer is substantially
reduced compared to ARTree. This reduction is especially evident for sampling time since it does not
include the branch length generation, likelihood computation, and backpropagation.

Table 3 shows the marginal likelihood estimates obtained by different methods on DS1-8, including
the results of the stepping-stone (SS) method (Xie et al., 2011), which is one of the state-of-the-art
sampling based methods for marginal likelihood estimation. We find that VBPI-ARTreeFormer
provides comparable estimates to VBPI-SBN and VBPI-ARTree. Compared to other VBPI variants,
the methodological and computational superiority of ARTreeFormer is mainly reflected by its
unconfined support (compared to SBN) and faster computation speed (compared to ARTree). All
VBPI variants perform on par with SS, while the other baselines (ϕ-CSMC, GeoPhy) tend to provide
underestimated results. We also note that the standard deviations of ARTreeFormer can be larger than
ARTree and SBN which can be partially attributed to the potentially less accurate approximation.
Regarding the efficiency-accuracy trade-off, for relatively small data sets, the simplified architecture
in ARTreeformer is enough to maintain or even surpass the performance of ARTree; for larger data
sets, a performance drop in approximation accuracy may be observed. We also provide an ablation
study on the hyperparameters and more information on the memory and time consumption of different
methods for VBPI in Appendix E. Finally, it is worth noting that VBPI-mixture (Molén et al., 2024;
Hotti et al., 2024) can provide a better marginal likelihood approximation by employing mixtures of
tree models as the variational family.

5 CONCLUSION

In this work, we presented ARTreeFormer, a variant of ARTree that leverages the attention mechanism
to accelerate the autoregressive modeling of tree topologies in phylogenetic inference. In contrast
to ARTree, which involves repetitive computations for Dirichlet energy minimization based node
embeddings during the tree topology generating process, ARTreeFormer reused the graph features
of preceding tree topologies by introducing an attention-based learnable recurrent node embedding
module. This, together with a local message passing scheme, greatly reduced the computational cost
and enabled vectorized computation over different nodes and tree topologies as well. Experiments
on various phylogenetic inference problems showed that ARTreeFormer is significantly faster than
ARTree in training and evaluation while performing comparably in terms of approximation accuracy.

Phylogenetic inference provides critical insights for making informed public health decisions, par-
ticularly during pandemics. Developing efficient Bayesian phylogenetic inference algorithms that
can deliver accurate posterior estimates in a timely manner is therefore of immense value, with the
potential to save countless lives. The commonly used MCMC methods tend to be slow and often
requires long runs to generate high quality samples. In contrast, VI approaches hold significant
promise due to their optimization-based framework. For example, VI methods have been used for
rapid analysis of pandemic-scale data (e.g., SARS-CoV-2 genomes) to provide accurate estimates
of epidemiologically relevant quantities that can be corroborated via alternative public health data
sources (Ki & Terhorst, 2022). We expect more efficient VI approaches for Bayesian phylogenetics
and associated software to be developed in the near future, further advancing this critical field.
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A RELATED WORKS

The most common approach for Bayesian phylogenetic inference is Markov chain Monte Carlo
(MCMC), which relies on random walks to explore the tree space, e.g., MrBayes (Ronquist et al.,
2012). Although MCMC methods are often considered state-of-the-art in this field, they often exhibit
low exploration efficiency and require extremely long runs to deliver accurate posterior estimates
(Whidden & Matsen IV, 2015; Zhang & Matsen IV, 2024).

Another approach is variational inference (VI) which requires a variational family over the phyloge-
netic trees. Besides VBPI introduced in Section 2, there exist other VI methods. VaiPhy (Koptagel
et al., 2022) approximates the posterior of multifurcating trees with a novel sequential tree topology
sampler based on maximum spanning trees. GeoPhy (Mimori & Hamada, 2023) models the tree
topology distribution through a mapping from continuous distributions over the leaf nodes to tree
topologies via the Neighbor-Joining (NJ) algorithm (Saitou & Nei, 1987).

As a classical tool in Bayesian statistics, sequential Monte Carlo (SMC) (Bouchard-Côté et al., 2012)
and its variant combinatorial SMC (CSMC) (Wang et al., 2015) propose to sample tree topologies
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through subtree merging and resampling steps for Bayesian phylogenetic inference. Moretti et al.
(2021) employs a learnable proposal distribution based on CSMC and optimizes it within a variational
framework. Koptagel et al. (2022) further makes use of the parameters of VaiPhy to design the
proposal distribution for sampling bifurcating trees (ϕ-CSMC). The subtree merging operation in
SMC based methods is also the core idea of PhyloGFN (Zhou et al., 2024), which instead treats the
merging choices as actions within the GFlowNet (Bengio et al., 2021) framework and optimizes the
trajectory balance objective (Malkin et al., 2022).

B DETAILS OF ARTREE

B.1 TREE TOPOLOGY GENERATING PROCESS

Let τn = (Vn, En) be a tree topology with n leaf nodes and Vn, En are the sets of nodes and edges
respectively. Here we only discuss the modeling of unrooted tree topologies. A pre-selected order
(also called the taxa order) for the leaf nodes X = {x1, . . . , xN} is assumed. We first give the
definition of ordinal tree topologies.
Definition 1 (Ordinal Tree Topology; Definition 1 in Xie & Zhang (2023)). Let X = {x1, . . . , xN}
be a set of N(N ≥ 3) leaf nodes. Let τn = (Vn, En) be a tree topology with n(n ≤ N) leaf nodes
in X . We say τn is an ordinal tree topology of rank n, if its leaf nodes are the first n elements of X ,
i.e., Vn ∩ X = {x1, . . . , xn}.

The tree topology generating process is initialized by τ3, the unique ordinal tree topology of rank 3.
In the n-th step (n start from 3), assume we have an ordinal tree topology τn = (Vn, En) of rank n.
To incorporate the leaf node xn+1 into τn, the following steps are taken:

1. A choice is made for an edge en = (u, v) ∈ En, which is then removed from En.
2. Add a new node w and two additional edges, (u,w) and (w, v) to the tree topology τn.
3. Add the next leaf node xn+1 and an additional edge (w, xn+1) to the tree topology τn.

The above steps create an ordinal tree topology τn+1 of rank n + 1. Repeating these steps for
n = 3, . . . , N −1 leads to the eventual formation of the ordinal tree topology τ = τN of rank N . The
selected edges at each time step form a sequence D = (e3, . . . , eN−1), which we call D a decision
sequence. Here we give two main theoretical results.
Theorem 1. The generating process g(·) : D 7→ τ is a bijection between the set of decision sequences
of length N − 3 and the set of ordinal tree topologies of rank N .
Theorem 2. The time complexity of the decomposition process induced by g−1(·) is O(N).

The bijectiveness in Theorem 1 implies that we can model the distribution Q(τ) over tree topologies
by modelling Q(D) over decision sequences, i.e.,

Q(τ) = Q(D) =

N−1∏
n=3

Q(en|e<n), (18)

where e<n = (e3, . . . , en−1) and e<3 = ∅. The conditional distribution Q(en|e<n), which describes
the distribution of edge decision given all the decisions made previously, is called the edge decision
distribution by us.

B.2 GRAPH NEURAL NETWORKS FOR EDGE DECISION DISTRIBUTION

The edge decision distribution Q(en|e<n) defines the probability of adding the leaf node xn+1 to the
edge en of τn, conditioned on all the ordinal tree topologies (τ3, . . . , τn) generated so far. To model
Q(en|e<n), ARTree employs the following four modules.

Node embedding module At the n-th step of the generation process, ARTree relies on the node
embedding module to assign node embeddings for the nodes of the current tree topology τn =
(Vn, En). The embedding method follows Zhang (2023), which first assigns one-hot encoding for the
leaf nodes:

[fn(xi)]j = δij , 1 ≤ i ≤ n, 1 ≤ j ≤ N,
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Algorithm 2: Two-pass algorithm for topological embeddings for internal nodes (Zhang, 2023)

Input: Tree topology τn = (Vn, En) of rank n, where Vn = V b
n ∪ V o

n ; Topological embeddings
for the leaf nodes {fn(u)|u ∈ V b

n}.
Output: Topological embeddings for the leaf nodes {fn(u)|u ∈ V o

n }
Initialized cu = 0, du = fn(u)|u ∈ V b

n ;
for u in the postorder traverse of τn do

if u is not the root node then
Compute

cu =
1

|N (u)| −
∑

v∈ch(u) cv
, du =

∑
v∈ch(u) dv

|N (u)| −
∑

v∈ch(u) cv

where N (u) is the neighborhood of u and ch(u) is the set of the children of u.
end
for u in the preorder traverse of τn do

if u is not the root node then
Let fn(u) = cufn(πu) + du where πu is the parent of u.

else
Let fn(u) =

∑
v∈ch(u) dv

|N (u)|−
∑

v∈ch(u) cv
.

end
end

where δ denotes the Kronecker delta function. We then obtain embeddings for the interior nodes by
minimizing the Dirichlet energy, defined as

ℓ(fn, τn) :=
∑

(u,v)∈En

||fn(u)− fn(v)||2.

This minimization process is achieved through the two-pass algorithm (Algorithm 2). Note that this
process contains (2n− 6) sub-iterations and each sub-iteration contains a linear combination over
at most 3 vectors in RN . The time complexity of calculating the topological node embeddings is
O(Nn). Finally, a linear transformation is applied to all the node embeddings to obtain the initial
node features in Rd for message passing. It should be highlighted that the embeddings for interior
nodes may vary as the number of leaf nodes n, leading to the need for time guidance in the readout
module.

Message passing module ARTree employs iterative message passing rounds to calculate the node
features, capturing the topological information of τn. The l-th message passing round is implemented
by

ml
n(u, v) = F l

message(f
l
n(u), f

l
n(v)),

f l+1
n (v) = F l

updating

(
{ml

n(u, v);u ∈ N (v)}
)
,

where F l
message and F l

updating are the message function and updating function in the l-th round, and
N (v) is the neighborhood of the node v. The corresponding time-complexity is O(nd2) (noting that
MLPs are applied to all the nodes) In particular, ARTree sets the number of message passing steps
L = 2 and utilizes the edge convolution operator (Wang et al., 2018) for the design of F l

message and
F l

updating.

Recurrent module To efficiently incorporate the information of previously generated tree topolo-
gies into the edge decision distribution, ARTree uses a gated recurrent unit (GRU) (Cho et al., 2014)
to form the hidden states of each node. Concretely, the recurrent module is implemented by

hn(v) = GRU(hn−1(v), f
L
n (v)),

where hn(v) is the hidden state of v at the n-th step in the generating process For the newly added
nodes, their hidden states are initialized to zeros. This module is mainly composed of MLPs on the
node/edge features, whose time complexity is O(nd2).
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Readout module In the readout module, to form the edge decision distribution Q(en|e<n), ARTree
calculates the scalar edge feature rn(e) ∈ R of e = (u, v) using

pn(e) = Fpooling (hn(u) + bn, hn(v) + bn) ,

rn(e) = Freadout (pn(e) + bn) ,

where bn is the sinusoidal positional embedding of time step n that is widely used in Transformers
(Vaswani et al., 2017), Fpooling is the pooling function implemented as 2-layer MLPs followed by an
elementwise maximum operator, and Freadout is the readout function implemented as 2-layer MLPs
with a scalar output. This module is mainly composed of MLPs on the node/edge features, whose
time complexity is O(nd2). The edge decision distribution is

Q(·|e<n) ∼ Discrete (qn) , qn = softmax ({rn(e)}e∈En
) ,

where qn ∈ R|En| is a probability vector.

Let ϕ be all the learnable parameters in GNNs. Then the ARTree based probability of a tree topology
τ takes the form

Qϕ(τ) = Qϕ(D) =
N−1∏
n=3

Qϕ(en|e<n),

The whole process of ARTree for generating a tree topology is summarized in Algorithm 3. An
illustration of ARTree is in Figure 5.

B.3 DISCUSSIONS ON THE COMPUTATIONAL COMPLEXITY OF ARTREE

During the above introduction of ARTree, we have given the time complexity of node embedding
model O(Nn) and that of the message passing module O(nd2), in each leaf node addition operation
on subtree. Note that the leaf node addition operation should be repeated for N = 3, . . . , N , which
gives the overall time complexity of O(N3) and O(N2d2).

Note that the vectorized operations on tensors can be efficiently computed in PyTorch. We assume
the α ∈ (0, 1) as the accelerated complexity order of the vectorized linear operations. We compute
the accelerated time complexity as follows.

• For the node embedding module of ARTree, the cubic order of N can be split into three
aspects: (i) Iterating N subtrees when autoregressively adding leaves; (ii) Iterating all N
internal nodes when computing the embeddings of a subtree; (iii) Summation and scalar
multiplication of N -dimension vectors. Only (iii) can be accelerated with the vectorized
operation, and (i) & (ii) always lead to two for-loops even if implemented in C++ or the
fix-point algorithm. (Note that the number of fix-point iterations until convergence is O(N).)
This gives a complexity (with vectorization) of O(N2+α) = O(N) ·O(N) ·O(Nα).

• For the message passing module of ARTree, there is only one for-loop: Iterating N
subtrees when autoregressively adding leaves. Other computations in N nodes and d-
dimension features can be vectorized. Therefore, this gives an accelerated complexity of
O(N1+αd2α) = O(N) ·O(Nαd2α).

During introducing ARTreeFormer in Section 3.2, we have given the time complexity of node
embedding model O(nd+d2) and that of the message passing module O(d2). Note that the leaf node
addition operation should be repeated for N = 3, . . . , N , which gives the overall time complexity
of O(N2 +Nd2) and O(Nd2). Regarding vectorization, all computations can be vectorized except
for Iterating N subtrees when autoregressively adding leaves. Therefore, the the complexity with
vectorization is O(N1+αdα +Nd2α) and O(Nd2α).

C DETAILS OF VARIATIONAL BAYESIAN PHYLOGENETIC INFERENCE

By positing a tree topology variational distribution Qϕ(τ) and a branch length variational distribution
Qψ(q|τ) which is conditioned on tree topologies, the variational Bayesian phylogenetic inference
(VBPI) (Zhang & Matsen IV, 2019) approximates the phylogenetic posterior p(τ, q|Y ) in equation (2)
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Algorithm 3: ARTree: an autoregressive model for phylogenetic tree topologies (Xie & Zhang,
2023)
Input: A set X = {x1, . . . , xN} of leaf nodes.
Output: An ordinal tree topology τ of rank N ; the ARTree probability Q(τ) of τ .
τ3 = (V3, E3)← the unique ordinal tree topology of rank 3;
for n = 3, . . . , N − 1 do

Let fn(u) = cufn(πu) + du where πu is the parent of u;
Calculate the probability vector qn ∈ R|En| using the current GNN model;
Sample an edge decision en from Discrete (qn) and assume en = (u, v);
Create a new node w;
En+1 ← (En\{en}) ∪ {(u,w), (w, v), (w, xn+1)};
Vn+1 ← Vn ∪ {w, xn+1};
τn+1 ← (Vn+1, En+1);

end
τ ← τN ;
Q(τ)← q3(e3)q4(e4) · · · qN−1(eN−1).
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Figure 5: An illustration of ARTree starting from the star-shaped tree topology with 3 leaf nodes.
This figure is from Xie & Zhang (2023).

with Qϕ,ψ(τ, q) = Qϕ(τ)Qψ(q|τ). To find the best approximation, VBPI maximizes the following
multi-sample lower bound

LK(ϕ,ψ) = EQϕ,ψ(τ1:K ,q1:K) log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)
.

where Qϕ,ψ(τ
1:K , q1:K) =

∏K
i=1 Qϕ,ψ(τ

i, qi). Compared to the single-sample lower bound, the
multi-sample lower bound enables efficient variance-reduced gradient estimators and encourages
exploration over the vast and multimodal tree space. However, as a large K may also reduce the
signal-to-noise ratio and deteriorate the training of variational parameters (Rainforth et al., 2019),
a moderate K is suggested (Zhang & Matsen IV, 2024). In practice, the gradients of the multi-
sample lower bound w.r.t the tree topology parameters ϕ and the branch length parameter ψ can
be estimated by the VIMCO/RWS estimator (Mnih & Rezende, 2016; Bornschein & Bengio, 2015)
and the reparameterization trick (Kingma & Welling, 2014) respectively. Specifically, the gradient
∇ϕLK(ϕ,ψ) can be expressed as

∇ϕLK(ϕ,ψ) = R1 +R2,

R1 = EQϕ,ψ(τ1:K ,q1:K)∇ϕ log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)

R2 = EQϕ,ψ(τ1:K ,q1:K)

K∑
i=1

log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)
∇ϕQϕ,ψ(τ i, qi).
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VIMCO considers the following expression of R2,

R2 = EQϕ,ψ(τ1:K ,q1:K)

K∑
i=1

{
log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)
− f̂i

}
∇ϕQϕ,ψ(τ i, qi)

where f̂i = log
(

1
K−1

∑
j ̸=i

p(Y |τj ,qj)p(τj ,qj)
Qϕ(τj)Qψ(qj |τj)

)
is a control variate.

The tree topology model Qϕ(τ) can be parametrized by ARTree, which enjoys unconfined support
over the tree topology space. In addition to ARTree, subsplit Bayesian networks (SBNs) have long
been the common choice for Qϕ(τ). In SBNs, a subset C of the leaf nodes is called a clade, and an
ordered pair of two clades (C1, C2) is called a subsplit of C if C1 ∪ C2 = C. For each internal node
on a tree topology τ , it corresponds to a subsplit s determined by the descendant leaf nodes of its
children. The SBNs are then parametrized by the probabilities of the root subsplit {ps1 ; s1 ∈ Sr} and
the probabilities of the child-parent subsplit pairs {ps|t; s|t ∈ Sch|pa}. For an unrooted tree topology
τ = (V,E), its SBN based probability is

Qsbn(τ) = psr
∏

u∈V o;u̸=r

psu|sπu
,

where V o is the set of internal nodes, r is the root node, πu are the parents of u, and su is the subsplit
assignment of the node u. As the size of Sr and Sch|pa explodes combinatorially as the number of taxa
increases, SBNs rely on subsplit support estimation for a tractable parameterization. The subsplit
support estimation can be difficult when the phylogenetic posterior is diffuse, and makes the
support of SBNs cannot span the entire tree topology space. We refer the readers to Zhang &
Matsen IV (2018) and Zhang & Matsen IV (2019) for a detailed introduction to SBNs as well as their
application to VBPI.

The branch length model Qψ(q|τ) is often taken to be a diagonal lognormal distribution, which
can be parametrized using the learnable topological features (Zhang, 2023) of τ as follows. This
approach first assigns the topological node embeddings {fu}u∈V to the nodes on τ (Algorithm 2)
and then forms the node features {hu}u∈V using message passing networks over τ . Usually, these
message passing networks take the edge convolutional operator (Wang et al., 2018). For each edge
e = (u, v) in τ , one can obtain the edge features using he = p(hu, hv) where p is a permutation
invariant function called the edge pooling. At last, the mean and standard deviation parameters for
the diagonal lognormal distribution are given by

µ(e, τ) = MLPµ(he), σ(e, τ) = MLPσ(he)

where MLPµ and MLPσ are two multi-layer perceptrons (MLPs). In the VBPI experiment in Section
4.3, the collaborative branch length models for all SBN, ARTree, and ARTreeFormer are parametrized
in this way.

D ADDITIONAL RESULTS ON TREE TOPOLOGY DENSITY ESTIMATION
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Figure 6: Performances of different methods for tree topology density estimation on DS1.

Figure 6 shows the performance of different methods on DS1. Both ARTree and ARTreeFormer
provide more accurate probability estimates for the tree topologies on the two peaks of the posterior
distribution, compared to SBN-EM and SBN-SGA. We see that ARTreeFormer can provide the same
accurate probability estimates as ARTree, which proves the effectiveness of ARTreeFormer.
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For ARTreeFormer, we also conducted an ablation study about the number of heads h and the hidden
dimension d in the multi-head attention block (Table 4). In most cases, the KL divergence gets better
as the number of heads increases. Increasing the embedding dimension d may have a negative impact,
partially due to the introduced difficulty in optimization and the overfitting problem.

Table 4: KL divergences (↓) to the ground truth obtained by ARTreeFormer with different hyper-
parameters on TDE.

Hyper-parameters h = 2, d = 100 h = 4, d = 100 h = 4, d = 200 h = 8, d = 200

DS1 0.0073 0.0067 0.0053 0.0045
DS2 0.0105 0.0102 0.0109 0.0106
DS3 0.0781 0.0777 0.0877 0.0948
DS4 0.0318 0.0320 0.0445 0.0413

E ADDITIONAL RESULTS ON VARIATIONAL BAYESIAN PHYLOGENETIC
INFERENCE

For ARTreeFormer, we conducted an ablation study about the number of heads h, the hidden
dimension d, and the number of particles K in the multi-sample lower bound. The results are reported
in Table 5 and Table 6. In VBPI, the marginal estimate likelihood (MLL) is more sensitive to the
branch length model; as we only improve the tree topology model, the MLL difference between
different parameters is not evident. We observe that increasing the number of heads h generally
improves results, while a smaller hidden dimension d can lead to missing modes. Concerning the
number of particles K, a small K can occasionally hinder mode discovery, whereas a moderate K
tends to perform well in practice.

Table 5: The marginal log-likelihood estimates obtained by ARTreeFormer with different hyper-
parameters h, d on VBPI. The number of particles is fixed as K = 10.

Hyper-parameters h = 2, d = 50 h = 2, d = 100 h = 4, d = 100 h = 4, d = 200 h = 8, d = 200

DS1 -7108.41(0.18) -7108.41(0.15) -7108.40(0.21) -7108.42(0.18) -7108.41(0.25)
DS2 -26367.71(0.08) -26367.71(0.08) -26367.71(0.09) -26367.71(0.07) -26367.71(0.10)
DS3 -33758.92(0.09) -33735.10(0.08) -33735.09(0.08) -33735.10(0.08) -33735.10(0.07)
DS4 -13330.02(0.17) -13332.43(0.25) -13329.94(0.20) -13329.94(0.21) -13329.94(0.20)

Table 6: The marginal log-likelihood estimates obtained by ARTreeFormer with different hyper-
parameters K on VBPI. The number of heads is fixed as h = 4 and the number of dimension is fixed
as d = 100.

Hyper-parameters K = 5 K = 10 K = 20

DS1 -7108.42(0.17) -7108.40(0.21) -7108.41(0.14)
DS2 -26367.70(0.09) -26367.71(0.09) -26367.71(0.07)
DS3 -33751.34(0.08) -33735.09(0.08) -33735.09(0.09)
DS4 -13332.51(0.21) -13329.94(0.20) -13329.95(0.17)

To fully demonstrate the computational burden of ARTreeFormer compared to ARTree, we report the
parameter size and memory usage of ARTreeFormer and ARTree for VBPI in Table 7. We see that
ARTreeFormer has less memory consumption compared to ARTree, because ARTreeFormer only
locally updates the node features, in analogy with the shorter sequence length in natural language
modeling.

Table 8 compares the training time of SBN, ARTree, ARTreeFormer, and GeoPhy. Among these
methods, SBN is the fastest because it only explores a fairly constrained subset of the tree topology
space. The other two methods, ARTreeFormer and ARTree, are autoregressive models that explore
the entire tree topology space. Although ARTreeFormer can cost more time than GeoPhy, it achieves
much better approximation accuracy.
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Table 7: The parameter size and memory usage of ARTreeFormer and ARTree for VBPI.

Data set DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

ARTree (learnable parameter size) 194K 195K 197K 199K 203K 203K 207K 209K
ARTreeFormer (learnable parameter size) 238K 239K 240K 241K 243K 243K 245K 246K

ARTree (memory) 1143MB 1395MB 1376MB 1680MB 1817MB 1698MB 2070MB 2148MB
ARTreeFormer (memory) 643MB 720MB 862MB 915MB 1041MB 1151MB 1333MB 1372MB

Table 8: Training time (seconds) per passing 100 trees of four methods on VBPI. The experiments
are run on a single 2.4GHz CPU.

Method ARTreeFormer ARTree SBN GeoPhy

DS1 (27 leaf nodes) 2.49 6.06 1.02 1.87
DS8 (64 leaf nodes) 7.27 26.77 2.05 2.90
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