
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROMPTING DECISION TRANSFORMERS FOR
ZERO-SHOT REACH-AVOID POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline goal-conditioned reinforcement learning methods have shown promise
for reach-avoid tasks, where an agent must reach a target state while avoiding
undesirable regions of the state space. Existing approaches typically encode avoid-
region information into an augmented state space and cost function, which prevents
flexible, dynamic specification of novel avoid-region information at evaluation
time. They also rely heavily on well-designed reward and cost functions, limiting
scalability to complex or poorly structured environments. We introduce RADT,
a decision transformer model for offline, reward-free, goal-conditioned, avoid
region-conditioned RL. RADT encodes goals and avoid regions directly as prompt
tokens, allowing any number of avoid regions of arbitrary size to be specified at
evaluation time. Using only suboptimal offline trajectories from a random policy,
RADT learns reach-avoid behavior through a novel combination of goal and
avoid-region hindsight relabeling. We benchmark RADT against 3 existing offline
goal-conditioned RL models across 17 tasks, environments, and experimental
settings. RADT generalizes in a zero-shot manner to out-of-distribution avoid
region sizes and counts, outperforming baselines that require retraining. In one
such zero-shot setting, RADT achieves 35.7% improvement in normalized cost
over the best retrained baseline while maintaining high goal-reaching success. We
also apply RADT to cell reprogramming in biology, demonstrating its versatility.

1 INTRODUCTION

Many high-risk sequential decision-making problems (Liu et al., 2024; Gronauer, 2022; Abouelazm
et al., 2024) are naturally framed as reach-avoid tasks (Hsu∗ et al., 2021; So et al., 2024) (Feng et al.,
2025), in which an agent must reach a designated goal state while avoiding undesirable regions of
the state space. These problems arise in diverse domains, including robotics (Gronauer, 2022; Ray
et al., 2019; Cao et al., 2024) (e.g., robotic arms reaching for targets while avoiding fragile objects),
autonomous navigation (Liu et al., 2024; Abouelazm et al., 2024) (e.g., self-driving vehicles avoiding
pedestrians), and biology (Wuputra et al., 2020; Lin et al., 2024) (e.g., cell reprogramming strategies
that aim to reach a therapeutic gene expression state without traversing tumorigenic intermediates).
Despite domain-specific differences, these tasks share a common structure: they require balancing
goal achievement with dynamic avoidance of specified hazards.

Solving reach-avoid problems is especially important in safety-critical environments where entering
undesirable states can have irreversible consequences. These environments often preclude online ex-
ploration, making offline learning necessary (Liu et al., 2024). Furthermore, in practical deployments,
the specification of goals and avoid regions may change based on user preferences or environmental
context. For instance, a robot assistant may need to adapt to new furniture layouts, or a therapeutic
model may need to avoid different toxic intermediate states based on patient-specific risk factors.
These settings require flexible and interpretable models that support zero-shot generalization to
unseen goal and avoid specifications without retraining.

However, reach-avoid learning remains difficult. Several lines of work attempt to address parts of the
reach-avoid problem (Section 3), but fail to meet one or more key criteria needed for flexible and
effective reach-avoid learning, including: offline learning from suboptimal data, dynamic test-time
conditioning on arbitrary goals and avoid regions, and reward-free training (Section 2, Figure 1).
Most existing approaches rely on augmented state representations and carefully shaped cost functions
to encode avoid behavior (Cao et al., 2024; Xu et al., 2022a; Zheng et al., 2024; Lee et al., 2022;
Le et al., 2019; Liu et al., 2024). This tight coupling of avoid-region semantics to model internals

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Avoid region Goal state

a) Offline Training Trajectories Online Evaluation Behavior b)

Offline Goal-
conditioned

Avoid region-
conditioned

Reward-free/
cost-free

OGCRL   ｘ  

OSRL √ ｘ ｘ ｘ

OGCRL + OSRL 
(RbSL, AM-Lag)

√ ＾ ＾ ｘ

raDT √    

√ ｘ＾Fully
satisfied

Partially 
satisfied

Not 
satisfied

Figure 1: (a) An ideal reach-avoid model should learn to avoid arbitrarily specified regions of varying number
and size at evaluation time, using only suboptimal, random-policy training data. (b) RADT is the only model
that satisfies all criteria for an ideal reach-avoid learner (Section 2).

prevents flexible deployment and limits generalization. Reward-based formulations often struggle to
represent multiple behavioral preferences simultaneously (Abouelazm et al., 2024; Freitag et al., 2024;
Knox & MacGlashan, 2024), especially when goal-reaching and avoidance conflict. Reward-free
methods avoid these issues but lack a mechanism for dynamically conditioning behavior on new
avoid constraints (Ghosh et al., 2019; Yang et al., 2022; Janner et al., 2021; Eysenbach et al., 2022).
Moreover, many offline approaches rely on expert demonstrations or near-optimal data to learn strong
policies (Park et al., 2025; Liu et al., 2024; Cao et al., 2024; Fujimoto et al., 2019; Kumar et al.,
2019), which are often not available in safety-critical or high-dimensional tasks (Gangopadhyay et al.,
2024; Kumar et al., 2022; Nishimori et al., 2024).
Present work. We introduce RADT (Reach-Avoid Decision Transformer), a reward-free, offline RL
model for goal-conditioned and avoid region-conditioned reach-avoid learning (Figure 1). RADT
is a decision transformer that represents goals and avoid regions as prompt tokens. This formu-
lation decouples the reach-avoid specification from the state representation and enables zero-shot
generalization to arbitrary numbers and sizes of avoid regions. RADT learns policies entirely from
random-policy trajectories using a novel combination of goal and avoid-region hindsight relabeling,
with no need for reward or cost functions. Our main contributions include: 1⃝A prompting framework
for reach-avoid learning that encodes goals and avoid regions as discrete prompt tokens, allowing
flexible and interpretable conditioning of behavior at test time. 2⃝ A novel avoid-region hindsight
relabeling strategy that allows the model to learn successful avoid behavior from suboptimal data. 3⃝
A decision transformer model trained on random-policy data with no reward or cost functions, en-
abling reach-avoid learning in entirely offline, reward-free settings. 4⃝ Benchmarking across robotics
and biological domains evaluates generalization to out-of-distribution avoid-region sizes and counts.
5⃝ Strong empirical results showing that RADT generalizes zero-shot to 12 unseen reach-avoid

configurations, outperforming 3 existing methods retrained directly on those configurations.

2 DESIRABLE PROPERTIES OF REACH-AVOID RL MODELS

Notation. We first establish the notation used throughout this work. A trajectory τ of length T is a
sequence of alternating states and actions: τ = (s1,a1, s2,a2, . . . , sT ,aT ), where st ∈ Rds is the
state at time t and at ∈ Rda is the action taken from st. The state and action spaces are denoted S
and A with dimensions ds and da, respectively. All RL models in this work learn a deterministic
policy π(a | ·) that selects the most preferred action given contextual inputs, typically including
the current state st. If used, the reward function r(s,a, s′) and cost function cost(s,a, s′) return
scalar values based on a transition tuple (s,a, s′). When applicable, these values are included in the
trajectory as: τ = (s1,a1, r1, c1, s2,a2, . . . ). In goal-conditioned settings, a goal g ∈ S is provided
as an additional input, yielding conditional functions such as π(a | ·,g) or r(s,a, s′,g). In avoid-
region-conditioned settings with navoid avoid regions bj : j ∈ {1, 2, ..., navoid}, similar conditioning
applies. We refer to the center of avoid region bj as its avoid centroid, denoted centroid(bj).
Desirable Properties. Reach-avoid problems introduce a dual behavioral objective: the agent must
reach a desired target state while avoiding explicitly defined regions of the state space. Reach-avoid
models that satisfy this behavioral objective under real-world deployment constraints need to achieve
the following key properties:
Property 1 (P1): Pre-collected offline datasets with no online fine-tuning. The model must learn
solely from offline datasets D containing of pre-collected trajectories τ (i), with no reliance on online

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

fine-tuning. In safety-critical applications, online exploration may be infeasible, especially when
entering avoid regions could cause irreversible harm or failure.
Property 2 (P2): Suboptimality-tolerant learning. The model must learn strong policies from
offline datasets that contain only suboptimal trajectories, i.e., those that do not reach the goal or
that violate the avoid constraint. Specifically, it should support super-demonstration performance by
learning from trajectories τ (i) that: (2.1) fail to reach the target goal state g at rollout time, and/or
(2.2) pass through avoid regions bj rather than successfully avoiding them.
Property 3 (P3): Goal-conditioned generalization. The model must generalize to any arbitrarily
specified goal state g at evaluation time, without additional training. In real-world scenarios, such as
autonomous navigation or therapeutic reprogramming, the target goal is often specified dynamically
and cannot be hardcoded at training time.
Property 4 (P4): Avoid region-conditioned generalization. The model must be able to learn a
policy that can avoid any dynamically specified avoid region(s) bj of the state space at evaluation
time, without additional training/finetuning. This includes supporting changes in: (4.1) the number of
avoid regions navoid, (4.2) their locations centroid(bj), and (4.3) their sizes (i.e., spatial extent of
the state space around each centroid(bj) to avoid).
Property 5 (P5): Reward-free learning. The model must learn reach-avoid behavior without
requiring a manually designed reward or cost function. Reward shaping is often brittle and requires
expert domain knowledge (Freitag et al., 2024; Knox et al., 2023; Knox & MacGlashan, 2024;
Abouelazm et al., 2024), especially when preferences over reaching and avoiding are difficult to
encode or conflict. Instead, one should be possible to specify goals and avoid regions directly as
inputs to the model.

While many prior approaches address subsets of these properties, none satisfy all five simultaneously
(Figure 1b). We discuss these limitations in detail in Section 3.

3 RELATED WORK

We review four key areas in reach-avoid learning: offline goal-conditioned RL (OGCRL), offline safe
RL (OSRL), offline goal-conditioned safe RL (OGCSRL), and decision transformer (DT) models.
Figure 1b summarizes which properties each class of methods satisfies. Additional discussion appears
in Appendix E.
Offline Goal-Conditioned RL. OGCRL methods aim to learn policies that generalize to arbitrary
goals specified at evaluation time, typically by conditioning on goal states and applying techniques
such as hindsight goal relabeling (Andrychowicz et al., 2017). Reward-based OGCRL meth-
ods (Yang et al., 2023; Kostrikov et al., 2021; Ma et al., 2022) optimize a policy π(a|s,g) to
maximize a goal-conditioned reward function r(s,a, s′,g). While this framework supports goal
generalization (P3), it does not satisfy P5, as it requires designing reward functions that capture both
goal-reaching and avoid desires, which are difficult to construct in practice (Knox et al., 2023; Knox
& MacGlashan, 2024; Freitag et al., 2024). Reward-free OGCRL methods (Eysenbach et al., 2022;
Park et al., 2023; Ghosh et al., 2019; Yang et al., 2022; Lynch et al., 2019; Janner et al., 2021) avoid
reward functions by learning from hindsight-relabeled trajectories using supervised learning. These
methods satisfy P5 but do not support avoid-region conditioning (P4), as they cannot incorporate
constraints beyond the goal.
Offline Safe RL. OSRL methods (Zheng et al., 2024; Lee et al., 2022; Xu et al., 2022a; Le et al.,
2019) are designed for safety-critical tasks, learning policies that satisfy constraints specified via
cost functions. A typical approach defines a cost function cost(s,a, s′) and learns a policy that
maximizes reward return

∑
t rt subject to a cost return constraint

∑
t ct < k, often via Lagrangian

relaxation (Stooke et al., 2020). These methods can enforce avoid behavior, but they are not
generally goal-conditioned (P3), and do not support dynamic conditioning on varying avoid-region
configurations (P4). In addition, these methods fail P5 due to their reliance on handcrafted reward
and cost functions.
Offline Goal-Conditioned Safe RL. This hybrid category combines elements of OGCRL and
OSRL and comes closest to satisfying the full set of reach-avoid properties. Representative methods
include Recovery-based Supervised Learning (RbSL) and Actionable Models with Lagrangian
Constraints (AM-Lag) (Cao et al., 2024; Chebotar et al., 2021; Stooke et al., 2020). These models
construct an augmented state space S+ ⊆ Rds+ds+navoid·ds containing the agent’s state s ∈ Rds ,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

goal state g ∈ Rds , and navoid avoid centroids centroid(bj) ∈ Rds , then learn policies with
goal-conditioned and avoid-conditioned objectives. This design satisfies P3 and P4.2, enabling
generalization to arbitrary g and avoid-region locations. However, these methods do not satisfy P4.1,
as the number of avoid regions navoid is fixed in the state space dimension, requiring retraining to
accommodate more regions. They also fail to support P4.3, as the spatial extent of avoid regions is
encoded only in the cost function, requiring redefinition and retraining when region size changes.
Furthermore, although these models could in principle satisfy P2.2 (learning from trajectories that
violate avoid regions), the training data in Cao et al. (2024) is collected from environments with
impassable obstacles, meaning no training trajectories actually pass through avoid regions (Figure 3b),
failing to demonstrate robustness to this type of data suboptimality. See Appendix C.1 for details.
Decision Transformers. DT models (Chen et al., 2021; Janner et al., 2021; Zheng et al., 2022; Wu
et al., 2023; Wang & Zhou, 2024) represent a class of offline RL approaches that frame policy learning
as sequence modeling. DTs use causal transformer architectures that take as input a trajectory τ
and autoregressively predict actions, π(at|τ1:t−1, st). Prompting has recently been introduced as
a mechanism to extend DTs to goal-conditioned settings (Xu et al., 2022b; Yuan et al., 2024). We
build our method off of MGPO (Yuan et al., 2024), which introduces prompt-based conditioning on
arbitrary goals, enabling zero-shot generalization across goal states, but not avoid regions.

4 REACH-AVOID DECISION TRANSFORMER (RADT)

In this section, we describe the main components of our method, RADT (Figure 2). Similar to
MGPO, our method is based on a causal Transformer architecture and utilizes prompts to specify
goal states (satisfying P3). However, unlike MGPO, RADT additionally allows for the specification
of avoid regions in the prompt (satisfying P4) and does not require reward-driven online prompt
optimization (satisfying P1, P2, P5).

Prompt Tokens and Avoid Region Representation

RADT takes in a prompt p to be presented to the Transformer model before a trajectory τ . RADT’s
autoregressive prediction of the next action during rollout is thus additionally conditioned on this
prompt: π(at|p, τ0:t−1, st). The prompt is structured as follows (Figure 2a):

p = (z, ib,b1,b2, ...,bnavoid , ig,g, e)

a)

RADT
Causal Transformer

0/1 b1 b2 b3ia ig g s0 s1 s2a0 a1

â0 â1 â2

Prompt Trajectory

Avoid tokens
Goal 
token

State
token

Action
token

Predicted
action

Avoid success
indicator token

Avoid start 
token

Goal start 
token

e
End 

prompt 
token 

b)
-0.2

-0.7

0.3

-0.1

Avoid 
Region

(-0.2, -0.7)

(0.3, -0.1)

c)

Hindsight-relabeled
avoid region

Hindsight-relabeled 
goal state

Example trajectory pair in D paired :

z = 0
(unsuccessful avoid 
demonstration) 

z = 1 
(successful avoid 
demonstration)

d) RbSL / AM-Lag Augmented State Space Representation:

Example avoid token 
representations:

S =

S =

Agent 
state

Goal 
state

Avoid state 
1

Agent 
state

Goal 
state

Avoid state 
1

Avoid state 
2

n_avoid = 1

n_avoid = 2

Avoid
 

Region 
(1, 4)

2 1

4

2

Figure 2: (a) RADT receives goal states and avoid regions as prompt inputs. (b) Avoid regions are represented
as avoid tokens in the prompt, which can be any vector representation that contains position and size information.
The box and spherical representations shown here are examples of valid representations. (c) For each offline
trajectory, we generate two versions: one that violates a sampled avoid region and one that avoids it. Both are
labeled with an avoid success token z. (d) Prior models encode avoid regions via augmented state vectors, which
grow with the number of avoid regions, preventing zero-shot generalization to unseen avoid counts.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Note that there are six different types of tokens present in the prompt: 1⃝ The avoid success
indicator (SI) token, z : z ∈ {0, 1}, indicates whether the trajectory τ following the prompt
successfully circumvents the avoid state: z = 1 if all states in τ exist outside of all avoid boxes
bj : j ∈ {1, 2, ..., navoid} and z = 0 otherwise. This allows us to train the model on both trajectories
that demonstrate successful and unsuccessful avoid behaviors; this is important for the model to
explicitly learn what not to do (see Section 5, Results 4). During evaluation time, we will always
condition on z = 1 to achieve optimal avoid behavior. 2⃝ The avoid start (AS) token, ib, explicitly
indicates to the model that the upcoming tokens represent undesirable avoid regions. This is to clearly
distinguish the avoid tokens from the SI token. 3⃝The avoid tokens, bj ∈ Rda : j ∈ {1, 2, ..., navoid},
represents the navoid avoid regions in the state space we would like to circumvent. Our approach is
not constrained to any particular vector representation of avoid regions, as long as the representation
contains information about both the position (the centroid) and the spatial extent of the avoid region.
Detailed overview of the representations we use can be found in Appendix A.2. Since prompts can
consist of any arbitrary number of avoid tokens bj and the avoid tokens can represent regions of any
arbitrary size at evaluation time, this satisfies P4.1, P4.2, and P4.3. 4⃝ The goal start (GS) token,
ig, explicitly indicates to the model that the next token to be provided represents a desirable goal
token. This is to clearly distinguish the goal token in the prompt from the avoid tokens. 5⃝ The goal
token, g ∈ Rds , represents the state we would like to achieve. This can be set to any state in the state
space at evaluation time (satisfying P3). 6⃝ The prompt end token, e, explicitly marks the end of
the prompt. This indicates to the model that the next token marks the beginning of the main input
sequence, τ . See Appendix B.1 for details regarding how these different token types are embedded.
Since we use prompts to specify the goal and avoid region information, we do not need to work with
an augmented state space S+, unlike RbSL and AM-Lag (see Section 3), providing us with greater
zero-shot flexibility.

Avoid Region Relabeling and Training Data

We specifically consider the scenario in which the training dataset D contains training trajectories τ
that are generated from a purely random policy (satisfying P1 and P2). For each training trajectory
τ ∈ D, we relabel the last state sT as the goal state g in hindsight. Additionally, we can also relabel
avoid regions in hindsight, a novel strategy that gets rid of the need to use a cost function to learn
desirable avoid behavior. The intuition for hindsight avoid region relabeling (HAR) is similar to goal
relabeling: it does not matter whether the policy that collected the training trajectory was actually
intending to circumvent the hindsight-relabeled avoid region; we can still treat it as if the region was
"meant" to be avoided, as the trajectory demonstrates how to not pass through that region.

The details to our HAR approach are described in Appendix A.3. The resulting output of HAR is a
dataset Dpaired, which contains a pair of trajectories (τorig, τcopy) for each τ in the original dataset D,
where one of (τorig, τcopy) contains relabeled avoid regions are successfully avoided (and is labeled
with z = 1) and the other contains avoid regions that are violated (and labeled with z = 0). The intent
is to isolate the concept of avoid success vs. failure from differences in the trajectories themselves,
allowing the model to more clearly learn what the avoid success token z represents conceptually
(Figure 2c; Section 5, Results 4). Using the prompt format described in the section above, we present
these trajectories in Dpaired to a causal transformer and train the model using a causal language
modeling objective. Detailed model/training specifications and hyperparameters are included in
Appendix B).

5 EXPERIMENTS

We evaluate RADT in three sets of reach-avoid environments: FetchReachObstacle,
MazeObstacle, and Cardiogenesis. The first two are adapted from Gymnasium Robotics
tasks (de Lazcano et al., 2024), but with added avoid regions. In these environments, we compare
RADT against two OGCSRL baselines (RbSL (Cao et al., 2024) and AM-Lag (Cao et al., 2024;
Chebotar et al., 2021)) as well as Weighted Goal-Conditioned Supervised Learning (WGCSL) (Yang
et al., 2022), a strong OGCRL method that does not explicitly account for avoid regions. To evaluate
domain generality, we also test RADT in a biological setting: cell reprogramming. Additionally,
we perform a series of ablation experiments to validate the design decisions in our approach and
a series of stress-testing experiments to evaluate how RADT reacts under more extreme out-of-
distribution (OOD) avoid specifications, varying mixtures of random vs. expert data, and alternative
representations for avoid regions. Additional task details are provided in Appendix C.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a) b) d)
Our  environment:RbSL paper 

environment:

c) e)

Figure 3: (a) Visualization of the FetchReachObstacle environment. The red point is the goal; the blue
box is the avoid region. (b) Unlike prior setups, the robot arm can pass through avoid boxes, allowing training
data to include violations so that we can test the models’ abilities to learn from suboptimal data. (c) RADT
and AM-Lag achieve state-of-the-art MNC and SR on in-distribution box sizes and generalizes zero-shot to
OOD avoid box sizes, matching or surpassing the best baseline (AM-Lag), which needs to be retrained on every
new avoid box size (i.e., not zero-shot). (d) Visualization of the UMazeObstacle, AMazeObstacle, and
HMazeObstacle environments, with red goal, blue avoid regions, and green agent. (e) RADT outperforms
all baselines on MNC and SR in the in-distribution single-avoid setting for UMazeObstacle and generalizes
zero-shot to OOD numbers of avoid regions on all maze tasks, matching the best retrained baseline (AM-
Lag) in MNC and surpassing it in SR. Error bars show ±1 standard deviation.

Results 1: Fetch Reach Environment and Generalization to Varying Avoid Region Sizes

Environment. The FetchReachObstacle environment requires a robotic arm to reach a goal
location while avoiding a randomly positioned box, treated as the avoid region under our formulation
(Figure 3a). The positions of the end-effector, goal, and avoid box are randomly sampled each episode.
Unlike prior work such as Cao et al. (2024), the robot can pass through the avoid box, allowing us to
isolate avoid-region reasoning without hard state space constraints (Figure 3b).
Data. We collect 2∗106 timesteps of random-policy trajectories. Goal relabeling and HAR is then ap-
plied, using a contour-based sampling strategy to generate diverse box placements (Appendix A.3.2).
Evaluation Metrics. While RADT is trained without a cost function, we define one for evaluation:
cost(st, at, st+1) = 1 if st+1 is inside an avoid box and 0 otherwise. We evaluate models using
the mean normalized cost return (MNC), computed as the average per-step cost: MNC(τ) =
1
|τ |

∑
(s,a,s′)∈τ cost(s, a, s

′). We also report the goal-reaching success rate (SR), defined as the
proportion of episodes that reach the goal. Evaluation is performed over 60 episodes.
Setup. We train all models using environments with a fixed avoid box width (or, in the case of
RADT, a max hindsight-relabeled box width) of 0.16. RbSL, AM-Lag, and WGCSL are trained
using the above cost function. We then evaluate all models in environments in-distribution (ID) with
the same 0.16 avoid box width. To assess generalization, we evaluate RADT zero-shot on avoid
boxes with out-of-distribution (OOD) widths ranging from 0.16 to 0.24 (1.5× larger). In contrast,
baseline models do not support zero-shot generalization to new avoid box sizes and must be retrained
on separate offline datasets generated for each new size (Sections 3 and 4, and Appendix C.1). This
creates a disadvantageous setting for RADT, which is evaluated without retraining, while baselines
are retrained for each test condition.
Results. Results are shown in Table 1. For the ID case (box width 0.16), RADT performs comparably
to AM-Lag in MNC and better than RbSL and WGCSL. For SR, RADT outperforms AM-Lag and
matches or exceeds the other baselines (Figure 3c). This confirms that both RADT and AM-Lag
are competitive for reach-avoid learning, with RADT slightly favoring goal-reaching and AM-Lag
slightly favoring cost minimization. In the OOD setting, where avoid box sizes exceed those seen

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results for FetchReachObstacle with varying box sizes (avg. over 3 seeds).

Box Width RADT# AM-Lag RbSL WGCSL
MNC SR MNC SR MNC SR MNC SR

0.16 0.049±0.016 0.989±0.01 0.011±0.003 0.95±0.029 0.362±0.066 0.994±0.01 0.462±0.0148 1.0±0.0

0.18 0.107±0.018 0.978±0.009 0.11±0.01 0.95±0.033 0.484±0.016 1.0±0 0.513±0.048 0.994±0.01

0.20 0.164±0.027 0.983±0.017 0.255±0.023 0.955±0.025 0.571±0.013 1.0±0.0 0.588±0.066 1.0±0.0

0.22 0.247±0.018 0.989±0.019 0.387±0.039 0.944±0.02 0.64±0.053 0.99±0.01 0.699±0.019 0.994±0.01

0.24 0.409±0.012 1.0±0.0 0.457±0.008 0.964±0.017 0.701±0.019 1.0±0 0.729±0.038 0.989±0.01

# = Model capable of zero-shot generalization. Results highlighted in blue are zero-shot results.

Table 2: Results for MazeObstacle with varying number of avoid states (avg. over 3 seeds).

UMazeObstacle

# Avoid RADT# AM-Lag RbSL WGCSL
MNC (1e-2) SR MNC (1e-2) SR MNC (1e-2) SR MNC (1e-2) SR

1 1.495±0.096 .928±0.022 2.521±0.613 0.893±0.029 2.276±0.193 0.809±0.031 3.117±0.922 0.82±0.041

3 4.455±0.895 0.868±0.028 4.47±0.94 0.645±0.01 5.857±0.754 0.175±0.054 6.92±0.404 0.842±0.033

4 7.006±1.156 0.865±0.02 7.511±1.342 0.738±0.006 7.648±0.357 0.768±0.043 9.62±1.701 0.852±0.043

5 8.75±0.531 0.853±0.015 10.14±1.9 0.76±0.01 9.622±0.531 0.053±0.012 10.28±0.503 0.807±0.033

6 10.38±1.015 0.843±0.038 11.278±1.629 0.738±0.058 11.35±1.604 0.755±0.065 12.364±1.414 0.9±0.017

7 12.7±1.0 0.832±0.038 12.72±0.702 0.777±0.028 24.17±3.65 0.002±0.003 14.48±1.439 0.825±0.018

AMazeObstacle HMazeObstacle

# Avoid RADT# AM-Lag RADT# AM-Lag
MNC (1e-2) SR MNC (1e-2) SR MNC (1e-2) SR MNC (1e-2) SR

3 3.1±0.361 0.926±0.006 4.467±0.252 0.805±0.02 2.867±0.153 0.847±0.012 2.767±0.208 0.695±0.03

5 4.933±0.252 0.908±0.024 5.473±1.0 0.808±0.056 5.433±0.306 0.86±0.03 5.5±0.1 0.792±0.014

7 7.0±0.127 0.922±0.013 6.933±1.415 0.86±0.022 6.5±0.265 0.86±0.017 6.03±0.907 0.815±0.009

during training, RADT continues to perform strongly despite being evaluated zero-shot. Across all
OOD widths, RADT matches or exceeds the MNC of retrained AM-Lag models and substantially
outperforms retrained RbSL and WGCSL models. It also maintains comparable SR to the retrained
baselines (Figure 3c). These results show that RADT generalizes to unseen avoid region sizes, even
outperforming methods that are retrained for each evaluation setting.

Results 2: Maze Environments and Generalization to Varying Numbers of Avoid Regions

Environment. The MazeObstacle environments require a point agent to navigate through a maze
to reach a randomly sampled goal location while avoiding randomly placed circular obstacles. As in
FetchReachObstacle, these obstacles are soft constraints that the agent may pass through, and
we refer to them as “avoid regions.” Unlike in FetchReachObstacle, the maze itself imposes
hard constraints, introducing impassable regions of the state space. This tests RADT’s ability to
reason over both user-specified avoid regions and inherent environmental constraints. We evaluate
RADT on three environments of varying difficulty: UMazeObstacle, AMazeObstacle (2 dead
ends), and HMazeObstacle (4 dead ends) (Figure 3d). The Data/Evaluation pipelines are similar
to those of FetchReachObstacle, with details in Appendix C.1.
Setup. We begin by training all models using data generated in environments with a single avoid
region, and evaluate in matching single-avoid-region settings (ID). To evaluate generalization, we
then train and evaluate all models in environments with three avoid regions, followed by testing in
environments with 4-7 avoid regions to assess zero-shot OOD performance. For each new number
of avoid regions, baseline models (RbSL, AM-Lag, WGCSL) are retrained with an appropriately
expanded state space (Figure 2d; see Sections 3 and 4). In contrast, RADT is evaluated zero-shot
without any retraining. This design intentionally favors the baselines, as they are tailored to each test
setting, whereas RADT is held fixed across all configurations. Only the best-performing baseline in
UMazeObstacle (AM-Lag) is evaluated on AMazeObstacle and HMazeObstacle.
Results. Results are shown in Table 2. Across all settings of UMazeObstacle (both ID and OOD),
RADT achieves the lowest MNC, consistently outperforming all baselines. It also outperforms
AM-Lag and RbSL on SR, and performs comparably or better than WGCSL. Importantly, for all
evaluations with more than three avoid regions, RADT is deployed zero-shot, while the baselines are
retrained. Despite this disadvantage, RADT matches or exceeds their performance, demonstrating its
ability to generalize to OOD numbers of avoid regions without retraining.

In AMazeObstacle and HMazeObstacle, RADT outperforms AM-Lag in goal-reaching SR
across all numbers for avoid regions. For MNC, RADT outperforms or performs comparably to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

a)

c)

b)

Scenario 1: Fastest route to goal 
must go through state, but clear 
alternative path exists

Scenario 2: State is avoidable, but 
reaching/avoiding it is influenced by 
stochasticity

Scenario 3: State is unavoidable on 
route to goal

Example of cell reprogramming:

Goal: 
stem cell

Start: fibroblast cell

AVOID: State 
with high risk of 
tumorigenesis!

Evaluation scheme:

Starting cell state

Goal FHF state

Starting cell state

Goal FHF state
Avoid 
prompt:

None

Avoid 
prompt:

Figure 4: (a) Cell reprogramming involves sequential perturbations to reach a target gene expression state while
avoiding undesirable intermediate states. (b) Evaluation pipeline: RADT is first run without an avoid token.
The most frequently visited intermediate state is then added as an avoid token, and RADT is re-evaluated. (c)
RADT reduces visitation rate to specified avoid states and minimizes time spent in unavoidable avoid states.
Error bars show ±1 standard deviation. Some illustrations adapted from NIAID NIH BIOART (Appendix I).

AM-Lag, with RADT’s lead decreasing as the number of avoid regions becomes more OOD for
RADT but remains ID for AM-Lag (5 and 7).

Results 3: Applications in Biology: Zero-Shot Avoidance in Stochastic Cell Reprogramming

We apply RADT to a biomedical problem: cell reprogramming. The goal is to transition a cell
from one gene expression state to another using sequences of genetic perturbations. This technique
underpins regenerative medicine (Wan & Ding, 2023; Vasan et al., 2021), stem cell therapy (Takahashi
& Yamanaka, 2006; Guan et al., 2022), and anti-aging strategies (Paine et al., 2024; Pereira et al.,
2024). However, intermediate gene expression states encountered during reprogramming may carry
risks, e.g. tumorigenesis (Wuputra et al., 2020; Lin et al., 2024). Safe reprogramming fits the reach-
avoid formulation: reach a target state while avoiding undesirable intermediate states (Figure 4a).
Environment. We introduce Cardiogenesis, an environment based on a well-established
Boolean network model of gene expression dynamics during mouse cardiogenesis (Herrmann et al.,
2012; Singh, 2024). The model is described in detail in Appendix C.2. The key takeaway is that,
unlike the Gymnasium Robotics environments, this domain features: (1) a fully discrete and combi-
natorial state-action space, (2) high-dimensional interdependencies between state variables due to
Boolean logic, and (3) stochastic transitions. See Appendix C.2 for full environment specifications.
Data. We generate 6 ∗ 104 random-policy timesteps of training data. Our HAR approach (Section 4)
is directly applicable to this discrete setting with minimal modification (Appendix C.2).
Setup. We conduct a case study where the reprogramming goal is to reach the first heart field (FHF)
state, a critical attractor in cardiac development (Herrmann et al., 2012; Singh, 2024). We train
RADT on the offline data, then evaluate its ability to reach the FHF state starting from a distinct
attractor state (Appendix C.2). As first pass, we run 200 evaluation episodes with no avoid region
specified. From these, we identify the most frequently visited intermediate state as measured by
Visitation Rate(s) = {# of trajectories that visit s at some point}/{# of total trajectories}. We then
run a second set of 200 episodes, this time providing the most visited intermediate state as an *avoid
token* in the prompt. We evaluate whether RADT is able to discover alternative reprogramming
paths that avoid this state and compare both visitation rates and trajectory lengths. This setup is
illustrated in Figure 4b. See Appendix C.2 for details.
Results. All evaluation trajectories successfully reach the FHF goal state, so we report only interme-
diate state visitation and trajectory lengths. Figure 4c summarizes results. We observe three distinct
behavioral patterns, depending on the initial state. Scenario 1. The most visited intermediate (state A)
is encountered in every trajectory when no avoid token is used. When A is included as an avoid token,
RADT avoids it entirely and instead follows alternative, longer trajectories that always bypass A.
Scenario 2. The most visited intermediate (state B) is frequently visited when no avoid token is used,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

but it is not visited by all trajectories. This suggests that B is not essential to reach the goal, but has a
high chance of being landed on due to stochastic dynamics. When provided as an avoid token, RADT
reduces visitation rate to state B in this noisy setting. Scenario 3. The most visited state (state C) is
present in all trajectories regardless of prompt. When C is added as an avoid token, RADT cannot
avoid passing through it, indicating that it is structurally unavoidable from the given initial state.
However, RADT reduces the number of steps spent in C, shortening the portion of the trajectory that
includes it. This suggests that even when avoidance is infeasible, the model learns to minimize time
spent in unsafe states. These results highlight that RADT supports reach-avoid planning in discrete,
structured, and stochastic domains, and also exhibits flexible avoidance strategies, including temporal
minimization of contact with undesirable states when full avoidance is not possible. Full results and
trajectory visualizations are in Appendix C.2.

Results 4: Ablation and Additional Stress-testing Experiments

We conduct ablation studies to highlight the importance of the SI, AS, and GS tokens in the prompt,
as well as the usage of attention boosting to the prompt. We also perform additional stress-testing
experiments to examine the extremities of RADT’s OOD generalization, the empirical performance
ceiling induced by the usage of random-policy data, and the RADT’s robustness to changing avoid
token representations. We summarize the results here, and leave the detailed experimental setup,
results, and discussion in Appendix G.1,G.2,G.3,G.4 and Tables 5,6,7,8,9 in Appendix H.
Ablation of the SI token. Ablating the SI token results in drastic performance drops as measure by
both MNC and SR, demonstrating the importance of including failure examples and the SI token to
teach the model what is undesirable (Table 5).
Ablation of the AS/GS tokens. Ablating the AS/GS tokens results in worse MNC in all environments
and worse SR in some environments. The performance drops are not as drastic as those induced in
the SI ablation experiment, suggesting that the AS/GS tokens are less critical than the SI token, but
still provide noticeable benefit (Table 6).
Ablation of attention boosting. We find that adding a bias adelta (a hyperparameter) to the
attention logits to all prompt tokens, using the strategy described in Silva et al. (2024), noticeably
improves the instruction-following ability of RADT to the prompt (Figure 6).
Extremities of OOD generalization. To test the extremities RADT’s zero-shot generalization, we
test the zero-shot performance of RADT on UMazeObstacle environments with up to 20 avoid
regions. We find that zero-shot RADT is still able to maintain comparable or superior MNC to
the best retrained baseline (AM-Lag) at 10 avoid regions (>300% of the maximum seen during
training by RADT), demonstrating strong OOD generalization (Table 7). Notably, zero-shot RADT
maintains a superior SR to retrained AM-Lag all the way up to and including 20 avoid regions.
Effects of introducing expert data. To explore the performance ceiling induced by using purely
random-policy data, we examine the effects of introducing varying amounts of expert-policy trajecto-
ries into the training data. We observe that the introduction of increasing amounts of expert-policy
data does not significantly impact performance on ID box sizes, but does improve avoid ability
(MNC) while impairing goal-reaching SR on OOD box sizes (Table 8). This suggests the particular
expert trajectories used biases RADT to be more conservative in OOD avoid configurations.
Effects of changing avoid region representation. We test RADT’s flexibility with regards to
handling various avoid token representations. We demonstrate that using an alternative representation
for avoid tokens to the default box representation does not prevent RADT from learning strong
reach-avoid policies, establishing that our approach is agnostic to avoid token representation (Table 9).

6 CONCLUSION

We introduce RADT, a prompting-based offline reinforcement learning model for reach-avoid
tasks that satisfies all key desiderata for flexible reach-avoid learning. RADT is trained entirely
on suboptimal data and generalizes zero-shot to unseen avoid region configurations, achieving
competitive or superior performance to state-of-the-art methods retrained for each evaluation setting.
RADT is domain-agnostic, demonstrating strong results in both robotics and cell reprogramming.
We attribute RADT ’s versatility to its interpretable prompt-based design and fully data-driven
learning procedure that does not rely on reward/cost shaping. These properties enable RADT to
serve as a general-purpose framework for safe sequential decision-making under dynamically shifting
constraints. Limitations of our model are described in Appendix F.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Foundational methods for learning reach-avoid policies, like RADT, have strong potential in im-
proving the performance of technologies in many application domains, such as general robotics,
autonomous vehicles, and bioengineering. While we believe the advancement of these downstream
domains can greatly benefit society, we do acknowledge that such technologies can also be used
maliciously. RADT and any derivatives should never be used to create autonomous agents with
harmful goals (e.g., self-navigating vehicles that maliciously target individuals) or to induce harmful
biological states (e.g., programming cells to pathological cell states). RADT is designed with the
intent of enabling the development of safer sequential decision making agents that can improve the
convenience and health of individuals in our society.

REPRODUCIBILITY STATEMENT

Hyperparameters and other technical specifications (e.g. RL environment specifications) are detailed
in Appendices B and C. An anonymized version of the code repository is submitted as part of
Supplementary Materials and is linked in Appendix D, with relevant commands to run key experiments
in the README file in the repository.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed Abouelazm, Jonas Michel, and J Marius Zöllner. A review of reward functions for reinforce-
ment learning in the context of autonomous driving. In 2024 IEEE Intelligent Vehicles Symposium
(IV). IEEE, June 2024.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. 2017.

Chenyang Cao, Zichen Yan, Renhao Lu, Junbo Tan, and Xueqian Wang. Offline goal-conditioned rein-
forcement learning for safety-critical tasks with recovery policy. arXiv preprint arXiv:2403.01734,
2024.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex
Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey Levine. Actionable models:
Unsupervised offline reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749,
2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning
as goal-conditioned reinforcement learning. arXiv preprint arXiv:2206.07568, 2022.

Meng Feng, Viraj Parimi, and Brian Williams. Safe multi-agent navigation guided by goal-conditioned
safe reinforcement learning, 2025. URL https://arxiv.org/abs/2502.17813.

Kilian Freitag, Kristian Ceder, Rita Laezza, Knut Åkesson, and Morteza Haghir Chehreghani.
Curriculum reinforcement learning for complex reward functions. 2024.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Briti Gangopadhyay, Zhao Wang, Jia-Fong Yeh, and Shingo Takamatsu. Integrating domain knowl-
edge for handling limited data in offline RL. 2024.

Dibya Ghosh, Abhishek Gupta, Justin Fu, Ashwin Reddy, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals without reinforcement learning. ArXiv, abs/1912.06088,
2019.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. Technical
report, mediaTUM, 2022.

Jingyang Guan, Guan Wang, Jinlin Wang, Zhengyuan Zhang, Yao Fu, Lin Cheng, Gaofan Meng,
Yulin Lyu, Jialiang Zhu, Yanqin Li, Yanglu Wang, Shijia Liuyang, Bei Liu, Zirun Yang, Huanjing
He, Xinxing Zhong, Qijing Chen, Xu Zhang, Shicheng Sun, Weifeng Lai, Yan Shi, Lulu Liu,
Lipeng Wang, Cheng Li, Shichun Lu, and Hongkui Deng. Chemical reprogramming of human
somatic cells to pluripotent stem cells. Nature, 605(7909):325–331, May 2022.

Franziska Herrmann, Alexander Groß, Dao Zhou, Hans A Kestler, and Michael Kühl. A boolean
model of the cardiac gene regulatory network determining first and second heart field identity.
PLoS One, 7(10):e46798, October 2012.

Kai-Chieh Hsu∗, Vicenç Rubies-Royo∗, Claire J. Tomlin, and Jaime F. Fisac. Safety and liveness
guarantees through reach-avoid reinforcement learning. In Proceedings of Robotics: Science and
Systems, Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.077.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

11

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://arxiv.org/abs/2502.17813


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

W. Bradley Knox and James MacGlashan. How to specify reinforcement learning objectives. In
Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks, 2024. URL
https://openreview.net/forum?id=2MGEQNrmdN.

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(mis)design for autonomous driving. Artificial Intelligence, 316:103829, 2023. ISSN 0004-3702.
doi: https://doi.org/10.1016/j.artint.2022.103829. URL https://www.sciencedirect.
com/science/article/pii/S0004370222001692.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. 2021.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. 2019. URL http://arxiv.org/abs/1906.00949.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=AP1MKT37rJ.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3703–3712.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/le19a.html.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung
Kim, and Arthur Guez. COptiDICE: Offline constrained reinforcement learning via stationary
distribution correction estimation. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=FLA55mBee6Q.

Ying-Chu Lin, Cha-Chien Ku, Kenly Wuputra, Chung-Jung Liu, Deng-Chyang Wu, Maki Satou,
Yukio Mitsui, Shigeo Saito, and Kazunari K Yokoyama. Possible strategies to reduce the tu-
morigenic risk of reprogrammed normal and cancer cells. Int. J. Mol. Sci., 25(10):5177, May
2024.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu,
Wenhao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe
reinforcement learning. Journal of Data-centric Machine Learning Research, 2024.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. Conference on Robot Learning (CoRL), 2019.
URL https://arxiv.org/abs/1903.01973.

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via $f$-advantage regression. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=_h29VprPHD.

Soichiro Nishimori, Xin-Qiang Cai, Johannes Ackermann, and Masashi Sugiyama. Offline reinforce-
ment learning with domain-unlabeled data. 2024.

Patrick T Paine, Ada Nguyen, and Alejandro Ocampo. Partial cellular reprogramming: A deep dive
into an emerging rejuvenation technology. Aging Cell, 23(2):e14039, February 2024.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline goal-
conditioned RL with latent states as actions. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=cLQCCtVDuW.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR),
2025.

Beatriz Pereira, Francisca P Correia, Inês A Alves, Margarida Costa, Mariana Gameiro, Ana P
Martins, and Jorge A Saraiva. Epigenetic reprogramming as a key to reverse ageing and increase
longevity. Ageing Res. Rev., 95(102204):102204, March 2024.

12

https://openreview.net/forum?id=2MGEQNrmdN
https://www.sciencedirect.com/science/article/pii/S0004370222001692
https://www.sciencedirect.com/science/article/pii/S0004370222001692
http://arxiv.org/abs/1906.00949
https://openreview.net/forum?id=AP1MKT37rJ
https://proceedings.mlr.press/v97/le19a.html
https://openreview.net/forum?id=FLA55mBee6Q
https://arxiv.org/abs/1903.01973
https://openreview.net/forum?id=_h29VprPHD
https://openreview.net/forum?id=cLQCCtVDuW


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019.

Vivek Singh. Optimizing sequential gene expression modulation for cellular reprogramming - coupled
boolean modeling and reinforcement learning based method. March 2024.

Oswin So, Cheng Ge, and Chuchu Fan. Solving minimum-cost reach avoid using reinforcement
learning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=jzngdJQ2lY.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
PID lagrangian methods. 2020.

Kazutoshi Takahashi and Shinya Yamanaka. Induction of pluripotent stem cells from mouse embry-
onic and adult fibroblast cultures by defined factors. Cell, 126(4):663–676, August 2006.

Lakshmy Vasan, Eunjee Park, Luke Ajay David, Taylor Fleming, and Carol Schuurmans. Direct
neuronal reprogramming: Bridging the gap between basic science and clinical application. Front.
Cell Dev. Biol., 9:681087, July 2021.

Yue Wan and Yan Ding. Strategies and mechanisms of neuronal reprogramming. Brain Res. Bull.,
199(110661):110661, July 2023.

Ruhan Wang and Dongruo Zhou. Safe decision transformer with learning-based constraints. In
Neurips Safe Generative AI Workshop 2024, 2024. URL https://openreview.net/
forum?id=FPRHvvEAZf.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. 2023.

Kenly Wuputra, Chia-Chen Ku, Deng-Chyang Wu, Ying-Chu Lin, Shigeo Saito, and Kazunari K
Yokoyama. Prevention of tumor risk associated with the reprogramming of human pluripotent
stem cells. J. Exp. Clin. Cancer Res., 39(1):100, June 2020.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning. Proc. Conf. AAAI Artif. Intell., 36(8):8753–8760, June 2022a.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, B. Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In Thirty-ninth Interna-
tional Conference on Machine Learning, 2022b.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline RL. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=KJztlfGPdwW.

Wenyan Yang, Huiling Wang, Dingding Cai, Joni Pajarinen, and Joni-Kristen Kämäräinen. Swapped
goal-conditioned offline reinforcement learning. 2023.

Haoqi Yuan, Yuhui Fu, Feiyang Xie, and Zongqing Lu. Pre-trained multi-goal transformers with
prompt optimization for efficient online adaptation. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=DHucngOEe3.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. CoRR, abs/2202.05607,
2022. URL https://arxiv.org/abs/2202.05607.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=j5JvZCaDM0.

13

https://openreview.net/forum?id=jzngdJQ2lY
https://openreview.net/forum?id=FPRHvvEAZf
https://openreview.net/forum?id=FPRHvvEAZf
https://openreview.net/forum?id=KJztlfGPdwW
https://openreview.net/forum?id=KJztlfGPdwW
https://openreview.net/forum?id=DHucngOEe3
https://openreview.net/forum?id=DHucngOEe3
https://arxiv.org/abs/2202.05607
https://openreview.net/forum?id=j5JvZCaDM0
https://openreview.net/forum?id=j5JvZCaDM0


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A DATA PREPARATION

A.1 DATASETS

The download link for the preprocessed datasets, as well as the setup and preprocessing code used to
generate these datasets, will be released with the code repository for the project. See Appendix D.

A.2 AVOID REPRESENTATION DETAILS

Avoid regions are represented in our experiments as box coordinates (Fig 2b) by default, though
any vector representation could work. The box coordinate vector of an avoid region bj ∈ R2∗ds

represents a "box" in the state space to be avoided. It is defined such that the first ds entries represent
the lower bounds of each of the state space dimensions (the "lower left corner" of the box in a 3D
analogy) and the second ds entries represent the upper bounds of each of the state space dimensions
(the "upper right corner"):

bj = [l1, l2, ..., lds︸ ︷︷ ︸
lower bounds

,

upper bounds︷ ︸︸ ︷
u1, u2..., uds

]

The policy should avoid guiding the agent into the region of the state space bounded by this box. To
see how we adapt this box representation for non-rectangular avoid regions in the MazeObstacle
(circular avoid regions) and Cardiogenesis environments (discrete avoid states), refer to the
"Avoid Region Relabeling" sections of Appendix C.1 and Appendix C.2, respectively.

In addition to the box representation, we also conduct experiments using the following representation
for spherical avoid regions to demonstrate RADT’s flexibility in handling different avoid token
representations:

bj = [b1, b2, ..., bds
, r]

where (b1, b2, ..., bds
) represents the location of centroid(bj) in the state space and r represents

the radius of the avoid region (Figure 2b). Results for the experiment are found in Appendix G.1.

A.3 AVOID RELABELING DETAILS

A.3.1 AVOID RELABELING TWO-PASS ALGORITHM

The two-pass hindsight avoid region relabeling method introduced in Section 4 is described in more
detail here and visualized in Algorithm 1 (first pass) and Algorithm 2 (second pass).

For each τ (i) ∈ D, we carry out HAR in two passes. In the first pass, we randomly sample avoid
boxes bj : j ∈ {1, 2, ..., navoid} of random sizes in the state space S and check whether any st ∈ τ (i)

violate any bj : j ∈ {1, 2, ..., navoid}. If there are no violations, then the SI for τ (i) is set to z(i) = 1,
otherwise it is set to z(i) = 0. In the second pass, we create a copy of the dataset, Dcopy, and go
through the same process above with the trajectories τcopy

(i) ∈ Dcopy. This time, however, for a
trajectory τcopy

(i), we keep re-sampling avoid boxes until the avoid success token zcopy
(i) is the

opposite of z(i) for the corresponding τ (i) in the original D.

Combining the datasets D and Dcopy into Dpaired, we now have a pair of trajectories (τ (i)orig, τ
(i)
copy) for

each τ (i) in the original dataset, where one of (τ (i)orig, τ
(i)
copy) demonstrates successful avoid behavior

and the other demonstrates unsuccessful avoid behavior.

A.3.2 MORE SOPHISTICATED AVOID CENTROID SAMPLING STRATEGIES

The sampling of avoid centroids in Line 4 of Algorithm 1 can be done using naive uniform sampling
over the state space (the default) or more sophisticated methods.
Contour-Based Sampling. One such sophisticated method we use samples avoid centroids that fit
into the nooks of the broad contour of a training trajectory τ (Figure 5a). This is the sampling method

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

used for the FetchReachObstacle environment (a very open environment with no inherent
restricted areas of the state space). We can acquire an outline of the general contour of a τ by
calculating a concave hull of the data points st ∈ τ in the state space S using the algorithm presented
in Park & Oh (2013) as implemented in the concave_hull library (Tang, 2022). We denote the set
of states in τ that belong to the convex hull as Sconvex. We can then find "nooks" (concave portions)
of the trajectory by calculating the convex hull using the algorithm presented in Graham (1972) as
implemented the concave_hull library, and then find the points that are part of the concave hull
but not the convex hull; these points outline the concave nooks of the contour and we denote the set
of these states as Snook. For each nook in trajectory τ , we then find the two convex hull points in
Sconvex bordering the set Snook and sample a point between them as the avoid centroid. As a result,
the trajectory of states appears to be "attempting" to avoid the hindsight-relabeled avoid centroid
by wrapping around it (Figure 5a). Although the training trajectory was not trying to avoid this
state, this does not matter because the resulting hindsight-relabeled trajectory does demonstrate how
to circumvent an avoid state by wrapping around it. This sampling method is found to improve
performance on the FetchReachObstacle environment (Figure 5b).
Sampling From a Limited Portion of the State Space. In certain state spaces, there may be regions
where sampling an avoid centroid there would not provide helpful information. Thus, instead of
sampling from the entire state space, we can just sample from just the portion of the state space
Slimited ⊂ S instead. This is done in the MazeObstacle and Cariogenesis environments, see
Appendices C.1 and C.2 for details.

B MODEL/TRAINING DETAILS

B.1 MODEL ARCHITECTURAL DETAILS AND HYPERPARAMETERS

Representations and Embeddings for Prompt Tokens. All prompt tokens, regardless of type,
are embedded into the same latent space as the action (at) and state (st) tokens in the main trajec-
tory sequence: Rdh , where dh is the hidden dimension/embedding dimension (corresponding to
hyperparameter embed_dim below). The avoid success indicator token z is initially presented
to the model as a one-hot vector: [ 10 ] if z = 1 and [ 01 ] if z = 0. This one-hot representation is then
embedded into Rdh via the learnable embedding matrix Ez ∈ R2×dh . The avoid start token, ib,
and the goal start token, ig, are initially presented to the model as the one-hot vectors [ 10 ] and [ 01 ],
respectively. They are then embedded into Rdh via the learnable embedding matrix Ei ∈ R2×dh .
The prompt end start token, e, is embedded into Rdh as learnable vector e ∈ Rdh . Avoid tokens
bj ∈ R2ds and the goal token g ∈ Rds are embedded into Rdh via learnable embedding matrix
Eb ∈ R2ds×dh and learnable embedding matrix Eg ∈ Rds×dh , respectively.

Algorithm 1 Hindsight Avoid Region Relabeling: Initial Pass

Require: state space S , offline training dataset D, maximum avoid box width wmax, number of avoid
states navoid

1: for training trajectory τ (i) in D do
2: Initialize avoid regions list b_list(i) ← []
3: for j in 1, 2, ..., navoid do
4: Randomly initialize avoid centroid xj ∈ S
5: Randomly choose avoid box width w ∈ [0, wmax]
6: Avoid box bj ← concatenate(xj − w

2 , xj +
w
2 ) ▷ box of width w centered around xj

7: Append bj to b_list(i)

8: end for
9: if All none of the states in τ (i) are in any of the avoid boxes in b_list(i) then

10: Avoid success z(i) ← 1
11: else
12: Avoid success z(i) ← 0
13: end if
14: Add z(i) and b_list(i) to the corresponding training prompt p(i) for τ (i)
15: end for

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Hindsight Avoid Region Relabeling: Second Pass

Require: state space S, copy of the original offline training dataset Dcopy, maximum avoid box
width wmax, number of avoid states navoid

1: for training trajectory τcopy
(i) in Dcopy do

2: zcopy
(i) ← z(i)

3: while zcopy
(i) = z(i) do

4: Initialize avoid regions list b_list(i) ← []
5: for j in 1, 2, ..., navoid do
6: Randomly initialize avoid centroid xj ∈ S
7: Randomly choose avoid box width w ∈ [0, wmax]
8: Avoid box bj ← concatenate(xj − w

2 , xj +
w
2 ) ▷ box of width w centered around xj

9: Append bj to b_list(i)

10: end for
11: if All none of the states in τ (i) are in any of the avoid boxes in b_list(i) then
12: Avoid success zcopy

(i) ← 1
13: else
14: Avoid success zcopy

(i) ← 0
15: end if
16: end while
17: Add zcopy

(i) and b_list(i) to the corresponding training prompt pcopy
(i) for τcopy

(i)

18: end for

Attention Boosting. We find that adding a bias adelta (a hyperparameter) to the attention logits
to all prompt tokens, using the strategy described in Silva et al. (2024), noticeably improves the
instruction-following ability of RADT to the prompt—i.e., improves goal-reaching behavior without
negatively impacting avoid behavior (Figure 6).
Model Hyperparameters. The base causal transformer architecture we use is based on the Hug-
gingFace implementation (Wolf et al., 2020) of the GPT-2 architecture (Radford et al., 2019); all
model details that are not explicitly specified here are set to the default values for the HuggingFace
implementation of GPT-2. We perform hyperparameter optimization (HPO) with a simple random
search algorithm, using the RayTune framework (Liaw et al., 2018). The tunable model hyperparam-
eters and their respective set of possible values in the search space are described in Table 3. Training
hyperparameters are described in the next section.

Table 3: Model hyperparameters and search space

Hyperparameter Description Search space
n_head Number of attention heads tune.choice([1, 3, 4, 6, 12])
n_layer Number of self-attention layers tune.choice([3, 6, 12])

embed_dim Size of latent embedding space (hidden dimension) Fixed to be 64 * n_head
adelta Attention boosting bias to the prompt tune.choice([0, 1, 2, 3])

The model hyperparameter configurations used are {n_head=4, n_layer=4,
embed_dim=256, adelta=2} for the FetchReachObstacle environment, {n_head=6,
n_layer=6, embed_dim=384, adelta=1} for the MazeObstacle environment, and
{n_head=6, n_layer=6, embed_dim=384, adelta=1} for the Cardiogenesis
environment.

B.2 TRAINING DETAILS

Loss Function. For a batch of size B of trajectories of length T , we use the following two-component
loss function during training. The first component is the typical loss used in decision transformer
models, the action loss Laction. This is the mean squared error (MSE) between the predictions of next
actions ât based on the last-layer embeddings of (p, τ1:t−1, st) and the actual next actions at:

Laction =
1

B

∑
i=1,2,...,B

1

T

∑
t=1,2,...,T

(â
(i)
t − a

(i)
t )2

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The second component is used to encourage RADT to learn how to be aware, at each timestep,
whether or not the current state ∫⊔ violates any avoid box bj : j ∈ {1, 2, ..., navoid} in prompt p.
We define the indicator kt to indicate whether or not st violates any avoid boxes bj in the prompt,
with kt = 1 indicating that st does not violate any avoid boxes and kt = 0 indicating st violates at
least one avoid box. During training only, in addition to predicting the next action at, we also make
RADT predict kt using the last-layer embeddings of (p, τ1:t−1, st). We define the box awareness
loss Lavoid_awareness to be the binary cross entropy (BCE) loss between predicted k̂t and actual kt.

Lavoid_awareness =
1

B

∑
i=1,2,...,B

1

T

∑
t=1,2,...,T

k
(i)
t log(k̂

(i)
t ) + (1− k

(i)
t ) log(1− k̂

(i)
t ))

The combined loss function is then:

L = Laction + αLavoid_awareness

α is a tunable hyperparameter to balance the different components of the loss function. During hyper-
parameter optimization, we find that it does not have a significant effect on empirical performance
when we let the model train for long enough, so we set it to 1 in all our experiments for simplicity.
Stopping Criteria. We let all RADT models train for 50,000 training steps (no visual improvement
in SR or MNC beyond that), checkpointing every 500 steps. As we use a similar training scheme
as the one used in the original Prompt DT (Xu et al., 2022b) and MGPO (Yuan et al., 2024) papers,
where we sample batches of trajectories with replacement, we cannot use "epoch" as a measurement
of training progress. At every checkpointing iteration, we run an evaluation on the model in the same
way we did in our experiments (described in Section 5). We choose the checkpoint with the best
(lowest) MNC whose SR is within 0.05 from the checkpoint with the highest SR (to ensure we have
a model that is not achieving seemingly good avoid ability by significantly sacrificing goal-reaching
ability, e.g., not moving). We do the same process for all baselines, except we train the baseline for
500 epochs as is done in the RbSL paper (Cao et al., 2024) (no visual improvement in SR or MNC
beyond that).
Training Hyperparameters. Training hyperparameters are listed with their re-
spective search spaces in Table 4. The scheduler value ‘lambdalrq corre-
sponds to the PyTorch scheduler torch.optim.lr_scheduler.LambdaLR
and the scheduler value ‘cosinewarmrestartsq corresponds to the scheduler
CosineAnnealingWarmupRestarts from the cosine_annealing_warmup li-
brary (Katsura & Baldassarre, 2021) library is used to tune training hyperparameters. Any
hyperparameters not explicitly listed default to the values used in MGPO (Yuan et al., 2024).

The chosen training hyperparameter configurations are {batch_size=128,
learning_rate=1e-4, scheduler=‘cosinewarmrestartsq, T_0=1000,
warmup_steps=500, alpha1=1} for the FetchReachObstacle environ-
ment, {batch_size=32, learning_rate=1e-4, scheduler=‘lamdalrq,
warmup_steps=1000, alpha1=1} for the MazeObstacle environment,
and {batch_size=128, learning_rate=1e-4, scheduler=‘lamdalrq,
warmup_steps=1000, alpha1=1} for the Cardiogenesis environment.

Table 4: Training hyperparameters and search space

Hyperparameter Description Search space
batch_size Batch size tune.choice([32, 64, 128, 256])

learning_rate Maximum learning rate tune.choice([1e-4, 1e-5])
scheduler Learning rate scheduler tune.choice([‘cosinewarmrestartsq, ‘lambdalrq])

warmup_steps Number of warmup steps tune.choice([500, 1000])
T_0 T_0 parameter to CosineAnnealingWarmupRestarts Fixed to be 1000

T_mult T_mult parameter to CosineAnnealingWarmupRestarts Fixed to be 1
weight_decay λ constant used in weight decay Fixed to be 1e-4

dropout Dropout ratio during training Fixed to be 0.1
alpha1 The α weight balancing the two-component loss function tune.loguniform([0.1, 10])

Compute Resources. All training sessions of RADT models were done using a single H100 GPU
on Harvard University Kempner Institute’s compute cluster. The longest single training session we
ran for an RADT model that was used in the evaluation was 3 days (that is, 72 GPU hours).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 GYMNASIUMROBOTICS ENVIRONMENTS

Choice of Environments. While there are more complicated environments that are part of the
Fetch and Maze suites in Gymnasium robotics, we do not evaluate on those, since the focus of
those environments is testing for proficiency in long-range planning, skills learning, and hierarchical
learning, which are not the focus of the current iteration of RADT. Additionally, we are focusing
only on the domain where the training data is 100% generated from a random policy (Criterion 1.2),
and it is difficult for RL approaches across the board to just learn good goal-reaching performance on
these more complex environments under this data regime (Park et al., 2025), let alone good avoid
behavior. With low goal-reaching success rates, our evaluation of avoid behavior will not be very
meaningful. As an extreme example, a policy that makes the agent stay in place will achieve an MNC
of 0, but its SR will also be 0; this would not be considered good avoid behavior despite the low
MNC.
Passable and Impassable Avoid Regions. In our custom environments, we make the avoid regions
passable (i.e., the agent can pass through these avoid states). This is in contrast to physical boxes that
provide a hard constraint on the state space (i.e., the agent cannot cross the boundaries of the avoid
box) as is used in Cao et al. (2024). Hard constraints on the state space present an issue: no training
trajectories generated in this environment truly violate any bj , because no training trajectories actually
pass through any bj (Figure 3b). Thus, all trajectories are somewhat optimal, in the sense that they
never demonstrate "unsuccessful" avoid behavior. This setup thus fails to demonstrate Property (2.2)
in Section 2. We argue that this is an issue because it couples successful goal-reaching behavior
with successful avoiding behavior. If training trajectories cannot go through avoid boxes, all training
trajectories that have succeeded in reaching the goal must have done so by circumventing avoid
boxes. A training trajectory where the agent is adamant on attempting to go through an avoid box
will get stuck at the box boundary and fail to reach the goal. Therefore, with a hard constraint setup,
goal-reaching ability is tightly coupled with avoid ability, while we wish to isolate these two aspects
and see if a model can learn to acquire both goal-reaching and avoid abilities when it is possible to
only acquire one but not the other. While this may not be important in the specific context of these
Gymnasium Robotics tasks, in general, there may be application scenarios in which we would like
to avoid a region of the state space that the agent is technically able to pass through, but we would
prefer it not. For example, there may be a road in which a self-driving vehicle can pass through or
has previously passed through, but we would rather it not on some particular day due to construction
traffic.
Environment Specifications. For the baseline models (AM-Lag, RbSL, WGCSL), the
FetchReachObstacle environment state space consists of 19 dimensions. The first 10 di-
mensions correspond to the state space of the original FetchReach environment in Gymnasium
Robotics (de Lazcano et al., 2024) and describe information about the location/orientation of the
robot arm and the environment in general. The next 9 dimensions describe information about the
single obstacle/avoid region present in the environment, with the same setup as used in Cao et al.
(2024). For RADT, the FetchReachObstacle environment just has the first 10 dimensions
(i.e., the same state space as the original FetchReach environment), as RADT does not utilize an
avoid-region-augmented state space. For the baseline models, the MazeObstacle environment
state space consists of 4 + 2 ∗ navoid dimensions. The first 4 dimensions correspond to the state space
of the original PointMaze from Gymnasium Robotics and describe the location and velocity of the
agent. Then, for each avoid region in the environment, there are an additional 2 dimensions added
to the state space representing the xy-location of the centroid. Thus, the state space dimensionality
gets larger the more avoid regions the environment is specified to have. For RADT, however, the
state space of MazeObstacle is just the state space of PointMaze and contains 4 dimensions.
The avoid regions in the MazeObstacle environment are circles of radius 0.2 around the avoid
centroids.

Each environment has a parameter max_episode_steps, which dictates the maximum number
of timesteps in an episode of interaction with that environment. An episode ends either when
the max_episode_steps number of timesteps is reached or if the agent successfully reaches
the goal. max_episode_steps is set to be 50 for FetchReachObstacle and 300 for
MazeObstacle, which correspond to the original default values of max_episode_steps for
FetchReach and PointMaze_UMaze from Gymnasium Robotics.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Length-Normalized Cost Return. We observe in the visualizations of our preliminary experiments
that it is possible to "hack" absolute cost return by attempting to reach the goal state in as few
timesteps as possible and rushing directly through the avoid region (Figure 7). Such a policy, which
we shall refer to as the "rushed policy," can achieve low absolute cost by minimizing the number of
timesteps in the trajectory in total, and thus also minimizing the absolute number of timesteps spent in
the avoid region. However, for reach-avoid applications where safety can be critical, the rushed policy
is not preferred to a slower, more cautious policy (which we shall refer to as the "cautious policy")
that may take more timesteps to reach the goal but demonstrates a stronger attempt at circumventing
the avoid region. The cautious policy may result in a trajectory that accumulates a similar absolute
cost return as the rushed policy trajectory (because it may have skimmed the avoid region for a similar
absolute number of timesteps as the rushed policy spent in the avoid region), but because the overall
cautious policy trajectory makes a better attempt at circumventing the avoid region, it achieves a
much lower length-normalized cost return compared to the rushed policy trajectory. That is, a smaller
proportion of the timesteps in the cautious policy trajectory violate the avoid region compared to
the rushed policy trajectory, indicating higher quality avoid behavior compared to the rushed policy
trajectory. In safety-critical contexts, as long as the agent can reach the desired goal in a reasonable
time (i.e., the specified max_episode_steps), the quality of avoid behavior is more important
than the speed of reaching the goal. Figure 7 demonstrates this with two visual examples.
Avoid Region Relabeling. For training data from the FetchReachObstacle environment,
hindsight-relabeled avoid centroids are sampled according to the contour-based sampling method
described in A.3. For training data from the MazeObstacle environments, hindsight-relabeled
avoid centroids are sampled using the naive uniform strategy, but only from the parts of the state
space that are accessible by the agent; i.e., avoid centroids cannot be sampled inside the walls of
the mazes. This is to prevent the model from conflating dynamically specified avoid regions in the
prompt with hard constraints on the state space that are inherent to the environment. Since the avoid
regions in MazeObstacle environments are circles of radius 0.2, we choose the circumscribing
box of width 0.4 around the avoid centroid for our avoid box representation in RADT, a conservative
choice.
Baselines Cannot Generalize Zero-shot. Here, we clarify in more concrete examples why zero-shot
generalization to avoid box sizes and numbers is not feasible with AM-Lag and RbSL as they are set
up in Cao et al. (2024).

For the FetchReachObstacle tasks, assume at training time the avoid boxes b in the environment
have width w. The augmented state space only includes information about the center of the avoid
box: centroid(b). The size of the avoid box is encoded by the cost function. The cost function
that AM-Lag and RbSL are trained on outputs a cost of 1 if the agent’s state is within the box
of width w surrounding centroid(b), otherwise, it outputs 0. Now, say we increase the avoid
box sizes to 2w at evaluation time. The only information the agents get about the avoid region at
evaluation time is in the centroid information centroid(b) present in the state space, which carries
no information about the box size. The agents are still trained to stray away from the box of width
w surrounding centroid(b), as this is the cost function they are trained to minimize the value of.
Thus, to generalize to this new box size, we must define a new cost function that outputs a cost of 1 if
the agent’s state is within the box of width 2w surrounding centroid(b), then retrain the agents
on this new cost function.

For the MazeObstacle tasks, assume at training time that there are 3 avoid regions b1, b2, b3
in the environment. The augmented state space for AM-Lag and RbSL at training time
thus has dimensionality 4 + 2 + 2 + 2 = 10, with 2 additional dimensions for each of
centroid(b1),centroid(b1),centroid(b1) (see Environment Specifications above). Say,
at evaluation time, we increase the number of avoid regions to 5: b1, b2, b3, b4, b5. Now the state
space dimensionality is 4 + 2 + 2 + 2 + 2 + 2 = 14. We will have to retrain the agents on this new
state space.

C.2 CARDIOGENESIS ENVIRONMENT

Cardiogenesis Boolean Network Details. The boolean network model comprises 15 genes, each
represented by a binary variable indicating expression (1) or non-expression (0), yielding a discrete
state space of size 215. The model is depicted by Figure 8a and described mathematically in Singh
(2024); Herrmann et al. (2012). Actions correspond to genetic perturbations that flip the expression

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

value of a single gene. After perturbation, the Boolean network to a new gene expression state based
on its internal logic. Updates are done asynchronously, as is done in Singh (2024): a random gene
node is chosen, and its value is set (either changed or remained in place) such that it satisfies all
boolean rules . A stable attractor state is defined as a state in which all boolean rules in the boolean
network are satisfied, such that the boolean network is self-consistent and further asynchronous
updates will not change the node values (assuming absence of an external perturbation).

In our Cardiogenesis environment simulations, a state-action-state transition sequence is ob-
tained as follows: 1) we start with the boolean network representing the current gene expression
state st, 2) an action is chosen (i.e., a chosen gene node is perturbed and has its value flipped from
0 to 1 or vice versa) to create a post-perturbation transient state, 3) k asynchronous updates to
the boolean network are performed to the network, and 4) the resulting state after k asynchronous
updates is defined to be the next state in the trajectory, st+1. This is depicted in Figure 8b. Since the
boolean network updates are asynchronous, there is some stochasticity involved in the transitions
due to the random selection of genes to be updated at each asynchronous update step. The value of
k affects how stochastic our transitions are; the higher the value of k, the more likely the boolean
network model will hit a stable attractor state in the process, and the less noisy the transitions of
our Cardiogenesis environment will be. We choose k=10. Note that this value of k does not
guarantee that all states st will be stable attractor states; this is intentional, since in reality, a cell can
be perturbed while it is unstable and still in the process of reaching a stable attractor state.
Avoid Region Relabeling. At training time, the offline dataset of 60,000 random policy steps is
split into trajectories of length 30. Hindsight goal relabeling is done as usual. During hindsight
avoid-region relabeling, we sample avoid regions from the top 20 most represented states (attractors
and non-attractors) in the offline dataset. This choice results in approximately half of all training
trajectories being successful demonstrations of avoid behavior on the first pass of hindsight avoid-
region relabeling. Since we are working with a discrete state space, avoid states that are discrete states
rather than regions of a continuous state space. However, given an avoid state vector [b1 b2 ... b15] :
bi ∈ {0, 1}, we can still create an avoid box representation b ∈ R30 by adding some small, arbitrary
margin ϵ around each dimension to create a box:

b = [(b1 − ϵ) ... (b15 − ϵ) | (b1 + ϵ) ... (b15 + ϵ)]

We choose ϵ = 0.001 arbitrarily.
Start State/Goal State Sampling. At evaluation time, start states are randomly chosen from stable
attractor states. The goal state is fixed as the FHF state (000010010100000) for our experiment.
Example Trajectories from Experiments. Here, we show some example trajectories depicting the
three scenarios described in Section 5. Note that, unless otherwise specified, we depict trajectories
where repeated states are collapsed, which we call the "collapsed trajectory." For example, the
trajectory (a, a, b, c, d, d, d) would be collapsed into the collapsed trajectory (a, b,
c, d). It is important to note that it is possible for an action to lead to staying in the same state due
to the dynamics of the Boolean network model.

As an example of Scenario 1, when the starting state is 000000000000000, RADT’s pol-
icy, when given no avoid prompt, always leads to a collapsed trajectory (000000000000000,
100000000001100, FHF). However, upon adding 100000000001100 as an avoid
prompt, the resulting policy always leads to a collapsed trajectory (000000000000000,
000011010100000, 000010010100000, FHF), which is a longer, alternative path that
deterministically circumvents 100000000001100.

In Scenario 2, the stochastic environment plays a much more prominent role. For example, when the
starting state is 010111111010011, and RADT is given no avoid prompt, the resulting policy leads
to a variety of trajectories. A few examples are: (010111111010011, 001111011011111,
FHF), (10111111010011, 010111111010011, 001111011011111,
000111010011111, 001111011011111, 100000000001100, FHF),
and (010111111010011, 001111011011111, 000111010011111,
001111011011111, FHF). Upon adding 001111011011111 as an avoid prompt,
we still get some similar trajectories involving 001111011011111 as an inter-
mediate state, but we get a higher frequency of trajectories that manage to avoid
it, such as (010111111010011, 000000000000011, 010010010100000,
010111111010011, 000010010100000, FHF) and (010111111010011,
000010010100000, 010111111010011, 000010010000000, FHF). The take-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

away here is the diversity of trajectories that are possible given the same policy due to the stochastic
nature of the environment.

As an example of Scenario 3, when the starting state is 000010010100000, all trajec-
tories have collapsed form (000010010100000, FHF) when there is no avoid prompt,
meaning the cell can directly reach the goal state from the start state without passing
through a third intermediate state. However, the uncollapsed form of these trajectories
has length 5 and is (000010010100000, 000010010100000, 000010010100000,
000010010100000, 000010010100000, FHF), indicating that RADT makes multiple at-
tempts to get out of 000010010100000 to land on FHF and only manages to get out on the 5th
attempt, spending a total of 5 timesteps stuck in the initial state 000010010100000. However,
when we add the initial state 000010010100000 as an avoid prompt (which is unavoidable since
it is the starting state), the uncollapsed form of all resulting trajectories has length 3 instead and is
(000010010100000, 000010010100000, 000010010100000, FHF). Here, RADT
cannot avoid the avoid state 000010010100000 entirely, but it is encouraged and finds a way to
spend less time at the 000010010100000 state, getting out of the state more quickly (40% fewer
attempts).

C.3 OTHER NOTES

Lidar-based Observation Spaces and Goal-Conditioning. Regarding the discussion about OSRL
approaches in Section 3, it is worth noting that the standard "reach avoid" benchmarking task for
OSRL algorithms, the Safe Navigation environment from Safety Gymnasium (Ray et al., 2019;
Gronauer, 2022), may seem like it is testing the goal-conditioning and avoid region-conditioning
abilities of OSRL models, but it does not require true goal-conditioning. This is because it utilizes a
relative-perspective, lidar-based observation space Slidar that allows the agent to only have to learn
to reach one state in Slidar in order to "generalize" to any target location in physical space: the
0 vector (indicating that the agent is 0 distance away from the goal). Therefore, models do not
need to generalize to any arbitrary goal in the observation space Slidar, and thus OSRL models do
not need to be truly goal-conditioned in Slidar (most are not). The same logic can be applied to
argue that the tasks do not check for true avoid region-conditioning in the observation space. While
relative-perspective observation spaces are advantageous in this regard, they cannot be conceived or
used in all environments, e.g., cell reprogramming.

D CODE

The code for this project is included in the supplementary materials zip folder for this submission.
It can also be accessed at the following anonymized repository: https://anonymous.4open.
science/r/reach-avoid-decision-transformer-2441/. Our repository is built on
top of the repositories for MGPO (Yuan et al., 2024) and RbSL (Cao et al., 2024).

E DETAILED RELATED WORK

Below are some additional discussions regarding the categories of related work described in Section 3
and their limitations with regard to satisfying the ideal properties described in Section 2
Offline Goal-Conditioned RL. While reward-based OGCRL can technically satisfy Property (4)
by designing a reward function that takes into account both goal information and avoid region
information (e.g. positive reward for approaching the goal, negative reward for approaching an avoid
region), they effectively fails to satisfy Property (4) in practice. While it is theoretically possible
to express information about both desirable and undesirable states in a multi-component reward
function, such functions are practically difficult to design such that both these sometimes conflicting
desires are balanced properly (Knox et al., 2023; Knox & MacGlashan, 2024; Freitag et al., 2024).
Also, the reason why reward-free OGCRL algorithms strictly do not satisfy Property (4) is because,
without a reward, there is no way to specify any additional desires outside of the goal g, such as
avoid regions. Thus, reward-free OGCRL is usually a good fit in situations where the path to the goal
does not matter or the demonstrations used for training are expert/optimal demonstrations that take
an ideal path to the goal.

21

https://anonymous.4open.science/r/reach-avoid-decision-transformer-2441/
https://anonymous.4open.science/r/reach-avoid-decision-transformer-2441/


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Offline Safe RL. OSRL approaches circumvent the challenge of having to design multi-component
reward functions by using a separate cost function to capture information about avoid behavior and
solving a constrained Markov decision process (Altman, 1996), isolating the handling of goal-reaching
and avoiding desires. We claim in Section 3 that OSRL algorithms are not truly goal-conditioned in
general; however, this may seem surprising since a very common benchmark for OSRL algorithms is
a reach-avoid environment called Safe Navigation from Safety Gymnasium (Ray et al., 2019).
However, we explain in Appendix C.3 why the tasks in this environment are not true multi-goal RL
tasks.
Online Goal-Conditioned Safe RL. While the RbSL paper (Cao et al., 2024) (and the associated
algorithms RbSL and AM-Lag) is one of the only pieces of literature we have found that explicitly
attempts to create an approach that is offline, goal-conditioned, and avoids region-conditioned, we
acknowledge that there exist other goal-conditioned, avoid region-conditioned algorithms designed
for reach-avoid tasks that are online algorithms (Feng et al., 2025; So et al., 2024; Hsu∗ et al., 2021).
Online algorithms may work in domains like robotics, where we can reasonably create safe testing
environments or have good simulators, but we would like to create an approach for domains in which
online training is not feasible.
Decision Transformers. We build our model off of MGPO, which is truly goal-conditioned and thus
satisfies Property (3). During the offline pretraining phase, MGPO is purely data-driven and does
not use a reward function, fully relying on hindsight goal relabeling. However, MGPO does use an
online prompt optimization phase in addition to offline pretraining (failing to satisfy Properties (1)
and (2)), utilizes reward functions during online finetuning (ultimately failing to satisfy Properties
(5)), and does not explicitly take into account avoid region information, unless it is baked into the
reward function design (effectively failing to satisfy Properties (4)). Our work builds upon MGPO
such that it is more ideal for reach-avoid tasks, aiming to satisfy these remaining properties.

F LIMITATIONS

The flexibility and zero-shot capabilities of RADT are balanced out by the fact that it takes a lot
longer and a lot more computational resources to train compared to the baselines models, having
many more parameters (as it is based on a GPT-2 architecture). Additionally, the current iteration
of RADT does not include a way to encode any arbitrary avoid region shape into a unified em-
bedding/representation space. While we have demonstrated that RADT is flexible with handling
different embedding representations, applications that involve avoid regions of multiple different
complex shapes and require tight geometric bounds can present challenges that are worth exploring
in follow-up experiments.

G ADDITIONAL EXPERIMENTS

G.1 ABLATION EXPERIMENTS

All ablation studies are performed in the FetchReachObstacle-BoxWidth0.16 environment,
and the AS/GS tokens ablation study was additionally done in the UMazeObstacle environment
with 3, 5, and 7 avoid states.
Ablation of the SI token. As shown in Table 5 in the Appendix H, RADT with the SI token (+SI)
does drastically better in terms of both MNC and SR compared to RADT with the SI token removed
and trained on the full dataset of both successful and unsuccessful avoid examples (-SI, full data).
This is as expected, since without the SI token, the model has no signal to differentiate what is
considered successful and unsuccessful avoid behavior in the training examples. Additionally, +SI
also drastically outperforms RADT with the SI token removed and trained on a dataset only consisting
of successful avoid examples (-SI, successes only). This clearly demonstrates the importance of
including both failure examples and the SI token to teach the model what is undesirable.
Ablation of the AS/GS tokens. As shown in Table 6 in Appendix H, RADT with the AS and
GS tokens (+AS,GS) performs notably better in terms of both MNC and SR compared to RADT
without the AS and GS tokens (-AS,GS) in FetchReachObstacle. In the UMazeObstacle
environments, we observe that MNC is worse in the -AS,GS experiments than in +AS,GS setup
(approaching MNC values closer to those seen with the WGCSL baseline), but there is no significant

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

difference in SR. The performance drops in terms of MNC are not as drastic compared to those seen
with the -SI ablation experiments, as -AS,GS model may potentially be able to learn that only the last
token in the prompt is considered a goal state regardless of how many tokens precede it. These results
show that the AS and GS tokens are not as critical as the SI token, but do provide noticeable benefits.
Ablation of attention boosting. We find that adding a bias adelta (a hyperparameter) to the
attention logits to all prompt tokens, using the strategy described in Silva et al. (2024), noticeably
improves the instruction-following ability of RADT to the prompt (Figure 6 in Appendix H).

G.2 LIMITS OF ZERO-SHOT GENERALIZATION

To test the limits of RADT’s zero-shot OOD generalization, we train RADT on UMazeObstacle
trajectories with maximum 3 avoid regions and evaluated on UMazeObstacle environments with
10, 15, and 20 avoid regions. We also evaluate the strongest baseline, AM-Lag, on these environments,
but like with the main experiments, AM-Lag is retrained on each new environment (i.e., ID, not
zero-shot) which gives it an advantage over RADT, and thus it represents the “ideal” performance.
The results included the results in Table 7.

At 10 avoid regions, RADT ’s zero-shot OOD performance is still on par with the retrained AM-Lag
model in terms of MNC and better than the retrained AM-Lag model in terms of SR. At 15 and
20 avoid regions, however, we see that RADT ’s zero-shot avoid behavior starts to lag behind the
re-trained AM-Lag’s according to MNC, indicating that RADT ’s OOD performance does indeed
have a limit (MNC suffers when the number of avoid regions is over 300% of the maximum number
of avoid regions seen during training). However, interestingly, the zero-shot RADT policy results in
a SR that is still higher than the retrained AM-Lag policies. This is a strong result because re-training
AM-Lag ensures that scenarios with a larger number of avoid regions become in-distribution settings
for AM-Lag, whereas they remain out-of-distribution for zero-shot RADT.

G.3 EFFECTS OF EXPERT-POLICY DATA

To examine the performance ceiling induced by only using random-policy data, we run an experiment
in the FetchReachObstacle environment where we train RADT on a mix of random-policy
and expert-policy data provided by the RbSL study (Cao et al., 2024) at 4 levels (0%, 10%, 20%, and
30% expert-policy data). The MNC and goal-reaching SR results are included in Table 8.

Looking at the MNC values, we see that introducing expert-policy data seems to have little effect
on avoid performance for ID box sizes (box width 0.16) and slightly OOD box sizes (box width
0.18). This suggests that, for ID box sizes, the performance ceiling of RADT ’s avoidance behavior
when using only hindsight-relabeled, random policy training data is close to what RADT can ideally
achieve by learning from expert demonstrations (i.e., using only hindsight-relabeled, random-policy
data provides no clear limitation).

However, when we get to larger, more OOD box sizes (box width 0.20, 0.22, and 0.24), we see that
introducing expert-policy data increasingly starts to make a difference and improve avoid performance.
This suggests that using only hindsight-relabeled, random policy training data can limit performance
ceiling on RADT for *larger, OOD* box sizes (i.e., RADT can generalize better in a zero-shot
manner to larger, more OOD box sizes if provided with expert data). A possible explanation for this is
that the expert-policy demonstrations provided by the RbSL study are more conservative trajectories
(i.e., widely avoiding the box with a much larger spatial buffer) than hindsight-relabeled, random-
policy trajectories. When provided with these demonstrations involving large, wide, conservative arcs
to avoid the box, RADT can better generalize to larger box sizes even when the box sizes themselves
are technically OOD.

Interestingly, we also observe that the goal-reaching SR values are *adversely* impacted by intro-
ducing expert-policy data across all box sizes, and more prominently with larger, more OOD box
sizes (box width 0.2, 0.22, 0.24). In fact, with only random-policy data, RADT maintains a high SR
across all box sizes, but when expert-policy data is introduced, SR deteriorates with increasing box
size. A possible explanation for this is that the cost of the improved avoid performance for larger box
sizes provided by the inclusion of expert-policy data is a deterioration in goal-reaching ability. This
is expected as larger box sizes require longer trajectories to successfully circumvent, so given that the

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

allotted time to reach the goal is fixed across all experiments, it is more likely that the agent does not
successfully reach the goal in time when it is successfully circumventing a very large box.

G.4 EFFECTS OF CHANGING AVOID TOKEN REPRESENTATION

To examine how flexible RADT is with regards to the vector representation used for avoid tokens bj ∈
Rda : j ∈ {1, 2, ..., navoid}, we train and evaluate RADT on the UMazeObstacle environment
using the alternative representation for spherical avoid regions, as described in Appendix A.2. This
representation should allow the model to learn a tighter bound around the avoid regions, compared to
the more conservative circumscribing box representation described in Appendix C.1.

As the results in Table 9 show, changing the avoid token representation from the box representation
to the spherical representation does not impact RADT’s to learn strong reach-avoid policies, with
performance that is comparable to the original UMazeObstacle experiments. One difference is
that using the performance using the spherical representation seems to lead to slightly worse MNC
and a higher SR; this is consistent with intuition, as the original circumscribing box representation
would provide a more conservative boundary of the avoid regions in UMazeObstacle and thus
result in more conservative trajectories that have better MNC at the cost of goal-reaching SR.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H ADDITIONAL TABLES AND FIGURES

Table 5: Results for the success indicator token ablation study for FetchReachObstacle-BoxWidth0.16
(avg. over 3 seeds).

+SI -SI, full data -SI, successes only

MNC 0.049±0.016 0.629±0.018 0.614±0.027

SR 0.989±0.01 0.921±0.016 0.917±0.024

Table 6: Results for the goal start/avoid start tokens ablation study for (avg. over 3 seeds).

Environment +AS,GS -AS,GS
MNC SR MNC SR

FetchReachObstacle-BoxWidth0.16 0.049±0.016 0.989±0.01 0.098±0.014 0.892±0.055

UMazeObstacle-NumAvoid3 0.045±0.009 0.868±0.028 0.060±0.005 0.882±0.033

UMazeObstacle-NumAvoid5 0.087±0.005 0.853±0.015 0.102±0.004 0.865±0.043

UMazeObstacle-NumAvoid7 0.127±0.01 0.832±0.038 0.133±0.008 0.878±0.003

Table 7: Results for evaluating RADT on extreme avoid region numbers in UMazeObstacle (avg. over 3
seeds).

# of Avoid Regions RADT# AM-Lag
MNC (1e-2) SR MNC (1e-2) SR

10 16.267±1.002 0.923±0.029 16.2±0.5 0.82±0.036

15 23.667±0.513 0.92±0.005 21.6±0.656 0.75±0.015

20 29.333±1.762 0.912±0.01 24.397±1.114 0.79±0.026

# = Model capable of zero-shot generalization. Results highlighted in blue are zero-shot results.

Table 8: Results for different levels of expert-random data mixture (avg. over 3 seeds).

Expert % 0 10 20 30
Box Width MNC SR MNC SR MNC SR MNC SR

0.16 0.049±0.016 0.989±0.010 0.053±0.004 0.972±0.025 0.055±0.012 0.967±0.029 0.053±0.017 0.95±0.017

0.18 0.099±0.018 0.978±0.009 0.096±0.003 0.921±0.008 0.105±0.024 0.959±0.009 0.103±0.019 0.95±0.033

0.20 0.171±0.027 0.989±0.017 0.146±0.017 0.922±0.011 0.137±0.021 0.928±0.054 0.142±0.031 0.888±0.025

0.22 0.252±0.018 0.978±0.019 0.203±0.032 0.944±0.042 0.191±0.044 0.894±0.034 0.185±0.138 0.856±0.059

0.24 0.407±0.012 0.983±0.0 0.389±0.047 0.906±0.034 0.301±0.015 0.744±0.092 0.317±0.047 0.794±0.041

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 9: Results for UMazeObstacle with alternative representation (avg. over 3 seeds).

Avoid RADT# AM-Lag RADT-AltRep#

MNC (1e-2) SR MNC (1e-2) SR MNC (1e-2) SR
3 4.455±0.895 0.868±0.028 4.47±0.94 0.645±0.01 4.587±0.805 0.91±0.035

5 8.75±0.531 0.853±0.015 10.14±1.9 0.76±0.01 8.897±1.127 0.883±0.038

7 12.7±1.0 0.832±0.038 12.72±0.702 0.777±0.028 12.723±0.804 0.887±0.05

# = Model capable of zero-shot generalization. Results highlighted in blue are zero-shot results.

Convex hull Concave hull

Hindsight-relabeled 
avoid centroid

b)

a)

Goal-reaching success rate vs. 
training step (FetchReachObstacle)

Obstacle-avoiding success rate vs. 
training step (FetchReachObstacle)

Naïve sampling

Hull-based 
sampling

= point in concave hull but 
not convex hull

Su
cc

es
s 

ra
te

Su
cc

es
s 

ra
te

Figure 5: a) 2D depiction of the contour-based centroid sampling strategy for avoiding region relabeling. The
convex and concave hulls are calculated for the set of data points in the state space for a training trajectory.
Points that are part of the concave hull but not the convex hull (depicted here in purple) comprise concave
portions of the trajectory that can be viewed as "wrapping around" some unknown avoid centroid. To generate an
avoid centroid that fits this intuitive interpretation in hindsight, we locate the two points bordering this concave
region (depicted here in red) and sample a point in between them. The resulting trajectory of data points looks
like it’s "trying" to avoid the blue hindsight-relabeled avoid centroid by wrapping around it. Figure built upon
an illustration from Vinh & Dung (2023). b) Using the contour-based strategy for sampling avoids centroids
results in a higher maximum SR for the FetchReachObstacle environment and notably mitigates/delays
overfitting.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Goal-reaching success rate vs. training step 
(FetchReachObstacle)

Obstacle-avoiding success rate vs. training step 
(FetchReachObstacle)

Su
cc

es
s 

ra
te

Su
cc

es
s 

ra
te

Figure 6: The maximum goal-reaching success rate for RADT trained on the FetchReachObstacle task improves
with increasing the attention boosting bias adelta to the prompt tokens. The maximum obstacle-avoiding
success rate, on the other hand, seems to be unaffected by the value of adelta.

Convex hull Concave hull

Hindsight-relabeled 
avoid centroid

b)

a)

Goal-reaching success rate vs. 
training step (FetchReachObstacle)

Obstacle-avoiding success rate vs. 
training step (FetchReachObstacle)

Naïve sampling

Hull-based 
sampling

= point in concave hull but 
not convex hull

Su
cc

es
s 

ra
te

Su
cc

es
s 

ra
te

Figure 7: A policy that rushes directly through the avoid region to get to the goal as quickly as possible may
earn a low absolute cost return but a high length-normalized cost return. On the other hand, a slower, more
cautious policy that takes more timesteps to reach the goal but attempts to circumvent the avoid region may
accumulate a similar absolute cost return, but a lower length-normalized cost return.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

a)

b)

Current state 

A A

Post-perturbation 
transient state

ACTION:
Switch gene A

A

A

A

A

Simulated progression of 
intermediate transient states 
(governed by boolean network 
transition dynamics/relationships)
k = 4

Next state 

Figure 8: a) A diagram representing the 15-gene boolean network model for mouse cardiogenesis. b) A
depiction of one state-action-state transition simulated in the Cardiogenesis environment, where k = 4.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I ADDITIONAL REFERENCES

ILLUSTRATION CITATIONS (NIAID NIH BIOART)

[The following images are included in our figures.]

NIAID Visual & Medical Arts., (10/7/2024). Fibroblast. NIAID NIH BIOART Source.
bioart.niaid.nih.gov/bioart/ 152, a.

NIAID Visual & Medical Arts., (10/7/2024). Fibroblast. NIAID NIH BIOART Source.
bioart.niaid.nih.gov/bioart/ 153, b.

NIAID Visual & Medical Arts., (10/7/2024). Fibroblast. NIAID NIH BIOART Source.
bioart.niaid.nih.gov/bioart/ 154, c.

NIAID Visual & Medical Arts. (10/7/2024). Generic Im- mune Cell. NIAID NIH BIOART Source.
bioart.niaid. nih.gov/bioart/173.

NIAID Visual & Medical Arts. (10/7/2024). Human Male Outline. NIAID NIH BIOART Source.
bioart.niaid.nih. gov/bioart/232.

NIAID Visual & Medical Arts. (10/7/2024). Intermediate Progenitor Cell. NIAID NIH BIOART
Source. bioart.niaid.nih.gov/bioart/258

ADDITIONAL REFERENCES

Eitan Altman. Constrained markov decision processes with total cost criteria: Occupation measures
and primal LP. Math. Methods Oper. Res. (Heidelb.), 43(1):45–72, February 1996.

R L Graham. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process.
Lett., 1(4):132–133, June 1972.

Naoki Katsura and Federico Baldassarre. Cosine annealing with warmup for pytorch. https:
//github.com/katsura-jp/pytorch-cosine-annealing-with-warmup.git,
2021.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

J.-S Park and S.-J Oh. A new concave hull algorithm and concaveness measure for n-dimensional
datasets. Journal of Information Science and Engineering, 29:379–392, 03 2013.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Pedro Luiz Silva, Fadhel Ayed, Antonio De Domenico, and Ali Maatouk. Pay attention to what
matters. In MINT: Foundation Model Interventions, 2024. URL https://openreview.net/
forum?id=F6o58A0OrX.

Zhixiong Tang. concave_hull. https://github.com/cubao/concave_hull.git, 2022.

Phan Vinh and Nguyen Dung. Context-Aware Systems and Applications. 11th EAI International
Conference, ICCASA 2022 Vinh Long, Vietnam, October 27–28, 2022 Proceedings. 04 2023. ISBN
978-3-031-28815-9.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

29

https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup.git
https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup.git
https://openreview.net/forum?id=F6o58A0OrX
https://openreview.net/forum?id=F6o58A0OrX
https://github.com/cubao/concave_hull.git
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Introduction
	Desirable Properties of Reach-Avoid RL Models
	Related Work
	Reach-Avoid Decision Transformer (RADT)
	Experiments
	Conclusion
	Data Preparation
	Datasets
	Avoid Representation Details
	Avoid Relabeling Details
	Avoid Relabeling Two-Pass Algorithm
	More Sophisticated Avoid Centroid Sampling Strategies


	Model/Training Details
	Model Architectural Details and Hyperparameters
	Training Details

	Experiment Details
	GymnasiumRobotics Environments
	Cardiogenesis Environment
	Other Notes

	Code
	Detailed Related Work
	Limitations
	Additional Experiments
	Ablation Experiments
	Limits of Zero-shot Generalization
	Effects of Expert-policy Data
	Effects of Changing Avoid Token Representation

	Additional Tables and Figures
	Additional References

