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Abstract

This paper presents our approach to dialog001
policy learning (DPL), which aims to deter-002
mine the next system’s action based on the003
current dialog state maintained by a dialog004
state tracking module. Different from previ-005
ous stage-wise DPL, we propose an end-to-006
end DPL system to avoid error accumulation007
between the dialogue turns. The DPL sys-008
tem is deployed from two perspectives. Firstly,009
we consider turn-level DPL that selects the010
best dialog action from a predefined action011
set. Specifically, we proposed a dialog action-012
oriented BERT (DA-BERT), which integrates013
a new pre-training procedure named masked014
last action task (MLA) that encourages BERT015
to be dialog-aware and distill action-specific016
features. Secondly, we propose a word-level017
DPL that directly generates the dialog action.018
We creatively model DPL as a sequence gen-019
eration model conditioned on the dialog ac-020
tion structure. Then GPT-2 equipped with021
an action structure parser module (termed as022
DA-GPT-2) is applied to learn the word level023
DPL. The effectiveness and different character-024
istics of the proposed models are demonstrated025
with the in-domain tasks and domain adapta-026
tion tasks on MultiWOZ with both simulator027
evaluation and human evaluation.028

1 Introduction029

Task-oriented dialogs that can serve users on cer-030

tain tasks have increasingly attracted research ef-031

forts. Dialog policy optimization is one of the032

most critical tasks of dialog modeling. Recently, it033

has shown great potentials for using reinforcement034

learning (RL) based methods to formulate dialog035

policy learning (Li et al., 2017b; Peng et al., 2017;036

Lipton et al., 2016; Peng et al., 2018a; Takanobu037

et al., 2019; Wang et al., 2020; Li et al., 2020c).038

Among these methods, dialog state tracking039

(DST), comprising of all information required to040

determine the response, is an indispensable module.041

However, DST inevitably accumulates errors from042

each module of the system. Therefore, in this pa- 043

per, we establish an end-to-end DPL model without 044

the help of DST. It takes the input as the historical 045

dialog actions. 046

Meanwhile, many efforts have been made to gen- 047

erate the final natural language response (Bordes 048

et al., 2016; Williams et al., 2017; Zhao et al., 2019). 049

However, most of the previous studies treat the DPL 050

task as either a single label classification task or a 051

multi-label prediction task (Li et al., 2020b) based 052

on turn-level action from pre-defined action sets, 053

which is typically insufficient for complicated tasks. 054

Can we get rid of this customized action list for 055

more flexible dialog responses? 056

Recent pre-trained Language Models (LMs) 057

which gather knowledge from the massive plain 058

text show great potential for addressing the afore- 059

mentioned challenges. However, due to the pre- 060

training task and the corpus, the pre-trained LMs 061

are task-agnostic, and cannot distinguish the char- 062

acteristic of DPL when transferring knowledge. 063

Therefore, we proposed dialog-aware pre-trained 064

LMs, DA-BERT, and DA-GPT-2 for efficient end- 065

to-end PDL from two perspectives of turn-level 066

policy and word-level policy, respectively. Specif- 067

ically, we proposed the Dialog Action-oriented 068

BERT termed as DA-BERT, in which a dialog act 069

aware pre-training task based on a corpus com- 070

posed of the historical annotated dialog action se- 071

quences are designed to encourage BERT to dis- 072

till the act-specific features. Specifically, rather 073

than predicting randomly masked words in the in- 074

put (MLM task) and classifying whether the sen- 075

tences are continuous or not (NSP task) (Devlin 076

et al., 2018), DA-BERT is pre-trained by predict- 077

ing the masked last acts in the input action se- 078

quences (termed as MLA task). Moreover, to 079

generate more flexible dialog actions, we model 080

dialog policy as a sequence generation problem 081

(Sutskever et al., 2014) based on GPT-2, which 082

takes word-level actions and is optimized with RE- 083
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INFORCE (Williams, 1992). GPT-2 works well084

when pre-trained on sufficient target domain cor-085

pus, however, suffers from a poor performance086

without enough demonstration. To address the in-087

stabilities that arise from huge action spaces and088

inefficient exploration, we proposed a Dialog Act089

Structure-based GPT-2, termed as DA-GPT-2. DA-090

GPT-2 is equipped with a structure parser module091

that draws the structural information of dialog ac-092

tions to generate understandable actions with good093

structure. Our experiments show that DA-BERT094

and DA-GPT-2 achieve the best performance in095

turn-level DPL and word-level DPL, respectively.096

To the best of our knowledge, this is the first097

work that strives to end-to-end DPL. Our main098

contributions are three-fold:099

• We design the DA-BERT equipped with a new100

pre-training task MLA to make dialog policy101

learning better efficiency and transferability.102

• We formulate dialog policy learning as a se-103

quence generation problem and solve the prob-104

lem by the proposed DA-GPT-2 based on a105

new optimization mechanism.106

• We validate the effectiveness and analyze the107

different characteristics of the proposed mod-108

els in a multi-domain task on a simulator.109

2 Related Work110

Dialog Policy Learning Reinforcement learning111

methods have been widely applied to optimize dia-112

log policies (Young et al., 2013; Su et al., 2016,113

2017; Williams et al., 2017; Peng et al., 2017,114

2018a,b; Lipton et al., 2018; Li et al., 2020a; Lee115

et al., 2019b). Towards mitigating inefficient sam-116

pling, a lot of progress is being made in demonstra-117

tion based methods on perspectives from reward118

designing(Brys et al., 2015; Hester et al., 2018;119

Li et al., 2020c), policy shaping (Cederborg et al.,120

2015; Griffith et al., 2013), or both (Wang et al.,121

2020). Different from previous methods that cast122

dialog policy learning as a single label classifica-123

tion problem, (Li et al., 2020b) proposed a sequen-124

tial decision model to generate the joint action from125

atomic action templates (Zhu et al., 2020). (Jhun-126

jhunwala et al., 2020) introduces a method to gen-127

erate the dialog actions by ranking, filtering, and128

picking the top candidate sequences. However, the129

generation is based on fixed templated input utter-130

ances set and required a human trainer to correct131

the output.132

Figure 1: Illustration of the BERT/GPT-2 for dialog
policy learning.

Pre-trained Language Models for Dialog Sev- 133

eral recent studies have focused on Pre-trained Lan- 134

guage Models for dialog, including BERT based di- 135

alog state tracking (Gulyaev et al., 2020; Chao and 136

Lane, 2019), where BERT is applied as a context 137

encoder and GPT-2 based dialog generation (Peng 138

et al., 2020; Yang et al., 2020; Olabiyi and Mueller, 139

2019; Ham et al., 2020; Wolf et al., 2019), where 140

GPT-2 is integrated as a response decoder. Unlike 141

these works, we focus on investigating BERT and 142

GPT-2 based dialog policy optimized with rein- 143

forcement learning. 144

Sequence Generation as Reinforcement Learn- 145

ing Our work is also related to recent efforts to 146

integrate the Seq2Seq and reinforcement learning 147

paradigms (Rennie et al., 2017; Li et al., 2017a; 148

Keneshloo et al., 2019), where advantages of both 149

are integrated. Our focus is on how to adapt the se- 150

quence generation model to dialog policy learning. 151

152

3 Approach 153

We cast the dialog policy learning problem as a 154

Markov Decision Process and optimize the policy 155

with deep reinforcement learning approaches. RL 156

usually involves an interactive process (as shown in 157

Figure 1), during which the dialog agent’s behavior 158

should choose actions that tend to increase the long- 159

turn sum of rewards given from the user. It can 160

learn to do this over time, by systematic trials and 161

errors until reaches the optimal. In our setting, 162

the dialog agent is encoded with the proposed DA- 163

BERT or DA-GPT-2, which perceive the state and 164

determine the next action Aa. These two models 165

make valuable contributions to RL-based DPL. 166

We build the end-to-end DPL models from two 167

perspectives. We first consider BERT-based DPL 168
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(a) DP-BERT (b) DP-GPT-2

Figure 2: The architecture of Dialog Action-oriented BERT (DA-BERT) and the dialog action sequence gen-
eration model conditioned on Dialog act structure based on GPT-2 (DA-GPT-2). In this example, DA-BERT
generates turn-level dialog action Aa based on historical actions, while DA-GPT-2 generates word-level action
based on decoder output from GPT-2 and category from structure parser.

on turn-level dialog actions, which are pre-defined169

as one or several concatenations of tuples contain-170

ing a domain name, an intent type, and slot names,171

e.g. ‘hotel-inform-price’. We also study word-level172

DPL takes a word as an action. GPT-2 is applied173

as the backbone to conduct the word-level policy174

to generate the dialog action word by word.175

3.1 BERT for Turn-level DPL176

We apply Deep Q-learning (Mnih et al., 2015) to177

optimize dialog policy for turn-level dialog action.178

Qθ(s, a), approximating the state-action value179

function parameterized θ, is implemented based180

on DA-BERT as illustrated in Figure 2(a). In each181

turn, perceiving the state that consists of historical182

action sequences, DA-BERT determines the dialog183

action a with the generated value function Qθ(·|s).184

Historical action sequences are tokenized started185

from [CLS], followed by the tokenized actions186

separated and ended with [SEP ]. Then BERT’s187

bidirectional Transformer encoder gets the final hid-188

den states denoted [t0..tn] = BERT([e0..en]) (n is189

the current sequence length, ei is the embedding190

of the input token). The contextualized sentence-191

level representation t0, is passed to an MLP module192

named Turn-level Action Classifier T to generate:193

Qθ(s, a) =T a(BERT(Embed(s)) (1)194

where Embed is the embedding modules of BERT, 195

T a denoted the ath output unit of T . 196

Based on DA-BERT, the dialog policy is trained 197

with ε-greedy exploration that selects a random 198

action with probability ε, or adopts a greedy pol- 199

icy a = argmaxa′Qθ(s, a
′). In each iteration, 200

Qθ(s, a) is updated by minimizing the following 201

square loss with stochastic gradient descent: 202

Lθ = E(s,a,r,s′)∼D[(yi −Qθ(s, a))2]
yi = r + γmax

a′
Q′θ(s

′, a′)
(2) 203

where γ ∈ [0, 1] is a discount factor, D is the expe- 204

rience replay buffer with collected transition tuples 205

(s, a, r, s′), and Q′(·) is the target value function, 206

which is only periodically updated. 207

3.1.1 Dialog Action-oriented Pre-training 208

Vanilla BERT is degraded when applied to dialog 209

policy due to the generality of pre-training tasks 210

and corpus. The NSP task encourages BERT to 211

model the relationship between sentences, which 212

may benefit natural language inference, however, 213

biased dialog policy learning due to the inconsis- 214

tency between success and continuity of sentences, 215

e.g. discontinuous sentences can form a successful 216

dialog. Also, the MLM task allows the word rep- 217

resentation to fuse the left and right context, while 218

the dialog agent is only allowed to access the left 219
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one. Considering that the ability to reason the next220

dialog action plays a key role for dialog policy, we221

replace the MLM and NSP task with a novel pre-222

training task: predicting masked last dialog action223

(MLA). MLA is based on a dialog action-oriented224

pre-training corpus, each piece of which is a dialog225

session composed of the annotated historical ac-226

tion sequences, for example, “[CLS] Police-Inform227

Name [SEP] Police-Inform Phone Addr Post [SEP]228

general-thank none [SEP]”, (denoted as sentence229

A). Then we randomly cut between two consecu-230

tive actions of a session, and select the first half231

with masked last act as input. For example, we cut232

sentence A between the 2nd and the 3rd action, and233

mask the last act to get the input: "[CLS] Police-234

Inform Name [SEP] [MASK]..[MASK]". The label235

for the masked tokens is "Police - Inform Phone236

Addr Post".237

The goal of MLA is to minimize the cross-238

entropy loss with input tokens w0, w1, .., wn:239

Lmla =− 1

m

m∑
i=1

n∑
j=n−k+1

log p(wij |wi0:j−1,j+1:n)

(3)240

where wi0:j−1,j+1:n = wi0..w
i
j−1, w

i
j+1..w

i
n, p is241

the language modeling head for predicting masked242

tokens. wij ∈ {0..v−1} is the label for the masked243

token, v is vocabulary size of BERT. m is the num-244

ber of dialog sessions. n and k is the length of245

input and masked action sequence, respectively.246

3.2 GPT-2 for Word-level DPL247

For more expressive dialog actions, we follow the248

OpenAI GPT-2 (Radford et al., 2019) to model di-249

alog policy as a sequence generation problem and250

optimize the policy with REINFORCE (Williams,251

1992). Similar to DA-BERT, we first concate-252

nate the current historical action sequence as a253

state, in which each action is ended with an end-254

of-text token ’.’. Suppose the tokenized state is255

st = [x0..xn] with length n, and the tokenized ex-256

pected response is Xt = [xn+1..xn+l] with length257

l. The word-level dialog policy can be written as258

the product of a series of conditional probabilities:259

Pϕ(Xt|st) =
n+l∏

i=n+1

Pϕ(xi|xn+1:i−1, st) (4)260

where xn+1:i−1 = xn+1..xi−1, while ϕ is the pa-261

rameters of the GPT-2 based policy network. Act-262

ing as an agent, GPT-2 predicts the next word and263

updates its internal "state" (modules of GPT-2).264

Upon generating the end-of-sequence token ’.’, the 265

agent observes a "reward" from a user, that is, for 266

instance, a -1 for each turn and a significant posi- 267

tive or negative reward indicating the status of the 268

dialog at the end of a session. The goal of training 269

is to minimize the negative expected reward: 270

Lϕ = −EXt∼Pϕ [

T∑
t=0

r(Xt)] (5) 271

where Xt is a dialog action sequence of turn t. 272

Practically, the expected gradient can be approx- 273

imated by using a single Monte-Carlo sample 274

X = (X0, ...,XT ) in a dialog session with Max 275

turn T from Pϕ, for each session example: 276

∇ϕLϕ ≈ −
T∑
t=0

r(Xt)∇ϕ logPϕ(Xt|st)

= −
T∑
t=0

r(Xt)∇ϕ
nt+lt∑
i=nt+1

logPϕ(xti|xtnt+1:i−1, st)

(6) 277

where nt and lt are the length of the current input 278

sequence and output action sequence at turning t. 279

Based on the word-level dialog policy, the gener- 280

ated dialog action sequence is decoded by Action 281

Decoder for final output. Action Decoder is de- 282

signed to identify the domain, intent, and slot from 283

the action sequence for GPT-2, and fill in slot value 284

based on a database. Both BERT and GPT-2 based 285

dialog action require action decoder to fill in slot 286

value for final output. An action generated from 287

GPT-2 is a sequence containing words related to 288

domain, intent, and slot. We use a tagger "-" to 289

indicate the linking of domain and intent, Action 290

Decoder identifies the left word and right word of 291

"-" as domain and intent respectively. The word be- 292

hind intent and before the next domain is detected 293

as slots. 294

3.2.1 DA-GPT-2 295

The biggest challenge of GPT-2 based dialog pol- 296

icy is the huge action space, which leads to many 297

ineffective explorations. The huge action space 298

not only reduces the learning efficiency but also 299

may trap the RL agent into a local minimum. Be- 300

sides, GPT-2 based policy model is unstable for it 301

is prone to produce actions that cannot be decoded. 302

Different from another sequence, the dialog action 303

sequence is characterized by its special structure, 304

which is reflected in that every word in the action 305

sequence has its corresponding unique category, 306
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such as the domain name, the intent type, and the307

slot name.308

Consequently, the decision-making process of309

an action sequence can be decomposed into two310

phases: determining the category of the next word311

and selecting the category-specific word. Moti-312

vated by the above observation we cast our problem313

in a hierarchical framework, as shown in Figure314

2(b). We make the structure parser responsible for315

the category-level decision, and the word-level clas-316

sifier determines the concrete word. The structure317

parser learns a hidden parameter z as the distribu-318

tion Pτ (zi|st, x0:i−1) over word categories condi-319

tioned on the previous output tokens and the cur-320

rent state. We consider 5 categories of the words,321

zi ∈ {0, 1, 2, 3, 4} corresponding to the domain322

name, the intent type, the slot name, the link tagger323

"-", and the end token ".", respectively. While the324

word-level policy is the distribution of the output325

tokens. More specifically, the probability of a word-326

level action is the joint probability of the generated327

sequence conditioned on the current state and the328

category distribution:329

Pτ,ϕ(Xt|zt, st) =
n+l∏

i=n+1

Pτ,ϕ(xi|xn+1:i−1, zi, st)

(7)330

where zi is the category distribution for xi, n and331

l is the length of the state and generated action332

sequence, respectively.333

Dialog Action Structure Loss To encourage334

generating the related categories to guide word de-335

cision, structure parser is trained using the follow-336

ing cross-entropy loss:337

Lsτ = − 1

n

n+l∑
i=n+1

logPτ (zi|st, x0:i−1) (8)338

where zi is the expected category of xi.339

Word Loss The GPT2-based RL agent is respon-340

sible for generating dialog action sequence word341

by word. Besides the structure, to give the valid342

action sequence that can be decoded by Action343

Decoder, the agent should learn the accurate distri-344

bution above words for each category. To achieve345

that, the agent train to minimize the following word346

loss:347

Lwτ,ϕ = − 1

n

n+l∑
i=n+1

logPτ,ϕ(xi|x0:i−1, zi, st) (9)348

We use a separate training scheme to optimize 349

DA-GPT-2 based on REINFORCE. In each iter- 350

ation, we update policy network Pτ,ϕ with loss: 351

352

Lϕ,τ = −EXt∼Pϕ,τ [

T∑
t=0

r(Xt)] (10) 353

For faster convergence, Lsτ and Lwτ,ϕ are only cal- 354

culated and backward propagated for successful 355

dialog. 356

3.2.2 Dialog Action Structure Pre-training 357

GPT-2 is pre-trained on extremely massive text data 358

OpenWebText (Radford et al., 2019). It has demon- 359

strated superior performance in characterizing data 360

distribution and knowledge of the human language. 361

To enable the guidance of categories for more ac- 362

curate dialog actions, we propose to continuously 363

pre-train GPT-2 on a large amount of annotated 364

dialog action sequences with corresponding word 365

categories. We first pre-process the dialog actions 366

A into a sequence Ai along with the label Si con- 367

taining the category of each word using the follow- 368

ing format: (Ai : domain-intent slot1..slotn, .. = 369

Si : 0 1 2 3 3..4, ..). Here we set the category label 370

of domain, ’-’, intent, slot, and ’.’ as 0, 1, 2, 3, 4, 371

respectively. Meanwhile, we set GPT-2 with the 372

structure parser as our backbone language model, 373

concatenate the sequentialized dialog action Ai 374

with its category labels Si, and fed them into the 375

language model. Finally, the model is trained to 376

minimize the loss of predicting the next word and 377

the related category. 378

4 Experiments and Results 379

We evaluate the proposed dialog policy mod- 380

els with a user simulator setup on MultiWoz 381

(Budzianowski et al., 2018). Additionally, to assess 382

the generalization capability of our approaches, we 383

conduct domain adaptation experiments. Finally, 384

human evaluation results are reported. The experi- 385

ments do not involve the NLG part because they are 386

held at the dialog-action level, i.e., RL agent inter- 387

actives with user simulator with dialog actions. No- 388

tably, our models can be equipped with any NLG 389

models. 390

4.1 Dataset 391

We continuously pre-train the proposed models 392

on MultiWoz (Budzianowski et al., 2018), a large- 393

scale fully annotated corpus of human-human con- 394

versations. Each dialog of MultiWoz is rich in 395
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annotations of dialog actions of user and system396

utterances. All models are only optimized on Mul-397

tiWoz, which contains 9 domains, 13 intents, and398

28 slots. The total size of the pre-training corpus399

of MultiWoz is 8434. More details of the dataset400

and their processing procedure are in Appendix A.401

4.2 Baseline Agents402

We compare the performance of the proposed DA-403

BERT and DA-GPT-2 with vanilla BERT, vanilla404

GPT-2, and several variants. Note that, our work is405

the first attempt to study end-to-end DPL, therefore,406

we do not compare the stage-wise methods (except407

DQN).408

• DQN agent is trained with a deep Q-Network.409

• BERT agent is equipped with BERT as en-410

coder that replacing MLP in DQN.411

• DA-BERTMWoz is our proposed agent that is412

pre-trained with MLA task as described in413

Section 3.1.1 on MultiWoz dataset.414

• GPT-2 agent is initialized with official GPT-415

2’s pre-trained weights and optimized with416

policy loss Lϕ as equ. 5.417

• DA-GPT-2MWoz is our proposed agent that is418

based on GPT-2 and equipped with structure419

parser 2(b). It is pre-trained with word loss420

Lwτ,ϕ as equ. 9 and action structure loss Lsτ as421

equ. 8 on MultiWoz, and then optimized on422

Lwτ,ϕ, Lsτ , and policy loss Lϕ as equ. 5.423

Implementation Details We adopt BERTbase424

(uncased) and DistilGPT-2 (Sanh et al., 2019) with425

default hyperparameters in Huggingface Trans-426

formers (Wolf et al., 2020) as the backbone lan-427

guage model. Turn-level Action Classifier for DA-428

BERT is a linear layer with 400 output units cor-429

responding to 400 action candidates. Word-level430

Action Classifier for DA-GPT-2 is the sum of two431

linear layers of the language modeling head (Wolf432

et al., 2020) and structure parser (with 5 output433

units for 5-word categories). We set the discount434

factor as γ = 0.9. We apply the rule-based agent435

from ConvLab (Lee et al., 2019a) for warm_start.436

The warm_start epoch for BERT and GPT2 based437

agents are 1000 and 50, respectively. More details438

of implementation are shown in Appendix B.439

4.3 User Simulator440

We leverage a public available agenda-based user441

simulator (Zhu et al., 2020) for our experiment442

setup on MultiWoz (Budzianowski et al., 2018). 443

During training, the simulator initializes with a user 444

goal and takes system acts as input and outputs user 445

acts with reward. The reward is set as -1 for each 446

turn to encourage short turns and a positive reward 447

(2 · T ) for successful dialog or a negative reward 448

of −T for failed one, where T (set as 40) is the 449

maximum number of turns in each dialog. A dialog 450

is considered successful only if the agent helps the 451

user simulator accomplish the goal and satisfies all 452

the user’s search constraints.

Table 1: The performance of different agents. Succ.
denotes the final success rate, Turn and Reward are the
average turn and the average reward of the whole train-
ing process, respectively.

Model Succ.↑ Turn↓ Reward↑

DQN 0.01 19.51 -53.66
BERT 0.64 14.75 -15.47
BERTMWoz 0.72 12.14 14.21
DA-BERTMWoz 0.84 10.21 27.35
GPT-2 0.30 17.45 -23.13
GPT-2MWoz 0.77 8.15 35.29
DA-GPT-2MWoz 0.78 7.71 37.12

453

4.4 Simulator Evaluation 454

All agents are evaluated with the success rate 455

(Succ.) at the end of the training, average turn 456

(Turn), average reward (Reward). 457

Figure 3: Comparisons on DA-BERT.

Main Results. The main simulation results are 458

shown in Table. 1, Figure 3, and Figure 4. The 459

results indicate that the proposed DA-GPT-2MWoz 460

learns much faster, while DA-BERTMWoz achieves 461

a better convergence in in-domain evaluation. The 462

consequence is not surprising since DA-BERTMWoz 463

selects the action from human-defined action sets, 464

however, DA-GPT-2MWoz needs to generate its an- 465

swers, which suffers from more uncertainty. 466
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DA-BERTMWoz, pre-trained with the mask last467

act task (MLA) on the MultiWoz corpus achieves468

the best Succ. (on average 0.84) with the highest469

learning efficiency in BERT-based models. The per-470

formance of DA-BERTMWoz reveals that our MLA471

pre-training task can not only encode the charac-472

teristics of dialog policy for efficiency improve-473

ment but also show better transfer abilities because474

dropping it BERTMWoz degrades the performance475

of DA-BERTMWoz. Additionally, BERT is consis-476

tently the worst in BERT-based models, which is477

not surprising since it is only initialized with offi-478

cial BERT’s pre-trained weights without in-domain479

pre-training. The generality of pre-training corpus480

and task, domain awareness, and knowledge trans-481

ferability of BERT are poor. Furthermore, without482

any pre-training, DQN is consistently the worst.483

Figure 4: Comparisons on DA-GPT-2.

Besides, DA-GPT-2MWoz, pre-trained on the Mul-484

tiWoz corpus and optimized with both structure485

and word loss achieves the best Succ. (on average486

0.78) with the highest learning efficiency among487

GPT-2 based models. DA-GPT-2MWoz learns faster488

and performs significantly better than GPT-2MWoz489

with a clear margin, which indicates the good per-490

formance of dialog action structure-based optimiza-491

tion and pre-training mechanism.492

Finally, the comparison results of Turn and Re-493

ward are illustrated in Table. 1. It depicts that494

DA-GPT-2MWoz achieves the shortest average turn495

and highest average reward, which is consistent496

with the learning curves in Figure 3 and Figure 4.497

4.5 Ablation Study498

Effectiveness of DA-GPT-2 Components To il-499

lustrate the true source of gains of the proposed500

DA-GPT-2, we design an ablative setting. What501

can be depicted from the comparison results in502

Figure 5 include: 1) A combination of action struc-503

ture loss and word loss is advantageous because504

Figure 5: Comparisons on the variants of the DA-GPT-
2.

removing one of them ("w/o s" or "w/o a") im- 505

pairs DA-GPT-2’s performance; 2) Action struc- 506

ture loss or word loss is also effective, indicated by 507

the superior performance of ("w/o s" or "w/o a") 508

compared to using only policy loss for optimization 509

(GPT-2MWoz); 3) Even if action structure loss and 510

word loss are used in the pre-training stage but not 511

in the in-domain training stage ("w/o as(opm)"), 512

it can also improve the performance to some extent 513

compared with (GPT-2MWoz). 514

Figure 6: Comparisons of agents pre-trained on SGD
corpus.

Effect of Pre-training Corpus We further test 515

the effect of different pre-training corpus on the 516

performance. Another corpus, Schema-Guided dia- 517

log (SGD) (Rastogi et al., 2019) is applied. It con- 518

sists of over 20k annotated conversations between a 519

human and a virtual assistant of 16 domains. More 520

details of SGD is in Appendix A. The models are 521

pre-trained on SGD and optimized on MultiWoz 522

to investigate the influence of pre-training corpus. 523

Some bullet names are explained as follows. 524

• DA-BERTSGD is a variant of DA-BERTMWoz 525

which is pre-trained on SGD and trained on 526

MultiWoz. 527

• DA-GPT-2SGD is a variant of DA-GPT-2MWoz 528

which is pre-trained on SGD and optimized 529

on MultiWoz. 530
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The core conclusion indicated from Figure 7 is531

that DA-BERT and DA-GPT-2 are robust to differ-532

ent pre-training corpus. Firstly, MLA is beneficial533

for BERT DPL models even with pre-trained on534

different corpus because removing it BERTSGD de-535

grades the performance of DA-BERTSGD. Besides,536

the proposed dialog action structure parser does537

better in extracting the knowledge of dialog action538

sequence especially the structure information that539

is invariant over domains. As a consequence, DA-540

GPT-2SGD outperforming GPT-2SGD.541

4.6 Domain Adaptation542

Figure 7: Comparisons on BERT based agents of do-
main adaptation.

To assess the ability to new task adaptation, we543

compare the agents that continually learn a new do-544

main Restaurant, starting from being well trained545

on the other six domains (i.e. Train, Hotel, Hospi-546

tal, Taxi, Police, Attraction). Figure 7 and Figure 8547

show the performances of new task adaptation for548

turn level DPL and word-level DPL, respectively.549

Firstly, though both DA-BERTSGD and BERTSGD550

are pre-trained on SGD additionally, BERTSGD still551

lags behind DA-BERTSGD, showing that pre-trained552

with MLA task is more effective than MLM and553

NSP for adaptation to new domain. Meanwhile,554

BERT performs worse than BERTSGD, which is no555

surprise since BERTSGD’s gain from SGD. More-556

over, DQN’s adaptation ability is consistently the557

worst. However, pre-training (on the six domains)558

also benefits DQN to obtain a better learning effi-559

ciency.560

Meanwhile, the results in Figure 8 confirm that561

DA-GPT-2 pre-trained and optimized with action562

structure loss and word loss is capable of quickly563

adapting to the new environment compared from564

DA-GPT-2SGD and GPT-2.565

Figure 8: Comparisons on GPT-2 based agents of do-
main adaptation.

Table 2: Human evaluation results on BERT and GPT-
2 based agents. We use models at epoch 10000 for all
agents. Succ. denotes success rate

.

Model Succ.↑

DQN 0.00
BERT 0.38
BERTMWoz 0.58
DA-BERTMWoz 0.68
GPT-2 0.20
GPT-2MWoz 0.78
DA-GPT-2MWoz 0.76

4.7 Human Evaluation 566

We further conduct a human evaluation to validate 567

the simulation results. We choose the agents trained 568

with 10000 epochs. Before the test, all evaluators 569

are instructed to interact with the agents to achieve 570

their goals. In each session, a user is assigned a 571

goal and a randomly selected agent. The user can 572

terminate the dialog if they think the session is must 573

fail. At the end of each session, the user is required 574

to judge if the dialog is a success or a failure. We 575

collect 50 conversations for each agent. The results 576

are illustrated in Table. 2, which is consistent with 577

the simulation results. 578

5 Conclusion 579

In this paper, we investigate large-scale pre-trained 580

LMs for end-to-end DPL from turn-level and word- 581

level. Firstly, We design a new pre-training task 582

MLA and build the DA-BERT model to improve 583

BERT-based dialog policy learning efficiency and 584

transferability. Besides, we propose the DA-GPT-2 585

accompanied by a dialog action structure-aware 586

pre-training method to increase the flexibility of 587

action and the richness of expression. The evalu- 588

ation results show the effectiveness and indicate 589

the different application scenarios of the proposed 590
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DA-BERT and DA-GPT-2.591
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Table 3: The data annotation schema.

Multiwoz SGD
Domain Attraction, Hospital, Book-

ing, Hotel, Restaurant, Taxi,
Train, Police, general

Restaurant, Media, Event, Music, Movie, Flight, RideShar-
ing, RentalCar, Bus, Hotel, Service, Home, Bank, Calen-
dar, Weather, Travel

Intent welcome, greet, bye, re-
qmore, Inform, Request,
Book, OfferBooked, No-
Book, Recommend, NoOf-
fer, OfferBook, Select

InformIntent, Request, Inform, Offer, RequestAlts, Inform-
Count, Select, Confirm, Affirm, NotifySuccess, ThankYou,
bye, OfferIntent, AffirmIntent, Negate, reqmore, Notify-
Failure, NegateIntent

Slot Name, none, Area, Choice,
Type, Price, Addr, Leave,
Food, Phone, Stars, Day,
Post, Arrive, Internet, Park-
ing, Dest, Depart, Fee, Ref,
Id, People, Time, Ticket,
Stay, Car, Open, Depart-
ment

intent, city, Depart, Dest, Food, Name, Car, Addr,
Phone, Price, count, Time, Leave, Arrive, party_size,
group_size, Day, has_live_music, serves_alcohol, title,
subtitles, directed_by, Type, number_of_tickets, album,
artist, playback_device, year, city_of_event, People,
airlines, seating_class, number_stops, passengers, re-
fundable, Fee, is_redeye, shared_ride, number_of_riders,
approximate_ride_duration, transfers, travelers, Stars,
has_laundry_service, offers_cosmetic_services, is_unisex,
Area, number_of_baths, number_of_beds, rent,
pets_allowed, furnished, balance, amount, num-
ber_of_rooms, pets_welcome, Stay, has_wifi, temperature,
precipitation, humidity, wind, good_for_kids, free_entry

A Data Annotation Schema813

Table. 3 lists all annotated dialog domains, intents,814

and slots of MultiWoz and SGD in detail. Because815

GPT-2 is case sensitive, we map some annotations816

of SGD with the same or related meanings but dif-817

ferent cases from those of MultiWoz. The specific818

mapping rules are shown in Table. 4 with format:819

"original word: mapped word". The words not in820

the Table. 4 are not processed. The "x" in string821

"_x" in the box "domain" in Table. 4 stands for the822

number, such as 1 in "restaurants_1".823

B Implementation and Parameters824

We adopt BERTbase (uncased) and DistilGPT-2825

(?), a distilled version of GPT-2 (Radford et al.,826

2019) as the backbone language model, and use de-827

fault hyperparameters for BERT and DistilGPT-2828

in Huggingface Transformers (Wolf et al., 2020).829

We pre-train and optimize all models on one RTX830

2080Ti GPU and GTX TITAN X. For BERT and831

GPT-2’s pre-training, the batch size is 8, and the832

training epoch is 3. The learning rate for BERT and833

GPT-2 are 0.00003 and 0.0005, respectively. To re-834

duce resource consumption, we leverage FP16 com-835

putation1 to use 16-bit (mixed) precision (through 836

NVIDIA apex) for all models. Turn-level Ac- 837

tion Classifier of BERT-based policy network (DA- 838

BERT) is a linear layer with 400 output units cor- 839

responding to 400 candidates of action. Word- 840

level Action Classifier of DA-GPT-2 is the sum of 841

two linear layers: the language modeling head of 842

GPT2LMHeadModel of Huggingface Transform- 843

ers (Wolf et al., 2020) and Structure Parser (with 844

768 input units and 5 output units corresponding 845

to 5 categories of words). ε-greedy is utilized for 846

policy exploration. We set the discount factor as 847

γ = 0.9. The target Q-network is updated at the 848

end of each epoch. To mitigate warm-up issues, We 849

apply the rule-based agent of ConvLab (Lee et al., 850

2019a) to provide experiences at the beginning, the 851

warm_start epoch for BERT-based agents are 1000, 852

while for GPT2 based agent is 50. 853

1https://docs.nvidia.com/deeplearning/
performance/mixed-precision-training/
index.html
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Table 4: The data annotation schema.

SGD
Domain Restaurants_x: Restaurant, Media_x: Media, Events_x: Event, Music_x: Music,

Movies_x: Movie, Flights_x: Flight, RideSharing_x: RideSharing, RentalCars_x:
RentalCar, Buses_x: Bus, Hotels_x: Hotel, Services_x: Service, Homes_x: Home,
Banks_x: Bank, Calendar_x: Calendar, Weather_x: Weather, Travel_x: Travel

Intent INFORM_INTENT: InformIntent, REQUEST: Request, INFORM: Inform, OFFER:
Offer, REQUEST_ALTS: RequestAlts, INFORM_COUNT: InformCount, SELECT:
Select, CONFIRM: Confirm, AFFIRM: Affirm, NOTIFY_SUCCESS: NotifySuc-
cess, THANK_YOU: ThankYou, GOODBYE: bye, OFFER_INTENT: OfferIntent,
AFFIRM_INTENT: AffirmIntent, NEGATE: Negate, REQ_MORE: reqmore, NO-
TIFY_FAILURE: NotifyFailure, NEGATE_INTENT: NegateIntent

Slot origin_city: Depart, destination_city: Dest, pickup_city: Depart, cuisine: Food,
restaurant_name: Name, event_name: Name, song_name: Name, movie_name:
Name, theater_name: Name, car_name: Car, origin_station_name: Depart, des-
tination_station_name: Dest, dentist_name: Name, stylist_name: Name, doc-
tor_name: Name, property_name: Name, recipient_account_name: Name, ho-
tel_name: Name, attraction_name: Name, street_address: Addr, venue_address:
Addr, address: Addr, phone_number: Phone, price_range: Price, time: Time,
show_time: Time, outbound_departure_time: Leave, outbound_arrival_time: Ar-
rive, inbound_departure_time: Leave, inbound_arrival_time: Arrive, wait_time:
Time, pickup_time: Leave, departure_time: Leave, leaving_time: Leave, appoint-
ment_time: Time, event_time: Time, available_start_time: Leave, available_end_time:
Arrive, date: Day, show_date: Day, departure_date: Leave, return_date: Arrive,
dropoff_date: Arrive, pickup_date: Leave, leaving_date: Leave, check_in_date: Leave,
check_out_date: Arrive, appointment_date: Day, visit_date: Day, event_date: Day,
genre: Type, venue: Addr, category: Type, event_location: Addr, address_of_location:
Addr, location: Addr, pickup_location: Depart, to_location: Dest, from_location:
Depart, subcategory: Type, number_of_seats: People, event_type: Type, show_type:
Type, ride_type: Type, type: Type, car_type: Type, fare_type: Type, account_type:
Type, recipient_account_type: Type, price: Price, total_price: Price, origin_airport:
Depart, destination_airport: Dest, origin: Depart, destination: Dest, fare: Fee,
ride_fare: Fee, to_station: Dest, from_station: Depart, where_to: Dest, num-
ber_of_adults: People, rating: Stars, average_rating: Stars, star_rating: Stars, area:
Area, number_of_days: Stay, price_per_night: Price
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