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Abstract

This paper presents our approach to dialog
policy learning (DPL), which aims to deter-
mine the next system’s action based on the
current dialog state maintained by a dialog
state tracking module. Different from previ-
ous stage-wise DPL, we propose an end-to-
end DPL system to avoid error accumulation
between the dialogue turns. The DPL sys-
tem is deployed from two perspectives. Firstly,
we consider turn-level DPL that selects the
best dialog action from a predefined action
set. Specifically, we proposed a dialog action-
oriented BERT (DA-BERT), which integrates
a new pre-training procedure named masked
last action task (MLA) that encourages BERT
to be dialog-aware and distill action-specific
features. Secondly, we propose a word-level
DPL that directly generates the dialog action.
We creatively model DPL as a sequence gen-
eration model conditioned on the dialog ac-
tion structure. Then GPT-2 equipped with
an action structure parser module (termed as
DA-GPT-2) is applied to learn the word level
DPL. The effectiveness and different character-
istics of the proposed models are demonstrated
with the in-domain tasks and domain adapta-
tion tasks on MultiWOZ with both simulator
evaluation and human evaluation.

1 Introduction

Task-oriented dialogs that can serve users on cer-
tain tasks have increasingly attracted research ef-
forts. Dialog policy optimization is one of the
most critical tasks of dialog modeling. Recently, it
has shown great potentials for using reinforcement
learning (RL) based methods to formulate dialog
policy learning (Li et al., 2017b; Peng et al., 2017;
Lipton et al., 2016; Peng et al., 2018a; Takanobu
et al., 2019; Wang et al., 2020; Li et al., 2020c).
Among these methods, dialog state tracking
(DST), comprising of all information required to
determine the response, is an indispensable module.
However, DST inevitably accumulates errors from

each module of the system. Therefore, in this pa-
per, we establish an end-to-end DPL model without
the help of DST. It takes the input as the historical
dialog actions.

Meanwhile, many efforts have been made to gen-
erate the final natural language response (Bordes
etal., 2016; Williams et al., 2017; Zhao et al., 2019).
However, most of the previous studies treat the DPL
task as either a single label classification task or a
multi-label prediction task (Li et al., 2020b) based
on turn-level action from pre-defined action sets,
which is typically insufficient for complicated tasks.
Can we get rid of this customized action list for
more flexible dialog responses?

Recent pre-trained Language Models (LMs)
which gather knowledge from the massive plain
text show great potential for addressing the afore-
mentioned challenges. However, due to the pre-
training task and the corpus, the pre-trained LMs
are task-agnostic, and cannot distinguish the char-
acteristic of DPL when transferring knowledge.
Therefore, we proposed dialog-aware pre-trained
LMs, DA-BERT, and DA-GPT-2 for efficient end-
to-end PDL from two perspectives of turn-level
policy and word-level policy, respectively. Specif-
ically, we proposed the Dialog Action-oriented
BERT termed as DA-BERT, in which a dialog act
aware pre-training task based on a corpus com-
posed of the historical annotated dialog action se-
quences are designed to encourage BERT to dis-
till the act-specific features. Specifically, rather
than predicting randomly masked words in the in-
put (MLM task) and classifying whether the sen-
tences are continuous or not (NSP task) (Devlin
et al., 2018), DA-BERT is pre-trained by predict-
ing the masked last acts in the input action se-
quences (termed as MLA task). Moreover, to
generate more flexible dialog actions, we model
dialog policy as a sequence generation problem
(Sutskever et al., 2014) based on GPT-2, which
takes word-level actions and is optimized with RE-



INFORCE (Williams, 1992). GPT-2 works well
when pre-trained on sufficient target domain cor-
pus, however, suffers from a poor performance
without enough demonstration. To address the in-
stabilities that arise from huge action spaces and
inefficient exploration, we proposed a Dialog Act
Structure-based GPT-2, termed as DA-GPT-2. DA-
GPT-2 is equipped with a structure parser module
that draws the structural information of dialog ac-
tions to generate understandable actions with good
structure. Our experiments show that DA-BERT
and DA-GPT-2 achieve the best performance in
turn-level DPL and word-level DPL, respectively.

To the best of our knowledge, this is the first
work that strives to end-to-end DPL. Our main
contributions are three-fold:

* We design the DA-BERT equipped with a new
pre-training task ML A to make dialog policy
learning better efficiency and transferability.

* We formulate dialog policy learning as a se-
quence generation problem and solve the prob-
lem by the proposed DA-GPT-2 based on a
new optimization mechanism.

* We validate the effectiveness and analyze the
different characteristics of the proposed mod-
els in a multi-domain task on a simulator.

2 Related Work

Dialog Policy Learning Reinforcement learning
methods have been widely applied to optimize dia-
log policies (Young et al., 2013; Su et al., 2016,
2017; Williams et al., 2017; Peng et al., 2017,
2018a,b; Lipton et al., 2018; Li et al., 2020a; Lee
et al., 2019b). Towards mitigating inefficient sam-
pling, a lot of progress is being made in demonstra-
tion based methods on perspectives from reward
designing(Brys et al., 2015; Hester et al., 2018;
Li et al., 2020c), policy shaping (Cederborg et al.,
2015; Griffith et al., 2013), or both (Wang et al.,
2020). Different from previous methods that cast
dialog policy learning as a single label classifica-
tion problem, (Li et al., 2020b) proposed a sequen-
tial decision model to generate the joint action from
atomic action templates (Zhu et al., 2020). (Jhun-
jhunwala et al., 2020) introduces a method to gen-
erate the dialog actions by ranking, filtering, and
picking the top candidate sequences. However, the
generation is based on fixed templated input utter-
ances set and required a human trainer to correct
the output.

Aa .~ Agent
/ (DP-BERT/DP-GPT-2)
User ‘ ‘—.
o]
Historical Actions
Aug Aag Ay -
(Au,R) 1

Figure 1: Illustration of the BERT/GPT-2 for dialog
policy learning.

Pre-trained Language Models for Dialog Sev-
eral recent studies have focused on Pre-trained Lan-
guage Models for dialog, including BERT based di-
alog state tracking (Gulyaev et al., 2020; Chao and
Lane, 2019), where BERT is applied as a context
encoder and GPT-2 based dialog generation (Peng
et al., 2020; Yang et al., 2020; Olabiyi and Mueller,
2019; Ham et al., 2020; Wolf et al., 2019), where
GPT-2 is integrated as a response decoder. Unlike
these works, we focus on investigating BERT and
GPT-2 based dialog policy optimized with rein-
forcement learning.

Sequence Generation as Reinforcement Learn-
ing Our work is also related to recent efforts to
integrate the Seq2Seq and reinforcement learning
paradigms (Rennie et al., 2017; Li et al., 2017a;
Keneshloo et al., 2019), where advantages of both
are integrated. Our focus is on how to adapt the se-
quence generation model to dialog policy learning.

3 Approach

We cast the dialog policy learning problem as a
Markov Decision Process and optimize the policy
with deep reinforcement learning approaches. RL
usually involves an interactive process (as shown in
Figure 1), during which the dialog agent’s behavior
should choose actions that tend to increase the long-
turn sum of rewards given from the user. It can
learn to do this over time, by systematic trials and
errors until reaches the optimal. In our setting,
the dialog agent is encoded with the proposed DA-
BERT or DA-GPT-2, which perceive the state and
determine the next action A,. These two models
make valuable contributions to RL-based DPL.
We build the end-to-end DPL models from two
perspectives. We first consider BERT-based DPL
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Figure 2: The architecture of Dialog Action-oriented BERT (DA-BERT) and the dialog action sequence gen-
eration model conditioned on Dialog act structure based on GPT-2 (DA-GPT-2). In this example, DA-BERT
generates turn-level dialog action A, based on historical actions, while DA-GPT-2 generates word-level action
based on decoder output from GPT-2 and category from structure parser.

on turn-level dialog actions, which are pre-defined
as one or several concatenations of tuples contain-
ing a domain name, an intent type, and slot names,
e.g. ‘hotel-inform-price’. We also study word-level
DPL takes a word as an action. GPT-2 is applied
as the backbone to conduct the word-level policy
to generate the dialog action word by word.

3.1 BERT for Turn-level DPL

We apply Deep Q-learning (Mnih et al., 2015) to
optimize dialog policy for turn-level dialog action.
Qo(s,a), approximating the state-action value
function parameterized 6, is implemented based
on DA-BERT as illustrated in Figure 2(a). In each
turn, perceiving the state that consists of historical
action sequences, DA-BERT determines the dialog
action a with the generated value function Qg(-|s).
Historical action sequences are tokenized started
from [C'LS], followed by the tokenized actions
separated and ended with [SEP|. Then BERT’s
bidirectional Transformer encoder gets the final hid-
den states denoted [tg..t,] = BERT([ep..ey]) (n is
the current sequence length, e; is the embedding
of the input token). The contextualized sentence-
level representation tg, is passed to an MLP module
named Turn-level Action Classifier T' to generate:

Qo(s,a) =T ,(BERT(Embed(s)) (1)

where E'mbed is the embedding modules of BERT,
T, denoted the a;;, output unit of 7T'.

Based on DA-BERT, the dialog policy is trained
with e-greedy exploration that selects a random
action with probability €, or adopts a greedy pol-
icy a = argmaz,Qp(s,a’). In each iteration,
Qo (s, a) is updated by minimizing the following
square loss with stochastic gradient descent:

Lo = E(s7a,r,s’)~D[(yi - Q9(87 a))Q]

yi = r+ymaxQy(s’, a) @
a

where v € [0, 1] is a discount factor, D is the expe-

rience replay buffer with collected transition tuples

(s,a,r,s"), and Q'(+) is the target value function,

which is only periodically updated.

3.1.1 Dialog Action-oriented Pre-training

Vanilla BERT is degraded when applied to dialog
policy due to the generality of pre-training tasks
and corpus. The NSP task encourages BERT to
model the relationship between sentences, which
may benefit natural language inference, however,
biased dialog policy learning due to the inconsis-
tency between success and continuity of sentences,
e.g. discontinuous sentences can form a successful
dialog. Also, the MLM task allows the word rep-
resentation to fuse the left and right context, while
the dialog agent is only allowed to access the left



one. Considering that the ability to reason the next
dialog action plays a key role for dialog policy, we
replace the MLM and NSP task with a novel pre-
training task: predicting masked last dialog action
(MLA). MLA is based on a dialog action-oriented
pre-training corpus, each piece of which is a dialog
session composed of the annotated historical ac-
tion sequences, for example, “/CLS] Police-Inform
Name [SEP] Police-Inform Phone Addr Post [SEP]
general-thank none [SEP]”, (denoted as sentence
A). Then we randomly cut between two consecu-
tive actions of a session, and select the first half
with masked last act as input. For example, we cut
sentence A between the 2,4 and the 3,.4 action, and
mask the last act to get the input: "[CLS] Police-
Inform Name [SEP] [MASK]..[MASK]". The label
for the masked tokens is "Police - Inform Phone
Addr Post".

The goal of MLA is to minimize the cross-
entropy loss with input tokens wq, wy, .., Wy:

1 m n . .
L — - — > > logp(whlwhji1m)
(3)

where wézj_17j+1:n = wé..w;-_l, w§+1..wfl, pis
the language modeling head for predicting masked
tokens. w;- € {0..v — 1} is the label for the masked
token, v is vocabulary size of BERT. m is the num-
ber of dialog sessions. n and k is the length of
input and masked action sequence, respectively.

3.2 GPT-2 for Word-level DPL

For more expressive dialog actions, we follow the
OpenAl GPT-2 (Radford et al., 2019) to model di-
alog policy as a sequence generation problem and
optimize the policy with REINFORCE (Williams,
1992). Similar to DA-BERT, we first concate-
nate the current historical action sequence as a
state, in which each action is ended with an end-
of-text token ’.”. Suppose the tokenized state is
st = [xo..xy] with length n, and the tokenized ex-
pected response is Xy = [y 41..2p4] With length
[. The word-level dialog policy can be written as
the product of a series of conditional probabilities:

n—+l
Po(Xelst) = [[ Polilzniriot,s) @

i=n+1

where 1141 = Tp41.-Ti—1, While ¢ is the pa-
rameters of the GPT-2 based policy network. Act-
ing as an agent, GPT-2 predicts the next word and
updates its internal "state” (modules of GPT-2).

Upon generating the end-of-sequence token °.’, the
agent observes a "reward" from a user, that is, for
instance, a -1 for each turn and a significant posi-
tive or negative reward indicating the status of the
dialog at the end of a session. The goal of training
is to minimize the negative expected reward:

T
Lo = —Ex,op [ ) r(X)] ©)

t=0

where X; is a dialog action sequence of turn t.
Practically, the expected gradient can be approx-
imated by using a single Monte-Carlo sample
X = (Xp,...,Xr) in a dialog session with Max
turn 7' from P, for each session example:

T
Vgpﬁ@ ~ — Z T(Xt)V@ log PW(XA:;})
t=0
T nt41t
=0

r(X)Ve Y logPo(af|ahi sy 10 50)

i=nt4+1
(6)
where n! and [? are the length of the current input
sequence and output action sequence at turning ¢.
Based on the word-level dialog policy, the gener-
ated dialog action sequence is decoded by Action
Decoder for final output. Action Decoder is de-
signed to identify the domain, intent, and slot from
the action sequence for GPT-2, and fill in slot value
based on a database. Both BERT and GPT-2 based
dialog action require action decoder to fill in slot
value for final output. An action generated from
GPT-2 is a sequence containing words related to
domain, intent, and slot. We use a tagger "-" to
indicate the linking of domain and intent, Action
Decoder identifies the left word and right word of
"-"as domain and intent respectively. The word be-
hind intent and before the next domain is detected
as slots.

t

3.2.1 DA-GPT-2

The biggest challenge of GPT-2 based dialog pol-
icy is the huge action space, which leads to many
ineffective explorations. The huge action space
not only reduces the learning efficiency but also
may trap the RL agent into a local minimum. Be-
sides, GPT-2 based policy model is unstable for it
is prone to produce actions that cannot be decoded.
Different from another sequence, the dialog action
sequence is characterized by its special structure,
which is reflected in that every word in the action
sequence has its corresponding unique category,



such as the domain name, the intent type, and the
slot name.

Consequently, the decision-making process of
an action sequence can be decomposed into two
phases: determining the category of the next word
and selecting the category-specific word. Moti-
vated by the above observation we cast our problem
in a hierarchical framework, as shown in Figure
2(b). We make the structure parser responsible for
the category-level decision, and the word-level clas-
sifier determines the concrete word. The structure
parser learns a hidden parameter z as the distribu-
tion Pr(z;|s¢, o.i—1) over word categories condi-
tioned on the previous output tokens and the cur-
rent state. We consider 5 categories of the words,
z; € {0,1,2,3,4} corresponding to the domain
name, the intent type, the slot name, the link tagger
, and the end token ".", respectively. While the
word-level policy is the distribution of the output
tokens. More specifically, the probability of a word-
level action is the joint probability of the generated
sequence conditioned on the current state and the
category distribution:

non

n+l
PT7QD(Xt’Zt7 St) = H PT,QO(xi‘In-‘rll’i—la Zj, St)

i=n-+1
(N
where z; is the category distribution for z;, n and
[ is the length of the state and generated action
sequence, respectively.

Dialog Action Structure Loss To encourage
generating the related categories to guide word de-
cision, structure parser is trained using the follow-
ing cross-entropy loss:

n—+l

1
Lr=—o Z log Pr(zilst, xo:i-1)  (8)
1=n+1

where z; is the expected category of z;.

Word Loss The GPT2-based RL agent is respon-
sible for generating dialog action sequence word
by word. Besides the structure, to give the valid
action sequence that can be decoded by Action
Decoder, the agent should learn the accurate distri-
bution above words for each category. To achieve
that, the agent train to minimize the following word
loss:

n—+l

1
LY, = _nz‘;ﬂbg Pro(xi|xoi-1,2i,5:) (9)

We use a separate training scheme to optimize
DA-GPT-2 based on REINFORCE. In each iter-
ation, we update policy network P, , with loss:

T

ESO»T = _]EXtNPLP,T [Z T(Xt)]
t=0

(10)

For faster convergence, £7 and L7, are only cal-
culated and backward propagated for successful
dialog.

3.2.2 Dialog Action Structure Pre-training

GPT-2 is pre-trained on extremely massive text data
OpenWebText (Radford et al., 2019). It has demon-
strated superior performance in characterizing data
distribution and knowledge of the human language.
To enable the guidance of categories for more ac-
curate dialog actions, we propose to continuously
pre-train GPT-2 on a large amount of annotated
dialog action sequences with corresponding word
categories. We first pre-process the dialog actions
A into a sequence A; along with the label S; con-
taining the category of each word using the follow-
ing format: (A; : domain-intent slot;..slot,, .. =
S;:01233.4,..). Here we set the category label
of domain, ’-’, intent, slot, and ’.” as 0, 1, 2, 3, 4,
respectively. Meanwhile, we set GPT-2 with the
structure parser as our backbone language model,
concatenate the sequentialized dialog action A;
with its category labels S;, and fed them into the
language model. Finally, the model is trained to
minimize the loss of predicting the next word and
the related category.

4 Experiments and Results

We evaluate the proposed dialog policy mod-
els with a user simulator setup on MultiWoz
(Budzianowski et al., 2018). Additionally, to assess
the generalization capability of our approaches, we
conduct domain adaptation experiments. Finally,
human evaluation results are reported. The experi-
ments do not involve the NLG part because they are
held at the dialog-action level, i.e., RL agent inter-
actives with user simulator with dialog actions. No-
tably, our models can be equipped with any NLG
models.

4.1 Dataset

We continuously pre-train the proposed models
on MultiWoz (Budzianowski et al., 2018), a large-
scale fully annotated corpus of human-human con-
versations. Each dialog of MultiWoz is rich in



annotations of dialog actions of user and system
utterances. All models are only optimized on Mul-
tiWoz, which contains 9 domains, 13 intents, and
28 slots. The total size of the pre-training corpus
of MultiWoz is 8434. More details of the dataset
and their processing procedure are in Appendix A.

4.2 Baseline Agents

We compare the performance of the proposed DA-
BERT and DA-GPT-2 with vanilla BERT, vanilla
GPT-2, and several variants. Note that, our work is
the first attempt to study end-to-end DPL, therefore,
we do not compare the stage-wise methods (except
DQN).

* DQN agent is trained with a deep Q-Network.

* BERT agent is equipped with BERT as en-
coder that replacing MLP in DQN.

* DA-BERTyy, is our proposed agent that is
pre-trained with MLA task as described in
Section 3.1.1 on MultiWoz dataset.

* GPT-2 agent is initialized with official GPT-
2’s pre-trained weights and optimized with
policy loss L, as equ. 5.

* DA-GPT-2yy,, is our proposed agent that is
based on GPT-2 and equipped with structure
parser 2(b). It is pre-trained with word loss
LY, as equ. 9 and action structure loss L7 as
equ. 8 on MultiWoz, and then optimized on

LY, L3, and policy loss L, as equ. 5.

Implementation Details We adopt BERT}.
(uncased) and DistilGPT-2 (Sanh et al., 2019) with
default hyperparameters in Huggingface Trans-
formers (Wolf et al., 2020) as the backbone lan-
guage model. Turn-level Action Classifier for DA-
BERT is a linear layer with 400 output units cor-
responding to 400 action candidates. Word-level
Action Classifier for DA-GPT-2 is the sum of two
linear layers of the language modeling head (Wolf
et al., 2020) and structure parser (with 5 output
units for 5-word categories). We set the discount
factor as v = 0.9. We apply the rule-based agent
from ConvLab (Lee et al., 2019a) for warm_start.
The warm_start epoch for BERT and GPT2 based
agents are 1000 and 50, respectively. More details
of implementation are shown in Appendix B.

4.3 User Simulator

We leverage a public available agenda-based user
simulator (Zhu et al., 2020) for our experiment

setup on MultiWoz (Budzianowski et al., 2018).
During training, the simulator initializes with a user
goal and takes system acts as input and outputs user
acts with reward. The reward is set as -1 for each
turn to encourage short turns and a positive reward
(2 - T) for successful dialog or a negative reward
of —T for failed one, where T (set as 40) is the
maximum number of turns in each dialog. A dialog
is considered successful only if the agent helps the
user simulator accomplish the goal and satisfies all
the user’s search constraints.

Table 1: The performance of different agents. Succ.
denotes the final success rate, Turn and Reward are the
average turn and the average reward of the whole train-
ing process, respectively.

Model Succ.t Turn| Rewardf
DQN 0.01 19.51 -53.66
BERT 0.64 14.75 -15.47
BERT o 0.72 12.14 14.21
DA-BERT o 0.84 10.21 27.35
GPT-2 0.30 17.45 -23.13
GPT-2uyoz 0.77 8.15 35.29
DA-GPT-2yyo,  0.78 7.71 37.12

4.4 Simulator Evaluation

All agents are evaluated with the success rate
(Succ.) at the end of the training, average turn
(Turn), average reward (Reward).
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Figure 3: Comparisons on DA-BERT.

Main Results. The main simulation results are
shown in Table. 1, Figure 3, and Figure 4. The
results indicate that the proposed DA-GPT-2yyo.
learns much faster, while DA-BERTyy. achieves
a better convergence in in-domain evaluation. The
consequence is not surprising since DA-BERTyo.
selects the action from human-defined action sets,
however, DA-GPT-2yy,, needs to generate its an-
swers, which suffers from more uncertainty.



DA-BERTyy,, pre-trained with the mask last
act task (MLA) on the MultiWoz corpus achieves
the best Succ. (on average 0.84) with the highest
learning efficiency in BERT-based models. The per-
formance of DA-BERTyy,z reveals that our MLA
pre-training task can not only encode the charac-
teristics of dialog policy for efficiency improve-
ment but also show better transfer abilities because
dropping it BERTyy,, degrades the performance
of DA-BERTyy.,. Additionally, BERT is consis-
tently the worst in BERT-based models, which is
not surprising since it is only initialized with offi-
cial BERT’s pre-trained weights without in-domain
pre-training. The generality of pre-training corpus
and task, domain awareness, and knowledge trans-
ferability of BERT are poor. Furthermore, without
any pre-training, DQN is consistently the worst.
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Figure 4: Comparisons on DA-GPT-2.

Besides, DA-GPT-2yy,, pre-trained on the Mul-
tiWoz corpus and optimized with both structure
and word loss achieves the best Succ. (on average
0.78) with the highest learning efficiency among
GPT-2 based models. DA-GPT-2yy.z learns faster
and performs significantly better than GPT-2yy,,
with a clear margin, which indicates the good per-
formance of dialog action structure-based optimiza-
tion and pre-training mechanism.

Finally, the comparison results of Turn and Re-
ward are illustrated in Table. 1. It depicts that
DA-GPT-2yy,, achieves the shortest average turn
and highest average reward, which is consistent
with the learning curves in Figure 3 and Figure 4.

4.5 Ablation Study

Effectiveness of DA-GPT-2 Components To il-
lustrate the true source of gains of the proposed
DA-GPT-2, we design an ablative setting. What
can be depicted from the comparison results in
Figure 5 include: 1) A combination of action struc-
ture loss and word loss is advantageous because
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Figure 5: Comparisons on the variants of the DA-GPT-
2.

removing one of them ("w/o s" or "w/o a") im-
pairs DA-GPT-2’s performance; 2) Action struc-
ture loss or word loss is also effective, indicated by
the superior performance of ("w/o s" or "w/o a")
compared to using only policy loss for optimization
(GPT-2my02); 3) Even if action structure loss and
word loss are used in the pre-training stage but not
in the in-domain training stage ("w/o as(opm)"),
it can also improve the performance to some extent
compared with (GPT-2yyoz).

—— DABERT.y
BERTgqp

0.8

Frames

Figure 6: Comparisons of agents pre-trained on SGD
corpus.

Effect of Pre-training Corpus We further test
the effect of different pre-training corpus on the
performance. Another corpus, Schema-Guided dia-
log (SGD) (Rastogi et al., 2019) is applied. It con-
sists of over 20k annotated conversations between a
human and a virtual assistant of 16 domains. More
details of SGD is in Appendix A. The models are
pre-trained on SGD and optimized on MultiWoz
to investigate the influence of pre-training corpus.
Some bullet names are explained as follows.

* DA-BERTgqp is a variant of DA-BERTyy.
which is pre-trained on SGD and trained on
MultiWoz.

e DA-GPT-24qp is a variant of DA-GPT-2yyoz
which is pre-trained on SGD and optimized
on MultiWoz.



The core conclusion indicated from Figure 7 is
that DA-BERT and DA-GPT-2 are robust to differ-
ent pre-training corpus. Firstly, MLA is beneficial
for BERT DPL models even with pre-trained on
different corpus because removing it BERTs¢p de-
grades the performance of DA-BERTsgp. Besides,
the proposed dialog action structure parser does
better in extracting the knowledge of dialog action
sequence especially the structure information that
is invariant over domains. As a consequence, DA-
GPT-25¢p outperforming GPT-25¢p.

4.6 Domain Adaptation
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Figure 7: Comparisons on BERT based agents of do-
main adaptation.

To assess the ability to new task adaptation, we
compare the agents that continually learn a new do-
main Restaurant, starting from being well trained
on the other six domains (i.e. Train, Hotel, Hospi-
tal, Taxi, Police, Attraction). Figure 7 and Figure 8
show the performances of new task adaptation for
turn level DPL and word-level DPL, respectively.

Firstly, though both DA-BERTs¢p and BERTs¢p
are pre-trained on SGD additionally, BERTgp still
lags behind DA-BERTs¢p, showing that pre-trained
with MLA task is more effective than MLM and
NSP for adaptation to new domain. Meanwhile,
BERT performs worse than BERTsgp, which is no
surprise since BERTs¢p’s gain from SGD. More-
over, DQN’s adaptation ability is consistently the
worst. However, pre-training (on the six domains)
also benefits DQN to obtain a better learning effi-
ciency.

Meanwhile, the results in Figure 8 confirm that
DA-GPT-2 pre-trained and optimized with action
structure loss and word loss is capable of quickly
adapting to the new environment compared from
DA-GPT-25¢p and GPT-2.

—— DA-GPT-2g¢p
DA'GPT'ZSGD wloa

200 400 600 800 1000
Frames

Figure 8: Comparisons on GPT-2 based agents of do-
main adaptation.

Table 2: Human evaluation results on BERT and GPT-
2 based agents. We use models at epoch 10000 for all
agents. Succ. denotes success rate

Model Suce.t
DQN 0.00
BERT 0.38
BERT 02 0.58
DA-BERTwyoz 0.68
GPT-2 0.20
GPT-2uy0z 0.78
DA-GPT-2uyoz 0.76

4.7 Human Evaluation

We further conduct a human evaluation to validate
the simulation results. We choose the agents trained
with 10000 epochs. Before the test, all evaluators
are instructed to interact with the agents to achieve
their goals. In each session, a user is assigned a
goal and a randomly selected agent. The user can
terminate the dialog if they think the session is must
fail. At the end of each session, the user is required
to judge if the dialog is a success or a failure. We
collect 50 conversations for each agent. The results
are illustrated in Table. 2, which is consistent with
the simulation results.

5 Conclusion

In this paper, we investigate large-scale pre-trained
LMs for end-to-end DPL from turn-level and word-
level. Firstly, We design a new pre-training task
MLA and build the DA-BERT model to improve
BERT-based dialog policy learning efficiency and
transferability. Besides, we propose the DA-GPT-2
accompanied by a dialog action structure-aware
pre-training method to increase the flexibility of
action and the richness of expression. The evalu-
ation results show the effectiveness and indicate
the different application scenarios of the proposed



DA-BERT and DA-GPT-2.
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Table 3: The data annotation schema.

Multiwoz SGD

Domain | Attraction, Hospital, Book- | Restaurant, Media, Event, Music, Movie, Flight, RideShar-
ing, Hotel, Restaurant, Taxi, | ing, RentalCar, Bus, Hotel, Service, Home, Bank, Calen-
Train, Police, general dar, Weather, Travel

Intent welcome, greet, bye, re- | Informlntent, Request, Inform, Offer, RequestAlts, Inform-
gmore, Inform, Request, | Count, Select, Confirm, Affirm, NotifySuccess, ThankYou,
Book, OfferBooked, No- | bye, OfferIntent, AffirmIntent, Negate, reqmore, Notify-
Book, Recommend, NoOf- | Failure, NegateIntent
fer, OfferBook, Select

Slot Name, none, Area, Choice, | intent, city, Depart, Dest, Food, Name, Car, Addr,

Type, Price, Addr, Leave,
Food, Phone, Stars, Day,
Post, Arrive, Internet, Park-
ing, Dest, Depart, Fee, Ref,
Id, People, Time, Ticket,
Stay, Car, Open, Depart-
ment

Phone, Price, count, Time, Leave, Arrive, party_size,
group_size, Day, has_live_music, serves_alcohol, title,
subtitles, directed_by, Type, number_of_tickets, album,
artist, playback_device, year, city_of event, People,
airlines, seating_class, number_stops, passengers, re-
fundable, Fee, is_redeye, shared_ride, number_of_riders,
approximate_ride_duration, transfers, travelers, Stars,
has_laundry_service, offers_cosmetic_services, is_unisex,
Area, number_of baths, number_of beds, rent,
pets_allowed, furnished, balance, amount, num-
ber_of_rooms, pets_welcome, Stay, has_wifi, temperature,
precipitation, humidity, wind, good_for_kids, free_entry

A Data Annotation Schema

Table. 3 lists all annotated dialog domains, intents,
and slots of MultiWoz and SGD in detail. Because
GPT-2 is case sensitive, we map some annotations
of SGD with the same or related meanings but dif-
ferent cases from those of MultiWoz. The specific
mapping rules are shown in Table. 4 with format:
"original word: mapped word". The words not in
the Table. 4 are not processed. The "x" in string
"_x"in the box "domain" in Table. 4 stands for the
number, such as 1 in "restaurants_1".

B Implementation and Parameters

We adopt BERT,,. (uncased) and DistilGPT-2
(?7), a distilled version of GPT-2 (Radford et al.,
2019) as the backbone language model, and use de-
fault hyperparameters for BERT and DistilGPT-2
in Huggingface Transformers (Wolf et al., 2020).
We pre-train and optimize all models on one RTX
2080Ti GPU and GTX TITAN X. For BERT and
GPT-2’s pre-training, the batch size is 8, and the
training epoch is 3. The learning rate for BERT and
GPT-2 are 0.00003 and 0.0005, respectively. To re-
duce resource consumption, we leverage FP16 com-
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putation! to use 16-bit (mixed) precision (through
NVIDIA apex) for all models. Turn-level Ac-
tion Classifier of BERT-based policy network (DA-
BERT) is a linear layer with 400 output units cor-
responding to 400 candidates of action. Word-
level Action Classifier of DA-GPT-2 is the sum of
two linear layers: the language modeling head of
GPT2LMHeadModel of Huggingface Transform-
ers (Wolf et al., 2020) and Structure Parser (with
768 input units and 5 output units corresponding
to 5 categories of words). e-greedy is utilized for
policy exploration. We set the discount factor as
v = 0.9. The target Q-network is updated at the
end of each epoch. To mitigate warm-up issues, We
apply the rule-based agent of ConvLab (Lee et al.,
2019a) to provide experiences at the beginning, the
warm_start epoch for BERT-based agents are 1000,
while for GPT2 based agent is 50.

"https://docs.nvidia.com/deeplearning/
performance/mixed-precision-training/
index.html
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Table 4: The data annotation schema.

SGD

Domain

Restaurants_x: Restaurant, Media_x: Media, Events_x: Event, Music_x: Music,
Movies_x: Movie, Flights_x: Flight, RideSharing_x: RideSharing, RentalCars_x:
RentalCar, Buses_x: Bus, Hotels_x: Hotel, Services_x: Service, Homes_x: Home,
Banks_x: Bank, Calendar_x: Calendar, Weather_x: Weather, Travel_x: Travel

Intent

INFORM_INTENT: InformIntent, REQUEST: Request, INFORM: Inform, OFFER:
Offer, REQUEST_ALTS: RequestAlts, INFORM_COUNT: InformCount, SELECT:
Select, CONFIRM: Confirm, AFFIRM: Affirm, NOTIFY_SUCCESS: NotifySuc-
cess, THANK_YOU: ThankYou, GOODBYE: bye, OFFER_INTENT: OfferIntent,
AFFIRM_INTENT: AffirmIntent, NEGATE: Negate, REQ_MORE: reqmore, NO-
TIFY_FAILURE: NotifyFailure, NEGATE_INTENT: Negatelntent

Slot

origin_city: Depart, destination_city: Dest, pickup_city: Depart, cuisine: Food,
restaurant_name: Name, event_name: Name, song_name: Name, movie_name:
Name, theater_name: Name, car_name: Car, origin_station_name: Depart, des-
tination_station_name: Dest, dentist_name: Name, stylist_name: Name, doc-
tor_name: Name, property_name: Name, recipient_account_name: Name, ho-
tel_name: Name, attraction_name: Name, street_address: Addr, venue_address:
Addr, address: Addr, phone_number: Phone, price_range: Price, time: Time,
show_time: Time, outbound_departure_time: Leave, outbound_arrival_time: Ar-
rive, inbound_departure_time: Leave, inbound_arrival_time: Arrive, wait_time:
Time, pickup_time: Leave, departure_time: Leave, leaving_time: Leave, appoint-
ment_time: Time, event_time: Time, available_start_time: Leave, available_end_time:
Arrive, date: Day, show_date: Day, departure_date: Leave, return_date: Arrive,
dropoff_date: Arrive, pickup_date: Leave, leaving_date: Leave, check_in_date: Leave,
check_out_date: Arrive, appointment_date: Day, visit_date: Day, event_date: Day,
genre: Type, venue: Addr, category: Type, event_location: Addr, address_of_location:
Addr, location: Addr, pickup_location: Depart, to_location: Dest, from_location:
Depart, subcategory: Type, number_of_seats: People, event_type: Type, show_type:
Type, ride_type: Type, type: Type, car_type: Type, fare_type: Type, account_type:
Type, recipient_account_type: Type, price: Price, total_price: Price, origin_airport:
Depart, destination_airport: Dest, origin: Depart, destination: Dest, fare: Fee,
ride_fare: Fee, to_station: Dest, from_station: Depart, where_to: Dest, num-
ber_of adults: People, rating: Stars, average_rating: Stars, star_rating: Stars, area:
Area, number_of_days: Stay, price_per_night: Price
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