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Abstract

Understanding and reasoning over text within001
visual contexts poses a significant challenge002
for Vision-Language Models (VLMs), given003
the complexity and diversity of real-world sce-004
narios. To address this challenge, text-rich Vi-005
sual Question Answering (VQA) datasets and006
evaluation benchmarks have emerged for high-007
resource languages like English. However, a008
critical gap remains: the lack of comprehen-009
sive, high-quality benchmarks for low-resource010
languages such as Korean, which hinders reli-011
able model development and comparison. To012
bridge this gap, we introduce KRETA, a bench-013
mark for Korean Reading and rEasoning in014
Text-rich VQA Attuned to diverse visual con-015
texts. KRETA facilitates an in-depth evaluation016
of both visual text understanding and reason-017
ing capabilities, while also supporting a multi-018
faceted assessment across 15 domains and 26019
image types. Additionally, we introduce a semi-020
automated VQA generation pipeline specifi-021
cally optimized for text-rich settings, lever-022
aging refined stepwise image decomposition023
and a rigorous seven-metric evaluation proto-024
col to ensure data quality. We hope that our025
generation pipeline will be adaptable to other026
languages, accelerating multilingual VLM re-027
search. The code and dataset for KRETA are028
available at anonymous.4open.science.029

1 Introduction030

In real-world scenarios, text within images plays a031

crucial role in conveying information across vari-032

ous domains. Thus, extensive research in VQA033

has focused on text-rich images, such as docu-034

ments (Mathew et al., 2021; Masry et al., 2022),035

scene text (Singh et al., 2019; Mishra et al., 2019),036

and digital interfaces (Hsiao et al., 2022), driving037

advances in Vision-Language Models (VLMs) (Liu038

et al., 2023a; Wang et al., 2024; Zhang et al., 2024b)039

designed to handle these diverse visual contexts.040

Recently, the field has progressed beyond basic041

text recognition, with new benchmarks (Yue et al., 042

2024c; Hao et al., 2025) emphasizing higher-order 043

reasoning over textual content within images. Ad- 044

dressing these challenges necessitates tightly inte- 045

grated cross-modal understanding, leveraging do- 046

main knowledge and multi-step reasoning that can- 047

not be achieved by treating visual and linguistic 048

elements in isolation. 049

However, low-resource languages including Ko- 050

rean lack benchmark suites even for basic text 051

recognition, much less reasoning, impeding com- 052

prehensive evaluation and hindering model devel- 053

opment across diverse domains (e.g., commerce, 054

education) and image types (e.g., street signs, 055

charts). Although recent multilingual VQA bench- 056

marks (Tang et al., 2024b; Sun et al., 2024) have 057

begun to address this disparity, they often struggle 058

to provide sufficient coverage and depth for all lan- 059

guages. Existing Korean VQA datasets (Ju et al., 060

2024; Kim and Jung, 2025) often rely on translated 061

English questions and non-Korean images, or are 062

limited in scale (e.g., fewer than 650 samples). 063

To fill the underexplored evaluation gap for 064

Korean text-rich VQA, we propose KRETA, a 065

benchmark for Korean Reading and rEasoning in 066

Text-rich VQA Attuned to diverse visual contexts. 067

Specifically, Figure 1 (a) shows how KRETA is 068

built upon a wide range of real-world Korean im- 069

agery, which we systematically categorized into 15 070

domains by referring to the Korean Standard Indus- 071

trial Classification (KSIC) (Korea Statistics, 2024) 072

and 26 image types widely used in prior works (Yue 073

et al., 2024a; Tang et al., 2024b). Furthermore, we 074

carefully design a dual-level reasoning framework 075

inspired by the concepts of System 1 and System 076

2 (Kahneman, 2011): System 1 assesses basic text 077

recognition, while System 2 evaluates advanced 078

capabilities such as domain-specific knowledge un- 079

derstanding, multi-step reasoning, and visual-based 080

mathematical reasoning. KRETA comprises 2,577 081

samples, including 1,426 System 1 QA pairs and 082

1

https://anonymous.4open.science/r/KRETA-90D9/README.md


Figure 1: (a) Distribution of samples across 15 domains (inner ring) and 26 image types (outer ring). Dark green
and light green segments in the inner ring represent the number of samples associated with System 2 and System 1,
respectively. See Subsection 3.1 for domain abbreviations. (b) The semi-automated VQA generation pipeline.

1,151 System 2 QA pairs, and is, to the best of083

our knowledge, among the largest Korean text-rich084

VQA datasets currently available.085

To ensure scalability and quality, we design086

a semi-automated VQA generation pipeline, as087

illustrated in Figure 1 (b). Unlike prior ap-088

proaches (Chen et al., 2024a), our method is specif-089

ically tailored for text-rich settings, centering on a090

refined, stepwise and multi-model decomposition091

that merges multiple VLM outputs to create high-092

quality structured captions for each image. This093

process is critical not only for capturing both tex-094

tual and visual context, but also for minimizing095

hallucinations. Using these captions, we generate096

and evaluate QA candidates, synthesize hard nega-097

tives, and conduct final human refinement to ensure098

benchmark fidelity. We also release all prompts for099

question generation, as well as our seven evaluation100

metrics specifically designed for text-rich VQA, to101

support transparent adaptation and reproducibility.102

Finally, our empirical analysis leveraging103

KRETA reveals that while VLMs demonstrate pro-104

ficiency in basic Korean text recognition (System105

1), a significant bottleneck remains for higher-order106

tasks requiring multi-step reasoning (System 2),107

particularly in open-source models. These models108

notably struggle with domain-specific knowledge109

and complex layouts, showing pronounced diffi-110

culty in areas like CSAT History and Marketing,111

as well as with image types such as banners and112

store signs. This underscores the need for targeted113

training on data encompassing Korean cultural and 114

domain-specific knowledge, complex real-world 115

layouts, and multi-step reasoning tasks. Our key 116

contributions are threefold: 117

1. An in-depth and multi-faceted evaluation 118

framework: We adopt a dual-level reasoning 119

framework, System 1 for basic understanding 120

and System 2 for advanced reasoning, to pro- 121

vide an in-depth evaluation of VLM perfor- 122

mance on text-rich images. Additionally, we 123

adopt a multifaceted classification framework 124

for images based on domain and image type 125

to facilitate task-specific usage and evaluation 126

in real-world industrial applications. 127

2. A semi-automated VQA generation pipe- 128

line: We present a systematic and scalable 129

pipeline optimized for text-rich VQA, featur- 130

ing refined stepwise image decomposition and 131

a seven-metric evaluation protocol to ensure 132

data quality. To support adaptation to other 133

low-resource languages, we release not only 134

the dataset but also all prompts and code. 135

3. A comprehensive text-rich VQA bench- 136

mark for Korean: By integrating the above 137

approaches, KRETA offers the first large- 138

scale, high-quality benchmark to assess both 139

basic and advanced reasoning of VLMs on 140

real-world, text-rich Korean images spanning 141

diverse domains and image types. 142

2



Figure 2: Examples from KRETA, showcasing diverse domains and image types categorized under System 1 and
System 2. The model input consists of an image, a Korean question, and multiple-choice options.

2 Related Work143

2.1 Vision-Language Models144

Recent advancements in VLMs (Bai et al., 2025;145

Abdin et al., 2024; Chen et al., 2024b; Wu et al.,146

2024) have broadened their capabilities beyond147

traditional computer vision tasks, enabling contex-148

tual reasoning across visual domains and deeper149

language-vision integration. However, general-150

purpose VLMs often struggle with text-rich images,151

as they focus on holistic scene interpretation rather152

than precise text comprehension. To address this,153

text-centric VLMs such as LLaVAR (Zhang et al.,154

2024b), LLaVA-Read (Zhang et al., 2024a), and155

TextSquare (Tang et al., 2024a) enhance reading156

abilities by refining text recognition and reasoning.157

While these models improve performance on text-158

rich tasks, they are still English-only, highlighting159

the need for multilingual VLMs.160

2.2 Text-Rich VQA Benchmarks161

General VQA benchmarks (Lu et al., 2022; Yue162

et al., 2024a; Liu et al., 2023b) evaluate broad rea-163

soning skills. However, benchmarks dedicated to164

text-rich VQA remain scarce, especially outside 165

English. Early work such as TextVQA (Singh et al., 166

2019) and OCR-VQA (Mishra et al., 2019) targets 167

printed English text (e.g., billboards, book cov- 168

ers). Moving beyond English, MTVQA (Tang et al., 169

2024b) provides multilingual annotations but is lim- 170

ited in scale, whereas MUST-VQA (Vivoli et al., 171

2022) expands data via automatic translation at the 172

cost of language-specific nuance. xGQA (Pfeif- 173

fer et al., 2022) also relies on machine transla- 174

tion with only a single difficulty tier, and SEA- 175

VQA (Urailertprasert et al., 2024) narrows its scope 176

to Southeast-Asian heritage imagery. Meanwhile, 177

KOFFVQA (Kim and Jung, 2025), though rule- 178

based, remains small and still merges reading with 179

reasoning. Most text-oriented VQA benchmarks 180

favor high-resource languages or depend on trans- 181

lated English datasets, with limited support for Ko- 182

rean (Sun et al., 2024; Yue et al., 2024b). 183

3 KRETA Benchmark 184

As shown in Table 1, the KRETA benchmark is 185

carefully designed to evaluate the ability of VLMs 186
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Benchmark Image
Source Samples Text-Centric

Reasoning Forms Image
Type

K-MMB (Ju et al., 2024) En 4,329 - MC General
K-SEED (Ju et al., 2024) En 2,971 - MC General
K-MMSTAR (Ju et al., 2024) En 1,500 - MC General
K-LLaVA-W (Ju et al., 2024) En 60 - Open General

K-Viscuit (Baek et al., 2024) Ko 657 - MC General
K-DTCBench (Ju et al., 2024) Ko 240 X MC Document
MTVQA-ko (Tang et al., 2024b) Ko 558 - Short Multi-text
KOFFVQA (Kim and Jung, 2025) Ko 275 X Open Multi-text

KRETA (Ours) Ko 2,577 X MC Multi-text

Table 1: Comparison of Korean VQA Benchmarks.
The Image Source column indicates native Korean im-
ages (Ko) or English-translated ones (En). Text-Centric
Reasoning indicates whether the benchmark focuses
on reasoning over text in images. Forms lists the an-
swer type open-ended (Open), short-answer (Short), or
multiple-choice (MC). Image Type categorizes images
as General (non text-centric), Document (structured lay-
outs), or Multi-text (diverse text-rich contexts).

to understand and reason about Korean text ap-187

pearing in images. Importantly, rather than relying188

on translated English resources, all images and189

QA pairs in KRETA were originally generated190

in Korean, ensuring natural language usage and191

cultural relevance. To the best of our knowledge,192

with 2,577 samples, it stands among the largest Ko-193

rean text-rich VQA datasets to date. As illustrated194

in Figure 2, KRETA features diverse visual con-195

texts and requires advanced reasoning like domain-196

knowledge and multi-step cross-modal reasoning.197

The following subsections detail the dataset statis-198

tics and categorization, the data collection process,199

the semi-automated VQA generation pipeline, and200

the human annotation refinement process.201

3.1 Data Statistics and Categorization202

Our benchmark consists of 2,577 samples, each203

annotated with corresponding QA pairs. Each im-204

age is categorized into one or both reasoning levels:205

System 1 (basic recognition and understanding) and206

System 2 (advanced reasoning). In total, the dataset207

includes 1,426 System 1 QA pairs and 1,151 Sys-208

tem 2 QA pairs. Beyond the in-depth analysis pro-209

vided by the reasoning-based categorization, we210

conduct a multi-faceted analysis of VLM perfor-211

mance by categorizing images along two additional212

dimensions: Domain and Image Type. The images213

cover 26 distinct types across 15 domains.214

System 1 vs. System 2 To assess challenges in215

visual text understanding and provide a compre-216

hensive evaluation, we adopt a two-tiered cogni-217

tive framework (Kahneman, 2011; Yu et al., 2024)218

that distinguishes basic recognition (System 1, fast219

thinking) from advanced reasoning (System 2, slow220

thinking). System 1 relies on intuitive and auto- 221

matic recognition, requiring direct text extraction 222

and straightforward interpretation. In contrast, Sys- 223

tem 2 demands advanced reasoning, such as con- 224

textual understanding, multi-step decision-making, 225

numerical reasoning, and integration of external 226

knowledge when necessary. 227

Domain To ensure that our domain classification 228

aligns with real-world industrial applications, we 229

refer to the Korean Standard Industrial Classifica- 230

tion (KSIC) (Korea Statistics, 2024) framework. 231

We adapt this framework to suit our image data 232

analysis, following a structured approach similar 233

to MMMU (Yue et al., 2024a). We define 13 pri- 234

mary domains: Public & Administration (Gov.), 235

Economics & Finance (Econ.), Marketing & Ad- 236

vertising (Mktg.), Retail & Commerce (Comm.), 237

Education & Academia (Edu.), Medical & Health- 238

care (Med.), Science & Technology (Tech.), Arts 239

& Humanities (Arts.), Transportation & Logistics 240

(Transp.), Travel & Tourism (Tour.), Hospitality 241

& Food Service (FnB.), Entertainment & Media 242

(Ent.), and Personal & Lifestyle (Life.). 243

In addition, we incorporate CSAT (College 244

Scholastic Ability Test) Science (Sci.) and History 245

(Hist.) as separate domains. Unlike other domains 246

generated by our semi-automated pipeline, CSAT 247

questions were directly adapted from official exam- 248

ination materials. For each item, we crop the image 249

region containing the question stem and its associ- 250

ated visual context, then supply the multiple-choice 251

options to the model as text. 252

Image Type Images are categorized based on 253

their inherent visual structures and the way they 254

convey information. To systematically analyze 255

VLM performance across different visual formats, 256

we classify all images into 26 distinct types, rang- 257

ing from highly structured (e.g., tables, receipts) 258

to visually complex (e.g., posters, PC screen- 259

shots). These include charts and plots, infographics, 260

posters, mobile/PC screenshots, manuals, receipts, 261

street signs, menus, and more. 262

3.2 Data Collection 263

For this study, we compile images from copyright- 264

free online repositories and our own field photog- 265

raphy. To ensure balanced coverage of real-world 266

scenarios, we identify domain imbalances and add 267

samples in underrepresented categories. We source 268

data from government publications, posters, free 269
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Model Size Overall
(2,577)

System 1
(1,426)

System 2
(1,151)

Closed

GPT-4o (OpenAI, 2024a) - 84.6 95.9 70.5
GPT-4o-mini (OpenAI, 2024a) - 73.3 88.7 54.1
Gemini-2.0-flash (DeepMind, 2025) - 85.4 98.0 69.8
Claude-3.5-Sonnet (Anthropic, 2024) - 80.5 93.4 64.5

Open-source

LLaVA-OneVision (Li et al., 2024) 0.5B 42.3 49.6 33.3
Deepseek-VL2-tiny (Wu et al., 2024) 1B 48.8 60.8 34.0
Deepseek-VL2-small (Wu et al., 2024) 2.8B 53.3 67.3 36.1
Qwen2.5-VL (Wang et al., 2024) 3B 71.8 94.2 43.9
Ovis1.6-Llama3.2 (Lu et al., 2024) 3B 52.2 62.8 39.1
InternVL2.5 (Chen et al., 2024b) 4B 70.7 90.7 45.9
Phi-3.5-Vision (Abdin et al., 2024) 4.2B 42.6 52.2 30.8

LLaVA-OneVision (Li et al., 2024) 7B 54.0 65.1 40.1
Qwen2.5-VL (Wang et al., 2024) 7B 68.5 94.5 36.1
InternVL2.5 (Chen et al., 2024b) 8B 70.8 89.8 47.3
MiniCPM-V-2.6 (Yao et al., 2024) 8B 41.0 50.4 29.4
MiniCPM-o-2.6 (Yao et al., 2024) 8B 64.3 84.1 39.9
Ovis1.6-Gemma2 (Lu et al., 2024) 9B 58.4 68.9 45.4
VARCO-VISION (Ju et al., 2024) 14B 72.3 90.9 49.3

Table 2: Evaluation results of closed and open-source
VLMs on the KRETA, highlighting performance under
the System 1 and System 2 framework. As marked in
color, models struggle with System 2 reasoning tasks.

image databases, administrative documents, sta-270

tistical reports from public agencies, and publicly271

available Korean mock exams including the CSAT.272

3.3 Semi-Automated VQA Generation273

Pipeline274

Step 1: Stepwise Image Decomposition In this275

step, we refine the dataset by filtering out low-276

quality images. Images with a shortest side of 384277

pixels or less are discarded to ensure text readabil-278

ity. To further ensure meaningful textual content,279

we use PaddleOCR1 to exclude images with fewer280

than 10 or more than 1,000 Korean characters.281

Following the filtering process, multiple VLMs282

independently extract both textual and non-textual283

elements from each image. By default, we em-284

ploy two foundation models, GPT-4o-mini (Ope-285

nAI, 2024a) and Gemini-2.0-flash (DeepMind,286

2025), and merge their outputs to maximize ex-287

traction thoroughness while minimizing hallucina-288

tions. The structured decomposition process first289

analyzes non-textual visual attributes such as the290

overall scene, document layout, key objects, and291

background details. It then examines the structural292

and semantic relationships between text and visual293

components before finally extracting and structur-294

ing all textual content. This approach preserves295

contextual links between visual and textual ele-296

ments, yielding higher-quality outputs than direct297

OCR alone.298

1https://github.com/PaddlePaddle/PaddleOCR

Step 2: QA Candidates Generation Using the 299

structured captions from Step 1, this step simulta- 300

neously generates question-answer candidates via 301

LLMs. QA generation follows the System 1 and 302

System 2 framework, with prompts specifically 303

designed to assess different levels of visual text 304

understanding and reasoning. For System 1, we 305

use GPT-4o-mini (OpenAI, 2024a) and Gemini-2.0- 306

flash (DeepMind, 2025) to generate two candidates 307

each. For System 2, we employ o1-mini (OpenAI, 308

2024b) and Gemini-2.0-flash (DeepMind, 2025) to 309

leverage their strong reasoning performance. The 310

pipeline offers flexible control over the choice of 311

model and the number of QA candidates generated. 312

Independently, the classification step assigns 313

each image to its appropriate domain and image 314

type as defined in Section 3.1, based on the struc- 315

tured captions from Step 1. 316

Step 3: QA Evaluation and Voting In this step, 317

multiple VLMs (by default GPT-4o-mini (OpenAI, 318

2024a) and Gemini-2.0-flash (DeepMind, 2025)) 319

evaluate the generated QA candidates to determine 320

the highest-quality question-answer pair for each 321

image. Drawing inspiration from prior LLM evalu- 322

ation research (Zheng et al., 2023; Fu et al., 2024), 323

the process employs a set of predefined criteria to 324

systematically assess candidate quality. 325

For System 1 candidates, we use five metrics 326

(Text Utilization, Clarity, Correctness, Naturalness, 327

and Alignment) to ensure textual content accuracy 328

and coherence. For System 2 candidates, two ad- 329

ditional metrics (Complexity and Coherence) ac- 330

count for multi-step reasoning and logical infer- 331

ence. Each VLM assigns a score from 0 to 5 for 332

each metric, and we use the aggregated scores to 333

rank the candidates. A voting mechanism then se- 334

lects the highest-ranked QA pair across all VLMs. 335

Step 4: Hard Negatives Generation After se- 336

lecting the final QA pair, an LLM generates three 337

hard negative options that resemble the correct an- 338

swer while remaining distinct in meaning. These 339

options follow the correct answer’s structure and 340

context, making the multiple-choice format more 341

challenging. 342

Human Annotation Refinement The final QA 343

pairs undergo a thorough human review based on 344

the same evaluation criteria as Step 3. We adjust 345

or remove questions that can be answered solely 346

from text without image context (Text Utilization); 347

verify that each QA pair aligns with the image’s 348
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Model Size Overall
(2,577)

Gov.
(245)

Econ.
(104)

Mktg.
(145)

Comm.
(154)

Edu.
(215)

Med.
(90)

Tech.
(92)

Arts.
(83)

Transp.
(167)

Tour.
(108)

FnB.
(264)

Ent.
(168)

Life.
(204)

Sci.
(478)

Hist.
(60)

Closed

GPT-4o (OpenAI, 2024a) - 84.6 93.5 92.3 97.2 90.3 96.7 91.1 96.7 100.0 84.4 93.5 93.6 97.0 95.1 44.1 93.3
GPT-4o-mini (OpenAI, 2024a) - 73.3 82.4 82.7 85.5 84.4 87.4 83.3 80.4 89.2 80.2 84.3 81.4 86.3 87.3 30.3 45.0
Gemini-2.0-flash (DeepMind, 2025) - 85.4 95.1 95.2 99.3 96.1 96.7 92.2 93.5 98.8 90.4 98.1 93.2 95.2 96.6 44.1 78.3
Claude-3.5-Sonnet (Anthropic, 2024) - 80.5 93.5 91.3 92.4 87.0 93.0 91.1 87.0 91.6 84.4 94.4 89.8 92.3 92.2 37.4 70.0

Open-source

LLaVA-OneVision (Li et al., 2024) 0.5B 42.3 51.8 48.1 47.6 44.8 39.5 50.0 44.6 40.9 49.7 51.9 41.7 44.6 46.1 28.0 31.7
Deepseek-VL2-tiny (Wu et al., 2024) 1B 48.8 57.1 55.8 63.4 58.4 51.2 57.8 57.6 45.8 54.5 58.3 43.9 47.0 54.4 30.5 31.7
Deepseek-VL2-small (Wu et al., 2024) 2.8B 53.3 61.6 63.5 66.9 63.0 57.2 64.4 68.5 50.6 59.9 63.0 48.9 56.0 57.4 30.8 36.7
Qwen2.5-VL (Wang et al., 2024) 3B 71.8 81.6 76.9 85.5 77.9 87.4 80.0 79.3 85.5 75.4 84.3 76.9 87.5 83.3 33.9 36.7
Ovis1.6-Llama3.2 (Lu et al., 2024) 3B 52.2 64.5 69.2 60.7 57.1 55.8 54.4 62.0 51.8 60.5 61.1 56.8 52.4 49.5 30.5 31.7
InternVL2.5 (Chen et al., 2024b) 4B 70.7 82.0 76.9 87.6 83.1 83.7 78.9 79.3 79.5 75.4 77.8 69.3 81.0 86.3 33.9 46.7
Phi-3.5-Vision (Abdin et al., 2024) 4.2B 42.6 53.5 55.8 40.0 49.4 43.3 40.0 53.3 50.6 44.3 46.3 42.8 43.5 44.6 27.6 36.7

LLaVA-OneVision (Li et al., 2024) 7B 54.0 64.1 63.5 63.4 63.6 58.6 55.6 64.1 45.8 68.3 65.7 55.3 55.4 55.9 30.8 33.3
Qwen2.5-VL (Wang et al., 2024) 7B 68.5 80.0 77.9 85.5 81.2 87.4 76.7 75.0 89.2 77.8 82.4 77.7 86.3 85.8 15.1 36.7
InternVL2.5 (Chen et al., 2024b) 8B 70.8 81.6 76.9 85.5 81.8 83.7 81.1 77.2 78.3 76.0 83.3 74.2 78.6 85.8 34.1 38.3
MiniCPM-V-2.6 (Yao et al., 2024) 8B 41.0 50.2 54.8 50.3 53.2 44.7 41.1 52.2 33.7 43.7 48.1 43.6 45.8 46.1 18.2 25.0
MiniCPM-o-2.6 (Yao et al., 2024) 8B 64.3 75.9 83.7 79.3 75.9 76.7 65.6 75.0 73.5 69.5 79.6 67.8 77.4 74.0 25.5 25.0
Ovis1.6-Gemma2 (Lu et al., 2024) 9B 58.4 64.1 69.2 71.0 72.7 60.9 71.1 67.4 53.0 68.9 75.9 65.2 58.9 63.2 30.5 28.3
VARCO-VISION (Ju et al., 2024) 14B 72.3 81.6 87.5 83.4 83.1 84.2 86.7 84.8 79.5 82.6 83.3 76.1 81.5 85.3 33.7 31.7

Table 3: Evaluation results for closed and open-source VLMs on KRETA across 15 domains.

original intent (Alignment); confirm that System349

2 questions require at least one inferential step to350

avoid overly simple QA (Complexity); and review351

language, grammar, and factual content (Natural-352

ness, Correctness, and Clarity).353

4 Empirical Analysis354

We leverage VLMEvalKit (Duan et al., 2024), an355

open-source evaluation toolkit designed to facili-356

tate the assessment of VLMs, including both pro-357

prietary APIs and open-source models. We adopt358

the multiple-choice system prompt from MMMU-359

Pro (Yue et al., 2024c). The prompt instructs the360

model as follows: Please select the correct an-361

swer from the options above. The last line of362

your response should follow the format: ‘Answer:363

LETTER’ (without quotes), where LETTER corre-364

sponds to one of the provided options.365

4.1 Performance across System 1 vs. System 2366

Table 2 presents the performance breakdown be-367

tween System 1 and System 2. Across both open-368

source and closed models, System 1 accuracy is369

significantly higher, indicating that most models370

handle text recognition and simple contextual un-371

derstanding well. Notably, Gemini-2.0-flash (Deep-372

Mind, 2025) achieves 98.0% on System 1, reflect-373

ing near-perfect perception.374

However, System 2 results reveal substantial per-375

formance drops, particularly in open-source mod-376

els. Qwen2.5-VL-7B (Wang et al., 2024) falls377

from 94.5% in System 1 to 36.1% in System 2,378

and Deepseek-VL2-small (Wu et al., 2024) drops379

from 67.3% to 36.1%. GPT-4o (OpenAI, 2024a)380

retains a relatively stronger System 2 performance381

at 70.5%, yet this value remains suboptimal. Both 382

open-source and closed models struggle in System 383

2, as effective reasoning requires sequential integra- 384

tion of multiple visual and textual cues, a capability 385

that is still underdeveloped. These challenges are 386

compounded by the low-resource nature of Ko- 387

rean pretraining, and by gaps in domain-specific 388

and cultural knowledge, since models have lim- 389

ited exposure to Korean-contextualized data during 390

training. 391

4.2 Performance across Domain 392

Table 3 compares closed and open-source model 393

performance across 15 domains. Among closed 394

models, Gemini-2.0-flash (DeepMind, 2025) 395

achieves the highest overall score (85.4%), fol- 396

lowed by GPT-4o (84.6%). Notably, GPT-4o ex- 397

cels in the CSAT History domain with 93.3%, sug- 398

gesting strong historical and cultural reasoning. 399

Gemini-2.0-flash’s consistently high performance 400

across domains further reflects its robust text recog- 401

nition and contextual comprehension on real-world 402

images. 403

Open-source models exhibit a broad range of per- 404

formance on KRETA, with overall scores varying 405

from 42.3% (LLaVA-OneVision (Li et al., 2024), 406

0.5B) to 72.3% (VARCO-VISION (Ju et al., 2024), 407

14B). The strongest performers are Qwen2.5- 408

VL (Wang et al., 2024), InternVL2.5 (Chen et al., 409

2024b), and VARCO-VISION, each scoring in the 410

low 70% range. Notably, Qwen2.5-VL (7B) main- 411

tains high accuracy in practical domains such as 412

Marketing (85.5%) yet plunges to 15.1% in CSAT 413

Science. Applying Chain-of-Thought prompting 414

(Section 5) substantially boosts Qwen2.5-VL’s Sys- 415
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Image Type Closed Open Sys1 - Sys2 Closed - Open

Sys1 Sys2 Sys1 Sys2 Closed Open Sys1 Sys2

Document

Chart and Plot 94.9 86.7 79.3 48.2 8.2 31.1 15.6 38.5
Table 91.0 75.0 70.9 42.3 16.0 28.6 20.1 32.7
Infographic 95.4 81.3 80.0 44.1 14.1 35.9 15.4 37.2
Slides 96.4 95.0 73.0 61.3 1.4 11.7 23.4 33.7
Book Cover 95.4 91.0 69.0 52.0 4.4 17.0 26.4 39.0
Product Detail 94.3 87.5 78.6 51.5 6.8 27.1 15.7 36.0
Poster 94.6 87.3 73.8 54.0 7.3 19.8 20.8 33.3
Mobile Screen 97.2 90.7 76.9 54.9 6.5 22.0 20.3 35.8
PC Screen 94.8 83.6 74.8 50.1 11.2 24.7 20.0 33.5

Scene Text

Street Signs 87.0 93.1 75.9 59.3 -6.1 16.6 11.1 33.8
Public Signs 88.6 69.4 71.2 42.0 19.2 29.2 17.4 27.4
Store Sign 91.4 85.3 70.6 42.0 6.1 28.6 20.8 43.3
Banner 94.6 91.1 78.2 46.2 3.5 32.0 16.4 44.9
Signage 94.7 85.9 78.5 54.3 8.8 24.2 16.2 31.6
Menu 91.9 79.9 69.5 40.3 12.0 29.2 22.4 39.6
Manual 91.2 71.1 73.2 42.1 20.1 31.1 18.0 29.0

Table 4: Performance comparison across image types
for closed and open-source models, showing differences
across System 1, System 2, and model categories. Only
image types with at least 50 VQA pairs are presented.

tem 2 performance overall, underscoring its origi-416

nal deficiency in multi-step reasoning and external417

knowledge integration. Taken together, Table 3418

reveals significant variability among open-source419

models in both overall and domain-specific metrics,420

highlighting the need to carefully consider model421

size, architecture, and domain alignment when se-422

lecting a model for a given application.423

Figure 3 illustrates the System 1 and System 2424

performance gap between closed and open-source425

models across different domains on KRETA. The426

disparity is particularly pronounced in System 2427

tasks, where closed models outperform open-428

source counterparts by up to 40.7 percentage points429

in Arts & Humanities, reflecting stronger cultural430

understanding. Meanwhile, the Science & Technol-431

ogy domain shows a relatively smaller System 2432

gap of 29.7 percentage points, suggesting more433

consistent handling of technical content. In the434

CSAT domains, gaps of 11.6 points in Science and435

37.8 points in History further underscore the role436

of background knowledge. These findings sug-437

gest that open-source models need targeted domain-438

specific training, particularly in culturally and his-439

torically rich areas, to close the reasoning gap with440

closed models.441

4.3 Performance across Image Type442

Table 4 presents the performance of closed and443

open-source models across different image types,444

highlighting key trends in System 1 and System 2445

tasks. Performance varies significantly by im-446

age type, reflecting distinct model capabilities.447

Figure 3: Comparison of open-source and closed mod-
els across different domains on KRETA. Bars show the
average scores of closed and open-source models sepa-
rately for System 1 and System 2 in each domain.

Document-based images such as tables and info- 448

graphics achieve high accuracy for closed-source 449

models in System 1 (91.0%, 95.4%) and retain rel- 450

atively strong performance in System 2 (75.0%, 451

81.3%). In contrast, open-source models fall to 452

42.3% on Tables and 44.1% on Infographics in Sys- 453

tem 2. Notably, Book Covers exhibit the largest 454

closed-open gap: 26.4 points in System 1 and 39.0 455

points in System 2, likely due to their complex 456

typography and mixed visual elements. 457

Scene-text images present different challenges. 458

Street Signs show a rare pattern for closed models, 459

with System 2 accuracy (93.1%) exceeding Sys- 460

tem 1 (87.0%), possibly because motion blur or 461

low resolution impairs simple text extraction while 462

System 2 can leverage broader context. In contrast, 463

open-source models perform particularly poorly on 464

banners and store signs, where the System 2 gap 465

reaches 44.9 points and 43.3 points, respectively, in- 466

dicating difficulties with diverse fonts, occlusions, 467

and unconventional layouts common in real-world 468

signage. These findings highlight the varying com- 469

plexity of image types and underscore the need 470

for targeted improvements in both structured-text 471

processing and robust scene-text understanding. 472

4.4 Performance across Closed vs. 473

Open-source 474

Overall, closed-source models outperform open- 475

source counterparts by an average of 24.2 percent- 476

age points in overall score, with the System 2 rea- 477

soning gap reaching as high as 44.4 percentage 478

points, revealing a pronounced reasoning bottle- 479

neck in open models (Table 2). Domain analysis 480

shows a relatively modest closed-open gap of 23.7 481

percentage points in the Science & Technology do- 482
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Figure 4: Comparison of two closed and four open-
source models of varying sizes on KRETA. The figure
shows performance differences across three prompts:
Baseline, Chain-of-Thought in English and Korean.

main, but this difference widens to 40.7 percentage483

points in CSAT History, highlighting the closed484

models’ superior ability to integrate background485

knowledge and cultural context (Table 3). Sim-486

ilarly, across image types, from structured docu-487

ments such as tables and infographics to cluttered,488

unstructured layouts such as banners and signage,489

the transition from closed to open models yields490

comparable performance declines, underscoring491

open models’ limited versatility in handling diverse492

visual-textual presentations (Table 4).493

4.5 Performance across Model Size494

Table 3 demonstrates a clear positive correlation495

between model capacity and overall performance:496

Deepseek-VL2 improves from 48.8 at 1 B param-497

eters (tiny) to 53.3 at 2.8 B (small), and LLaVA-498

OneVision rises from 42.3 at 0.5 B to 54.0 at 7499

B. These results confirm that, for a given architec-500

ture, increasing model size generally yields gains in501

both aggregate accuracy and domain-specific met-502

rics. An exception to this trend is observed with503

Qwen2.5-VL, where the 3 B variant (71.8) outper-504

forms the 7 B variant (68.5). This anomaly suggests505

that the addition of further multilingual data dur-506

ing scaling may have diluted the model’s Korean-507

centric knowledge and reasoning abilities. Conse-508

quently, when enlarging multilingual VLMs, it is509

essential to preserve the proportion of low-resource510

language data and to apply domain-adaptive fine-511

tuning to sustain performance on language-specific512

and culturally nuanced tasks.513

5 Discussion514

Chain-of-Thought (CoT) We evaluate the im-515

pact of Chain of Thought (CoT) prompting516

on model performance, following the approach 517

demonstrated in MMMU-Pro (Yue et al., 2024c). 518

Figure 4 reveals a pronounced gap between closed 519

and open-source models in both baseline scores 520

and CoT improvements. 521

Closed models benefit consistently. For instance, 522

Gemini 2.0-flash improves by 3.7 points with En- 523

glish CoT and by 2.9 points with Korean CoT, indi- 524

cating robust instruction following and structured 525

reasoning. Mid-size open-source models exhibit 526

language-dependent effects. Qwen2.5-VL-7B de- 527

clines by 7.7 points with English CoT but improves 528

by 3.7 points with Korean CoT, suggesting sensitiv- 529

ity to prompt language and potential for language- 530

specific optimization. Lightweight open-source 531

models suffer performance degradation under CoT 532

prompting. LLaVA-OneVision-0.5B drops by 5.4 533

points under English CoT and by 12.2 points under 534

Korean CoT. These declines suggest that exces- 535

sive reasoning instructions overwhelm models with 536

limited capacity. 537

Overall, these results demonstrate that CoT 538

prompting enhances performance only when a 539

model possesses adequate reasoning capacity and 540

instruction-following ability, and may become 541

detrimental otherwise. 542

6 Conclusion 543

In this paper, we present KRETA, a comprehensive 544

benchmark for evaluating VLMs on Korean text- 545

rich images. KRETA adopts a dual-level reason- 546

ing framework for both basic recognition and ad- 547

vanced inference, and employs an industry-aligned 548

domain and image-type taxonomy spanning 15 do- 549

mains and 26 image formats. By relying exclu- 550

sively on native Korean imagery and questions, 551

our benchmark extends beyond previous Korean 552

or multilingual VQA sets that have been confined 553

to document-only tasks or machine-translated con- 554

tent. Our training-free, semi-automated pipeline 555

combines structured image decomposition with 556

cross-validation by two foundation models and a 557

novel multi-metric evaluation protocol. Our ex- 558

perimental results underscore the need for domain- 559

adaptive fine-tuning, the careful preservation of 560

low-resource language data balance during scaling, 561

and the integration of stronger reasoning mecha- 562

nisms. We hope that our VQA generation pipeline 563

will be readily transferable to other low-resource 564

languages, laying the groundwork for culturally 565

and linguistically tailored VLMs. 566
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Limitations567

While we provide a comprehensive evaluation of568

Korean text-rich VQA, several limitations sug-569

gest directions for future work. First, KRETA570

is confined to single-image, multiple-choice ques-571

tion answering. Extending the benchmark to in-572

clude multi-image or video-based scenarios, and573

to incorporate high-level comprehension tasks (e.g.574

section-to-section verification, information synthe-575

sis, document summarization, open-ended genera-576

tion), would yield a more complete assessment of577

vision-language capabilities.578

Second, the System 2 category conflates sequen-579

tial deduction, integration of external information580

and cross-referential contextual analysis into a sin-581

gle classification. Developing a more fine-grained582

taxonomy to distinguish these reasoning functions583

would expose specific model weaknesses and sup-584

port targeted improvements. In this work, we priori-585

tized the creation of a scalable, high-quality unified586

benchmark spanning 15 domains and 26 image587

formats, establishing a solid foundation for Ko-588

rean text-rich VQA while leaving finer reasoning589

taxonomies and additional task formats to future590

extensions.591

Lastly, Chain-of-Thought (CoT) prompting has592

been shown to improve performance on the System593

2 benchmark, particularly for closed-source mod-594

els that consistently gain from both English and595

Korean CoT variants, but additional strategies and596

prompt formulations remain unexplored. Investi-597

gating alternative CoT techniques, hybrid reason-598

ing frameworks, and other optimization methods599

for both closed-source and open-source models rep-600

resents an open challenge for future research. We601

hope that KRETA serves as a stepping stone for602

future advancements in this area, guiding the devel-603

opment of more effective reasoning strategies and604

robust VLMs.605
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