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Abstract

Understanding the connection between robustness to distribu-
tion shifts and learning the causal model of an environment
is an important area of study in AI. While previous work has
established this link for single agents in unmediated decision
tasks, many real-world scenarios involve mediated settings
where agents influence their environment. We demonstrate
that agents capable of adapting to distribution shifts can re-
cover the underlying causal structure even in these more dy-
namic settings. Our contributions include an algorithm for
learning Causal Influence Diagrams (CIDs) using optimal
policy oracles, with the flexibility to incorporate prior causal
knowledge. We illustrate the algorithm’s application in a me-
diated single-agent decision task and in multi-agent settings.
We also show that the presence of a single robust agent is
sufficient to recover the complete causal model and derive
optimal policies for all the other agents operating in the same
environment.

Introduction
A defining characteristic of human intelligence is the ability
to adapt seamlessly to new environments and inputs (Piaget
1936). In AI, the goal is to design agents capable of adapting
effectively to environments that differ from their initial train-
ing environment. This problem has been extensively studied
through diverse methodologies including domain adaptation
(Ben-David et al. 2006), transfer learning (Pan and Yang
2010; Zhuang et al. 2021), federated learning (Konečný et al.
2016), and transportability (Pearl and Bareinboim 2011),
each addressing distinct flavors of the problem. Recent re-
search (Richens and Everitt 2024) has demonstrated that for
agents to adapt seamlessly to new domains, they must learn
causal models i.e., understand how the world operates. How-
ever, the results in Richens and Everitt (2024) rely on the
strong assumption of no mediation (Pearl 2009), meaning
the agent’s actions cannot have an effect on the utility via
environment states. In contrast, many real-world AI appli-
cations involve tasks where mediation exists. For example,
an autonomous car navigating from point A to point B, may
affect lane occupancy and, in turn, traffic flow and the behav-
ior of other drivers. Similarly, a robot in an industrial plant
might interact with tools, move through space, and transform
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products to complete its task. In this work, we demonstrate
that the assumption of unmediated tasks is unnecessary.

We show that agents robust to domain shifts can learn and
encode the causal model even in the presence of mediation.
Additionally, we present an algorithm to learn the causal
model of the environment using an agent that is adaptable
to domain shifts. We also outline how to incorporate prior
knowledge into the causal model and offer insights into the
implications of our findings for multi-agent environments.

Problem setup
We denote the set of parents of a node X as PaX , the set
of children as ChX , and instantiations of random variables
in lower-case. To model the causal relationships in the envi-
ronment where agents operate, we use Causal Influence Dia-
grams (CIDs) (Heckerman 1995; Everitt et al. 2021). Similar
to Influence Diagrams (Howard and Matheson 1984), CIDs
are commonly used to reason about decision-making tasks.
CIDs further assume that the graph encodes the causal rela-
tionships between the nodes. A CID is a tuple M = (G =
{V,E}, P ), where P is a joint probability distribution com-
patible with the conditional independences encoded in G.
The set of nodes V is partitioned into chance nodes C, de-
cision nodes D, and utility nodes U . There is a real func-
tion U(paU ) 7→ R associated with every utility node U .
An example of CID can be found in Figure 1. Throughout
the paper, we assume there not exists d ∈ Im(D) s.t. d ∈
argmaxd U(d, x) for all x ∈ Im(PaU \ {D}), this implies
domain dependence (Richens and Everitt 2024), meaning
that for the tasks and environments we consider, no single
policy can be optimal across all possible distribution shifts.
Domain dependence excludes trivial cases where distribu-
tion shifts do not affect the optimal policy. In such trivial
scenarios, any optimal agent in one domain remains optimal
under any shift, so optimality automatically implies robust-
ness. In these cases, the agent does not need to learn a causal
model of the environment to be robust against distribution
shifts. Following (Richens and Everitt 2024), we represent
domain shifts as mixtures of local interventions. Given a
random variable X with x1, . . . , xn as possible outcomes,
a local intervention on X is a function σ : xi 7→ f(xi) that
maps each outcome xi to a new outcome f(xi). A mixture of
local interventions is a convex combination σ∗ =

∑
i piσi

of local interventions σi, where each coefficient pi repre-



sents the probability that σi is used to map the outcome for
X . We use optimal policy oracles to formalize the agent’s
understanding of optimal behavior under distribution shifts.
Given a set of interventions Σ, an optimal policy oracle is a
map Π∗

Σ : σ 7→ πσ(d|paD) for σ ∈ Σ, where πσ(d|paD)
is the optimal policy under the distribution shift induced by
the intervention σ.

Main results
In this section, we describe an algorithm for learning the
CID using the optimal policy oracle along with a sketch
of the proof establishing its soundness1. In Example 1, we
show this algorithm can be applied to learn a simple envi-
ronment with a single agent. Subsequently, in Example 2,
we demonstrate how to adapt this approach to handle multi-
agent environments.

LearnCID Algorithm
The LearnCID algorithm operates under the following as-
sumptions: The CID is faithful and sufficient, it contains
a single decision node D and a single utility node U . The
Markov blanket of the decision node D is known, and D is a
parent of U . We also assume all chance nodes are ancestors
of U or D, because otherwise, they do not play a role in the
decision task and can be pruned. The utility function is fully
specified i.e., all parents of U are known. Additionally, prior
knowledge in the form of the causes of a subset of chance
nodes is available. Specifically, prior knowledge about direct
causes (parents) is available for a subset of chance nodes,
denoted as Vkwn i.e., for every Ci ∈ Vkwn, the set of parent
nodes of Ci is known.
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Figure 1: A CID that represents a mediated decision task.

The algorithm performs a breadth-first traversal on chance
nodes that are not children of D and are not in the set Vkwn.
The traversal starts from the parents of U , then we enqueue
the remaining parents of D after visiting all nodes with a
path to U that does not include D. In the CID in Figure 1,
the traversal starts from Y and once the queue is empty, Z is
enqueued as a parent of D. For each chance node X encoun-
tered during the search, and for each possible instantiation

x, we define a local intervention f(X)←
{
x, if X = x

x′, otherwise
where x′ is an arbitrary outcome for X different from x. We
also define the following family of local interventions:
σY (c)← {do(Y = y, CX = c,X = f(X))|y ∈ Im(Y )}

(1)
1The extended version of this paper will contain the full proof

with details.

where CX represents the set of all chance nodes except X
and those along a directed path from X to either U or D.
Y is a variable in CX , and c is an outcome for the vari-
ables in CX \ {Y }. For any local intervention σ ∈ σY , let
d be the deterministic optimal decision under the shift in-
duced by σ. By assuming there not exists d ∈ Im(D) s.t.
d ∈ argmaxd U(d, x) for all x ∈ Im(PaU \ {D}), there is
a hard intervention σ′ such that d is no longer optimal. Let
d2 be the deterministic optimal decision under σ′. Consider-
ing the mixture σ(q) := qσ + (1 − q)σ′, there exist a value
qcrit for q such that d2 and another deterministic decision
d1 are both optimal. Using Algorithm 1 from (Richens and
Everitt 2024), referred to here as ALGqcrit, we can compute
qcrit, d1, d2, and pa′U , the value of U ’s parents under the
hard intervention σ′. Let C1, . . . , Ck be the chance nodes in
the directed internal path from X to U or D we are consid-
ering. If C1 ∈ PaU let C := {C1, . . . , Ck} otherwise let
C := {C2, . . . , Ck}. For both x and x′, we compute:

β(x) :=
∑

c∈Im(C)

k∏
i=1

P (ci|paCi
)[U(d2, c)− U(d1, c)] (2)

Using this, we can compute P (x|paX ;σ) as:

P (x|paX ;σ) =

(1− 1
qcrit

)[U(d2, pa
′
U )− U(d1, pa

′
U )]− β(x′)

β(x)− β(x′)

(3)

If for some σ1, σ2 ∈ σY , we find P (x|paX ;σ1) ̸=
P (x|paX ;σ2), then Y must be a parent of X . Due to
the specific form of interventions defined in Equation 1,
it follows that P (x|paX ;σ) = P (x|paX). For example,
for the CID in Figure 1, when considering P (y|paY ;σ),
CY = {Z,K,W, J} , assuming we are verifying if J is
a parent of Y then the intervention σ would be do(J =
j, Z = z,K = k,W = w, Y = f(Y )), and therefore
P (y|paY ;σ) = P (y|J = j,W = w,K = k) by the rules
of do-calculus (Pearl 2009). Returning to the general case,
since the parents and Conditional Probability Tables (CPTs)
of all nodes C1, . . . , Ck along the path from X to U or D are
already known, all terms on the right side of Equation 2 are
computable. By the end of the traversal, all chance nodes
that are not children of D have been visited, and we have
learned the parents and CPTs of each, completing the causal
model. As shown in Example 2, this algorithm can also be
applied in multi-agent settings. In such cases, we can assign
each decision node a policy that preserves the faithfulness of
the CID (i.e., the policy depends on the node’s parents) and
treat these nodes as chance nodes in Vkwn, then we can use
the optimal policy oracle for the remaining decision node.

Example 1 - Single agent environment
Consider the CID in Figure 2, assume we know X ∈ ChD,
Y ∈ PaU , and all the variables are binary. We also know
U := 1 if D = Y and 0 otherwise, and an optimal policy
oracle Π∗

Σ where Σ is the set of all mixtures of local inter-
ventions. The CPT for Y can be found in the table on the
right side of Figure 2, but let us assume it is unknown. We



Algorithm 1: LearnCID
Input:
1. Nodes V = {{D}, {U}, C}
2. Known set of edges Ê
3. Set of chance nodes with all known parents Vkwn
4. Number of samples N to estimate qcrit
Output: The CID’s structure E′, and the set of CPTs P for
all the nodes in C \ ChD

1: visited← Dictionary(), Q← Queue()
2: visited[X]← True ⇐⇒ X is a chance node child of D
3: Enqueue in Q the parents of U not children of D.
4: while Q is not empty do
5: X ← Q.dequeue()
6: Path←Set of chance nodes on a directed internal path

from X to U , or to D if U is unreachable.
7: CX ← Chance nodes that are not in ”Path”, and that

are not known to be parents of X .
8: Z := PaX if X ∈ Vknw else Z := CX

9: for each x ∈ Im(X) do
10: x′ ← A possible outcome for X different from x.

11: f(X)←
{
x, if X = x

x′, otherwise
12: for each Y ∈ Z and each c ∈ Im(CX \ Y ) do
13: σY (c)← As in Equation 1
14: for each σ ∈ σY do
15: qcrit, d1, d2, pa

′
U ← ALGqcrit(U,Π

∗
Σ, N, σ)

16: β(x), β(x′)← As in Equation 2
17: P (x|paX ;σ)← As in Equation 3
18: if ∃σ, σ′∈ σY s.t. P (x|paX ;σ) ̸= P (x|paX ;σ′)

then
19: Ê ← Ê ∪ {(Y,X)}
20: if visited[Y ]=False and Y ̸∈ Q then
21: Q.enqueue(Y )
22: for each paX outcome of parents of X do
23: P (x|pax) ← P (x, pax;σ) for any hard inter-

vention σ compatible with paX
24: visited[X]← True
25: if Q is empty and there are still unvisited nodes then
26: Enqueue the parents of D in Q

Return E′ ← Ê, P the set of CPTs

want to use Algorithm 1 to learn whether there is an edge
between X and Y , and the CPT for Y . For ease of compre-
hension we summarize Algorithm 1, in the following steps:

1. Perform a breadth-first traversal starting with nodes that
are parents of U and not children of D.

2. Define local interventions on X as in Equation 1, used to
obtain both the CPT for Y and the set of its parents.

3. Estimate qcrit using ALGqcrit (Algorithm 1 in Richens
and Everitt (2024))

4. Compute P (Y = yi|do(X = xi))

5. Repeat steps 2 to 4 for all configurations of yi and xi.

6. Deduce the set of parents of Y and its CPT.

Figure 2: An example of a single-decision/single-utility
CID. On the right, the CPT for variable Y . The edge marked
in red is unknown.

Following the aforementioned steps:

Step 1: In this example PaD is empty and PaU = {Y }, so
we start the traversal from node Y . We also assume Vknw is
empty. Observe that since Y is the only chance node that is
not children of D the traversal will stop after processing Y .
Since Y ∈ PaU , ”Path” is empty and CY = {X}.
Step 2: Set σ0 := do(X = 0), then in ALGqcrit we use the
oracle Π∗

Σ(σ0) to find the optimal decision d1 := 0. This is
evident from the (unknown) CPT, because for X = 0 the
probability that Y = 0 is higher than the one for Y = 1,
since the utility is an AND operation between Y and D, the
oracle returns the optimal decision D = 0 which will be
equal to Y more often than D = 0.

Step 3: We obtain qcrit using ALGqcrit. It works by finding
σ′ such that the optimal decision is no longer D = 0. Since
in this example D is binary, we already know the new opti-
mal decision must be D = 1, in general, for this we can use
the optimal policy oracle. We can find σ′ by hard interven-
ing on the parents of the utility node U , which is Y in this
case, such that d1 is no longer optimal. Specifically, we can
define σ′ as a hard intervention that sets Y to 1, therefore
the new optimal decision is d2 := 1. Then, we define the
mixture of local interventions σ(q) := qσ0 + (1− q)σ′. We
can sample q uniformly in the interval [0, 1] N times and
each time query the optimal policy oracle. Each time the
oracle returns an optimal decision for the intervention σ′ we
increment a counter θ. Then θ

N is an unbiased estimate for
qcrit. For this example, qcrit = 5

7 .

Step 4: We now compute P (Y = 0|paY ;σ0). We start with
Y = 0 and X = 0, we first need to compute β(Y = 0) and
β(Y = 1). This is the case where the node for which we are
computing the CPT is the first on the directed path to the
utility node. So the beta expressions are:

β(Y = 0) = U(d2, 0)− U(d1, 0) = −1 (4)
β(Y = 1) = U(d2, 1)− U(d1, 1) = 1 (5)

Following Equation 3:

P (y|paY ;σ) =
(1− 7

5 )[U(d2, 1)− U(d1, 1)]− β(y′)

β(y)− β(y′)
(6)

=
2
5 [U(1, 1)− U(0, 1)] + 1

2
=

7

10
(7)



Which corresponds to the value in the table of Figure 2

Step 5: We can repeat the same procedure for
σ := do(X = 1) and find that P (Y = 0|do(X =
1)) = P (Y = 0|X = 1) = 0.1. The equivalence between
intervention and conditioning follows the specific family
of interventions we are using (i.e., hard interventions on
all nodes that are not on the directed path to the utility node).

Step 6: Since P (Y = 0|do(X = 0)) ̸= P (Y =
0|do(X = 1)), we can conclude that X is a parent of
Y . In the general case, this approach ensures that X is
not just an ancestor but indeed a parent of Y , because the
intervention blocks all other paths from X to Y . Thus,
P (Y = 0|(X = 0), paY ) would equal P (Y = 0|paY ) if X
were not a parent.

As expected, this process allows us to learn both the
correct graph structure and the CPT for Y (and, more
generally, for all chance nodes that are not children of D).

Example 2 - Cooperative multi-agent environment
Examine the multi-decision CID in Figure 3. It represents
a cooperative game between two agents, each controlling a
distinct decision variable. Both agents aim to maximize a
shared utility function, U , and operate in different contexts
defined by the parent sets of their decision nodes (PaD1

=
∅ ̸= {Z} = PaD2

). Similarly to before, we assume knowl-
edge of the Markov blanket for the decision node D1, the set
of parents of the decision node D2, and the utility node U .

U

Y

XD1 D2

Z

Figure 3: A multi-decision CID that represents an environ-
ment where two agents cooperate to maximize the utility U .
The edges marked in red are unknown. Example 2 demon-
strates how to adapt this CID to apply Algorithm 1 and re-
cover the missing edges and CPTs for chance nodes.

Overview of Methodology In the multi-decision case,
having access to an optimal policy oracle for at least one
decision node allows us to learn the entire CID. Moreover,
for the remaining decision nodes, we can define policies that
preserve the faithfulness of the causal model i.e., a policy
that effectively depends on the decision node’s parents. This
approach is feasible because we know the parent set for each
decision node. We proceed by treating these decision nodes
as chance nodes by assigning their respective policies as
CPTs. Algorithm 1 is then applied to learn the CID struc-
ture and CPTs for all the chance nodes except those that are
children of the decision node for which the optimal policy

oracle was used. Once the CPTs for all chance nodes are
learned, it becomes possible to determine the optimal pol-
icy for every decision node in the original graph under any
distribution shift (Shachter 1986; Bareinboim et al. 2022).

Example Analysis Let Π∗
Σ be the optimal policy oracle

for D1 and π(D2 | Z) be any given policy that gov-
erns D2. The nodes for which we need to learn the par-
ents are Y and Z. Node Y ’s potential parents are X and
Z, whereas node Z’s only potential parent is Y . Using Al-
gorithm 1, we determine parental relationships as follows:
consider the instantiation Y = 0. With Algorithm 1 we can
compute P (Y = 0|paY ;σ0) and P (Y = 0|paY ;σ′

0) using
σ0 := do(X = 0, Z = 0), and σ′

0 := do(X = 0, Z = 1) re-
spectively. We observe that these two probabilities are equal.
We repeat this process with σ1 := do(X = 1, Z = 0) and
σ′
1 := do(X = 1, Z = 1), and again, P (Y = 0|paY ;σ1) =

P (Y = 0|paY ;σ′
1). Performing the same procedure for Y =

1, we find that all pairs of interventions yield the same prob-
abilities. Therefore, Z is not a parent of Y . Next, we check
whether X is a parent of Y . Comparing P (Y = y|paY ;σ0)
with P (Y = y|paY ;σ1), and P (Y = y|paY ;σ′

0) with
P (Y = y|paY ;σ′

1) for all y ∈ {0, 1}, we find that at least
one of these pairs of probabilities differs. Given the faith-
fulness of the CID. This confirms that X is a parent of Y .
Finally, we consider Z. Since the only potential parent of
Z was Y , and Y was found to be a child of X , Y can
not be a child of Z because this would introduce a cycle
in the graph. Z has no other potential parents and therefore
we have learned the full CID. Therefore, a distribution shift-
robust agent knows that Z is not relevant for this task. This
insight can then be used to determine the optimal policy for
D2.

Conclusions

In this work, we addressed the challenge of understand-
ing the relationship between robustness to distribution shifts
and an agent’s causal understanding of the environment in
which it operates. While previous work established that ro-
bust agents encode the causal model in single-agent, un-
mediated tasks, we demonstrated that this connection also
holds in mediated tasks and multi-agent settings. We pre-
sented an algorithm for learning CIDs using optimal policy
oracles, which allows the integration of prior causal knowl-
edge. Our results show that even for mediated tasks, where
agents’ actions affect the environment, it is possible to re-
cover the underlying causal structure. Moreover, in multi-
agent systems, we showed how a single robust agent enables
the discovery of the complete causal model, making it pos-
sible to learn optimal policies for all the other agents under
any distribution shift. These findings provide a solid foun-
dation for the development of AI systems that can adapt and
learn in complex settings. To bridge the gap between theory
and practical applications, we are actively extending our re-
search to approximate settings, where regret-bounded poli-
cies are employed instead of optimal ones.
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