
Points2Plans: From Point Clouds to Long-Horizon
Plans with Composable Relational Dynamics

Yixuan Huang1,2, Christopher Agia1, Jimmy Wu3, Tucker Hermans2,4, Jeannette Bohg1

1Stanford University, 2University of Utah, 3Princeton University, 4NVIDIA Research

Abstract: We present Points2Plans, a framework for composable planning with a
relational dynamics model that enables robots to solve long-horizon manipulation
tasks from partial-view point clouds. Given a language instruction and a point cloud
of the scene, our framework initiates a hierarchical planning procedure, whereby a
language model generates a high-level plan and a sampling-based planner produces
constraint-satisfying continuous parameters for manipulation primitives sequenced
according to the high-level plan. Key to our approach is the use of a relational dynamics
model as a unifying interface between the continuous and symbolic representations
of states and actions, thus facilitating language-driven planning from high-dimensional
perceptual input such as point clouds. Whereas previous relational dynamics models
require training on datasets of multi-step manipulation scenarios that align with the
intended test scenarios, Points2Plans uses only single-step simulated training data while
generalizing zero-shot to a variable number of steps during real-world evaluations. We
evaluate our approach on tasks involving geometric reasoning, multi-object interactions,
and occluded object reasoning in both simulated and real-world settings. Results
demonstrate that Points2Plans offers strong generalization to unseen long-horizon tasks
in the real world, where it solves over 85% of evaluated tasks while the next best baseline
solves only 50%. Qualitative demonstrations of our approach operating on a mobile
manipulator platform are made available at sites.google.com/stanford.edu/points2plans.

Keywords: Long-horizon planning, Robot manipulation, Semantic manipulation

constrained packing constrained retrieval

multi-object retrieval occluded object retrieval

Real World ExecutionData Generation Planning

𝐷 = {(𝑠, 𝑎, 𝑠!)}"#$%

𝑠

𝑠!

𝑎

Point
Clouds

Task
Planner

Relational
Dynamics

Skills

Instructions

Figure 1: Training, planning, and execution phases of Points2Plans. Left: In simulation, we sample
an environment state and execute a manipulation primitive at random to generate a dataset of single-step
environment transitions and train a relational dynamics model. Middle: At planning time, Points2Plans
receives a language instruction and a partial-view, segmented point cloud of the scene and then performs
long-horizon planning in a hierarchical fashion with a task planner (e.g., a language model) and the learned
relational dynamics model. If planning is successful, Points2Plans returns a sequence of manipulation
primitives (what to execute) and their associated continuous parameters (how to execute them) for the given
task. Right: Points2Plans executes its plan to solve a variety of unseen long-horizon tasks in the real world.

https://yixuanhuang98.github.io/
http://agiachris.github.io/
https://jimmyyhwu.github.io/
https://robot-learning.cs.utah.edu/thermans
https://web.stanford.edu/~bohg/
https://www.stanford.edu/
https://www.utah.edu/
https://www.princeton.edu/
https://www.nvidia.com/en-us/research/
https://sites.google.com/stanford.edu/points2plans

1 Introduction

Before robots can make their entry as general-purpose helpers in e.g., household environments, they
must learn to solve sequential manipulation tasks in the presence of partial occlusions while receiving
high-dimensional sensor data as input. Consider the “constrained packing” task shown in Fig. 1, where
the robot must place all cups into the shelf without collision. To succeed, the robot has to reason about
the long-horizon effects of its actions (e.g. what happens if the first cup is placed at the front of the shelf?)
without perfect knowledge of object geometries or poses.

The most common paradigm for solving sequential manipulation tasks decomposes a task into a sequence
of skills for the robot to execute [1, 2]. The open problem remains: how to sequence skills without being my-
opic; returning to our example, placing the first cup at the front of the shelf prevents future placements. Tra-
ditionally, this problem is addressed by task and motion planning (TAMP) systems, which perform a search
for feasible solutions at the symbolic and geometric level [3, 4]. However, TAMP typically assumes access
to explicit 3D object models and symbolic operators with predefined effects [5]; assumptions that may not
hold in increasingly unstructured and partially observable environments. Other approaches leverage policy
hierarchies to learn long-horizon strategies with reinforcement learning (RL) [6, 7, 8]. However, these ap-
proaches aim to learn skill sequencing strategies for each new long-horizon task, while we seek to compose
skills through planning to solve a large set of downstream tasks [9, 10, 11]. We thereby ask: How can we en-
able composable planning in high-dimensional observation spaces without predefined symbolic operators?

In this paper, we argue that transformer-based relational dynamics (RD) [12, 13] is key to enabling
composable, long-horizon planning directly from partial-view point clouds. RD models implicitly capture
the symbolic and geometric effects of robot actions in a shared (object-centric) latent space, which facilitates
goal-directed planning. We first propose an RD model architecture that requires only randomized single-step
environment transitions (s,a,s′) for training, but can be iteratively applied to predict long-horizon trajectories
(s1,a1,...,sH) at plan time. Each single-step transition (s,a,s′) corresponds to the states before and after
executing a manipulation primitive (e.g., picking an apple from a basket and placing it on the table), and
thus represents an abstraction over low-level trajectories executed on the robot [14]. Second, we introduce a
sampling-based planning algorithm that selects robot actions that maximize the likelihood of symbolic goals
predicted by the RD model. This algorithm uses a new rollout strategy that interweaves delta-state prediction
of objects in the latent space with object pose updates in geometric space, resulting in greater accuracy
over long-horizons compared to predicting absolute object states as in prior work [13]. Finally, we leverage
large language models (LLMs) [15] to accelerate our planner by predicting candidate plan skeletons; in
effect, significantly reducing the number of discrete skill sequences our planner must search through for
any given task. The combination of these components forms the full Points2Plans planning framework.

Our contributions are three-fold: 1) A relational dynamics model that excels at long-horizon prediction
of point cloud states without the need to train on multi-step data; 2) A latent-geometric space dynamics
rollout strategy that significantly increases the horizons over which predicted point cloud states are reliable
for planning; 3) A planning framework, Points2Plans, that integrates our RD model, rollout strategy,
sampling-based planner, and task planner to solve complex long-horizon tasks. In extensive experiments, we
demonstrate that Points2Plans generalizes to sequential manipulation tasks involving partial occlusions, long-
horizon geometric dependencies, and multi-object interactions in both simulated and real-world settings.

2 Related Work

A standard approach to solving long-horizon manipulation tasks sequences manipulation skills [16, 17, 18,
19, 20, 21] according to a high-level plan produced by symbolic planners [22, 23, 24, 2, 25, 26], language
models [1, 27, 28, 11, 29, 30], or combinations [31, 32, 33, 34, 35]. Reusability of the underlying skills
should, in theory, support generalization to a variety of tasks. However, existing methods are often limited
by myopic planning strategies or constraints resulting from skill design. For example, works employing vi-
suomotor skills seldom consider the feasibility of skill sequences and hence evaluate tasks that do not require
geometric reasoning [1, 2]. Conversely, works that optimize skill sequences for geometrically complex tasks

2

often rely on hand-crafted state representations [9, 11, 10]. Our work jointly addresses these limitations
by enabling long-horizon lookahead planning from high-dimensional observations (i.e., 3D point clouds).

Alternative approaches leverage policy hierarchies to solve long-horizon manipulation tasks through
options [36, 37, 38], parameterized action Markov decision processes [39, 40, 7, 41, 42], model-based
RL [6, 43, 44], and meta-learning [45, 46]. Skill chaining has also been used to coordinate dependencies
among skills in a sequence [47, 48]. These approaches attain strong performance within the distribution
of tasks they are trained on, but may struggle to generalize to unseen tasks [9, 6]. Instead of training on
long-horizon demonstration data, our approach relies on random single-step environment transitions to
train a dynamics model, which is then used to compose skills for entirely new long-horizon tasks.

A number of works learn dynamics models for planning in high-dimensional observation spaces.
Latent space dynamics are used for model-based control [49, 50, 51, 52, 53, 54], but predict state
changes at comparatively small timescales. Graph neural networks can predict deformable [55, 56] and
multi-object [57, 58, 59, 60, 61, 62] dynamics. Other works generate demonstration data via differentiable
simulation to learn skill abstractions for deformable object planning from high-dimensional input [63, 64].
Several works learn RD models [12, 13, 65] that operate on 3D point clouds, but they lack composability
(i.e., to support multi-step planning, they must be trained on multi-step trajectories) and are only
demonstrated on tasks requiring up to three consecutive skills. Our method extends the task horizon over
which RD predictions are reliable and enables the efficient sequencing of unseen skill sequences at test time.

Task and motion planning solves long-horizon tasks through symbolic and geometric reasoning [3, 4, 5,
66]. Perception modules can be used to alleviate TAMP’s assumption on full state observability [67]. Other
works learn vision-based planning heuristics [68, 69] or behavior policies [70, 71] from pre-computed
TAMP solutions. We highlight two distinctions of our approach compared to TAMP: our system a) predicts
symbolic effects instead of using predefined symbolic operators in e.g., PDDL [72] and b) plans in a latent
space directly encoded from 3D partial-view point clouds. Our approach is related to learning symbolic
operators [73, 74, 75, 76, 77] and object dynamics [9, 78] for long-horizon planning, but differs in the use
of our RD model, which captures both symbolic and geometric effects of actions in a shared latent space.

3 Problem Setup

We aim to solve sequential manipulation tasks given segmented, partial-view 3D point clouds of the sceneo1
and a natural language instruction l describing the task. Satisfying the instruction l entails achieving a goal
configuration of objects (i.e., a goal state) G that can be expressed with predicates from a closed set R. Pred-
icates are boolean-valued functions that describe object properties e.g., Movable(a),Openable(a)∈R and
relationships among objects e.g., Above(a,b),Inside(a,b)∈R, including those that dictate action feasibil-
ity e.g., Blocking(a,b)∈R. A ground predicate is a predicate expressed over specific object instances (e.g.,
Above(cup,table)), and a fact is an assertion of truth over a ground predicate (e.g., Above(cup,table)=
true). Thus, we define the goal state as a conjunction of desired facts G=g1∧...∧gM , where each fact
gj specifies a desired spatial relationship among objects. In this work, we assume that the closed set of
predicates R is pre-specified, while noting that methods exist to learn predicates from data [77, 79].

Manipulation Primitives. To solve long-horizon tasks, we assume access to a library of manipulation
primitives Lϕ = {ϕ1,...,ϕK}. Each primitive ϕk takes as input continuous parameters ak ∈ Ak and
executes a trajectory on the robot [18]. For example, to pick up an object, the parameters apick could
correspond to a target grasp pose in the object relative frame; instantiating the primitive ϕpick

(
apick

)
would move the robot’s end-effector to the target pose and close its gripper. An action ψk is defined as
a pair of a primitive and a parameter ⟨ϕk,ak⟩.

Perception. We assume access to two perception modules: a) a segmentation method that can return
segmented point clouds o; b) an object detector that returns the semantic class of each object. In this work,
we use open-source models for segmentation [80] and detection [81].

The Planning Objective. Given an instruction l and segmented partial-view point clouds o1, our objective
is to compute a plan τ=[ψ1,...,ψH] (we use range subscripts to denote sequences e.g., ψ1:H) that when

3

executed maximizes the probability of the goal implied by instruction l:

argmax
G,ψ1:H

p(l |G,o1)p(G |ψ1:H,o1). (1)

The first term defines the probability of observing an instruction l given observation o1 and the user’s
hidden logical goal G. The second term defines the probability of achieving the logical goal G given the
initial observation o1 and robot actions ψ1:H . We refer to Appx. A.1 for further details.

4 Proposed Approach: Points2Plans

The planning objective in Eq. 1 can be optimized via a hierarchical approach [82] that first generates a
task plan in the form of a sequence of primitives ϕ1:H and then evaluates its feasibility when planning
the parameters a1:H of the primitive sequence. We formulate our hierarchical planner via two distributions
in Eq. 2 (the derivations of which are provided in Appx. A.2)

argmax
G,ψ1:H

p(l |G,o1)p(G |ψ1:H,o1)≈ argmax
G,ψ1:H

q1(ϕ1:H,G |l,o1)q2(a1:H |ϕ1:H,G,o1). (2)

The first distribution q1(ϕ1:H,G|l,o1) represents the task planner, which serves two roles: a) proposing
candidate task plans ϕ1:H that are symbolically correct w.r.t. the instruction l and initial observation o1, and
b) converting the instruction l into its corresponding goal state G used to ensure completion of the task. In
this work, we use LLMs [15] to predict candidate task plansϕ1:H and goalsG from instructions l and textual
scene descriptions, while noting that other symbolic [13] and data-driven [69] alternatives are possible.

Given a candidate task plan, we must determine whether it can be feasibly executed in the environment and
achieve the desired goal. Therefore, upon sampling ϕ̃1:H and G̃ from the task planner q1(ϕ1:H,G|l,o1), we
sample parameters ã1:H from the second distribution q2(a1:H|ϕ̃1:H,G̃,o1) to approximately solve the opti-
mization problem in Eq. 2. This second distribution represents the probability that parameters ã1:H satisfy
the goal G̃ given observation o1 and task plan ϕ̃1:H . To obtain parameters ã1:H , we propose a long-horizon
planning procedure with a transformer-based RD model. The full planning procedure is visualized in Fig. 2.

In the following sections, we outline our RD model architecture (Sec. 4.1), a hybrid rollout strategy for
predicting point cloud states (Sec. 4.2), and finally, we present our full planning approach (Sec. 4.3).

4.1 Composable Relational Dynamics

Modeling the effects of actions on the environment (i.e., the dynamics) is essential for long-horizon planning.
Yet, obtaining dynamics models that are both accurate and applicable to a wide range of downstream tasks
is challenging for several reasons: a) they are difficult to define or learn with e.g., imperfect state knowledge
or multi-object interactions; b) models trained on one distribution of long-horizon sequences may not gener-
alize well to others. To address these challenges, we propose several design considerations for transformer-
based RD models [13] that yield significant improvements in prediction accuracy and allow the model to be
chained to predict entirely new long-horizon sequences. Our RD model is comprised of three components:
an encoderEnc, a transformer-based dynamics model T , and a decoderDec, all of which are jointly trained
on single-step environment transitions (see Appx. A.6). We describe the details of each component below.

Encoder. The encoder Enc takes as input segmented point clouds ot = o1t ,...,o
M
t at timestep t and

produces a factored, object-centric latent state zt=z
1
t ,...,z

M
t , where M is the number of objects in the

scene (which may vary across tasks). It embeds each per object segment using PointConv [83] and appends
a learned positional embedding in PyTorch [84] to the resultant per object latent, giving zt=Enc(ot).

Dynamics. We propose a delta-dynamics model T that takes as input the current latent state zt and action
ψt=⟨ϕt,at⟩, and predicts the delta state in the latent space as δzt=T(zt,ψt). We use a transformer as the
delta-dynamics model T since its inductive bias can represent interactions among the multiple objects in zt
as a result of actionψt. Our hypothesis is that it is easier to learn the relative effect δzt of an actionψt than it
is to directly predict the resulting absolute state zt+1 (i.e., hereafter referred to absolute dynamics [12, 13]),
since the relative effects of actions might be similar across many states zt. We show in Sec. 5 that the
choice of delta dynamics translates to notable improvements in pose and predicate prediction accuracy.

4

argmax	𝑃 𝑮 = 1 𝑧!"#$)
{𝑎!, 	𝑎" , 𝑎#}$%!&

On(blue, rack)
On(yellow, rack)
On(orange, rack)

On(blue, shelf)
On(yellow, shelf)
On(orange, shelf)
Goal predicates 𝑮

Segmented point clouds
𝑜!

𝑧!

… X

…

Task plan (H = 3)

{PickPlace(blue)} {PickPlace(yellow)} {PickPlace(orange)}
𝜙! 𝜙" 𝜙#

Task Planning and Goal
Prediction Module

En
co

de
r

De
co

de
r

Decoder

𝑧$%!!

𝑧$%!"

𝑧$%!&

…

𝑟$%!!

𝑟$%!"

𝑟$%!&
{𝑎!, 	𝑎" , 𝑎#}'(!&

Dynamics
Rollout

(See Figure3) √

√

Fe
as

ib
ili

ty
 c

he
ck

Continuous Parameters Sampler

Put all the cups
on the shelf

Figure 2: Overview of Points2Plans. A partial-view segmented point cloud o1 is first encoded into the
(object-centric) latent state z1. The latent state z1 is then decoded into predicates that serve as environment
context for the task planning and goal prediction module (e.g., an LLM), from which a task plan ϕ1:H and a
symbolic goal G are sampled. Points2Plans then invokes a sampling-based planning procedure to compute
continuous parameters a1:H for the manipulation primitives in the task plan ϕ1:H . Infeasible plans (e.g.,
collisions) are rejected, and the plan that maximizes the goal likelihood in the final state zH+1 is returned.

Decoder. The decoder Dec consists of two heads: a relation decoder Decr and a pose decoder Decp.
The relation decoderDecr predicts the probability of each ground predicate being true. More formally,
if U represents the set of ground predicates, then rt = Decr (zt) = {p(u=true |zt)| ∀u ∈ U}. The
probability p(u=true |zt) for one ground predicate u ∈ U is denoted by Decur (zt). This decoder
head can operate on any latent state zt; for instance, it can be used to detect facts at the initial state as
r1=Decr(Enc(o1))=Decr(z1). The pose decoderDecp takes as input a delta state in the latent space
δzt and predicts the relative pose change of all objects in the scene as δpt= δp1t ,...,δp

M
t =Decp(δzt).

Hence, this decoder can only be applied to delta states predicted by T .

4.2 Hybrid Rollout Strategy

𝛿𝑧!𝑧!

Predicted
pos changes

𝛿𝑝!

Transformed
point clouds

𝑜!"#

𝑧!"#
En

co
de

r

Repeat H times

De
co

de
r

Dy
na

m
ic

s

Transformation

𝜓!

Figure 3: Points2Plans hybrid rollout strategy.

We propose a hybrid latent-geometric space dy-
namics rollout strategy that uses the RD encoder
Enc, dynamics T , and decoderDec (described in
Sec. 4.1) to predict the future states of a given plan
τ=ψ1:H , i.e., based on the task plan ϕ1:H and its
continuous parameters a1:H . The rollout strategy
is visualized in Fig. 3.

Let us consider the first timestep: the hybrid rollout strategy first encodes segmented point cloud o1 into
the latent state z1 = Enc(o1). Conditioned on the first action ψ1, the delta state is then predicted as
δz1=T(z1,ψ1). The decoderDecp predicts the delta change in pose δp1. Finally, δp1 is used to transform
the point clouds o1 to obtain o2 =ω(δp1)o1. This process is repeated for all timesteps H in the plan
resulting in the final point cloud oH+1 and latent zH+1 state. By interweaving latent and geometric state
representations, our rollout strategy mitigates compounding prediction errors in the latent space.

4.3 Planning Action Sequences with Relational Dynamics

We outline our full approach to planning an action sequence ψ1:H from a language instruction l and the
initial segmented point cloud of the scene o1 (visualized in Fig. 2). Our approach is hierarchical: we solve
the optimization problem in Eq. 2 by first generating a candidate task plan ϕ̃1:H with the LLM and then
attempting to sample a set of continuous parameters ã1:H that the robot can feasibly execute.

Given an instruction l with an initial observation o1, we sample ϕ̃1:H and G̃ from q1(ϕ1:H,G|l,o1). In
practice, we use a shooting-based method [11], which queries an LLM few-shot to predictN task plans

5

{ϕ̃i1:Hi
}Ni=1 and their corresponding symbolic goals {G̃i}Ni=1 (prompt details in Appx. A.5). For each task

plan ϕ̃1:H and goal G̃ predicted by the LLM, we then seek to generate primitive parameters ã1:H from
distribution q2(a1:H|ϕ̃1:H,G̃,o1) that will approximately maximize the objective in Eq. 1. We formulate
the planning process for parameters ã1:H as the following constrained optimization problem:

ã∗1:H = argmax
ã1:H∼q2

∏
g∈G̃

Decgr(zH+1) (3)

subject to Deccr(zt)<ϵ,∀c∈C,∀t∈1,...,H+1 (4)
where zt=Enc(ot),∀t∈1,...,H+1 (5)

δzt=T
(
zt,⟨ϕ̃t,ãt⟩

)
,∀t∈1,...,H (6)

δpt=Decp(δzt),∀t∈1,...,H (7)
ot+1=ω(δpt)ot,∀t∈1,...,H (8)

We optimize Eq. 3 to maximize the probability of achieving goal predicates G̃ using sampling-based
optimization techniques [85]. The relation decoderDecr is used to compute the probability of a ground
goal predicate g holding true in the final latent state zH+1, which we denote with Decgr(zH+1). C in
Eq. 4 represents the set of all feasibility-related ground predicates, such as Blocking(bowl,cup). During
optimization, we reject parameter sequences ã1:H that violate feasibility constraints, i.e., ground predicates
c∈C whose probability (predicted by the relation decoder Deccr(zt)) exceeds a calibrated threshold ϵc.
For example, we would reject a plan that attempts to grasp a cup if Blocking(bowl,cup) holds true. The
remaining equations (Eq. 5-Eq. 8) correspond to the steps of our hybrid rollout strategy (Sec. 4.2).

For each candidate task plan ϕ̃1:H and goal G̃ predicted by the LLM, we compute their corresponding
parameters ã∗1:H via optimization (Eq. 3). If the success probability

∏
g∈G̃Dec

g
r(zH+1) resulting from the

optimal plan ψ∗
1:H=⟨ϕ̃1:H,ã∗1:H⟩ exceeds a success threshold ϵs (e.g., 90%), we execute the plan on the

robot. However, if no task plan predicted by the LLM is successful or constraint-satisfying, we fall back to
a graph search strategy that enumerates all possible primitive sequences up to a specified search depth (as
in [13]). This ensures that more task plans will be tested should the LLM fail to produce a correct plan.

5 Experiments

We conduct experiments to test the following questions: Q1: Can Points2Plans generalize to unseen
long-horizon tasks despite only being trained on single-step environment transitions? Q2: Does our hybrid
rollout strategy and delta-dynamics model improve prediction accuracy compared to previous RD rollout
formulations? Q3: Does Points2Plans outperform approaches that sequence skills without predicting
dynamics or reasoning about feasibility? Q4: Can LLMs improve the planning efficiency of Points2Plans?
We generate a dataset of over 36,000 random executions of manipulation primitives in IsaacGym [86] to
train our RD model (see Appx. A.6 for training details) and use GPT-4 [87] as the LLM for all experiments.

Dynamics Planning Baselines. We test the performance of Points2Plans against five planning baselines.
Points2Plans−Geo (read “minus geo”) uses the same RD model as Points2Plans but performs rollouts exclu-
sively in the latent space, i.e., without the point cloud transformation in our hybrid rollout strategy (Sec. 4.2).
Conversely, Points2Plans−Delta uses our hybrid rollout strategy but employs an absolute-dynamics model
to predict the absolute state zt of objects instead of the delta state δzt. eRDTransformer [13] represents the
current state-of-the-art RD planning approach, which uses a latent space rollout strategy and an absolute-
dynamics model. We train eRDTransformer using single-step transitions instead of multi-step transitions for
fair comparison. Pairwise-RD [49] is equivalent to eRDTransformer except it only captures pairwise object
interactions with a multi-layer perceptron (MLP) instead of multi-object interactions with transformers.
Greedy selects actions a1:H to avoid collisions without dynamics prediction and long-horizon planning.

Task Planning Baselines. We test the performance of Points2Plans under an LLM task planner and two
baselines. Search performs an exhaustive graph search as in [13] for task planning. Points2Plans−Feasibility
uses the LLM without access to the feasibility-related ground predicates, e.g., Blocking(a,b).

6

3 steps 4 steps 5 steps0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

3 steps 4 steps 5 steps0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Points2Plans Points2Plans−Delta eRDTransformer Points2Plans−Geo Pairwise-RD Greedy Search Points2Plans−Feasibility
3 steps 4 steps 5 steps0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

3 steps 4 steps 5 steps0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r (
m

)

3 steps 4 steps 5 steps

101

102

103

Pl
an

ni
ng

 T
im

e
(s

)

3 objs 4 objs 5 objs0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ne

ss

3 steps 4 steps 5 steps0

2

4

6

8

10

Nu
m

be
r o

f S
uc

ce
ss

es

(a) Simulation Success Rate

(b) Real World Success

(c) Position Prediction Error

(d) Predicate Prediction F1

(e) Task Planning Time

(f) Task Planning Correctness

Figure 4: Simulation and real-world results for the Constrained Packing (a-d) and Constrained
Retrieval (e-f) tasks. As task complexity increases, Points2Plans significantly outperforms baselines in
terms of planning success rate (a-b), position prediction error (c), and predicate classification accuracy (d).
Interfacing Points2Plans with an LLM task planner increases planning efficiency (e) and correctness (f).
Planning time is shown on a logarithmic scale. Errors bars denote standard deviations across 500 trials.

Experimental Tasks. We evaluate our approach and baselines across a suite of sequential manipulation
tasks (Fig. 1). Constrained Packing tasks the robot with shelving multiple objects in a spatially constrained
environment (e.g., a kitchen cupboard). To succeed, the robot must carefully plan the placement positions
of the objects so as to avoid collisions. We compare Points2Plans to the RD baselines on this task as
it requires accurate RD predictions of geometric and symbolic states. Constrained Retrieval tasks the
robot with retrieving target objects in a constrained environment. To succeed, the robot must identify and
remove objects that occlude the target objects before retrieving them. We compare Points2Plans to the
task planning baselines on this task as it requires the planner to infer the logically correct task plan based
on the initial state. Multi-object Retrieval tasks the robot with retrieving an object inside a container
(e.g., a bowl) in a constrained environment. Here, the robot must first remove the container from the
constrained environment before grasping the object from inside the container. This task tests our planner’s
ability to reason about multi-object interactions and nested geometric dependencies. Occluded Object
Retrieval tasks the robot with retrieving objects in a dark environment (i.e., without perception) given
the history of states and actions up until the timestep t at which the lights are turned off. To succeed, the
robot must plan from its memory of object positions and relations encoded in the latent state zt. We present
quantitative results on the Constrained Packing and Constrained Retrieval tasks, and qualitative results
on the Multi-object Retrieval and Occluded Object Retrieval tasks.

6 Results

Simulation Experiments. We compare Points2Plans against all planning baselines on the Constrained
Packing task to evaluate the effect of the RD model and rollout strategy on planning performance. We run
500 trials for each combination of planning horizon and approach. To measure the planning performance,
we report the success rate, position prediction error, and predicate prediction F1 score.

Results shown in Fig. 4a demonstrate that Points2Plans generalizes to unseen long-horizon tasks more
effectively than the baselines (Q1). Comparing Points2Plans and Points2Plans−Geo in Fig. 4d, we observe
that our hybrid rollout strategy contributes greatly to predicate prediction accuracy over long horizons
(Q2). Moreover, comparing Points2Plans with Points2Plans−Delta, eRDTransformer, and Pairwise-RD in
Fig. 4c highlights the importance of our delta-dynamics model, as the baselines (which employ an absolute-
dynamics model) exhibit a larger accumulation of position prediction error over increasing prediction
horizons (Q2). Finally, we observe that the Greedy approach performs significantly worse than Points2Plans
in Fig. 4a, indicating that multi-step planning is required for the long-horizon tasks we consider (Q3).

7

Real-World Experiments. We evaluate Points2Plans against Points2Plans−Delta (the next best-performing
baseline) in the real world. We run 10 trials of each method per task. The results in Fig. 4b show that
Points2Plans solves over 85% of long-horizon tasks and significantly outperforms Points2Plans−Delta,
which solves only 50% of the tasks. Fig. 5 (top row) illustrates how the baseline fails to plan collision-free
placements for multiple objects, due to prediction errors from its RD model. In contrast, Fig. 1 and Fig. 5
show that Points2Plans effectively generalizes to various real-world tasks without fine-tuning (Q1). Demon-
strations of approach on a mobile manipulator are available at sites.google.com/stanford.edu/points2plans.

Initial Scene Points2Plans Baselines

Figure 5: Points2Plans generalizes to unseen long-horizon tasks,
whereas the baselines struggle to find collision-free plans.

Task Planning Ablation. We evaluate
the performance of Points2Plans when
configured with different task planning
strategies in the Constrained Retrieval
task. We run 500 trials of each ap-
proach per task. Fig. 4e shows that
the planning time of Points2Plans in-
creases only linearly with the LLM task
planner, whereas the Search task plan-
ner (enumerating all possible discrete
parameters) results in an exponential
increase in planning time w.r.t. to the
task horizon (Q4). In Fig. 4f, we see
that the Points2Plans−Feasibility base-
line struggles to predict feasible task
plans, highlighting the importance of
providing feasibility-related predicates to the LLM task planner as in Points2Plans. Plan executions
of Points2Plans and Points2Plans−Feasibility are shown in the bottom row of Fig. 5. Here, the baseline fails
to remove occluding objects before attempting to grasp the target object behind them, while Points2Plans
infers a feasible task plan based on feasibility-related predicates detected by the RD model.

7 Conclusion

In this work, we study the problem of solving sequential manipulation tasks from partial-view point
clouds and language instructions. We present a long-horizon planning framework, Points2Plans, that uses
transformer-based relational dynamics to sequence manipulation skills and coordinate their geometric
dependencies. In experiments, we show that interleaving additive, delta-state predictions in the latent space
with rigid-body transformations in the geometric space leads to more accurate predictions of point cloud
states over long horizons. As a result, our relational dynamics model can accurately learn the effects of
robot skills from a dataset of random, single-step transitions, and then compose the skill effects at planning
time to solve multi-step tasks. We deploy Points2Plans on a mobile manipulator platform and demonstrate
that it can generalize to diverse real-world tasks such as shelving kitchenware, retrieving occluded objects,
and planning from memory.

Limitations. Points2Plans executes its plans in an open-loop fashion, i.e., without considering feedback
from the environment. Exploring closed-loop strategies for refining plans or correcting execution failures
via replanning are possible points of extension. Furthermore, our framework assumes a fixed set of
predicates to learn skill effects. Drawing from predicate learning techniques [79, 88] could improve
the generality of our framework, e.g., facilitating planning in an open-world setting. Finally, while we
demonstrate faster planning with LLMs, their task planning performance degrades with longer tasks and
more complex instructions [89]. Including more sophisticated LLM-based task planning strategies [11]
would improve the overall robustness of our planner.

8 Acknowledgements

This work was supported by NSF Award #2024778, by DARPA under grant N66001-19-2-4035, and by a
Sloan Research Fellowship. Toyota Research Institute and Toshiba provided funds to support this work.

8

https://sites.google.com/stanford.edu/points2plans

References
[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan,

K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691, 2022.

[2] B. Wu, R. Martin-Martin, and L. Fei-Fei. M-ember: Tackling long-horizon mobile manipulation via
factorized domain transfer. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11690–11697. IEEE, 2023.

[3] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined task and
motion planning. In IJCAI, pages 1930–1936, 2015.

[4] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners and
blackbox samplers via optimistic adaptive planning. In Proceedings of the international conference
on automated planning and scheduling, volume 30, pages 440–448, 2020.

[5] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous systems, 4:
265–293, 2021.

[6] D. Xu, A. Mandlekar, R. Mart́ın-Mart́ın, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affordance
foresight: Planning through what can be done in the future. In 2021 IEEE international conference
on robotics and automation (ICRA), pages 6206–6213. IEEE, 2021.

[7] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning via
parameterized action primitives. Advances in Neural Information Processing Systems, 34:21847–
21859, 2021.

[8] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. In K. Liu, D. Kulic,
and J. Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning, volume 205 of
Proceedings of Machine Learning Research, pages 2262–2272. PMLR, 14–18 Dec 2023.

[9] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Stap: Sequencing task-agnostic policies. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 7951–7958. IEEE, 2023.

[10] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill planning
with diffusion models. In Conference on Robot Learning, pages 2905–2925. PMLR, 2023.

[11] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language
instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023.

[12] Y. Huang, A. Conkey, and T. Hermans. Planning for Multi-Object Manipulation with Graph Neural
Network Relational Classifiers. In IEEE International Conference on Robotics and Automation
(ICRA), 2023. URL https://arxiv.org/abs/2209.11943.

[13] Y. Huang, N. C. Taylor, A. Conkey, W. Liu, and T. Hermans. Latent Space Planning for Multi-Object
Manipulation with Environment-Aware Relational Classifiers. IEEE Transactions on Robotics (T-RO),
2024. URL https://arxiv.org/pdf/2305.10857.pdf.

[14] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Learning neuro-
symbolic skills for bilevel planning. In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings of
The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine Learning Research,
pages 701–714. PMLR, 14–18 Dec 2023.

[15] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

9

https://arxiv.org/abs/2209.11943
https://arxiv.org/pdf/2305.10857.pdf

[16] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstra-
tion. Robotics and autonomous systems, 57(5):469–483, 2009.

[17] B. C. Da Silva, G. Konidaris, and A. G. Barto. Learning parameterized skills. In Proceedings of the
29th International Coference on International Conference on Machine Learning, pages 1443–1450,
2012.

[18] J. Felip, J. Laaksonen, A. Morales, and V. Kyrki. Manipulation primitives: A paradigm for abstraction
and execution of grasping and manipulation tasks. Robotics and Autonomous Systems, 61(3):283–296,
2013.

[19] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In
Conference on robot learning, pages 651–673. PMLR, 2018.

[20] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song. XSkill: Cross embodiment skill discovery. In
7th Annual Conference on Robot Learning, 2023. URL https://openreview.net/forum?id=

8L6pHd9aS6w.

[21] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Language-guided creation
of physically-valid structures using unseen objects. In Proceedings of Robotics: Science and Systems
(RSS), 2023.

[22] L. P. Kaelbling and T. Lozano-Pérez. Learning composable models of parameterized skills. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 886–893. IEEE, 2017.

[23] D.-A. Huang, D. Xu, Y. Zhu, A. Garg, S. Savarese, L. Fei-Fei, and J. C. Niebles. Continuous
relaxation of symbolic planner for one-shot imitation learning. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2635–2642. IEEE, 2019.

[24] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations for
sequential manipulation. In Conference on Robot Learning, pages 148–157. PMLR, 2022.

[25] S. Cheng and D. Xu. League: Guided skill learning and abstraction for long-horizon manipulation.
IEEE Robotics and Automation Letters, 2023.

[26] N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-Pérez, L. P. Kaelbling, and J. Barry.
Practice makes perfect: Planning to learn skill parameter policies. In Robotics: Science and Systems
(RSS), 2024.

[27] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, T. Jackson, N. Brown, L. Luu, S. Levine, K. Hausman, and brian ichter. Inner
monologue: Embodied reasoning through planning with language models. In 6th Annual Conference
on Robot Learning, 2022. URL https://openreview.net/forum?id=3R3Pz5i0tye.

[28] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. Palm-e: an embodied
multimodal language model. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

[29] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as policies:
Language model programs for embodied control. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[30] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg.
Progprompt: Generating situated robot task plans using large language models. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 11523–11530. IEEE, 2023.

10

https://openreview.net/forum?id=8L6pHd9aS6w
https://openreview.net/forum?id=8L6pHd9aS6w
https://openreview.net/forum?id=3R3Pz5i0tye

[31] D. Xu, R. Mart́ın-Mart́ın, D.-A. Huang, Y. Zhu, S. Savarese, and L. F. Fei-Fei. Regression planning
networks. Advances in neural information processing systems, 32, 2019.

[32] C. Wang, D. Xu, and L. Fei-Fei. Generalizable task planning through representation pretraining.
IEEE Robotics and Automation Letters, 7(3):8299–8306, 2022.

[33] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-Pérez, and L. P. Kaelbling. Pddl
planning with pretrained large language models. In NeurIPS 2022 foundation models for decision
making workshop, 2022.

[34] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+ p: Empowering large
language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477, 2023.

[35] L. Zha, Y. Cui, L.-H. Lin, M. Kwon, M. G. Arenas, A. Zeng, F. Xia, and D. Sadigh. Distilling and
retrieving generalizable knowledge for robot manipulation via language corrections. In 2024 IEEE
international conference on robotics and automation (ICRA). IEEE, 2024.

[36] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[37] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, volume 31, 2017.

[38] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems, 31, 2018.

[39] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parameterized actions. In
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[40] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages
1149–1155. IEEE, 2020.

[41] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives for
diverse manipulation tasks. In 2022 International Conference on Robotics and Automation (ICRA),
pages 7477–7484. IEEE, 2022.

[42] K. Fang, P. Yin, A. Nair, H. R. Walke, G. Yan, and S. Levine. Generalization with lossy affordances:
Leveraging broad offline data for learning visuomotor tasks. In 6th Annual Conference on Robot
Learning, 2022. URL https://openreview.net/forum?id=esOrVR_8-rc.

[43] D. Shah, A. T. Toshev, S. Levine, and brian ichter. Value function spaces: Skill-centric state
abstractions for long-horizon reasoning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=vgqS1vkkCbE.

[44] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. In 6th Annual Con-
ference on Robot Learning, 2022. URL https://openreview.net/forum?id=iVxy2eO601U.

[45] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 3795–3802. IEEE, 2018.

[46] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural
task graphs: Generalizing to unseen tasks from a single video demonstration. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 8565–8574, 2019.

[47] Y. Chen, C. Wang, L. Fei-Fei, and K. Liu. Sequential dexterity: Chaining dexterous policies for
long-horizon manipulation. In 7th Annual Conference on Robot Learning, 2023. URL https:

//openreview.net/forum?id=2Qrd-Yw4YmF.

11

https://openreview.net/forum?id=esOrVR_8-rc
https://openreview.net/forum?id=vgqS1vkkCbE
https://openreview.net/forum?id=iVxy2eO601U
https://openreview.net/forum?id=2Qrd-Yw4YmF
https://openreview.net/forum?id=2Qrd-Yw4YmF

[48] Y. Lee, J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon robot
manipulation via terminal state regularization. In 5th Annual Conference on Robot Learning, 2021.
URL https://openreview.net/forum?id=K5-J-Espnaq.

[49] C. Paxton, C. Xie, T. Hermans, and D. Fox. Predicting stable configurations for semantic placement
of novel objects. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.

net/forum?id=5DjX89Wyhk-.

[50] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568, 2018.

[51] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages 2555–
2565. PMLR, 2019.

[52] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2020. URL https://

openreview.net/forum?id=S1lOTC4tDS.

[53] P. Sundaresan, J. Wu, and D. Sadigh. Learning sequential acquisition policies for robot-assisted
feeding. In 7th Annual Conference on Robot Learning, 2023. URL https://openreview.net/

forum?id=o2wNSCTkq0.

[54] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba. 3d neural scene representations for visuomotor
control. In Conference on Robot Learning, pages 112–123. PMLR, 2022.

[55] H. Shi, H. Xu, S. Clarke, Y. Li, and J. Wu. Robocook: Long-horizon elasto-plastic object manipulation
with diverse tools. In 7th Annual Conference on Robot Learning, 2023. URL https://openreview.

net/forum?id=69y5fzvaAT.

[56] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu. Robocraft: Learning to see, simulate, and shape elasto-
plastic objects in 3d with graph networks. The International Journal of Robotics Research, page
02783649231219020, 2023.

[57] M. Chang, T. Ullman, A. Torralba, and J. Tenenbaum. A compositional object-based approach to
learning physical dynamics. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=Bkab5dqxe.

[58] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning about
objects, relations and physics. Advances in neural information processing systems, 29, 2016.

[59] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and
P. Battaglia. Graph networks as learnable physics engines for inference and control. In International
conference on machine learning, pages 4470–4479. PMLR, 2018.

[60] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting
systems. In International conference on machine learning, pages 2688–2697. PMLR, 2018.

[61] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics with
compositional neural radiance fields. In Conference on robot learning, pages 1755–1768. PMLR,
2023.

[62] A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. A long horizon
planning framework for manipulating rigid pointcloud objects. In Conference on Robot Learning,
pages 1582–1601. PMLR, 2021.

[63] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan. Diffskill: Skill abstraction from
differentiable physics for deformable object manipulations with tools. In International Conference on
Learning Representation (ICLR), 2022.

12

https://openreview.net/forum?id=K5-J-Espnaq
https://openreview.net/forum?id=5DjX89Wyhk-
https://openreview.net/forum?id=5DjX89Wyhk-
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=o2wNSCTkq0
https://openreview.net/forum?id=o2wNSCTkq0
https://openreview.net/forum?id=69y5fzvaAT
https://openreview.net/forum?id=69y5fzvaAT
https://openreview.net/forum?id=Bkab5dqxe

[64] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held. Planning with spatial-
temporal abstraction from point clouds for deformable object manipulation. In 6th Annual Conference
on Robot Learning, 2022. URL https://openreview.net/forum?id=tyxyBj2w4vw.

[65] Y. Huang, J. Yuan, C. Kim, P. Pradhan, B. Chen, L. Fuxin, and T. Hermans. Out of Sight, Still in
Mind: Reasoning and Planning about Unobserved Objects with Video Tracking Enabled Memory
Models. In IEEE International Conference on Robotics and Automation (ICRA), 2024.

[66] B. Vu, T. Migimatsu, and J. Bohg. Coast: Constraints and streams for task and motion planning. In
IEEE International Conference on Robotics and Automation (ICRA), 2024.

[67] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon manipulation
of unknown objects via task and motion planning with estimated affordances. In 2022 International
Conference on Robotics and Automation (ICRA), pages 1940–1946. IEEE, 2022.

[68] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint. Deep visual heuristics: Learning feasibility of mixed-
integer programs for manipulation planning. In 2020 IEEE international conference on robotics and
automation (ICRA), pages 9563–9569. IEEE, 2020.

[69] D. Driess, J.-S. Ha, and M. Toussaint. Deep visual reasoning: Learning to predict action sequences
for task and motion planning from an initial scene image. In Robotics: Science and Systems (RSS),
2020.

[70] D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint. Learning geometric reasoning and control for long-
horizon tasks from visual input. In 2021 IEEE international conference on robotics and automation
(ICRA), pages 14298–14305. IEEE, 2021.

[71] M. Dalal, A. Mandlekar, C. R. Garrett, A. Handa, R. Salakhutdinov, and D. Fox. Imitating task and
motion planning with visuomotor transformers. In 7th Annual Conference on Robot Learning, 2023.
URL https://openreview.net/forum?id=QNPuJZyhFE.

[72] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld, D. W. Sri,
A. Barrett, D. Christianson, et al. Pddl— the planning domain definition language. Technical Report,
Tech. Rep., 1998.

[73] B. Ames, A. Thackston, and G. Konidaris. Learning symbolic representations for planning with
parameterized skills. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 526–533. IEEE, 2018.

[74] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. Journal of Artificial Intelligence Research, 61:
215–289, 2018.

[75] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. Learning symbolic
operators for task and motion planning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3182–3189. IEEE, 2021.

[76] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models of
robot skills for task and motion planning. The International Journal of Robotics Research, 40(6-7):
866–894, 2021.

[77] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kaelbling, and J. B. Tenenbaum.
Predicate invention for bilevel planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 12120–12129, 2023.

[78] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kaelbling. Learning neuro-symbolic
relational transition models for bilevel planning. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4166–4173. IEEE, 2022.

13

https://openreview.net/forum?id=tyxyBj2w4vw
https://openreview.net/forum?id=QNPuJZyhFE

[79] N. Shah, J. Nagpal, P. Verma, and S. Srivastava. From reals to logic and back: Inventing symbolic
vocabularies, actions and models for planning from raw data. arXiv preprint arXiv:2402.11871, 2024.

[80] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4015–4026, 2023.

[81] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui. Open-vocabulary object detection via vision and language
knowledge distillation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=lL3lnMbR4WU.

[82] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In 2011
IEEE International Conference on Robotics and Automation, pages 1470–1477. IEEE, 2011.

[83] W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional networks on 3d point clouds. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages 9621–
9630, 2019.

[84] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[85] R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization. Methodol-
ogy and computing in applied probability, 1:127–190, 1999.

[86] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance GPU based physics simulation for
robot learning. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021. URL https://openreview.net/forum?id=fgFBtYgJQX_.

[87] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[88] A. Ahmetoglu, B. Celik, E. Oztop, and E. Ugur. Discovering predictive relational object symbols
with symbolic attentive layers. IEEE Robotics and Automation Letters, 2024.

[89] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma, S. Bhambri, L. Saldyt, and
A. Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv preprint
arXiv:2402.01817, 2024.

[90] K. Rawlik, M. Toussaint, and S. Vijayakumar. On Stochastic Optimal Control and Reinforcement
Learning by Approximate Inference. In Robotics: Science and Systems, 2012.

[91] A. Conkey and T. Hermans. Planning under uncertainty to goal distributions. Arxiv Preprint, 2020.
URL http://arxiv.org/abs/2011.04782.

[92] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor
policy learning via action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.

[93] A. Prasad, K. Lin, J. Wu, L. Zhou, and J. Bohg. Consistency policy: Accelerated visuomotor policies
via consistency distillation. In Robotics: Science and Systems (RSS), 2024.

[94] J. Y. Gil and R. Kimmel. Efficient dilation, erosion, opening, and closing algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(12):1606–1617, 2002.

14

https://openreview.net/forum?id=lL3lnMbR4WU
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=fgFBtYgJQX_
http://arxiv.org/abs/2011.04782

A Appendix

Overview

The appendix provides additional details and results. First, we present detailed derivations for our planning
objective (Appx. A.1) and sampling distributions (Appx. A.2). Second, we provide the details of the
planning and optimization (Appx. A.3). Third, we include extra experimental details (Appx. A.6 to
Appx. A.4). Finally, we provide information on implementation (Appx. A.9), failure cases (Appx. A.10),
hardware (Appx. A.11), generalization experiments (Appx. A.12), and robustness to noisy segmenta-
tions (Appx. A.13). Qualitative results are available at sites.google.com/stanford.edu/points2plans.

A.1 Generative Model and Problem Formulation . A2

A.2 Approximate Sampling Distributions . A3

A.3 Planning and Optimization Details . A4

A.4 Predicates Definition . A5

A.5 LLM Prompt Details . A5

A.6 Dataset Generation and Training Details . A9

A.7 Baseline Comparison Details . A10

A.8 Primitives Definition . A10

A.9 Neural Network Implementation Details . A10

A.10 Failure Cases Analysis . A12

A.11 Hardware Setup . A12

A.12 Generalization to Unseen Scenarios . A13

A.13 Generalization to Noisy Segmentation Masks . A13

A1

https://sites.google.com/stanford.edu/points2plans

A.1 Generative Model and Problem Formulation

𝑙 𝒢

𝜙!

𝑥"#!

𝑜!

𝜙$ 𝜙"

𝑥%𝑥$𝑥!

𝑎! 𝑎"

…

𝑎$ …

Figure 6: A causal Bayes net to derive Eq. 1. G represents the goal predicates, l is the language instruction,
o1 is the initial observation, ϕ1:H are the task plans, a1:H are the continuous parameters, and x1:H represent
world states (including predicates r1:H and positions p1:H . Shaded nodes represent observed variables.

Figure 6 shows a causal Bayes net defining the relevant variables to our planning problem. Recall that a
Bayesian network defines a factorization via conditional independence over the joint probability distribution
of all variables in the model. In our model, the joint distribution is thus, p(G,o1,l,ψ1:H,x1:H+1) =

p(l |G,o1)p(G |xH+1)p(o1 |x1)p(x1)
∏H
k=1p(xk+1 |xk,ak,ϕk)p(ak |ϕk)p(ϕk).

Here o1 defines the observed world observation at time step 1. We define the observed language instruction
as l and the unobserved goal predicates as G. Our model assumes that the user has a goal in mind that the
robot is capable of achieving. However, instead of explicitly writing this goal into a command prompt for
the robot, the user provides a natural language command. As such the robot must infer the underlying goal
predicates conditioned on the language instruction and the world observation shared between the user and
robot.

The variable ψ1:H defines the robot’s plan (sequence of primitives and continuous parameters), while xk
defines the world state at time k. We represent the state dynamics and action priors in the format common
to that used in the planning as inference literature e.g. [90, 91].

While one could fully separate inference of the goal from the robot planning problem, by treating them as a
joint problem we ensure that the robot only infers goals that are feasible for it to achieve. This matches
our assumption that the human operator is non-adversarial and providing instructions the robot should be
able to perform. The robot’s planning task is thus to infer both the goal predicates, G and plan ψ1:H that
achieves this goal. While we are primarily concerned with finding the plan, identifying the goal predicates
provides a fixed target for our planner. This goal can also be helpful if we want to replan online to correct
for execution errors. As an alternative, we could examine marginalizing out the goal variable by integrating
over all possible goals. This would require us to use a form of planning to goal distributions [91], which
we defer to future work.

A2

Given this model associated with the causal graph in Fig. 6, we can now derive the planning objective of
Eq. 1 through the following steps. (Note that Eq. 1-Eq. 8 appear in the main paper.)

argmax
ψ1:h,G

p(G,o1,l,ψ1:H,x1:H+1) (9)

=argmax
ψ1:H,G

p(l |G,o1)p(G |xH+1)p(o1 |x1)p(x1)

H∏
k=1

p(xk+1 |xk,ak,ϕk)p(ak |ϕk)p(ϕk) (10)

=argmax
ψ1:H,G

p(l |G,o1)p(G |xH+1)p(o1 |x1)p(x1)p(xH+1 |x1,ψ1:H)p(ψ1:H) (11)

=argmax
ψ1:H,G

p(l |G,o1)p(G |xH+1)p(x1 |o1)p(o1)p(xH+1 |x1,ψ1:H)p(ψ1:H) (12)

=argmax
ψ1:H,G

p(l |G,o1)p(G |xH+1)p(xH+1 |ψ1:H,o1)p(ψ1:H)p(o1) (13)

=argmax
ψ1:H,G

p(l |G,o1)p(G |xH+1)p(xH+1 |ψ1:H,o1) (14)

=argmax
ψ1:H,G

p(l |G,o1)p(G |ψ1:H,o1) (15)

The first step is simply applying the factorization of the Bayes net. Eq. 11 makes two changes to remove
the product over time steps. First we apply the definition p(ψ1:H)=

∏H
k=1p(ak |ϕk)p(ϕk), which we

name the plan prior. Second we integrate over (i.e. marginalize out) state trajectories as a function of the
actions sequence (i.e. plan) to encode the distribution over terminal states xH+1 as a function of the initial
state and plan. For Eq. 12 we then apply the definition of conditional distributions to the initial state prior
and observation function. This allows us to then marginalize out the initial state variable x1 in Eq. 13. The
next step removes the prior on the initial observation as it is constant and assumes the prior on plans is
uniform and thus also constant. The final step then marginalizes out all possible terminal states to recover
our problem as stated in Eq. 1.

A.2 Approximate Sampling Distributions

We now turn to the derivation of our approximate sampling distributions q1 (ϕ1:H,G, |l,o1) and
q2 (a1:H |ϕ1:H,G,o1). We start by taking the first term in Eq. 1 and use Bayes’ theorem (Eq. 17) to
condition on the observed language instruction l

argmax
ψ1:H,G

p(l |G,o1)p(G |ψ1:H,o1) (16)

=argmax
ψ1:H,G

p(G |l,o1)p(l |o1)
p(G |o1)

p(G |ψ1:H,o1) (17)

=argmax
ψ1:H,G

p(G |l,o1)
p(G |o1)

p(G |ψ1:H,o1) (18)

where we can simplify the numerator in Eq. 17 to Eq. 18 since the value of l is known and thus p(l |o1) is
constant. We now turn our attention to the second term in Eq. 1 and Eq. 18. Here we again use Bayes’
theorem and the definitions of conditional probability distributions to rearrange terms from Eq. 19 through

A3

Eq. 21:

argmax
ψ1:H,G

p(G |l,o1)
p(G |o1)

p(G |ψ1:H,o1) (19)

=argmax
ψ1:H,G

p(G |l,o1)
p(G |o1)

p(ψ1:H |G,o1)p(G |o1)
p(ψ1:H |o1)

(20)

=argmax
ψ1:H,G

p(G |l,o1)
p(ψ1:H |G,o1)
p(ψ1:H |o1)

(21)

=argmax
ψ1:H,G

p(G |l,o1)
p(a1:H,ϕ1:H |G,o1)
p(a1:H,ϕ1:H |o1)

(22)

=argmax
ψ1:H,G

p(G |l,o1)
p(ϕ1:H |G,o1)
p(ϕ1:H |o1)

p(a1:H |ϕ1:H,G,o1)
p(a1:H |ϕ1:H,o1)

(23)

=argmax
ψ1:H,G

p(G |l,o1)
p(ϕ1:H |G,l,o1)
p(ϕ1:H |o1)

p(a1:H |ϕ1:H,G,o1)
p(a1:H |ϕ1:H,o1)

(24)

=argmax
ψ1:H,G

p(G |l,o1)
p(ϕ1:H,G |l,o1)

p(G |l,o1)p(ϕ1:H |o1)
p(a1:H |ϕ1:H,G,o1)
p(a1:H |ϕ1:H,o1)

(25)

=argmax
ψ1:H,G

p(ϕ1:H,G |l,o1)
p(ϕ1:H |o1)

p(a1:H |ϕ1:H,G,o1)
p(a1:H |ϕ1:H,o1)

(26)

where Eq. 22 comes from applying the definition of the action components and Eq. 23 comes from the
fact that skills ϕ1:H can be chosen before selecting their parameters a1:H . The equality in Eq. 24 results
from the existing conditional independence relations allowing us to introduce l without changing the values
of the probability distribution. Eq. 25 results from the definition of conditional distributions. Finally, this
allows us to cancel the term appearing in both the numerator and denominator resulting in Eq. 26. These
two terms are then the distributions we approximate with our sampling distributions q1(·) and q2(·).

Hence we can now summarize the derivation above as the following relationships

ψ∗
1:H,G

∗=argmax
ψ1:H,G

p(l |G,o1)p(G |ψ1:H,o1) (27)

=argmax
ψ1:H,G

p(ϕ1:H,G |l,o1)
p(ϕ1:H |o1)

p(a1:H |ϕ1:H,G,o1)
p(a1:H |ϕ1:H,o1)

(28)

≈argmax
ψ1:H,G

q1(ϕ1:H,G |l,o1)q2(a1:H |ϕ1:H,G,o1) (29)

where the approximation in Eq. 29 is made by assuming a uniform distribution over actions given the
initial observation (o.e. the denominator becomes constant). We can then approximately solve the planning
objective in Eq. 1 by sequentially generating samples from the two approximate sampling distributions as
ϕ̃1:H,G̃∼q1(ϕ1:H,G |l,o1) followed by ã1:H∼q2

(
a1:H

∣∣∣ϕ̃1:H,G̃,o1).

A.3 Planning and Optimization Details

We use a shooting-based planner to determine the actions ψ1:H from an initial observation o1 and a
language instruction l. We provide the details of the shooting-based Points2Plans planner in Alg. 1.

Note that if no plan predicted by the LLM is successful or constraint-satisfying, we fall back to a search-
based strategy that enumerates all possible primitive sequences up to a specified search depth (as in [13]),
optimizes them with Eq. 3, and checks if the plan satisfies any goal predicted by the LLM. (Note that
Eq. 1-Eq. 8 appear in the main paper.) In practice, we find that the planner seldom falls back to the
search-based strategy; however, it ensures that more primitive sequences will be tested should the LLM fail
to produce a correct plan.

Furthermore, we provide more details about the constrained optimization (Eq. 3). The optimization
process includes encoding the point clouds into the latent states (Eq. 5), the delta-state predictions by the
delta-dynamics (Eq. 6), decoding the delta-state in latent space to relative pose changes with the pose
decoderDecp (Eq. 7) , and point cloud transformations (Eq. 8).

A4

Algorithm 1 Shooting-based Points2Plans planner

1: globals: LLM,Enc,Decgr,Deccr,T,ω,q2(a1:H |ϕ1:H,G,o1)
2: function SHOOTING(l,o1,C)
3: {ϕ̃i

1:Hi
}Ni=1,{G̃i}Ni=1∼LLM(l,o1) ▷ Generate task plans and goals

4: for i=1...N do
5: C={} ▷ Initiate candidate set for each task plan and goal

6: {ãj1:Hi
}Kj=1∼q2

(
ã1:Hi

∣∣∣ϕ̃i
1:Hi

,G̃i,o1

)
▷ Sample actions

7: for j=1...K do
8: z1=Enc(o1) ▷ Encode initial observation
9: zj1=z1

10: oj
1=o1

11: for t=1...Hi do
12: δzjt=T

(
zjt ,⟨ϕ̃t,ã

j
t⟩
)

▷ Delta-dynamics function

13: δpj
t=Decp

(
δzjt

)
14: oj

t+1=ω(δpj
t)o

j
t ▷ Point clouds transformations

15: zjt+1=Enc
(
oj
t+1

)
▷ Encode transformed point clouds

16: if Deccr
(
zjt+1

)
>=ϵ then

17: raise collision found, break ▷ Collision found, reject this sequence ãj1:Hi
18: end if
19: if t==H then ▷ No collision found
20: C←C∪{j} ▷ Add this sequence to candidate set
21: end if
22: end for
23: end for
24: if C!=∅ then
25: j∗=argmaxj∈C

∏
g∈G̃i

Decgr(z
j
Hi+1)

26: return ϕ̃i
1:Hi

ãj
∗

1:Hi
▷ Return the task plan with the continuous parameters

27: end if
28: end for
29: raise LLM failure, fall back to Search
30: end function

A.4 Predicates Definition

Our system includes unary predicates and binary predicates.

For unary predicates, our system encodes whether a segment is movable (e.g., a shelf in a cupboard is not
movable while an object on the shelf is movable), whether a segment is a drawer, and whether the drawer
is opened or closed.

For binary predicates, our system includes two kinds. First, our system includes nine spatial predicates:
left, right, front, behind, above, below, contact, boundary, and inside. The definitions of these predicates
are the same as [65]. Second, we define feasibility-related predicates to indicate the feasibility of each
object. We define two feasibility-related predicates: blocking-behind and blocking-inside. We define
blocking-behind(a, b) as true if behind(b, a), below(a, high-surface), below(b, high-surface), above(a,
low-surface), and above(b, low-surface), meaning both a and b are in a constrained environment, and
b is behind a. We define blocking-inside(a, b) as true if inside(b, a), below(a, high-surface), below(b,
high-surface), above(a, low-surface), above(b, low-surface), meaning both a and b are in a constrained
environment and b is inside a.

A.5 LLM Prompt Details

Our prompts include prompt templates (black), LLM output (orange), and in-context examples (grey).
Placeholders, denoted by braces, are substituted with task-related objects for different scenarios.

The in-context examples are toy examples of the tasks that the LLM solves at test time. These toy examples
describe the usage semantics of the available primitives and predicates, and help constrain the LLM output.

A5

I am the reasoning system of a mobile manipulator robot operating in a household envi-
ronment. Given 1) an instruction from a human user and 2) the current symbolic state
of the environment, I will predict a set of possible symbolic goals that the robot
could achieve to fulfill the user’s instruction.

Definitions:

- Symbolic states and symbolic goals are defined as a set of predicates expressed over
specific objects.

- The term ’predicate’ refers to an object state (e.g., Opened(cabinet)) or a rela-
tionship among objects (e.g., On(cup, shelf)).

The robot can perceive the following information about the environment: - The ob-
jects in the environment - The states of individual objects - The relationships among
objects

The robot can detect the following states of individual objects: - Opened(a): Ob-
ject a is opened - Closed(a): Object a is closed

The robot can detect the following relationships among objects: - On(a, b): Object a
is on object b - Inside(a, b): Object a is in object b

There may be multiple symbolic goals that fulfill the user’s instruction. Therefore, I
will format my output in the following form:

Goals: List[List[str]]

Rules: - I will output a set of symbolic goals as a list of lists after ’Goals:’.
Each nested list represents one goal - I will not output all possible symbolic goals,
but the most likely goals that fulfill the user’s instruction - If there are multiple
symbolic goals that fulfill the instruction, I will output the simplest goals first"

A6

I am the task planning system of a mobile manipulator robot operating in a house-
hold environment. Given 1) an instruction from a human user, 2) the current symbolic
state of the environment, and 3) a set of possible symbolic goals that the robot could
achieve to fulfill the user’s instruction, I will predict a set of task plans that the
robot should execute to satisfy the symbolic goals.

Definitions:

- Symbolic states and symbolic goals are defined as a set of predicates expressed over
specific objects.

- The term ’predicate’ refers to an object state (e.g., Opened(cabinet)) or a rela-
tionship among objects (e.g., On(cup, shelf)).

- A task plan is a sequence of actions that the robot can execute (e.g., Pick(cup,
table), Place(cup, shelf))

The robot can perceive the following information about the environment:

- The objects in the environment

- The states of individual objects

- The relationships among objects

The robot can detect the following states of individual objects:

- Opened(a): Object a is opened - Closed(a): Object a is closed

The robot can detect the following relationships among objects:

- On(a, b): Object a is on object b - Inside(a, b): Object a is in object b

The robot can execute the following actions:

- Pick(a, b): The robot picks object a from object b

- Place(a, b): The robot places object a on or in object b

- Open(a): The robot opens object a

- Close(a): The robot closes object a

Action preconditions:

- If the robot is already holding an object, it CANNOT Pick, Open, or Close another
object

- The robot CAN ONLY Place an object that it is already holding

There may be multiple symbolic goals that fulfill the user’s instruction. Therefore, I
will format my output in the following form:

Plans: List[List[str]]

Rules:

- I will output a set of task plans as a list of lists after ’Plans:’. Each nested
list represents one task plan

- I will output one task plan for each symbolic goal. Hence, each goal and its cor-
responding plan will be located at the same index in the ’Goals’ and ’Plans’ lists

- I will only output task plans that are feasible with respect to the defined action
preconditions.

A7

Instructions: Put all the objects on the shelf

Objects: [’{object 1}’, ’{object 2}’, ’{object 3}’, ’ground’, ’shelf’]

Predicates: [’On({object 1}, ground’, ’On({object 2}, ground’, ’On({object 3},
ground’]

Goals: [’On({object 1}, shelf’, ’On({object 2}, shelf’, ’On({object 3}, shelf’]

Plans: [’Pick({object 1}, ground)’, ’Place({object 1}, shelf)’, ’Pick({object 2},
ground)’, ’Place({object 2}, shelf)’, ’Pick({object 3}, ground)’, ’Place({object 3},
shelf)’]

Instructions: Retrieve object 1.

Objects: [’{object 1}’, ’{object 2}’, ’{object 3}’, ’{object 4}’, ’ground’, ’shelf’]

Predicates: [’On({object 1}, shelf’, ’On({object 2}, shelf’, ’On({object 3}, shelf’,
’On({object 4}, shelf’, ’Blocking({object 3}, {object 4})’, ’Blocking({object 3},
{object 1})’, ’Blocking({object 2}, {object 1})’, ’Blocking({object 4}, {object 1})’]

Goals: [’{On(object 2}, ground’, ’{On(object 3}, ground’, ’{On(object 4}, ground’,
’{On(object 1}, ground’]

Plans: [’Pick({object 3}, shelf)’, ’Place({object 3}, ground)’, ’Pick({object 2},
shelf)’, ’Place({object 2}, ground)’, ’Pick({object 4}, shelf)’, ’Place({object 4},
ground)’, ’Pick({object 1}, shelf)’, ’Place({object 1}, ground)’]

In-context Examples:

Instructions: Put object 1 on the sink.

Objects: [’object 1’, ’sink’, ’kitchen table’]

Predicates: [’On(object 1, kitchen table’]

Goals: [’On(object 1, sink’]

Plans: [’Pick(object 1, kitchen table)’, ’Place(object 1, sink)’]

Instructions: Get me object 1 from the drawer. I’m in the bedroom. Don’t leave the
drawer open.

Objects: [’object 1’, ’object 2’, ’drawer’, ’closet’, ’bed’]

Predicates: [’Inside(object 1, drawer)’, ’Inside(object 2, closet)’, ’Closed(drawer)’,
’Closed(closet)’]

Goals: [’On(object 1, bed)’, ’Closed(drawer)’]

Plans: [’Open(drawer)’, ’Pick(object 1, drawer)’, ’Place(object 1, bed)’,
’Close(drawer)’]

A8

Instructions: Bring me object 2. I’m sitting on the reading chair by the coffee ta-
ble.

Objects: [’object 1’, ’object 2’, ’bookshelf’, ’reading chair’, ’coffee table’]

Predicates: [’On(object 1, object 2’, ’On(object 2, bookshelf’]

Goals: [[’On(object 2, coffee table)’], [’On(object 2, reading chair)’]]

Plans: [[’Pick(object 1, object 2)’, ’Place(object 1, bookshelf)’, ’Pick(object
2, bookshelf)’, ’Place(object 2, coffee table)’], [’Pick(object 1, object 2)’,
’Place(object 1, bookshelf)’, ’Pick(object 2, bookshelf)’, ’Place(object 2, reading
chair)’]]

Instructions: Please retrieve object 1.

Objects: [’object 1’, ’object 2’, ’shelf’, ’ground’]

Predicates: [’On(object 1, shelf’, ’On(object 2, shelf’]

Goals: [[’On(object 1, shelf)’], [’On(object 2, shelf) ’]]

Plans: [[’Pick(object 1, shelf)’, ’Place(object 1, ground)’], [’Pick(object 2,
shelf)’, ’Place(object 2, ground)’, ’Pick(object 1, shelf)’, ’Place(object 1, ground)’,
]]

A.5.1 Connections between RD Models and LLMs

We have several connections as the interface between RD models and LLMs. First, given the predicates
above(A, B) and contact(A, B), then on(A, B) holds true, and vice versa. Second, given the plans as pick(A,
D) and place(A, C) from LLMs, the RD models will receive this plan as pick-and-place(A,C).

A.6 Dataset Generation and Training Details

We generate the training datasets in the IsaacGym [86] simulator. First, we generate a variable number
of randomized objects (size and pose) and save the object pose, segmented point cloud, and predicate as
(ot,r̂t,p̂t). Then we randomly execute a primitive in the simulator and save the primitive ψt. We teleport
the objects to model the effects of each primitive. After the primitive execution, we record the post-action
scene as (ot+1,r̂t+1,p̂t+1). The dataset contains more than 36,000 primitive executions. We show several
single-step simulation executions in Fig. 7.

We set up one camera in simulation to generate the segmented point clouds. Due to the generalization
ability of our RD framework to different view points, we can position the real-world camera at different
view angles, as long as the object point clouds are within a suitable range to ensure decent quality. For
example, we use the Realsense D435 camera for real-world experiments, with an ideal range of 0.3m to
3m. Note that we focus on the critical segments of environmental point clouds (e.g., horizon surfaces for
the cupboard and drawers for the table), as not all segments are visible due to the partial-view nature of the
input point clouds.

We define loss functions with four terms for each transition (ot,r̂t,p̂t,ψt,ot+1,r̂t+1,p̂t+1) in the training
datasets. First, we obtain zt=Enc(ot) and zt+1=Enc(ot+1). To enable our framework to detect the
current predicates, we define the cross-entropy loss between the currently detected predicates and the ground-
truth predicates: Lcp =CE(Decr (zt),r̂t)+CE(Decr (zt+1),r̂t+1). Second, to enable the model to
accurately predict the change of pose, we define the second loss term asLpos=a·

√
b·||δpt−(p̂t+1−p̂t)||.

We use two parameters, a,b, to balance Lpos with other loss terms like Lpd. In practice, we use a
= 5 and b = 12. Third, to regularize the latent states, we first obtain the predicted latent states as
z′t+1=zt+δzt. We define the regularization loss term as Lreg= ||zt+1−z′t+1||22. Fourth, to predict the

A9

Initial
Scene

Post-action
Scene

Figure 7: We show several examples of single-step primitive executions in simulation. The first two
columns show examples of drawers, while the next two columns show examples of the constrained
cupboard with different numbers of objects.

future predicates, we define a cross-entropy loss between the predicted predicates and the ground-truth
predicates as Lfp=CE(Decqr

(
z′t+1

)
,r̂t+1). We train our framework end-to-end with the sum of these

four loss terms as L=Lcp+Lpos+Lreg+Lfp using the Adam optimizer with a learning rate of 1e−4.
We only train our framework with single-step transitions while it can solve long-horizon planning problems
in a composable way.

A.7 Baseline Comparison Details

We show the details of how baselines fail in the “constrained packing” task and the “constrained retrieval”
task in Fig. 8. Please refer to the supplemental video for the demos.

A.8 Primitives Definition

We use three primitives in this paper: pick-and-place, pick-and-toss, and open/close. Since we have a
mobile manipulator, we separate the movements of the mobile base and the Kinova arm. Based on the
objects to manipulate, we first move the mobile base to a reachable space for the arm to manipulate the
objects. Then, we run the arm planner to manipulate the objects.

Pick-and-place is defined as first grasping the object and then placing it on the supporting surface. For the
grasp, we use the point cloud center of each segment to generate the grasps. We grasp the center of the
objects except for large objects. For large objects, we use a heuristics offset. For example, we grasp the
side of a bowl instead of the center.

For the placement, we generate a placement height based on the surface height plus a height offset. For the
toss, we first move the base to a position at a fixed distance from the target, then execute the predefined
toss trajectory.

For the open/close actions, we first determine the handle center using the segmented point clouds. Then we
move the robot to the pre-open/close position. After this, the arm executes the motion with continuous
parameters encoding how much the drawer will open or close.

A.9 Neural Network Implementation Details

Our RD model is composed of three components: an encoderEnc, a transformer-based dynamics model
T , and a decoderDec. We describe the details of each component below.

A10

Points2Plans

Points2Plans

Points2Plans − Delta

Points2Plans− Feasibility

Figure 8: We show two failure cases of baselines. The first two rows demonstrate that Points2Plans
succeeds while Points2Plans−Delta fails in the “constrained packing” task. The next two rows show that
Points2Plans succeeds while Points2Plans−Feasibility fails in the “constrained retrieval” task.

Encoder: We first use the farthest point sampling method to downsample each point cloud to 128 points.
Based on the input as segmented point clouds ot=o1t ,...,o

M
t at timestep t, we first use a PointConv [83]

to get per object features as P it =PointConv(o
i
t). The PointConv model we use incorporates three set

abstraction layers. Each abstraction layer receives input points data and input points position data. The
output from each layer consists of sampled points position data and sampled points feature data, with the
input and output points position data having 3 channels. The first set abstraction layer has 128 points with
8 samples, utilizing a bandwidth of 0.1. It employs an MLP with 3+3 input channels, 32 output channels,
and a kernel size of 1. The second layer has 64 points with 16 samples and a bandwidth of 0.2, using an
MLP with 32+3 input channels, 64 output channels, and a kernel size of 1. The third layer is a group all
layer, generating 128-dimension features per segment with a bandwidth of 0.4, and utilizes an MLP with
64+3 input channels, 128 output channels, and a kernel size of 1.

Then we concatenate per object feature with the positional embedding of each object in PyTorch [84] as
zit=P

i
t ⊕Ii where Ii=Embpos(i). Each positional embedding has 128-dimension features. Next, we

combine the per object latent into an object-centric latent state zt = z1t ,...,z
M
t , where each zit has 256

features.

Dynamics: The delta-dynamics model T takes the input as zt and ψt= ⟨ϕt,at⟩. ϕt includes skill id si,
manipulated obj id mi, and placement surface id pi. For each si, we use a different dynamics model
Tsi with a transformer. For the transformers, we utilize 2 sub-encoder layers, 2 heads in the multi-head
attention models, and an input/output model size of 256.

We encode each at with an action encoder (MLPsi) as amt =Imi⊕MLPsi(at), where Imi encodes which
object this primitive will operate on. We further use the placement id to represent which surface to place
the object on, as apt =Ipi⊕MLPsi(at). If there is no surface to place, for example, in an open drawer
action, we use zero embeddings for Ipi. The action encoder is a two-layer MLP, with each layer containing
128 neurons. Then the dynamics model Tsi takes the input as M+2 tokens z1t ,...,z

M
t ,a

m
t ,a

p
t . We discard

the action tokens at the output head and obtain the output δzt=δz1t ,...,δz
M
t

A11

Decoder: Based on the latent state zt, we use different MLPs for different output heads. First, we use one
MLP for unary predicate prediction: rut =Decur (zt). Second, we use one MLP for constrained binary
predicates prediction: rct = Deccr(zt). Third, we use one MLP for spatial binary predicate prediction:
rst=Dec

s
r(zt).

For Decur , we use a two-layer MLP with a hidden layer of 64 neurons. The output contains 3 bits. The
first bit encodes whether the segment is a shelf or an object. The second and the third bits encode whether
the segment is a drawer and whether the drawer is open, respectively. ForDeccr, we use a three-layer MLP
and each hidden layer contains 64 neurons. The output contains 2 bits representing blocking-behind and
blocking-inside. ForDecsr, we use a three-layer MLP with each hidden layer containing 64 neurons. The
output contains 9 bits representing 9 different spatial predicates.

The pose decoderDecp takes as input a delta-state in the latent space δzt and predicts the relative pose
change of all objects in the scene as δpt= δp1t ,...,δp

M
t =Decp(δzt). Hence, this decoder can only be

applied on delta-state predicted by T .

ForDecp, we use a two-layer MLP with one hidden layer containing 64 neurons. The output head contains
2 bits representing δx,δy. For z, we encode this parameter as part of our discrete parameter for the
supporting surface, as shown in the primitive definitions in Sec. A.8. LLMs will generate it as part of the
task plan.

For the MLPs, we use Sigmoid in the output head of predicate decodersDecur ,Dec
c
r, andDecsr since these

decoders output binary variables. For all other MLPs, we use ReLU as the activation function.

A.10 Failure Cases Analysis

Points2Plans Failure Case 1

Points2Plans Failure Case 2

…

…

Figure 9: Two failure cases of Points2Plans. The first row shows a failure case due to an unstable placement
in the “constrained packing” task. The second row demonstrates that Points2Plans fails in the “constrained
retrieval” task because of a failed grasp.

We show two failure cases of Points2Plans in Fig. 9. These failure cases are caused by primitive
execution failures. They highlight the limitations of open-loop execution in Points2Plans and mo-
tivate the incorporation of closed-loop policies [92, 93] in future work. Please refer to our web-
site (sites.google.com/stanford.edu/points2plans) for detailed executions of these two failure cases.

A.11 Hardware Setup

The models are trained on a standard workstation with a single GPU (NVIDIA GeForce RTX 3090 Ti, 24
GB). All real-world experiments are conducted on a mobile platform with a custom mobile base and a
Kinova arm. We use a RealSense D435 camera for perception in the real world.

A12

https://sites.google.com/stanford.edu/points2plans

A.12 Generalization to Unseen Scenarios

Training Training Training Unseen Poses

Unseen Env Unseen Sizes Unseen View Unseen Shapes

Figure 10: Examples of our training dataset and some test dataset with unseen poses, environments, sizes,
view, and shapes.

Table 1: Generalization to Unseen Scenarios

Method Points2Plans Points2Plans−Delta
Unseen sizes of objects 58% 33%
Unseen camera view angles 61% 42%
Unseen environments 50% 33%
Unseen shapes of objects (YCB objects) 58% 49%
Unseen poses of objects 69% 51%

We show the extra simulation success rates of Points2Plans and the best-performing baseline to demonstrate
the model’s generalization ability to unseen camera viewpoints, environments, and different sizes, shapes,
and poses of objects. We run 100 trials per approach per generalization metric in the constrained packing
task.

From the results shown in the table. 1, we find Points2Plans performs well when it generalizes to unseen
scenarios and outperforms the baseline. Please refer to Fig. 10 for the visualizations of comparisons
between training datasets and test datasets with novel scenes.

A.13 Generalization to Noisy Segmentation Masks

Ground Truth Small Noise Large Noise

Figure 11: Examples of ground truth segmentation mask and noisy segmentation masks.

We show our method’s and the best-performing baseline’s robustness to the noise in the segmentation mask.
We use the erosion and dilation algorithm [94] to generate the noise for the segmentation masks. We use

A13

Table 2: Robustness to Noisy Segmentation Masks

Method Points2Plans Points2Plans−Delta
No Noise 81% 69%
Small Noise 78% 67%
Large Noise 73% 39%

kernel size = 5 for generating small noise and kernel size = 10 for generating large noise to segmentation
masks. We run 100 trials per approach per noise metric in the constrained packing task.

From the results shown in the table. 2, we find Points2Plans performs well in the robustness to the noise
for the segmentation mask while the baseline performs poorly, especially with large noise. Please refer to
Fig. 11 for the details and the visualizations of noisy segmentation masks.

A14

	Introduction
	Related Work
	Problem Setup
	Proposed Approach: Points2Plans
	Composable Relational Dynamics
	Hybrid Rollout Strategy
	Planning Action Sequences with Relational Dynamics

	Experiments
	Results
	Conclusion
	Acknowledgements
	Appendix
	Generative Model and Problem Formulation
	Approximate Sampling Distributions
	Planning and Optimization Details
	Predicates Definition
	LLM Prompt Details
	Dataset Generation and Training Details
	Baseline Comparison Details
	Primitives Definition
	Neural Network Implementation Details
	Failure Cases Analysis
	Hardware Setup
	Generalization to Unseen Scenarios
	Generalization to Noisy Segmentation Masks

