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Abstract

Time series from spacecraft sensors are high-dimensional, nonstationary, nonlinear,
irregularly sampled, and exhibit both spatial and temporal dependencies. Detecting
anomalies in such signals is critical for both on-ground and in-orbit space opera-
tions. The potential of machine learning in this task is currently hampered by a lack
of comprehensive datasets and benchmarks that capture its real-world complexity.
The European Space Agency Benchmark for Anomaly Detection (ESA-ADB)
addresses this issue and establishes a new standard in the domain. It is a result of
close cooperation between engineers from the European Space Operations Center
and machine learning experts from industry and academia. Our newly introduced
dataset (zenodo.org/records/15237121) contains several years of real-life raw data
from 3 large spacecraft, including 224 channels, 821 control signals, and 1430
annotated events, which makes it the biggest dataset of its kind in the literature.
The associated benchmark defines 9 specific requirements and 5 evaluation metrics
for assessing anomaly detection algorithms in operational practice. The results
indicate that widely used anomaly detection algorithms, even with our proposed
adaptations, are not yet suitable for effective deployment. Thus, ESA-ADB remains
an open challenge, being further explored through a dedicated Kaggle competition
(kaggle.com/competitions/esa-adb-challenge).

1 Introduction

Monitoring anomalies in time series data from spacecraft sensors (spacecraft telemetry) is a daily
practice of thousands of spacecraft operations engineers (SOEs) in mission control centers worldwide.
It ensures safe and uninterrupted operations of multiple scientific, communication, observation, and
navigation satellites. SOEs are typically supported by simple automatic anomaly detection systems
that alarm when a measurement falls outside its predefined nominal limits or when a measurement
correlates with a known anomalous pattern [1]. However, more sophisticated anomalies are usually
detected manually, which is a very expensive and error-prone task [2]. For this reason, all major space-
related entities have been actively researching, developing, and testing advanced automatic anomaly
detection systems in recent years, including space agencies from Europe [3-6]], USA [7], Canada [8]],
Korea [9]], and Japan [10]], and multiple private companies [11-13]]. It is also a prioritized domain
of the Artificial Intelligence for Automation Roadmap of the European Space Agency (ESA) [14],
and there is a growing trend in applying such systems directly onboard spacecraft for faster alarming
and autonomous operations [15]. However, spacecraft telemetry is an especially complex example
of multivariate time series data of high dimensionality and volume (years of recordings from up to
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thousands of channels per spacecraft [16]), complex characteristics (i.e., nonstationarity, nonlinearity,
spatiotemporal dependencies, varying sampling frequencies, and data gaps), diverse data types
(i.e., large variety and ranges of physical measures, categorical status flags, counters, and binary
telecommands), and inherent noise related to the space environment.

Related work. There are hundreds of algorithms for time series anomaly detection (TSAD) proposed
in the literature (158 according to Schmidl et al. [I7]) that could be viable solutions for spacecraft
telemetry, but currently, the main challenge is the evaluation of different approaches. This occurs
because there are relatively few anomalies in flying spacecraft [2] and no comprehensive data
collection from multiple sources. Thus, it is difficult to objectively conclude that one approach works
better than the other. Moreover, multiple recent papers show that many publicly available datasets,
benchmarks, and metrics for TSAD are flawed and cannot be used for an unbiased evaluation of
emerging machine learning (ML) techniques, especially in complex real-world settings [[T8H21]].
Specifically, the most popular NASA SMAP and MSL datasets of spacecraft telemetry [7]] are too
trivial and have unrealistic anomaly density, inconsistent ground truth, and run-to-failure bias []215[]
There are a few TSAD benchmarks that avoid these flaws, but they are either univariate [@],
artificial [22]], or do not represent complexities of real systems (varying sampling rates, different
channel types, or real-time processing). See Appendix 2.6 for detailed analysis of related datasets
and benchmarks.

Contributions. The proposed European Space Agency Benchmark for Anomaly Detection
(ESA-ADB) directly addresses all the mentioned issues and establishes a new standard of validating
algorithms for anomaly detection in real-world time series from spacecraft. It is a result of close
cooperation between SOEs from the European Space Operations Center (ESOC) and ML experts
from industry and academia. ESA-ADB consists of three main components (Figure [T)):

1. ESA Anomalies Dataset (ESA-AD) — a large-scale, curated, and structured collection of
real-world spacecraft telemetry data, collected from 3 ESA missions and annotated by SOEs
and ML experts.

2. Evaluation pipeline designed by ML experts for the practical needs of SOEs. It introduces
a list of 9 requirements and 5 metrics designed for real-world spacecraft telemetry anomaly
detection according to the latest advancements in TSAD. It simulates real operational
scenarios, i.e., 5 different mission phases and real-time monitoring.

3. Baseline results for 8 TSAD algorithmes, filtered from the 71 available in the TimeEval
framework and adapted to be feasible for real-world time series data.

e ESA Anomalies Dataset '
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Figure 1: Content of the ESA-ADB. Left: Main elements of the proposed benchmark. Right:
Example annotated event id_155 from Missionl (highlighted with light red boxes).

The main goal of ESA-ADB is to allow researchers and practitioners to design and thoroughly assess
if an algorithm could be applied as a support for SOEs in real-world operational environments, taking
into account all challenges of this complex time series data. To support that, we also launched a
Kaggle competition based on a separate private test set (kaggle.com/competitions/esa-adb-challenge).
ESA-ADB has been already downloaded more than 2,000 times and is actively used in several
projects by ESA and its partners.
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2 ESA Anomalies Dataset

The dataset is publicly available at (zenodo.org/records/15237121). The nomenclature (e.g., channel
types, telecommands, and event categories) is explained in the first section of the Appendix.

2.1 Dataset collection and curation

Three missions (spacecraft) of different types (purposes, orbits, and launch dates) were selected by
SOEs from the ESA portfolio based the presence of historical anomalies that are problematic to detect
using existing out-of-limit approaches. The data selection was focused on collecting a large dataset
with a possibly diverse spectrum of signals and anomalies as reported in the Anomaly Report Tracking
System (artsops.esa.int) used at ESOC. Although each spacecraft collects thousands of telemetry
signals (Appendix 2), our dataset includes only limited subsets of channels and telecommands,
identified by SOEs as essential for anomaly investigation. This selection was necessary to keep the
annotation effort and overall dataset size at a manageable level. The data was initially annotated
using the OXI annotation tool (oxi.kplabs.pl) [24] and the annotations were iteratively refined with
assistance of unsupervised and semi-supervised algorithms. For detailed description of the annotation
process, see Appendix 2.3 and our previous related works [25}26].

Design choices. Our dataset has several features distinguishing it from other related datasets
(Appendix 2.6). It is intended to reflect the raw telemetry data accessible for SOEs, with all its pros
and cons, volume, varying sampling rates, data gaps, and an overabundance of telecommands. It
distinguishes events of different types, not only anomalies, i.e., rare nominal events, communication
gaps, and invalid segments. Each channel is annotated independently, following the approach used
in recent datasets such as SMD [27]], CATS [22]], and TELCO [28]]. This allows for evaluating not
only whether an anomaly is detected, but also which specific channels are correctly identified as
affected. Furthermore, a single annotated anomaly can consist of multiple non-contiguous segments,
separated by periods of nominal behavior. For example, a series of short attitude disturbances caused
by the same underlying issue is treated as one event (see Figure[I). This design choice avoids unfairly
penalizing models for detecting each segment as a separate anomaly in the benchmark. The dataset
was consistently structured to facilitate its usage in ML-based pipelines (Appendix 2.5).

Anonymization. Some information, such as mission and channel names, timelines, or units of
measured values, are anonymized to avoid disclosing sensitive information. The anonymization does
not affect the data integrity and it was verified that algorithms produce the same results as for the
original data (Appendix 2.4). It does prevent using physics-informed approaches or domain-specific
knowledge to design algorithms (for example, to match telecommands and channels by names or to
expect anomalies in specific times, e.g., during increased solar activity). However, it enforces the
usage of universal data-driven approaches, instead of focusing on mission-specific intricacies.

2.2 Dataset content

The summary statistics of the dataset are presented in Table [T} The dataset contains 224 channels, 821
telecommands, and 1430 annotated events (including 157 anomalies) across 3 missions. Channels are
categorized into target (monitored for anomalies) or non-target (auxiliary); and numerical (e.g., sensor
measurements) or categorical (e.g., status flags and operating modes) ones. Channels originate from
6 common spacecraft subsystems and are clustered into groups of related channels (e.g., coming from
similar sensors or showing similar characteristics). There are hundreds of different telecommands
with millions of executions and they are grouped by SOEs according to the impact on the mission
data (Appendix 2.3) — from 0 (low impact) to 3 (high impact).

Missions differ significantly in aspects such as the proportion of categorical channels, the number of
telecommands, and the distribution of event categories. They also vary in terms of signal characteris-
tics and specific challenges posed for TSAD algorithms (Appendix 2). However, they are all equally
big (around 4GBs and 750M data points each) and the hundreds of annotated events constitute just a
small fraction of the dataset (< 2%), addressing the flaw of unrealistic anomaly density [20].

Each anomaly and rare nominal event is described by three attributes corresponding to its dimen-
sionality (uni-/multivariate), locality (local/global), and length (point/subsequence) according to
the adjusted nomenclature of anomaly types by Blazquez-Garcia et al. [29]. Most annotations are
categorized as multivariate global subsequences, but there is also a diverse set of other types of
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Table 1:

Statistics of the ESA Anomalies Dataset.

Missionl Mission2 Mission3 All
Channels 76 100 48 224
Target / Non-target 58/18 47/53 24/24 129795
Numerical / Categorical 7610 90/10 4/44 170/ 54
Channel groups 18 29 12 59
Subsystems 4 5 3 6"
Telecommands 698 123 0 821
Priority 0/1/2/3 345/323/19/11 0/0/119/4 0/0/0/0 345/323/138/15
Total executions 1,594,722 1,918,002 0 3,512,724
Data points 774,856,895 776,734,364 744,530,898 2,296,122,157
Duration (anonymized) 14 years 3.5 years 8 years 25.5 years
Compressed size [GB] 3.8 4.1 3.7 11.6
Annotated points [%] 1.80 0.58 1.03 1.14
Annotated events 200 644 586 1,430
Anomalies 118 31 8 157
Rare nominal events 78 613 25 716
Communication gaps 4 0 397 401
Invalid segments 0 0 156 156
Univariate / Multivariate 32/164 9/635 8/25 497824
Global / Local 113783 5851759 28/5 726/ 147
Point / Subsequence 127184 0/644 3/30 15/3858
Distinct event classes 22 32 6 60

*There are 3 matching subsystems between all missions.

anomalies (Appendix 3.1), including some especially challenging ones (Appendix 2.2). Additionally,
events of similar characteristics are grouped into classes by SOEs, so it is easier to analyze results
and design anomaly classifiers. The distributions of classes of events across missions’ timelines are
presented in Figure[2]
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Figure 2: Distributions of different classes and categories of events across timelines of Mission1
(left) and Mission2 (right). The bar width corresponds to the event length, but for better visualization,
the minimum width was limited to 10 and 2.5 days for Mission1 and Mission2, respectively. The
question mark represents anomalies of unknown class.

2.3 Dataset split for the benchmark

Mission3 was excluded from the benchmark because of the small number and triviality of anomalies
(according to Definition 1 from Wu & Keogh [20]), and many communication gaps and invalid
segments (Table[T). Remaining missions are split in half: the first half is used for training, and the
second half for testing. This results in 84 months of training data for Missionl and 21 months for
Mission2. Within each training set, the last 3 months are reserved for validation. This validation
window was chosen in agreement between ML experts and SOEs, as it is sufficiently long to assess
algorithm performance under recent environmental conditions. Crucially, this temporal split ensures
that no future information leaks into the training process, preserving the integrity of the evaluation.
Anomalies appear in all sets, including training and validation ones. The default 50/50 split reflects
the later (mature) phases of missions, where a substantial amount of telemetry data is already available
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for training. However, it is also important to deploy anomaly detection systems early in the mission
lifecycle. To address this, additional scenarios with shorter training periods are explored in Appendix
4.4. These scenarios aim to evaluate how well the algorithms perform under limited data conditions,
assess their robustness to evolving mission environments, and determine the earliest point in a mission
when reliable detectors can be trained.

Lightweight subsets of channels. In the default setting of ESA-ADB, all channels and the highest
priority telecommands are used as input, and all target channels are used as output from algorithms.
However, anomaly detection in tens or hundreds of channels is a very challenging task which takes
a lot of computing power, so for initial experiments, familiarization, simpler models, and potential
on-board applications, there are lightweight subsets of channels proposed in ESA-ADB. These are
channels 41-46 for Mission]1 and channels 18-28 for Mission2. This selection is subjective, but our
main goal was to provide channels that are challenging for algorithms, interesting for SOEs, relatively
easy to visualize and analyze manually, and not strongly dependent on other channels or subsystems.
Selected channels from these subsets are presented in Figure[T|and Appendix 4.1.

3 ESA Anomaly Detection Benchmark

The objective of the benchmark is to validate the performance of widely used TSAD algorithms on
the ESA-AD dataset using the proposed evaluation procedures. The code is publicly available at
github.com/kplabs-pl/ESA-ADB to ensure full reproducibility of the benchmark.

3.1 Algorithms selection

There are several recent comprehensive reviews of TSAD approaches that list hundreds of ML
algorithms [[17)/19},30H32]. Algorithms for our benchmark have been preselected based on the work
by Schmidl et al. [[17]] and its corresponding TimeEval framework [23]] because of the largest number
of implemented algorithms (more than 70). This framework also includes the most widely used deep
learning algorithm for anomaly detection in spacecraft telemetry — Telemanom by NASA [7]] — which
we use as the primary baseline in our benchmark.

Functional requirements. To support the selection of algorithms, nine functional requirements
(R1-R9) for anomaly detection algorithms in real-world space operations have been formulated by our
team (Table[2) and evaluated against the capabilities of multivariate algorithms within the TimeEval
framework. Based no the detailed analysis in Appendix 3.4.5, it turned out that no algorithm meets
all the requirements. The widely used algorithms have problems especially with learning from known
anomalies (R4), including auxiliary variables (R6), test-time learning (R7), irregular time series data
(R8), and most importantly, handling large volumes of data without memory errors and time-outs
(R9). Thus, additional work is necessary to adapt algorithms to our real-world use case.

Algorithms adaptation and final selection. To establish a simple baseline, five unsupervised
algorithms based on traditional ML have been used without any special adaptation: Histogram-
based Outlier Score (HBOS) [33]], k-nearest neighbors (KNN) [|34]], principal components classifiers
(PCC) [35]], and isolation forest (iForest) [36]] with its windowed version. The more advanced
semi-supervised LSTM-based Telemanom algorithm [7] has been significantly adapted (Appendix
3.4.1) to meet requirements R4, R6, and R9. The adapted version, called Telemanom-ESA, comes
with pruned and non-pruned modes. Additionally, two methods have been added to the framework: a
simple algorithm that mimics the classic out-of-limits approach by detecting values being more than N
standard deviations away from the mean (Global STDN, described in Appendix 3.4.2) and the Dilated
Convolutional Variational AutoEncoder (DC-VAE) [28] with a series of adaptations (DC-VAE-ESA
in Appendix 3.4.3), including a thresholding based on N confidence intervals generated from VAE.

3.2 Real-world evaluation of unsupervised algorithms

Default evaluation procedures for unsupervised outlier detection algorithms in TimeEval (and many
other frameworks, e.g., the popular PyOD [37]]) do not include any separate training step on a
training set. The algorithms are run on all available data at once to look for outliers. This setup is
unrealistic for real-world anomaly monitoring, where future data is not available at training time,
and it introduces information leakage that gives unsupervised algorithms an unfair advantage in
benchmarks. To address this, we modified the TimeEval framework so that each unsupervised
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Table 2: Requirements for anomaly detection algorithms in real-world spacecraft telemetry.

ID  Priority  Requirement Description

R1 must provide binary responses Algorithms must define a clear threshold for triggering alarms. SOEs cannot
rely solely on abstract anomaly scores.

R2  must be able to model dependencies between  Algorithms are particularly needed to detect complex anomalies that only

channels become apparent when analyzing multiple channels simultaneously.

R3 must allow for online streaming anomaly detec-  Algorithms in real-world settings must detect anomalies continuously with-

tion out using future samples to generate predictions.

R4 should learn from known anomalies in the training ~ Algorithms should be able to leverage information about historical anomalies

set to effectively detect similar ones during inference.

R5  should provide a list of affected channels With thousands of channels in real missions, identifying affected channels
would save SOEs significant effort and improve trust in the algorithm.

R6  should support auxiliary variables in the input Real-world data exists within a broader system of external variables (i.e.,
non-target channels) and control signals (i.e., telecommands). Algorithms
should leverage this context to make better-informed decisions.

R7 should allow for test-time learning from human  In real-world settings, algorithms should be able to adapt based on feedback

feedback from domain experts — for example, to stop raising alarms for rare but known
nominal events.

R8 should natively handle irregular time series data Varying sampling frequencies and data gaps are common in real-world time
series. Standard resampling and interpolation methods make algorithms
unaware of this fact and may lead to many incorrect detections.

R9  should be able to run on a single high-end PC with ML algorithms are often run on a dedicated PC within the mission control

amodern GPU (Appendix 4.5) room to minimize reliance on external systems and ensure data privacy,

security, and integrity.

algorithm is first initialized only on the training set — this includes calculating contamination levels,
setting thresholds, and computing standardization parameters — and then applied to the test set.

3.3 Preprocessing

Our dataset contains raw telemetry in which channels have different, irregular sampling rates. There
are no algorithms in the TimeEval framework that can handle such data without any preprocessing.
Additionally, there are many different types of channels, so a consistent preprocessing is needed to
run and compare all algorithms.

Resampling. Propagating the last known value (forward fill) is a widely recommended interpolation
method for real-world sensor data [24,38]]. It is especially well suited for binary or quantized signals
— such as status flags or measurements from analog-to-digital converters — because, unlike linear or
Fourier-based interpolation, it avoids generating artificial or invalid intermediate values. Crucially,
this method only uses past data, making it appropriate for real-time streaming applications where
future samples are not yet available. Hence, this method was used for resampling (Appendix 3.3).

Encoding telecommands. Telecommands in the original data are represented as lists of timestamps
indicating when they were executed on board the spacecraft. For use in ESA-ADB as input channels
to algorithms, telecommands are encoded as binary impulse signals — single-sample spikes aligned
with the target resampling resolution.

Standardization. This step is essential for certain algorithms, such as KNN, and can also improve
the performance of neural networks [39]. In our preprocessing, each channel is standardized inde-
pendently to have zero mean and unit standard deviation, based on the nominal (non-anomalous)
points in the training set after resampling. Exceptions are constant and binary channels (e.g., encoded
telecommands) that are just normalized to <0, 1> range. Monotonic channels (e.g., counters and
cumulative readings) are differentiated and categorical channels (e.g., status flags) are enumerated
before standardization (Appendix 3.3).

3.4 Maetrics and hierarchical evaluation

The selection of metrics and evaluation pipeline is a crucial step in establishing a reliable benchmark.
Despite many years of research in the domain, there is no consensus on a reliable and unified set
of TSAD metrics. Many recent advances criticize popular sample-wise and point-adjust protocols
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for being overoptimistic, and propose better alternatives [[18L|19}21,30L{31,40-47]]. Besides, there
are several constraints on the selection of metrics arising directly from the functional requirements
in Table[2] Metrics should operate on binary detections (R1), handle ground truth with irregular
sampling (R8), and have reasonable computational complexity to handle large datasets (R9). Detailed
analysis of all recent metrics in the context of our benchmark is presented in Appendix 3.2.1.

First, SOEs identified and prioritized five most important aspects of anomaly detection in real-world
mission operations. They are listed in Table |3| together with the proposed metrics to assess them.
Importantly, each metric is designed to focus solely on a single specific aspect, in the maximum
isolation from the other factors. There are several reasons for this: 1) to improve the interpretability of
results by avoiding complex metrics combining multiple aspects at once, 2) to allow researchers from
different domains to easily reorder or discard priorities, and 3) to enable the hierarchical evaluation
approach in which algorithms are compared using one aspect at a time, from the highest to the lowest
priority. This kind of evaluation has three important practical advantages: 1) it puts a strong emphasis
on the priorities suggested by SOEs, 2) there is no need to select relative weights of specific aspects,
and 3) it saves computational time by calculating only the necessary metrics.

Table 3: Priority aspects and proposed metrics for assessing algorithms in ESA-ADB.

Group  Aspect with priority level and brief description Proposed metric

1a. No false alarms — minimize the number of false detections .
Corrected event-wise Fq 5-score

; 1b. Anomaly existence — maximize the number of correctly detected anomalies
g
= 2a. Subsystems identification — find a list of affected subsystems Subsystem-aware Fg 5-score
2b. Channels identification — find a list of affected channels Channel-aware Fg 5-score
3. Exactly one detection per anomaly — avoid multiple detections for the same  Event-wise alarming precision
o annotated segment
Z
'§ 4. Detection timing — determine the anomaly start time as precisely as possible Anomaly detection timing quality
§ curve (ADTQC)
1%7]

5. Anomaly range and proximity — find the exact duration of the anomaly and Modified affiliation-based Fg 5-
promote detections in close proximity to the ground truth score

The highest priority aspect relates to the proper identification of anomalous events with a strong
emphasis on avoiding false alarms. This is because false positives are costly to resolve and deter
operators from using the system. A high false positive rate is one of the main obstacles to the wider
adoption of anomaly detection algorithms in space operations [[7]. In the main text, we focus only on
this most important aspect and the corresponding corrected event-wise metric, but other aspects are
thoroughly described and assessed in Appendix 3.2.3.

Corrected event-wise F 5-score. The event-wise scoring used for spacecraft telemetry by Hundman
et al. [[7] is better than sample-wise approach in real-world scenarios as it 1) weighs all anomalies
equally (not by their length) and 2) does not focus on the level of overlap between detections and
the ground truth (in practice, it is enough to give an approximate location of the anomaly to human
operators). However, the simple event-wise precision has one serious flaw — an algorithm that detects
anomalies in every sample would have a perfect score (example in Appendix 3.2). To mitigate this,
we use the correction proposed by Sehili and Zhang [|18] that penalizes sample-wise (time-wise) false
positives in the computation of the event-wise precision Pr. (Equation [I):

TP,

FP,
Pr,=—°%“ . —t
TP, + FP,

-3 (M

where TP, is the number of event-wise true positives, FP, is the number of event-wise false positives,
FP; is the total duration of false positives, and N; is the total duration of nominal signal. Based on
that, the corrected event-wise F-score is defined by Equation [2}

(1+3?) - Pr. - Rec, TP,
Fs, — Rec, — —— & 2
Pe = B2 Pr, + Rec, o °T TP, 1 EN, @

where Rec, is the event-wise recall and FN, is the number of event-wise false negatives. We use /3 of
0.5 following Hundman et al. [7] to additionally penalize false detections.
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3.5 Results and discussion

The goal of this benchmark is to provide a solid foundation for future research, rather than to identify
the single best algorithm for real-world time series. Therefore, the experiments do not involve
extensive hyperparameter tuning, which would be computationally prohibitive given the dataset size.
Instead, we use default settings recommended by the original authors of each algorithm, with minor
adjustments to match the specific characteristics of our dataset (Appendix 3.4.6). This approach is
intentional — it reflects typical TSAD practices and is meant to encourage the research community to
build upon these results.

There are no algorithms in the TimeEval framework that can explicitly distinguish between anomalies
and rare nominal events, so the results are presented for both types combined. However, separate
results considering only anomalies are available in Appendix 4.2. The corrected event-wise scores
for Missions 1 and 2 are presented in Table [d Results for lower priority metrics are available in
Appendix 4. Scores are rounded to 3 significant digits to account for the inherent uncertainty of
annotations in real-world data. The processing times of the algorithms are given in Appendix 4.6.

Table 4: Corrected event-wise scores for detection of anomalies and rare nominal events in
lightweight and full sets of channels for Missionl and Mission2. Boldfaced results indicate the
best values among all algorithms. OOM - out-of-memory.

Model Missionl Mission2
Pr. Rec, Fo.5. Pr. Rec, Fo.5.

Trained and tested on lightweight subsets of channels

PCC <0.001 0.554 <0.001 0.029 1.000 0.036

HBOS <0.001 0.585 <0.001 0.055 0911 0.068

iForest <0.001 0.585 <0.001 0.557 0.974 0.609

Windowed iForest <0.001 0.738 <0.001 0.951 0.940 0.949
KNN <0.001 0.754 <0.001 0.000 1.000 0.001

Global STD3 0.001 0.431 0.001 0.006 1.000 0.007

Global STD5 0.288 0.169 0.253 0.061 1.000 0.075
DC-VAE-ESA STD3 0.002 0.554 0.003 0.003 1.000 0.003
DC-VAE-ESA STD5 0.063 0.338 0.075 0.064 1.000 0.079
Telemanom-ESA 0.148 0.894 0.178 0.188 0.986 0.224
Telemanom-ESA Pruned 0.999 0.424 0.786 0.978 0.540 0.842

Trained and tested on full set of channels

PCC <0.001 0.870 <0.001 0.082 0.983 0.100

HBOS <0.001 0.957 <0.001 0.016 0.820 0.020

iForest <0.001 0.967 <0.001 0.022 0.903 0.027

Windowed iForest OOM OOM OOM 0.034 0.746 0.042
KNN OOM OOM OOM OOM OOM OOM

Global STD3 <0.001 0.848 <0.001 0.014 0.997 0.018

Global STD5 0.002 0.761 0.003 0.203 0.972 0.241
DC-VAE-ESA STD3 <0.001 0.924 <0.001 0.002 0.997 0.002
DC-VAE-ESA STD5 0.005 0.804 0.007 0.008 0.904 0.011
Telemanom-ESA 0.007 0.946 0.008 0.052 0.992 0.064
Telemanom-ESA Pruned 0.050 0.870 0.061 0.058 0.964 0.071

Missionl. The pruned Telemanom-ESA has achieved the highest corrected event-wise Fy 5, and
the lowest number of redundant alarms in both channel sets and all mission phases (Appendix 4.4).
The huge advantage of Telemanom in terms of these metrics is its dynamic thresholding scheme and
additional pruning. This highlights the importance of proper thresholding and postprocessing methods
in real-world settings. On the other hand, pruning significantly decreases subsystem-/channel-aware,
detection timing (ADTQC), and affiliation-based scores, so the anomalies may be harder to identify.
Unsupervised algorithms perform very poorly for Missionl in terms of event-wise scores. DC-VAE-
ESA and GlobalSTD are just slightly better which is especially disappointing for the former deep
learning method. The main problem of these algorithms is a massive number of false detections
caused by the noise and varying sampling rates in the data, as visible in the examples in Appendix 4.1.
However, DC-VAE-ESA has the best timing and affiliation-based scores — higher than Telemanom-
ESA. This suggests that more advanced thresholding or postprocessing would significantly improve
the event-wise scores of DC-VAE.

Mission2. Surprisingly, the simple windowed iForest and GlobalSTD5 algorithms turned out to be
the best algorithms for the lightweight and full sets, respectively. Overall, unsupervised algorithms
perform relatively well for Mission2, sometimes better than the deep learning-based ones. It supports
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the claim to always consider simple algorithms as a baseline [20L{48]]. Windowed iForest achieved a
very high corrected event-wise Fy 5, (0.949), ADTQC (0.985), and affiliation-based Fq 5, (0.959)
scores. The main reason is the relative triviality of the lightweight subset of Mission2 which contains
mainly rare nominal events characterized by significant sudden changes in the signal (Appendix 2).
However, the full set is much more challenging as reflected by much lower corrected event-wise
scores. Moreover, metrics for anomalies alone (Appendix 4.2) show that no algorithm was able
to accurately identify all 9 actual anomalies in the overabundance of rare nominal events. This is
one of the main practical challenges in many missions. Mission2 is also particularly problematic
for Telemanom-ESA because of a lack of clear periodicity and many commanded events that are
impossible to forecast.

Full sets vs. lightweight subsets. In most cases, the results for full sets of channels are much worse
than for lightweight subsets. While the two are not directly comparable (since the lightweight test
sets contain fewer annotated events), Appendix 4.3 includes a direct comparison that supports this
observation. This is one of the main challenges of high-dimensional real-world data — the more
target channels there are, the higher the chance of false detections is. Additionally, due to the strong
interconnections between channels, false detections frequently seep into many irrelevant channels.

4 Conclusions

ESA-ADB is a departure point for further development of better algorithms for anomaly detection in
real-world time series (e.g., spacecraft telemetry). It was designed in close collaboration between ML
and domain experts to fulfill the need for a reliable benchmark for both communities. Our goal was to
ensure that improving the results of ESA-ADB does not just create an illusion of progress but solves
real-world challenges in the TSAD domain — Appendix 2.6 gives a summary of how ESA-ADB
addresses common flaws listed by Wu and Keogh [20]]. The requirements analysis and results show
that our dataset poses a significant challenge for popular TSAD algorithms, and many changes had
to be applied in the TimeEval framework [23]], training procedures, and algorithms to make them
applicable to real-world data. While the results of Telemanom-ESA on subsets of channels may
appear promising, the approach is highly parameterized, and the chosen thresholds may not generalize
well to other missions. More importantly, the main challenge lies in scaling these algorithms to the
full set of channels in our dataset — and to thousands of channels in real-world operations.

Limitations and future work. ESA-ADB has several limitations that we were not able to address in
the scope of this study. Despite our best efforts, labeling inaccuracies are inevitable in such volumes of
real-world data, so we are open to requests for corrections and plan to release updated versions of the
dataset. Additionally, anonymization of physical units and timelines may constrain certain use cases.
The dataset is still just a small fragment of real-world telemetry, but its complexity already poses a
high entry barrier and requires some effort to fully understand. Due to the computational, functional
(Table @) and framework-related constraints, the current benchmark includes a limited range of
algorithms and does not involve extensive hyperparameter tuning. As such, ESA-ADB should be
viewed not as a comprehensive benchmark of TSAD methods, but rather as a solid baseline for future
research on real-world time series. Promising directions for extending this work include adapting
Matrix Profile methods [49]] and transformer-based models with positional time encoding [S0-52].
Beyond TSAD, the dataset also holds potential for research in time series forecasting, telemetry data
compression, continual learning, and foundation models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: There is a dedicated paragraph in the introduction about contributions of the
paper, where we did our best to reflect the scope as accurately as possible. The abstract is a
concise summary of the main claims included in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: There is a dedicated paragraph in the conclusions that discusses limitations
and future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



545

546

547

548

549
550

551

552
553
554
555
556

558

559
560
561

562

563
564
565
566

568
569

570

571
572

574

575
576

577
578
579
580
581

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

Answer: [NA]
Justification: The paper does not introduce any new theorems or proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The existing TimeEval framework is used to run anomaly detection algorithms
and all algorithms in the benchmark are properly referenced and/or described in the paper.
All experimental procedures (preprocessing, data splits, evaluation, computational resources,
and algorithms’ parametrization) are described in the main text or Appendix. All data
and code are publicly available under zenodo.org/records/15237121) and github.com/kplabs-
pl/ESA-ADBI The GitHub repository contains all necessary instructions on how to reproduce
all steps of the benchmark, from data preprocessing to final metrics’ calculation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data and code are publicly available under |zenodo.org/records/15237121
and github.com/kplabs-pl/ESA-ADB. The GitHub repository contains all necessary instruc-
tions on how to reproduce all steps of the benchmark, from data preprocessing to final
metrics’ calculation.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: There are separate paragraphs in the paper to discuss data splits and evaluation
procedures of the benchmark. Algorithm selection and parametrization is thouroughly
described in the main text and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: There is a single metric value calculated on a single large continuous test set
(time series) for each algorithm in the benchmark. Metrics are not calculated separately for
each annotated event, so it is impossible to generate error bars or run statistical tests for
them. Due to the dataset volume, it would be very computationally expensive to perform
several runs of each experiment, e.g., with different seeds, to generate error bars.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details about the computational resources and calculation times are given in
the Appendix 4.5 and 4.6.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research does not involve human subjects or personally identifiable and
sensitive information. We do not see any potential harmful consequences of the research.
Datasets are properly documented and have well-specified open licenses.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: We do not see any potential malicious or unintended uses of the dataset that
would have a specific societal impact. The technology supported by the benchmark has no
direct impact on human subjects.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]

Justification: The dataset introduced in the paper is distributed under CC BY 3.0 IGO license
and is an original work based on the internal data from the European Space Agency. The
code of the benchmark is available under MIT license and it properly references its sources,
in particular, the TimeEval framework.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The paper itself can be considered a documentation of the introduced assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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