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Abstract

Time series from spacecraft sensors are high-dimensional, nonstationary, nonlinear,1

irregularly sampled, and exhibit both spatial and temporal dependencies. Detecting2

anomalies in such signals is critical for both on-ground and in-orbit space opera-3

tions. The potential of machine learning in this task is currently hampered by a lack4

of comprehensive datasets and benchmarks that capture its real-world complexity.5

The European Space Agency Benchmark for Anomaly Detection (ESA-ADB)6

addresses this issue and establishes a new standard in the domain. It is a result of7

close cooperation between engineers from the European Space Operations Center8

and machine learning experts from industry and academia. Our newly introduced9

dataset (zenodo.org/records/15237121) contains several years of real-life raw data10

from 3 large spacecraft, including 224 channels, 821 control signals, and 143011

annotated events, which makes it the biggest dataset of its kind in the literature.12

The associated benchmark defines 9 specific requirements and 5 evaluation metrics13

for assessing anomaly detection algorithms in operational practice. The results14

indicate that widely used anomaly detection algorithms, even with our proposed15

adaptations, are not yet suitable for effective deployment. Thus, ESA-ADB remains16

an open challenge, being further explored through a dedicated Kaggle competition17

(kaggle.com/competitions/esa-adb-challenge).18

1 Introduction19

Monitoring anomalies in time series data from spacecraft sensors (spacecraft telemetry) is a daily20

practice of thousands of spacecraft operations engineers (SOEs) in mission control centers worldwide.21

It ensures safe and uninterrupted operations of multiple scientific, communication, observation, and22

navigation satellites. SOEs are typically supported by simple automatic anomaly detection systems23

that alarm when a measurement falls outside its predefined nominal limits or when a measurement24

correlates with a known anomalous pattern [1]. However, more sophisticated anomalies are usually25

detected manually, which is a very expensive and error-prone task [2]. For this reason, all major space-26

related entities have been actively researching, developing, and testing advanced automatic anomaly27

detection systems in recent years, including space agencies from Europe [3–6], USA [7], Canada [8],28

Korea [9], and Japan [10], and multiple private companies [11–13]. It is also a prioritized domain29

of the Artificial Intelligence for Automation Roadmap of the European Space Agency (ESA) [14],30

and there is a growing trend in applying such systems directly onboard spacecraft for faster alarming31

and autonomous operations [15]. However, spacecraft telemetry is an especially complex example32

of multivariate time series data of high dimensionality and volume (years of recordings from up to33
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thousands of channels per spacecraft [16]), complex characteristics (i.e., nonstationarity, nonlinearity,34

spatiotemporal dependencies, varying sampling frequencies, and data gaps), diverse data types35

(i.e., large variety and ranges of physical measures, categorical status flags, counters, and binary36

telecommands), and inherent noise related to the space environment.37

Related work. There are hundreds of algorithms for time series anomaly detection (TSAD) proposed38

in the literature (158 according to Schmidl et al. [17]) that could be viable solutions for spacecraft39

telemetry, but currently, the main challenge is the evaluation of different approaches. This occurs40

because there are relatively few anomalies in flying spacecraft [2] and no comprehensive data41

collection from multiple sources. Thus, it is difficult to objectively conclude that one approach works42

better than the other. Moreover, multiple recent papers show that many publicly available datasets,43

benchmarks, and metrics for TSAD are flawed and cannot be used for an unbiased evaluation of44

emerging machine learning (ML) techniques, especially in complex real-world settings [18–21].45

Specifically, the most popular NASA SMAP and MSL datasets of spacecraft telemetry [7] are too46

trivial and have unrealistic anomaly density, inconsistent ground truth, and run-to-failure bias [20].47

There are a few TSAD benchmarks that avoid these flaws, but they are either univariate [20],48

artificial [22], or do not represent complexities of real systems (varying sampling rates, different49

channel types, or real-time processing). See Appendix 2.6 for detailed analysis of related datasets50

and benchmarks.51

Contributions. The proposed European Space Agency Benchmark for Anomaly Detection52

(ESA-ADB) directly addresses all the mentioned issues and establishes a new standard of validating53

algorithms for anomaly detection in real-world time series from spacecraft. It is a result of close54

cooperation between SOEs from the European Space Operations Center (ESOC) and ML experts55

from industry and academia. ESA-ADB consists of three main components (Figure 1):56

1. ESA Anomalies Dataset (ESA-AD) – a large-scale, curated, and structured collection of57

real-world spacecraft telemetry data, collected from 3 ESA missions and annotated by SOEs58

and ML experts.59

2. Evaluation pipeline designed by ML experts for the practical needs of SOEs. It introduces60

a list of 9 requirements and 5 metrics designed for real-world spacecraft telemetry anomaly61

detection according to the latest advancements in TSAD. It simulates real operational62

scenarios, i.e., 5 different mission phases and real-time monitoring.63

3. Baseline results for 8 TSAD algorithms, filtered from the 71 available in the TimeEval64

framework [23] and adapted to be feasible for real-world time series data.65

ESA Anomaly Detection Benchmark

Mission1

3.8 GB

Mission2

4.1 GB

Mission3

3.7 GB

ESA Anomalies Dataset

Evaluation pipeline

5 metrics

5 scenarios
Benchmarking 

results

9 requirements

8 algorithms

Figure 1: Content of the ESA-ADB. Left: Main elements of the proposed benchmark. Right:
Example annotated event id_155 from Mission1 (highlighted with light red boxes).

The main goal of ESA-ADB is to allow researchers and practitioners to design and thoroughly assess66

if an algorithm could be applied as a support for SOEs in real-world operational environments, taking67

into account all challenges of this complex time series data. To support that, we also launched a68

Kaggle competition based on a separate private test set (kaggle.com/competitions/esa-adb-challenge).69

ESA-ADB has been already downloaded more than 2,000 times and is actively used in several70

projects by ESA and its partners.71
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2 ESA Anomalies Dataset72

The dataset is publicly available at (zenodo.org/records/15237121). The nomenclature (e.g., channel73

types, telecommands, and event categories) is explained in the first section of the Appendix.74

2.1 Dataset collection and curation75

Three missions (spacecraft) of different types (purposes, orbits, and launch dates) were selected by76

SOEs from the ESA portfolio based the presence of historical anomalies that are problematic to detect77

using existing out-of-limit approaches. The data selection was focused on collecting a large dataset78

with a possibly diverse spectrum of signals and anomalies as reported in the Anomaly Report Tracking79

System (artsops.esa.int) used at ESOC. Although each spacecraft collects thousands of telemetry80

signals (Appendix 2), our dataset includes only limited subsets of channels and telecommands,81

identified by SOEs as essential for anomaly investigation. This selection was necessary to keep the82

annotation effort and overall dataset size at a manageable level. The data was initially annotated83

using the OXI annotation tool (oxi.kplabs.pl) [24] and the annotations were iteratively refined with84

assistance of unsupervised and semi-supervised algorithms. For detailed description of the annotation85

process, see Appendix 2.3 and our previous related works [25, 26].86

Design choices. Our dataset has several features distinguishing it from other related datasets87

(Appendix 2.6). It is intended to reflect the raw telemetry data accessible for SOEs, with all its pros88

and cons, volume, varying sampling rates, data gaps, and an overabundance of telecommands. It89

distinguishes events of different types, not only anomalies, i.e., rare nominal events, communication90

gaps, and invalid segments. Each channel is annotated independently, following the approach used91

in recent datasets such as SMD [27], CATS [22], and TELCO [28]. This allows for evaluating not92

only whether an anomaly is detected, but also which specific channels are correctly identified as93

affected. Furthermore, a single annotated anomaly can consist of multiple non-contiguous segments,94

separated by periods of nominal behavior. For example, a series of short attitude disturbances caused95

by the same underlying issue is treated as one event (see Figure 1). This design choice avoids unfairly96

penalizing models for detecting each segment as a separate anomaly in the benchmark. The dataset97

was consistently structured to facilitate its usage in ML-based pipelines (Appendix 2.5).98

Anonymization. Some information, such as mission and channel names, timelines, or units of99

measured values, are anonymized to avoid disclosing sensitive information. The anonymization does100

not affect the data integrity and it was verified that algorithms produce the same results as for the101

original data (Appendix 2.4). It does prevent using physics-informed approaches or domain-specific102

knowledge to design algorithms (for example, to match telecommands and channels by names or to103

expect anomalies in specific times, e.g., during increased solar activity). However, it enforces the104

usage of universal data-driven approaches, instead of focusing on mission-specific intricacies.105

2.2 Dataset content106

The summary statistics of the dataset are presented in Table 1. The dataset contains 224 channels, 821107

telecommands, and 1430 annotated events (including 157 anomalies) across 3 missions. Channels are108

categorized into target (monitored for anomalies) or non-target (auxiliary); and numerical (e.g., sensor109

measurements) or categorical (e.g., status flags and operating modes) ones. Channels originate from110

6 common spacecraft subsystems and are clustered into groups of related channels (e.g., coming from111

similar sensors or showing similar characteristics). There are hundreds of different telecommands112

with millions of executions and they are grouped by SOEs according to the impact on the mission113

data (Appendix 2.3) – from 0 (low impact) to 3 (high impact).114

Missions differ significantly in aspects such as the proportion of categorical channels, the number of115

telecommands, and the distribution of event categories. They also vary in terms of signal characteris-116

tics and specific challenges posed for TSAD algorithms (Appendix 2). However, they are all equally117

big (around 4GBs and 750M data points each) and the hundreds of annotated events constitute just a118

small fraction of the dataset (< 2%), addressing the flaw of unrealistic anomaly density [20].119

Each anomaly and rare nominal event is described by three attributes corresponding to its dimen-120

sionality (uni-/multivariate), locality (local/global), and length (point/subsequence) according to121

the adjusted nomenclature of anomaly types by Blázquez-García et al. [29]. Most annotations are122

categorized as multivariate global subsequences, but there is also a diverse set of other types of123
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Table 1: Statistics of the ESA Anomalies Dataset.

Mission1 Mission2 Mission3 All

Channels 76 100 48 224
Target / Non-target 58 / 18 47 / 53 24 / 24 129 / 95
Numerical / Categorical 76 / 0 90 / 10 4 / 44 170 / 54
Channel groups 18 29 12 59
Subsystems 4 5 3 6*

Telecommands 698 123 0 821
Priority 0/1/2/3 345 / 323 / 19 / 11 0 / 0 / 119 / 4 0 / 0 / 0 / 0 345 / 323 / 138 / 15
Total executions 1,594,722 1,918,002 0 3,512,724

Data points 774,856,895 776,734,364 744,530,898 2,296,122,157
Duration (anonymized) 14 years 3.5 years 8 years 25.5 years
Compressed size [GB] 3.8 4.1 3.7 11.6
Annotated points [%] 1.80 0.58 1.03 1.14

Annotated events 200 644 586 1,430
Anomalies 118 31 8 157
Rare nominal events 78 613 25 716
Communication gaps 4 0 397 401
Invalid segments 0 0 156 156
Univariate / Multivariate 32 / 164 9 / 635 8 / 25 49 / 824
Global / Local 113 / 83 585 / 59 28 / 5 726 / 147
Point / Subsequence 12 / 184 0 / 644 3 / 30 15 / 858

Distinct event classes 22 32 6 60
*There are 3 matching subsystems between all missions.

anomalies (Appendix 3.1), including some especially challenging ones (Appendix 2.2). Additionally,124

events of similar characteristics are grouped into classes by SOEs, so it is easier to analyze results125

and design anomaly classifiers. The distributions of classes of events across missions’ timelines are126

presented in Figure 2.127

Mission1 Mission2

Figure 2: Distributions of different classes and categories of events across timelines of Mission1
(left) and Mission2 (right). The bar width corresponds to the event length, but for better visualization,
the minimum width was limited to 10 and 2.5 days for Mission1 and Mission2, respectively. The
question mark represents anomalies of unknown class.

2.3 Dataset split for the benchmark128

Mission3 was excluded from the benchmark because of the small number and triviality of anomalies129

(according to Definition 1 from Wu & Keogh [20]), and many communication gaps and invalid130

segments (Table 1). Remaining missions are split in half: the first half is used for training, and the131

second half for testing. This results in 84 months of training data for Mission1 and 21 months for132

Mission2. Within each training set, the last 3 months are reserved for validation. This validation133

window was chosen in agreement between ML experts and SOEs, as it is sufficiently long to assess134

algorithm performance under recent environmental conditions. Crucially, this temporal split ensures135

that no future information leaks into the training process, preserving the integrity of the evaluation.136

Anomalies appear in all sets, including training and validation ones. The default 50/50 split reflects137

the later (mature) phases of missions, where a substantial amount of telemetry data is already available138
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for training. However, it is also important to deploy anomaly detection systems early in the mission139

lifecycle. To address this, additional scenarios with shorter training periods are explored in Appendix140

4.4. These scenarios aim to evaluate how well the algorithms perform under limited data conditions,141

assess their robustness to evolving mission environments, and determine the earliest point in a mission142

when reliable detectors can be trained.143

Lightweight subsets of channels. In the default setting of ESA-ADB, all channels and the highest144

priority telecommands are used as input, and all target channels are used as output from algorithms.145

However, anomaly detection in tens or hundreds of channels is a very challenging task which takes146

a lot of computing power, so for initial experiments, familiarization, simpler models, and potential147

on-board applications, there are lightweight subsets of channels proposed in ESA-ADB. These are148

channels 41-46 for Mission1 and channels 18-28 for Mission2. This selection is subjective, but our149

main goal was to provide channels that are challenging for algorithms, interesting for SOEs, relatively150

easy to visualize and analyze manually, and not strongly dependent on other channels or subsystems.151

Selected channels from these subsets are presented in Figure 1 and Appendix 4.1.152

3 ESA Anomaly Detection Benchmark153

The objective of the benchmark is to validate the performance of widely used TSAD algorithms on154

the ESA-AD dataset using the proposed evaluation procedures. The code is publicly available at155

github.com/kplabs-pl/ESA-ADB to ensure full reproducibility of the benchmark.156

3.1 Algorithms selection157

There are several recent comprehensive reviews of TSAD approaches that list hundreds of ML158

algorithms [17, 19, 30–32]. Algorithms for our benchmark have been preselected based on the work159

by Schmidl et al. [17] and its corresponding TimeEval framework [23] because of the largest number160

of implemented algorithms (more than 70). This framework also includes the most widely used deep161

learning algorithm for anomaly detection in spacecraft telemetry – Telemanom by NASA [7] – which162

we use as the primary baseline in our benchmark.163

Functional requirements. To support the selection of algorithms, nine functional requirements164

(R1-R9) for anomaly detection algorithms in real-world space operations have been formulated by our165

team (Table 2) and evaluated against the capabilities of multivariate algorithms within the TimeEval166

framework. Based no the detailed analysis in Appendix 3.4.5, it turned out that no algorithm meets167

all the requirements. The widely used algorithms have problems especially with learning from known168

anomalies (R4), including auxiliary variables (R6), test-time learning (R7), irregular time series data169

(R8), and most importantly, handling large volumes of data without memory errors and time-outs170

(R9). Thus, additional work is necessary to adapt algorithms to our real-world use case.171

Algorithms adaptation and final selection. To establish a simple baseline, five unsupervised172

algorithms based on traditional ML have been used without any special adaptation: Histogram-173

based Outlier Score (HBOS) [33], k-nearest neighbors (KNN) [34], principal components classifiers174

(PCC) [35], and isolation forest (iForest) [36] with its windowed version. The more advanced175

semi-supervised LSTM-based Telemanom algorithm [7] has been significantly adapted (Appendix176

3.4.1) to meet requirements R4, R6, and R9. The adapted version, called Telemanom-ESA, comes177

with pruned and non-pruned modes. Additionally, two methods have been added to the framework: a178

simple algorithm that mimics the classic out-of-limits approach by detecting values being more than N179

standard deviations away from the mean (Global STDN, described in Appendix 3.4.2) and the Dilated180

Convolutional Variational AutoEncoder (DC-VAE) [28] with a series of adaptations (DC-VAE-ESA181

in Appendix 3.4.3), including a thresholding based on N confidence intervals generated from VAE.182

3.2 Real-world evaluation of unsupervised algorithms183

Default evaluation procedures for unsupervised outlier detection algorithms in TimeEval (and many184

other frameworks, e.g., the popular PyOD [37]) do not include any separate training step on a185

training set. The algorithms are run on all available data at once to look for outliers. This setup is186

unrealistic for real-world anomaly monitoring, where future data is not available at training time,187

and it introduces information leakage that gives unsupervised algorithms an unfair advantage in188

benchmarks. To address this, we modified the TimeEval framework so that each unsupervised189
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Table 2: Requirements for anomaly detection algorithms in real-world spacecraft telemetry.

ID Priority Requirement Description

R1 must provide binary responses Algorithms must define a clear threshold for triggering alarms. SOEs cannot
rely solely on abstract anomaly scores.

R2 must be able to model dependencies between
channels

Algorithms are particularly needed to detect complex anomalies that only
become apparent when analyzing multiple channels simultaneously.

R3 must allow for online streaming anomaly detec-
tion

Algorithms in real-world settings must detect anomalies continuously with-
out using future samples to generate predictions.

R4 should learn from known anomalies in the training
set

Algorithms should be able to leverage information about historical anomalies
to effectively detect similar ones during inference.

R5 should provide a list of affected channels With thousands of channels in real missions, identifying affected channels
would save SOEs significant effort and improve trust in the algorithm.

R6 should support auxiliary variables in the input Real-world data exists within a broader system of external variables (i.e.,
non-target channels) and control signals (i.e., telecommands). Algorithms
should leverage this context to make better-informed decisions.

R7 should allow for test-time learning from human
feedback

In real-world settings, algorithms should be able to adapt based on feedback
from domain experts – for example, to stop raising alarms for rare but known
nominal events.

R8 should natively handle irregular time series data Varying sampling frequencies and data gaps are common in real-world time
series. Standard resampling and interpolation methods make algorithms
unaware of this fact and may lead to many incorrect detections.

R9 should be able to run on a single high-end PC with
a modern GPU (Appendix 4.5)

ML algorithms are often run on a dedicated PC within the mission control
room to minimize reliance on external systems and ensure data privacy,
security, and integrity.

algorithm is first initialized only on the training set – this includes calculating contamination levels,190

setting thresholds, and computing standardization parameters – and then applied to the test set.191

3.3 Preprocessing192

Our dataset contains raw telemetry in which channels have different, irregular sampling rates. There193

are no algorithms in the TimeEval framework that can handle such data without any preprocessing.194

Additionally, there are many different types of channels, so a consistent preprocessing is needed to195

run and compare all algorithms.196

Resampling. Propagating the last known value (forward fill) is a widely recommended interpolation197

method for real-world sensor data [24, 38]. It is especially well suited for binary or quantized signals198

– such as status flags or measurements from analog-to-digital converters – because, unlike linear or199

Fourier-based interpolation, it avoids generating artificial or invalid intermediate values. Crucially,200

this method only uses past data, making it appropriate for real-time streaming applications where201

future samples are not yet available. Hence, this method was used for resampling (Appendix 3.3).202

Encoding telecommands. Telecommands in the original data are represented as lists of timestamps203

indicating when they were executed on board the spacecraft. For use in ESA-ADB as input channels204

to algorithms, telecommands are encoded as binary impulse signals – single-sample spikes aligned205

with the target resampling resolution.206

Standardization. This step is essential for certain algorithms, such as KNN, and can also improve207

the performance of neural networks [39]. In our preprocessing, each channel is standardized inde-208

pendently to have zero mean and unit standard deviation, based on the nominal (non-anomalous)209

points in the training set after resampling. Exceptions are constant and binary channels (e.g., encoded210

telecommands) that are just normalized to <0, 1> range. Monotonic channels (e.g., counters and211

cumulative readings) are differentiated and categorical channels (e.g., status flags) are enumerated212

before standardization (Appendix 3.3).213

3.4 Metrics and hierarchical evaluation214

The selection of metrics and evaluation pipeline is a crucial step in establishing a reliable benchmark.215

Despite many years of research in the domain, there is no consensus on a reliable and unified set216

of TSAD metrics. Many recent advances criticize popular sample-wise and point-adjust protocols217
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for being overoptimistic, and propose better alternatives [18, 19, 21, 30, 31, 40–47]. Besides, there218

are several constraints on the selection of metrics arising directly from the functional requirements219

in Table 2. Metrics should operate on binary detections (R1), handle ground truth with irregular220

sampling (R8), and have reasonable computational complexity to handle large datasets (R9). Detailed221

analysis of all recent metrics in the context of our benchmark is presented in Appendix 3.2.1.222

First, SOEs identified and prioritized five most important aspects of anomaly detection in real-world223

mission operations. They are listed in Table 3 together with the proposed metrics to assess them.224

Importantly, each metric is designed to focus solely on a single specific aspect, in the maximum225

isolation from the other factors. There are several reasons for this: 1) to improve the interpretability of226

results by avoiding complex metrics combining multiple aspects at once, 2) to allow researchers from227

different domains to easily reorder or discard priorities, and 3) to enable the hierarchical evaluation228

approach in which algorithms are compared using one aspect at a time, from the highest to the lowest229

priority. This kind of evaluation has three important practical advantages: 1) it puts a strong emphasis230

on the priorities suggested by SOEs, 2) there is no need to select relative weights of specific aspects,231

and 3) it saves computational time by calculating only the necessary metrics.232

Table 3: Priority aspects and proposed metrics for assessing algorithms in ESA-ADB.

Group Aspect with priority level and brief description Proposed metric

Pr
im

ar
y

1a. No false alarms – minimize the number of false detections Corrected event-wise F0.5-score
1b. Anomaly existence – maximize the number of correctly detected anomalies

2a. Subsystems identification – find a list of affected subsystems Subsystem-aware F0.5-score

2b. Channels identification – find a list of affected channels Channel-aware F0.5-score

Se
co

nd
ar

y

3. Exactly one detection per anomaly – avoid multiple detections for the same
annotated segment

Event-wise alarming precision

4. Detection timing – determine the anomaly start time as precisely as possible Anomaly detection timing quality
curve (ADTQC)

5. Anomaly range and proximity – find the exact duration of the anomaly and
promote detections in close proximity to the ground truth

Modified affiliation-based F0.5-
score

The highest priority aspect relates to the proper identification of anomalous events with a strong233

emphasis on avoiding false alarms. This is because false positives are costly to resolve and deter234

operators from using the system. A high false positive rate is one of the main obstacles to the wider235

adoption of anomaly detection algorithms in space operations [7]. In the main text, we focus only on236

this most important aspect and the corresponding corrected event-wise metric, but other aspects are237

thoroughly described and assessed in Appendix 3.2.3.238

Corrected event-wise F0.5-score. The event-wise scoring used for spacecraft telemetry by Hundman239

et al. [7] is better than sample-wise approach in real-world scenarios as it 1) weighs all anomalies240

equally (not by their length) and 2) does not focus on the level of overlap between detections and241

the ground truth (in practice, it is enough to give an approximate location of the anomaly to human242

operators). However, the simple event-wise precision has one serious flaw – an algorithm that detects243

anomalies in every sample would have a perfect score (example in Appendix 3.2). To mitigate this,244

we use the correction proposed by Sehili and Zhang [18] that penalizes sample-wise (time-wise) false245

positives in the computation of the event-wise precision Pre (Equation 1):246

Pre =
TPe

TPe + FPe
· (1− FPt

Nt
) , (1)

where TPe is the number of event-wise true positives, FPe is the number of event-wise false positives,247

FPt is the total duration of false positives, and Nt is the total duration of nominal signal. Based on248

that, the corrected event-wise Fβ-score is defined by Equation 2:249

Fβe
=

(1 + β2) · Pre · Rece
β2 · Pre + Rece

, Rece =
TPe

TPe + FNe
, (2)

where Rece is the event-wise recall and FNe is the number of event-wise false negatives. We use β of250

0.5 following Hundman et al. [7] to additionally penalize false detections.251
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3.5 Results and discussion252

The goal of this benchmark is to provide a solid foundation for future research, rather than to identify253

the single best algorithm for real-world time series. Therefore, the experiments do not involve254

extensive hyperparameter tuning, which would be computationally prohibitive given the dataset size.255

Instead, we use default settings recommended by the original authors of each algorithm, with minor256

adjustments to match the specific characteristics of our dataset (Appendix 3.4.6). This approach is257

intentional – it reflects typical TSAD practices and is meant to encourage the research community to258

build upon these results.259

There are no algorithms in the TimeEval framework that can explicitly distinguish between anomalies260

and rare nominal events, so the results are presented for both types combined. However, separate261

results considering only anomalies are available in Appendix 4.2. The corrected event-wise scores262

for Missions 1 and 2 are presented in Table 4. Results for lower priority metrics are available in263

Appendix 4. Scores are rounded to 3 significant digits to account for the inherent uncertainty of264

annotations in real-world data. The processing times of the algorithms are given in Appendix 4.6.265

Table 4: Corrected event-wise scores for detection of anomalies and rare nominal events in
lightweight and full sets of channels for Mission1 and Mission2. Boldfaced results indicate the
best values among all algorithms. OOM – out-of-memory.

Model Mission1 Mission2
Pre Rece F0.5e Pre Rece F0.5e

Trained and tested on lightweight subsets of channels

PCC <0.001 0.554 <0.001 0.029 1.000 0.036
HBOS <0.001 0.585 <0.001 0.055 0.911 0.068
iForest <0.001 0.585 <0.001 0.557 0.974 0.609

Windowed iForest <0.001 0.738 <0.001 0.951 0.940 0.949
KNN <0.001 0.754 <0.001 0.000 1.000 0.001

Global STD3 0.001 0.431 0.001 0.006 1.000 0.007
Global STD5 0.288 0.169 0.253 0.061 1.000 0.075

DC-VAE-ESA STD3 0.002 0.554 0.003 0.003 1.000 0.003
DC-VAE-ESA STD5 0.063 0.338 0.075 0.064 1.000 0.079

Telemanom-ESA 0.148 0.894 0.178 0.188 0.986 0.224
Telemanom-ESA Pruned 0.999 0.424 0.786 0.978 0.540 0.842

Trained and tested on full set of channels

PCC <0.001 0.870 <0.001 0.082 0.983 0.100
HBOS <0.001 0.957 <0.001 0.016 0.820 0.020
iForest <0.001 0.967 <0.001 0.022 0.903 0.027

Windowed iForest OOM OOM OOM 0.034 0.746 0.042
KNN OOM OOM OOM OOM OOM OOM

Global STD3 <0.001 0.848 <0.001 0.014 0.997 0.018
Global STD5 0.002 0.761 0.003 0.203 0.972 0.241

DC-VAE-ESA STD3 <0.001 0.924 <0.001 0.002 0.997 0.002
DC-VAE-ESA STD5 0.005 0.804 0.007 0.008 0.904 0.011

Telemanom-ESA 0.007 0.946 0.008 0.052 0.992 0.064
Telemanom-ESA Pruned 0.050 0.870 0.061 0.058 0.964 0.071

Mission1. The pruned Telemanom-ESA has achieved the highest corrected event-wise F0.5e and266

the lowest number of redundant alarms in both channel sets and all mission phases (Appendix 4.4).267

The huge advantage of Telemanom in terms of these metrics is its dynamic thresholding scheme and268

additional pruning. This highlights the importance of proper thresholding and postprocessing methods269

in real-world settings. On the other hand, pruning significantly decreases subsystem-/channel-aware,270

detection timing (ADTQC), and affiliation-based scores, so the anomalies may be harder to identify.271

Unsupervised algorithms perform very poorly for Mission1 in terms of event-wise scores. DC-VAE-272

ESA and GlobalSTD are just slightly better which is especially disappointing for the former deep273

learning method. The main problem of these algorithms is a massive number of false detections274

caused by the noise and varying sampling rates in the data, as visible in the examples in Appendix 4.1.275

However, DC-VAE-ESA has the best timing and affiliation-based scores – higher than Telemanom-276

ESA. This suggests that more advanced thresholding or postprocessing would significantly improve277

the event-wise scores of DC-VAE.278

Mission2. Surprisingly, the simple windowed iForest and GlobalSTD5 algorithms turned out to be279

the best algorithms for the lightweight and full sets, respectively. Overall, unsupervised algorithms280

perform relatively well for Mission2, sometimes better than the deep learning-based ones. It supports281
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the claim to always consider simple algorithms as a baseline [20, 48]. Windowed iForest achieved a282

very high corrected event-wise F0.5e (0.949), ADTQC (0.985), and affiliation-based F0.5e (0.959)283

scores. The main reason is the relative triviality of the lightweight subset of Mission2 which contains284

mainly rare nominal events characterized by significant sudden changes in the signal (Appendix 2).285

However, the full set is much more challenging as reflected by much lower corrected event-wise286

scores. Moreover, metrics for anomalies alone (Appendix 4.2) show that no algorithm was able287

to accurately identify all 9 actual anomalies in the overabundance of rare nominal events. This is288

one of the main practical challenges in many missions. Mission2 is also particularly problematic289

for Telemanom-ESA because of a lack of clear periodicity and many commanded events that are290

impossible to forecast.291

Full sets vs. lightweight subsets. In most cases, the results for full sets of channels are much worse292

than for lightweight subsets. While the two are not directly comparable (since the lightweight test293

sets contain fewer annotated events), Appendix 4.3 includes a direct comparison that supports this294

observation. This is one of the main challenges of high-dimensional real-world data – the more295

target channels there are, the higher the chance of false detections is. Additionally, due to the strong296

interconnections between channels, false detections frequently seep into many irrelevant channels.297

4 Conclusions298

ESA-ADB is a departure point for further development of better algorithms for anomaly detection in299

real-world time series (e.g., spacecraft telemetry). It was designed in close collaboration between ML300

and domain experts to fulfill the need for a reliable benchmark for both communities. Our goal was to301

ensure that improving the results of ESA-ADB does not just create an illusion of progress but solves302

real-world challenges in the TSAD domain – Appendix 2.6 gives a summary of how ESA-ADB303

addresses common flaws listed by Wu and Keogh [20]. The requirements analysis and results show304

that our dataset poses a significant challenge for popular TSAD algorithms, and many changes had305

to be applied in the TimeEval framework [23], training procedures, and algorithms to make them306

applicable to real-world data. While the results of Telemanom-ESA on subsets of channels may307

appear promising, the approach is highly parameterized, and the chosen thresholds may not generalize308

well to other missions. More importantly, the main challenge lies in scaling these algorithms to the309

full set of channels in our dataset – and to thousands of channels in real-world operations.310

Limitations and future work. ESA-ADB has several limitations that we were not able to address in311

the scope of this study. Despite our best efforts, labeling inaccuracies are inevitable in such volumes of312

real-world data, so we are open to requests for corrections and plan to release updated versions of the313

dataset. Additionally, anonymization of physical units and timelines may constrain certain use cases.314

The dataset is still just a small fragment of real-world telemetry, but its complexity already poses a315

high entry barrier and requires some effort to fully understand. Due to the computational, functional316

(Table 2), and framework-related constraints, the current benchmark includes a limited range of317

algorithms and does not involve extensive hyperparameter tuning. As such, ESA-ADB should be318

viewed not as a comprehensive benchmark of TSAD methods, but rather as a solid baseline for future319

research on real-world time series. Promising directions for extending this work include adapting320

Matrix Profile methods [49] and transformer-based models with positional time encoding [50–52].321

Beyond TSAD, the dataset also holds potential for research in time series forecasting, telemetry data322

compression, continual learning, and foundation models.323
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instructions for how to replicate the results, access to a hosted model (e.g., in the case583
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nature of the contribution. For example588
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the architecture clearly and fully.592
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• At submission time, to preserve anonymity, the authors should release anonymized627

versions (if applicable).628

• Providing as much information as possible in supplemental material (appended to the629

paper) is recommended, but including URLs to data and code is permitted.630

6. Experimental setting/details631

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-632

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the633

results?634

Answer: [Yes]635

Justification: There are separate paragraphs in the paper to discuss data splits and evaluation636

procedures of the benchmark. Algorithm selection and parametrization is thouroughly637

described in the main text and Appendix.638

Guidelines:639

• The answer NA means that the paper does not include experiments.640

• The experimental setting should be presented in the core of the paper to a level of detail641

that is necessary to appreciate the results and make sense of them.642

• The full details can be provided either with the code, in appendix, or as supplemental643

material.644

7. Experiment statistical significance645

Question: Does the paper report error bars suitably and correctly defined or other appropriate646

information about the statistical significance of the experiments?647

Answer: [No]648
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Justification: There is a single metric value calculated on a single large continuous test set649

(time series) for each algorithm in the benchmark. Metrics are not calculated separately for650

each annotated event, so it is impossible to generate error bars or run statistical tests for651

them. Due to the dataset volume, it would be very computationally expensive to perform652

several runs of each experiment, e.g., with different seeds, to generate error bars.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• The authors should answer "Yes" if the results are accompanied by error bars, confi-656

dence intervals, or statistical significance tests, at least for the experiments that support657

the main claims of the paper.658

• The factors of variability that the error bars are capturing should be clearly stated (for659

example, train/test split, initialization, random drawing of some parameter, or overall660

run with given experimental conditions).661

• The method for calculating the error bars should be explained (closed form formula,662

call to a library function, bootstrap, etc.)663

• The assumptions made should be given (e.g., Normally distributed errors).664

• It should be clear whether the error bar is the standard deviation or the standard error665

of the mean.666

• It is OK to report 1-sigma error bars, but one should state it. The authors should667

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis668

of Normality of errors is not verified.669

• For asymmetric distributions, the authors should be careful not to show in tables or670

figures symmetric error bars that would yield results that are out of range (e.g. negative671

error rates).672

• If error bars are reported in tables or plots, The authors should explain in the text how673

they were calculated and reference the corresponding figures or tables in the text.674

8. Experiments compute resources675

Question: For each experiment, does the paper provide sufficient information on the com-676

puter resources (type of compute workers, memory, time of execution) needed to reproduce677

the experiments?678

Answer: [Yes]679

Justification: Details about the computational resources and calculation times are given in680

the Appendix 4.5 and 4.6.681

Guidelines:682

• The answer NA means that the paper does not include experiments.683

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,684

or cloud provider, including relevant memory and storage.685

• The paper should provide the amount of compute required for each of the individual686

experimental runs as well as estimate the total compute.687

• The paper should disclose whether the full research project required more compute688

than the experiments reported in the paper (e.g., preliminary or failed experiments that689

didn’t make it into the paper).690

9. Code of ethics691

Question: Does the research conducted in the paper conform, in every respect, with the692

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?693

Answer: [Yes]694

Justification: Our research does not involve human subjects or personally identifiable and695

sensitive information. We do not see any potential harmful consequences of the research.696

Datasets are properly documented and have well-specified open licenses.697

Guidelines:698

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.699

• If the authors answer No, they should explain the special circumstances that require a700

deviation from the Code of Ethics.701
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-702

eration due to laws or regulations in their jurisdiction).703

10. Broader impacts704

Question: Does the paper discuss both potential positive societal impacts and negative705

societal impacts of the work performed?706

Answer: [No]707

Justification: We do not see any potential malicious or unintended uses of the dataset that708

would have a specific societal impact. The technology supported by the benchmark has no709

direct impact on human subjects.710

Guidelines:711

• The answer NA means that there is no societal impact of the work performed.712

• If the authors answer NA or No, they should explain why their work has no societal713

impact or why the paper does not address societal impact.714

• Examples of negative societal impacts include potential malicious or unintended uses715

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations716

(e.g., deployment of technologies that could make decisions that unfairly impact specific717

groups), privacy considerations, and security considerations.718

• The conference expects that many papers will be foundational research and not tied719

to particular applications, let alone deployments. However, if there is a direct path to720

any negative applications, the authors should point it out. For example, it is legitimate721

to point out that an improvement in the quality of generative models could be used to722

generate deepfakes for disinformation. On the other hand, it is not needed to point out723

that a generic algorithm for optimizing neural networks could enable people to train724

models that generate Deepfakes faster.725

• The authors should consider possible harms that could arise when the technology is726

being used as intended and functioning correctly, harms that could arise when the727

technology is being used as intended but gives incorrect results, and harms following728

from (intentional or unintentional) misuse of the technology.729

• If there are negative societal impacts, the authors could also discuss possible mitigation730

strategies (e.g., gated release of models, providing defenses in addition to attacks,731

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from732

feedback over time, improving the efficiency and accessibility of ML).733

11. Safeguards734

Question: Does the paper describe safeguards that have been put in place for responsible735

release of data or models that have a high risk for misuse (e.g., pretrained language models,736

image generators, or scraped datasets)?737

Answer: [NA]738

Justification: The paper poses no such risks.739

Guidelines:740

• The answer NA means that the paper poses no such risks.741

• Released models that have a high risk for misuse or dual-use should be released with742

necessary safeguards to allow for controlled use of the model, for example by requiring743

that users adhere to usage guidelines or restrictions to access the model or implementing744

safety filters.745

• Datasets that have been scraped from the Internet could pose safety risks. The authors746

should describe how they avoided releasing unsafe images.747

• We recognize that providing effective safeguards is challenging, and many papers do748

not require this, but we encourage authors to take this into account and make a best749

faith effort.750

12. Licenses for existing assets751

Question: Are the creators or original owners of assets (e.g., code, data, models), used in752

the paper, properly credited and are the license and terms of use explicitly mentioned and753

properly respected?754
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Answer: [Yes]755

Justification: The dataset introduced in the paper is distributed under CC BY 3.0 IGO license756

and is an original work based on the internal data from the European Space Agency. The757

code of the benchmark is available under MIT license and it properly references its sources,758

in particular, the TimeEval framework.759

Guidelines:760

• The answer NA means that the paper does not use existing assets.761

• The authors should cite the original paper that produced the code package or dataset.762

• The authors should state which version of the asset is used and, if possible, include a763

URL.764

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.765

• For scraped data from a particular source (e.g., website), the copyright and terms of766

service of that source should be provided.767

• If assets are released, the license, copyright information, and terms of use in the768

package should be provided. For popular datasets, paperswithcode.com/datasets769

has curated licenses for some datasets. Their licensing guide can help determine the770

license of a dataset.771

• For existing datasets that are re-packaged, both the original license and the license of772

the derived asset (if it has changed) should be provided.773

• If this information is not available online, the authors are encouraged to reach out to774

the asset’s creators.775

13. New assets776

Question: Are new assets introduced in the paper well documented and is the documentation777

provided alongside the assets?778

Answer: [Yes]779

Justification: The paper itself can be considered a documentation of the introduced assets.780

Guidelines:781

• The answer NA means that the paper does not release new assets.782

• Researchers should communicate the details of the dataset/code/model as part of their783

submissions via structured templates. This includes details about training, license,784

limitations, etc.785

• The paper should discuss whether and how consent was obtained from people whose786

asset is used.787

• At submission time, remember to anonymize your assets (if applicable). You can either788

create an anonymized URL or include an anonymized zip file.789

14. Crowdsourcing and research with human subjects790

Question: For crowdsourcing experiments and research with human subjects, does the paper791

include the full text of instructions given to participants and screenshots, if applicable, as792

well as details about compensation (if any)?793

Answer: [NA]794

Justification: The paper does not involve crowdsourcing nor research with human subjects.795

Guidelines:796

• The answer NA means that the paper does not involve crowdsourcing nor research with797

human subjects.798

• Including this information in the supplemental material is fine, but if the main contribu-799

tion of the paper involves human subjects, then as much detail as possible should be800

included in the main paper.801

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,802

or other labor should be paid at least the minimum wage in the country of the data803

collector.804

15. Institutional review board (IRB) approvals or equivalent for research with human805

subjects806
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Question: Does the paper describe potential risks incurred by study participants, whether807

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)808

approvals (or an equivalent approval/review based on the requirements of your country or809

institution) were obtained?810

Answer: [NA]811

Justification: The paper does not involve crowdsourcing nor research with human subjects.812

Guidelines:813

• The answer NA means that the paper does not involve crowdsourcing nor research with814

human subjects.815

• Depending on the country in which research is conducted, IRB approval (or equivalent)816

may be required for any human subjects research. If you obtained IRB approval, you817

should clearly state this in the paper.818

• We recognize that the procedures for this may vary significantly between institutions819

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the820

guidelines for their institution.821

• For initial submissions, do not include any information that would break anonymity (if822

applicable), such as the institution conducting the review.823

16. Declaration of LLM usage824

Question: Does the paper describe the usage of LLMs if it is an important, original, or825

non-standard component of the core methods in this research? Note that if the LLM is used826

only for writing, editing, or formatting purposes and does not impact the core methodology,827

scientific rigorousness, or originality of the research, declaration is not required.828

Answer: [NA]829

Justification: The core method development in this research does not involve LLMs as any830

important, original, or non-standard components.831

Guidelines:832

• The answer NA means that the core method development in this research does not833

involve LLMs as any important, original, or non-standard components.834

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)835

for what should or should not be described.836
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