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ABSTRACT

Non-transferable learning (NTL) aims to restrict the generalization of models
toward the target domain(s). To this end, existing works learn non-transferable
representations by reducing statistical dependence between the source and target
domain. However, such statistical methods essentially neglect to distinguish be-
tween styles and contents, leading them to inadvertently fit (i) spurious correlation
between styles and labels, and (ii) fake independence between contents and labels.
Consequently, their performance will be limited when natural distribution shifts oc-
cur or malicious intervention is imposed. In this paper, we propose a novel method
(dubbed as H-NTL) to understand and advance the NTL problem by introducing a
causal model to separately model content and style as two latent factors, based on
which we disentangle and harness them as guidances for learning non-transferable
representations with intrinsically causal relationships. Specifically, to avoid fitting
spurious correlation and fake independence, we propose a variational inference
framework to disentangle the naturally mixed content factors and style factors
under our causal model. Subsequently, based on dual-path knowledge distilla-
tion, we harness the disentangled two factors as guidances for non-transferable
representation learning: (i) we constraint the source domain representations to fit
content factors (which are the intrinsic cause of labels), and (ii) we enforce that the
target domain representations fit style factors which barely can predict labels. As a
result, the learned feature representations follow optimal untransferability toward
the target domain and minimal negative influence on the source domain, thus
enabling better NTL performance. Empirically, the proposed H-NTL significantly
outperforms competing methods by a large margin.

1 INTRODUCTION

Non-transferable learning (NTL) (Wang et al., 2022b) was proposed as a core technology in intellec-
tual property (IP) protection (Zhang et al., 2018; Chakraborty et al., 2020; Le Merrer et al., 2020;
Wang et al., 2024) and controllable artificial intelligence (Zhu et al., 2023; Yang et al., 2023; Li et al.,
2023). The critical task in NTL is to learn feature representations (i.e., non-transferable representa-
tions) that can maintain source domain performance but cannot perform well on an observed target
domain (target-specified NTL task) or any unobserved target domains (source-only NTL task).

Existing NTL methods try to resist the transferability of learned representations by reducing statistical
dependence between source domains and target domains (Wang et al., 2022b; Zhu et al., 2023; Zeng
& Lu, 2022). In general, they impose two relaxation regularization terms on standard supervised
learning: (i) relaxing statistical dependence between “target domain representations” and “target
domain labels”, (ii) relaxing statistical dependence between “target domain representations” and
“source domain representations”. However, since such statistical methods are essentially difficult to
distinguish the naturally entangled contents and styles in both source and target domain data, they
easily inadvertently fit (i) spurious correlation between styles and labels, and (ii) fake independence
between contents and labels.

For intuitive explanation, as shown in Fig. 1 (a), we introduce an NTL example that aims at banning
knowledge transferring from the wildlife park (source domain) to the zoo (target domain). We first
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Figure 1: An exmaple: a wildlife park uses camel and sheep images captured in the wild to train a classification
model which cannot be used by the zoo. (a) Source and target domain share the same content factors (i.e.,
“camel” and “sheep”) but different style factors (i.e., “natural wild” versus “artificial zoo”). (b) Ideal NTL
mechanism. (c) Existing statistical methods fit spurious correlation and fake independence.

show the ideal NTL mechanism in line with human consciousness and then the practical situation
in using statistical-dependence-relaxation methods. The ideal and human-like NTL mechanism is
shown in Fig. 1 (b). An NTL model should learn representations of camel and sheep in the source
domain (i.e., contents) to implement correct recognition. To limit knowledge transferring, the NTL
model should mine the difference between two domains, which naturally and reasonably leads to
learning zoo environment in the target domain (i.e., styles). Such target-specified styles barely contain
predictive information and negatively impact source domain recognition. However, in practical
situation, the ideal NTL is destroyed by nuisance factors (Zhang et al., 2022; 2020) (e.g., desert and
grassland, which belong to styles and are co-occurrent with camel and sheep in the wild, respectively).
As shown in Fig. 1 (c), since lacking the ability to distinguish the naturally entangled contents and
styles, a statistical-based method will be misled to learn desert/grassland in the source domain and
camel/sheep in the target domain to satisfy the non-transferable requirements. Indeed, knowledge
cannot be transferred to the target domain in this case. However, the NTL model (i) fits the spurious
correlation from styles to labels in the source domain (i.e., desert to label “camel”, grassland to
label “sheep”) and (ii) models the independence from contents to labels in the target domain (they
should have causal relationships, and thus, we call it as fake independence). Consequently, the
learned non-transferable representations are fragile and sensitive to small distribution shifts (from
a training set to a testing set). Thus, both the source domain performance maintenance and target
domain degradation will be limited. More seriously, when malicious attackers impose interventions
(e.g., domain masquerade attack), such statistical-based methods may not work well since they only
fit the superficially statistical relationships in the training data1.

In this paper, we propose a novel method to address the aforementioned problems by Harnessing
content and style in Non-Transferable representation Learning, dubbed as H-NTL. We use a causal
model (Peters et al., 2017; Li & Chu, 2023) to formalize the data generation process and mathemati-
cally understand the non-transferable mechanism with optimal untransferability. In order to avoid be-
ing misled to fit spurious correlation and fake independence, we distinguish the unobservable and nat-
urally mixed contents and styles by separately modeling them in our causal model. As shown in Fig. 2,
we decompose an instance X into two latent factors: (i) content factor C, which corresponds to the
intrinsic, class-related information that is a cause of the label Y in both the souce and the target do-
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Figure 2: A causal model
to reveal the data generation
process in NTL. The gray-
shaded variables are observ-
able and those unshaded are
unobservable. The dashed
line indicates the statistical
dependence caused by la-
tent confounders.

main (e.g., bird, airplane, deer, etc.), and (ii) style factor S, where all
other factors except the content factor C can belong to style factors (such
as image background or artificial watermark (Wang et al., 2022b)) and
is the cause of domain D2. The content factor C and the style factor S
are causes of the instance X . Besides, we assume the co-occurrence be-
tween contents and styles (which leads to the problems of fitting spurious
correlation and fake independence in existing NTL methods) is caused
by latent confounders, and thus, we model it by a statistical dependence3

between the style factor S and the content factor C in our causal model
(i.e., the dashed line in Fig. 2) (Von Kügelgen et al., 2021). Based on the
causal model, we propose a novel variational inference framework to
disentangle the content factor C and style factor S from observable data
by maximizing an approximated evidence lower-bound (ELBO) (Blei
et al., 2017; Yao et al., 2021) of the joint distribution P (X,Y,D).

1In Appendix A, we present a toy experiment to demonstrate the vulnerability of statistical-based methods.
2We further discuss its rationality in NTL and consider another direction (i.e., D causes S) in Appendix E.2.
3Detailed discussion and assumption of the dependence between S and C is provided in Appendix E.1.
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Subsequently, by following the ideal (human-like) NTL mechanism, we harness the disentangled
content factor C and style factor S as guidances for non-transferable representation learning. Based
on knowledge distillation (Gou et al., 2021), we treat the NTL model fntl as a student network and
train it by two distillation paths: (i) in the source domain path, we constraint the learned representation
to fit content factor C (which is the intrinsic cause of label Y ), and (ii) in the target domain path, we
enforce the learned representation to fit style factor S which barely can predict labels4. Therefore, the
non-transferable representations learned by fntl simultaneously approach optimal untransferability
toward the target domain and minimal negative influence on source domain recognition, thus enabling
better NTL performance. Our contribution can be summarized as follows:
• We identify the problems of fitting (i) spurious correlation between styles and labels and (ii) fake in-

dependence between contents and labels in NTL, which are caused by the statistical dependence
between contents and styles. Such problems lead to the learned non-transferable representations in
existing methods become fragile and sensitive to small distribution shifts.

• To address the existing problems, we distinguish the unobservable and naturally mixed contents
and styles by separately modeling them as latent factors in a causal model. Further, we explore
causal-driven non-transferable representations with the optimal untransferability, based on which,
we propose a simple yet effective method (dubbed as H-NTL) to disentangle and harness the
content factor and style factor for non-transferable representation learning.

• We conduct experiments to evaluate the proposed H-NTL method in both target-specific and
source-only NTL tasks. Empirical results across various settings show the superiority of H-NTL.

2 RELATED WORK

Non-transferable learning. NTL aims to restrict the generalizability of learned models toward a cer-
tain domain (target-specified NTL) or all other domains (source-only NTL), which will be widely
applied in intellectual property protection (i.e., “ownership verification” and “applicability authoriza-
tion”) and controllable artificial intelligence (Zeng & Lu, 2022; Wang et al., 2022b; Zhu et al., 2023).
The most related research fields to the NTL are domain adaptation (DA) (Garg et al., 2022; Saito et al.,
2020; Huang et al., 2021; Oza et al., 2023) and domain generalization (DG) (Rame et al., 2022; Zhou
et al., 2022; Huang et al., 2023b;a). Specifically, the target-specified NTL is opposite to DA, which
aims to enhance the performance on a certain target domain. Similarly, source-only NTL can be seen
as an anti-task to single-domain DG. Existing NTL methods try to resist transferability by reducing
statistical dependence between representations on source and target domains. Wang et al. (2022b) first
propose the NTL task. They design a framework that adds two statistical dependence relaxation terms
on standard supervised learning: (i) maximizing the Kullback-Leible (KL) divergence between target
domain representations and labels, and (ii) maximizing the maximum mean discrepancy (MMD) be-
tween the distribution of source and target domain representations. Zeng & Lu (2022) aim at NTL
in natural language processing. They use MMD as well as an auxiliary domain classifier to enlarge
the distance of representations from different domains. Further, Zhu et al. (2023) enhance the NTL
performance by a domain-weighted MMD strategy. However, such statistical-based methods are
easily trapped into fitting spurious correlation and fake independence, which leads to the limitation of
both source domain performance maintenance and target domain degradation.

Causal-inspired representation learning. Despite the success of statistical learning, they always
provide a rather superficial description of limited reality, which means that such success only holds
when the experimental conditions are fixed (Schölkopf et al., 2021). In practice, statistical methods
are easy to fit spurious correlation from image background to class labels (Zhang et al., 2022; Lv et al.,
2022; Ye et al., 2023), which leads to serious performance degradation when facing non-stationary
data distribution. Such shortcoming is always reflected in the adversarial vulnerability (Yu et al.,
2022; Zhang et al., 2022) and poor generalizability toward unseen domains (Kong et al., 2022; Wang
et al., 2022a). Causal-inspired representation learning is a promising approach to address these
concerns. It aims to learn representations that are invariant under other changing causal factors,
leading to improved performance in the presence of domain shifts (Huang et al., 2022; Mitrovic et al.,
2021). Specifically, causal-inspired DA (Kong et al., 2022; Jiang & Veitch, 2022) and DG (Lu et al.,
2021; Liu et al., 2021; Chen et al., 2022; Sheth et al., 2022; Chen et al., 2023a) focus on learning
invariant representations across different domains to obtain better generalizability. On the contrary,
our causal-inspired NTL method aims at learning representations without generalizability in a certain
domain(s), which means that the feature representations are “variant” between different domains.

4We assume a weak relation between S and C in the target domain, which will be empirically verified.

3



Published as a conference paper at ICLR 2024

3 METHOD

As shown in Fig. 3, we proposed a H-NTL method to handle the non-transferable representation
learning problem. In Section 3.1, we first illustrate the ideal non-transferable mechanism based on
our causal model. In Section 3.2, we design a variational inference framework to disentangle the
unobservable content factor C and style factor S. In Section 3.3, we introduce a dual-path knowledge
distillation to harness the disentangled factors as guidances to teach a student network to learn ideal
non-transferable representations. In Section 3.4, we illustrate the overall training process of H-NTL
for target-specified and source-only NTL tasks, respectively.

Notation. As shown in Fig. 2, we assume that an instance X in domain D with label Y has two
unobservable cause variables: content factor C and style factor S5. Particularly, X , Y , and D are
observable variables, and we can access samples from their real joint distribution, namely source
domain data Ds = {xsi , ysi }Nsi=1 and target domain data Dt = {xti, yti}Nti=1. We merge these two training
sets to a whole dataset D and represent it as D = Ds ∪ Dt = {xi, yi, di}Ns+Nti=1 , where yi is the
content label of sample xi with index i, and di is the domain label. The goal of NTL is to train a
classification model fntl ∶ X → Y to degrade performance on target domain Dt and simultaneously
maintain performance on source domain Ds. Without loss of generality, the fntl can be splited as a
feature extractor fe and a classifier fcls (i.e., fntl = fcls ◦ fe).

3.1 CAUSAL-DRIVEN NON-TRANSFERABLE REPRESENTATION

In this section, to explore the ideal non-transferable mechanism in line with human consciousness
(i.e., following intrinsic causal relationship), we provide a causal view to understanding the non-
transferable representation learning. Based on the causal model in Fig. 2, the data generation process
from unobservable variables to observable variables can be formalized as:

X = fx(S,C, εx), D = fd(S, εd), Y = fy(C, εy) (1)

where ε represents the noise term of the corresponding variable, and they are independent of each
other and usually can be ignored. Each f represents the corresponding data generation function. Based
on Eq. (1), we discuss the non-transferable representations on source/target domain, respectively.

Source domain representations. In the source domain, we start from the stable human cognition
which relies on the ability of causal reasoning (Zhang et al., 2020; Schölkopf et al., 2021). In order to
maintain high classification performance on the source domain, the NTL model fntl should follow the
intrinsic causal relationship from content factor C to the label Y in Eq. (1). Specifically, the feature
extractor fe in fntl should model the latent content factors (i.e., fe(Xs) = C), and the classifier
module fcls is required to establish a mapping from content factors to labels, i.e., fcls(C) = Y .

Target domain representations. The next, and more important matter we focus on is representations
on the target domain. The crucial problem in non-transferable mechanisms is how to implement
untransferability toward the target domain and simultaneously minimize harmful effects on source
domain performance (i.e., optimal untransferability). For this purpose, we first explicitly define the
properties of optimal untransferability as follows:
Definition 1 (Optimal Untransferability). Let N denote a kind of representations across source
domain Ds and target domain Dt, where Ns and Nt represent source and target domain feature
representations, respectively. Let Y denote the classification labels. If N satisfy:

Nt ⫫ Ns and Nt ⫫ Y, (2)

we say that the representations N have the optimal untransferability from source domain Ds to target
domain Dt, where⫫ means the statistical independence.

In Definition 1, the two independent terms simultaneously ensure that (i) the target domain represen-
tations contain no information to predict labels (i.e., Nt ⫫ Y ) which equals to the untransferability
toward the target domain, and (ii) no harmful effect toward source domain prediction (i.e., Nt ⫫ Ns).
Remark 1. We consider the source domain representations mentioned above, and follow the data
generation process in Eq. (1). By learning representations N to achieve Ns = Cs on the source
domain and Nt = S on the target domain, the N approximately satisfy optimal untransferability.

5We use subscript s and t to denote the variable on the source and target domain, respectively. For example,
Xs and Ct mean source domain instance and target domain content factor, respectively.
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Figure 3: The proposed H-NTL. (a) Disentanglement VAE. (b) Dual-path knowledge distillation.

Intuitively, Remark 1 provides a principle for target domain representation learning, that is, fitting
the style factors of the target domain (i.e., fe(Xt) = St). Under the weak-relation assumption4, the
style factor S barely can predict labels although the statistical dependence is existing between C and
S. Thus, by fitting style factors of the target domain, the optimal untransferability toward the target
domain can be approximately satisfied under the causal-driven representations in the source domain.

3.2 DISENTANGLEMENT UNDER THE CAUSAL MODEL

Although the causal-inspired understanding of the non-transferable mechanism provides a promising
direction for practicing this task, both of the content factor C and the style factor S are unobservable
and are naturally entangled in instance X . To leverage them for non-transferable representation
learning, we have to infer them with the source and target domain datasets Ds ∪Dt sampled from the
joint distribution P (X,Y,D). In order to simultaneously infer content factor C and style factor S
from sampled data Ds∪Dt, according to the causal model in Fig. 2, we factorize the joint distribution
P (X,Y,C, S,D) under the Markov condition (Pearl et al., 2000; Yao et al., 2023) as follows:

P (X,Y,D,C, S) = P (C, S)P (Y ∣C, S)P (D∣C, S)P (X∣C, S), (3)
where we see the C and S as a variable set with the joint distribution P (C, S) due to the statistical
dependence caused by latent confounders. The Eq. (3) motivates us to extend variational auto-encoder
(VAE) (Kingma & Welling, 2013) to infer latent factors, as shown in Fig. 3 (a). Specifically, we
separately infer C and S from the input X by using two encoder modules q̂φc and q̂φs to model the
posterior distributions qφc(C∣X) and qφs(S∣X) with learnable parameters φc and φs, respectively.
In addition, we use a decoder p̂θx to model the distribution pθx(X∣C, S) parameterized by θx.
Moreover, we approximate P (Y ∣C, S) by assuming that C should contain sufficient information
about Y (Yao et al., 2021; Lu et al., 2018), i.e., P (Y ∣C, S) = P (Y ∣C), and such assumption is also
applicable to P (D∣C, S). Therefore, we use two classifiers (p̂θd and p̂θy ) to model the distributions
pθd(D∣S) and pθy(Y ∣C) with learnable parameter θy and θd. Totally, the VAE can be presented as a
set of network modules: {q̂φc , q̂φs , p̂θx , p̂θy , p̂θd}.

To learn the parameters {φc, φs, θx, θy, θd}, we follow the variational inference framework (Blei et al.,
2017) to maximize the evidence lower-bound (ELBO) from the sampled observed data (x, y, d) ∈ D.
The ELBO(x, y, d) is derived as follows (the detailed derivation is shown in Appendix B):

ELBO(x, y, d) = −KL(qφc(c∣x)∥p(C)) −KL(qφs(s∣x)∥p(S)) + Ec∼qφc (c∣x) [log pθy(y∣c)]
+ Es∼qφs (s∣x) [log pθd(d∣s)] + Ec∼qφc (c∣x),s∼qφs (s∣x) [log pθx(x∣c, s)] , (4)

where KL(⋅∥⋅) represents the Kullback-Leibler (KL) divergence. The detailed derivation of Eq. (4) is
shown in Appendix B. The first two terms represent the KL divergence between the estimated factors
and their prior distributon, i.e., multivariate Gaussian distribution N (0, I) (Kingma & Welling, 2013).
The third and fourth terms in Eq. (4) are the approximated log-likelihoods of class label prediction
from the estimated content factor C and domain label prediction from the estimated style factor S,
respectively. The last term can be seen as a reconstruction loss from the estimated latent variables
C and S to the input data X . We train the VAE by maximizing ELBO(x, y, d) and thus obtain two
encoders q̂φc(x) and q̂φs(x) for disentangling and estimating unobservable content factor C and
style factor S, respectively.

Intuitively, by maximizing ELBO(x, y, d) in Eq. (4), we enforces images with the same label,
regardless of their domain, to have similar learned content factors C. This ensures that the learned C
captures class-related information, and disentangle other style factors from contents. At the same
time, we enforces images from different domains to have distinct learned style factors S, while
images from the same domain share similar style factors. Thus, the VAE will learn the style factor S
that captures the stylistic differences across different domains.
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3.3 DUAL-PATH KNOWLEDGE DISTILLATION

After the disentanglement of content factor C and style factor S, we leverage them as guidances
for subsequent non-transferable representation learning. As shown in Fig. 3 (b), in order to satisfy
requirements on source and target domains mentioned in Section 3.1, we train the NTL network fntl
in a dual-path knowledge distillation paradigm where the fntl is seen as a student network.

Path for source domain. In the source domain, we follow the causal direction from content factor
to label, i.e., C → Y . It means that the NTL model fntl = fcls ◦ fe should learn content factors
through the feature extractor fe, and use the classifier fcls to establish a mapping from feature to
label, i.e., fcls(C) = Y . The loss of the source domain path can be represented as follows:

Lsrckd = L2(fntl(xs), p̂θc(q̂φc(xs))), (5)

where L2 is the mean square error loss and xs is a source domain image. In Eq. (5), the learning tar-
get is the output logits of the classifier p̂θc , with the estimated content q̂φc(xs) serving as input.

Path for the target domain. In the target domain, the aim is to learn representations of style factors
which barely can predict labels. We present the distillation loss of the target domain path as follows:

Ltgtkd = L2(fntl(xt), p̂θc(q̂φs(xt))), (6)

where xt is an image sampled from the target domain. Here the learning target is the classifier p̂θc
prediction logits of the estimated style factor q̂φs(xt).

Total knowledge distillation object. To satisfy both requirements for the source and the target
domain, we combine Lsrckd and Ltgtkd to the overall knowledge distillation optimization object Lkd:

Lkd = Lsrckd + λtL
tgt
kd , (7)

where λt is a hyperparameter to balance the two loss terms. By minimizing the Eq. (7), the repre-
sentations learned by the student model fntl will follow the optimal untransferability to the target
domain as well as minimal negative influence toward the source domain. Intuitively, in such a way,
given a new source domain image, fntl aims to predict its content factor, which is directly related
to classification. Given a new target domain image, fntl aims to predict its style factor, which is
designed to be the image style that differs across domains and is useless for classification.

3.4 OVERALL TRAINING PROCESS OF H-NTL
Algorithm 1 Train target-specified H-NTL

1: Training set D = {xi, yi, di}Ns+Nti=1 , Dis-
entanglement epoch Edis, KD epoch Ekd,
VAE modules {q̂φc , q̂φs , p̂θx , p̂θy , p̂θd} and
the NTL network fntl.

2: for i = 1 to Edis do
3: Train {q̂φc , q̂φs , p̂θx , p̂θy , p̂θd} by maxi-

mizing ELBO in Eq. (4);
4: end for
5: for i = 1 to Ekd do
6: Train fntl through minimizing Eq. (7);
7: end for

We present the overall training process of H-NTL in
this section. Specifically, the NTL task is categorized
into target-specified NTL and source-only NTL ac-
cording to whether the target domain is known.
Target-specified NTL task. As shown in Algo-
rithm 1, we use both the accessible sampled source
domain data Ds and target domain data Dt to train the
VAE and NTL network. For the first Edis epochs, we
train the VAE modules through maximizing ELBO
in Eq. (4). For the later Ekd epochs, we train the NTL
network fntl through minimizing Eq. (7), and partic-
ularly, we freeze all the parameters of VAE in this stage to extract the content factor Cs from the
coming source domain data xs and style factor St from the target domain data xt.

Source-only NTL task. In the source-only task, we only access the sampled source domain data
Ds. Without loss of generality, we represent the source domain as in-distribution (ID) data and other
domains with distribution shifts (including the unseen target domain) as out-of-distribution (OOD)
data. Source-only NTL task focuses on degrading the recognition performance for those OOD data
with the same contents but different styles (Wang et al., 2022b). Unlike the domain augmentation
method proposed in Wang et al. (2022b) where generative adversarial network (GAN) is used to
synthesize OOD data and make the source-only NTL feasible, we achieve this goal by imposing
interventions on the style factor (i.e., do(S)) (Von Kügelgen et al., 2021; Mitrovic et al., 2021).
Due to the independence of mechanisms (Peters et al., 2017), do(S) do not impact P (Y ∣C), which
means that manipulating the value of S does not change the content factor C. Thus, the OOD
data obtained by interventions meet the requirements in source-only NTL scenarios. In practice,
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Table 1: Comparison on target-specified NTL tasks. For each table cell, the first line shows averaged accuracy
Acc (%) with standard deviation, and the second line shows accuracy drop ∆ (behind ↓) and relative drop ∆%
(in brackets) compared to supervised learning (SL). The best results (except SL) of “source/target domain perfor-
mance” and “performance difference between domains” are highlighted in “underline” and “bold”, respectively.

Source→
Target

Img
Size

SL tNTL (Wang et al., 2022b) H-NTL (Ours)

Source Target Source Target Source Target

MM→MT 32
94.30 ±0.79

–
97.47 ±0.40

–
88.33 ±1.25
↓ 5.97 (6.33%)

8.47 ±2.29
↓ 89.00 (91.31%)

93.10 ±0.96
↓ 1.20 (1.27%)

9.90 ±0.60
↓ 87.57 (89.84%)

SN→SD 32
87.47 ±0.55

–
50.33 ±5.32

–
81.33 ±1.66
↓ 6.14 (7.02%)

10.27 ±0.81
↓ 40.06 (79.59%)

88.13 ±1.43
↓ -0.66 (-0.75%)

9.23 ±1.35
↓ 41.10 (81.66%)

SD→MT 32
98.23 ±0.06

–
55.30 ±3.00

–
89.50 ±0.66
↓ 8.73 (8.89%)

9.20 ±1.01
↓ 46.10 (83.36%)

97.13 ±0.35
↓ 1.10 (1.12%)

10.97 ±0.83
↓ 44.33 (80.16%)

C10→S10
32

81.10 ±0.20
–

61.60 ±1.32
–

79.77 ±1.32
↓ 1.33 (1.64%)

49.60 ±4.30
↓ 12.00 (19.48%)

80.63 ±0.84
↓ 0.47 (0.58%)

28.10 ±4.76
↓ 33.50 (54.38%)

64
86.57 ±0.38

–
67.60 ±0.95

–
86.53 ±1.61
↓ 0.04 (0.05%)

9.93 ±0.90
↓ 57.67 (85.31%)

87.60 ±0.26
↓ -1.03 (-1.19%)

9.63 ±1.50
↓ 57.97 (85.75%)

VT→VV
32

89.67 ±0.80
–

22.43 ±3.56
–

88.47 ±0.21
↓ 1.20 (1.34%)

8.27 ±0.81
↓ 14.16 (63.13%)

91.73 ±1.12
↓ -2.06 (-2.30%)

8.07 ±0.71
↓ 14.36 (64.02%)

64
93.40 ±0.70

–
35.60 ±1.56

–
93.33 ±0.35
↓ 0.07 (0.07%)

8.47 ±0.92
↓ 27.13 (76.21%)

94.60 ±0.44
↓ -1.20 (-1.28%)

8.20 ±0.92
↓ 27.40 (76.97%)

OP→OC
32

65.57 ±1.27
–

23.57 ±1.01
–

62.80 ±1.49
↓ 2.77 (4.22%)

15.90 ±0.20
↓ 7.67 (32.54%)

65.60 ±0.61
↓ -0.03 (-0.05%)

5.50 ±0.98
↓ 18.07 (76.67%)

64
75.60 ±1.47

–
31.63 ±1.02

–
74.13 ±0.06
↓ 1.47 (1.94%)

22.33 ±0.40
↓ 9.30 (29.40%)

76.43 ±0.91
↓ -0.83 (-1.10%)

6.73 ±0.67
↓ 24.9 (78.72%)

considering the fact that we cannot obtain naturally entangled content factor C and style factor S
from a single source domain and subsequently manipulate the style factor value, we perform image
style augmentation (Sohn et al., 2020; Berthelot et al., 2019; Cubuk et al., 2020) on source domain
data. Image style augmentations (e.g., blurring, sharpness, solarize) do not influence the contents but
significantly change the image styles, thus satisfying our intervention aims. Refer to Appendix C.4
for detailed style augmentations. We see all augmented images as the target domain, and then we
use the accessible source domain and the target domain to train the H-NTL in the same way as
target-specified NTL. The full algorithm of source-only H-NTL is shown in Appendix C.5.

4 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our H-NTL, and compare it with
supervised learning (SL) and the NTL method proposed by Wang et al. (2022b) (tNTL and sNTL6).
Our experiments involve three basic digit tasks and three challenging tasks on real-world datasets. The
digit tasks contain three random-selected pairs from four digit datasets: MNIST (MT) (Deng, 2012),
MNIST-M (MM) (Ganin et al., 2016), SVHN (SN) (Netzer et al., 2011) and SYN-D (SD) (Roy et al.,
2018). For challenging tasks, we involve CIFAR10 to STL10 (Coates et al., 2011) (C10→S10), VisDA
(Peng et al., 2017) (VT→VV) and OfficeHome (Venkateswara et al., 2017) (OP→OC). We resize
images to 32 × 32 on digit tasks and both 32 × 32 and 64 × 64 for challenging tasks. We follow the
backbones in (Wang et al., 2022b) to conduct all experiments. To evaluate, we present top-1 accuracy
(Acc) on both source and target domain. Results are reported as average with standard deviation over
three independent runs. Additionally, we calculate the averaged accuracy drop (∆ = Accsl −Accntl)
and relative drop (∆% = ∆/Accsl) on source/target domain, respectively. More implementation
details (e.g., datasets, network architecture, training details) are given in Appendix C.

4.1 EXPERIMENTS ON TARGET-SPECIFIED NTL TASK

Comparison with baselines. We compare the proposed H-NTL with baselines (SL and tNTL), and
the results are shown in Table 1. H-NTL outperforms tNTL regarding the difference of source-target
domain performance on all datasets. For MM→MT and SD→MT, tNTL has better target domain
performance degradation (91.31% and 83.36%) compared to H-NTL (89.84% and 80.16%), but
tNTL also impacts more source domain performance, with the relative drop ∆% achieving 6.33%

6In order to avoid confusion between the method name and the task name, we here use tNTL and sNTL to
separately denote their method for target-specified NTL task and source-only NTL task.
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Table 2: Comparison on source-only NTL tasks. For each table cell, the first line shows averaged accuracy Acc
(%) with standard deviation, and the second line shows accuracy drop ∆ (behind ↓) and relative drop ∆% (in
brackets) compared to supervised learning (SL). The best results (except SL) of “source/target domain perfor-
mance” and “performance difference between domains” are highlighted in “underline” and “bold”, respectively.

Source→
Target

Img
Size

SL sNTL (Wang et al., 2022b) H-NTL (Ours)

Source Target Source Target Source Target

MM→MT 32
94.30 ±0.79

–
97.47 ±0.40

–
89.67 ±1.24
↓ 4.63 (4.91%)

22.93 ±2.37
↓ 74.54 (76.47%)

92.10 ±0.85
↓ 2.20 (2.33%)

13.43 ±3.41
↓ 84.04 (86.22%)

SN→SD 32
87.47 ±0.55

–
50.33 ±5.32

–
86.20 ±0.40
↓ 1.27 (1.45%)

18.60 ±1.59
↓ 31.73 (63.04%)

86.70 ±2.26
↓ 0.77 (0.88%)

10.70 ±1.47
↓ 39.63 (78.74%)

SD→MT 32
98.23 ±0.06

–
55.30 ±3.00

–
96.27 ±0.42
↓ 1.96 (2.00%)

14.40 ±3.72
↓ 40.90 (73.96%)

95.17 ±1.10
↓ 3.06 (3.12%)

10.47 ±0.96
↓ 44.83 (81.07%)

C10→S10
32

81.10 ±0.20
–

61.60 ±1.32
–

83.13 ±0.81
↓ -2.03 (-2.50%)

63.50 ±0.75
↓ -1.90 (-3.08%)

76.30 ±2.98
↓ 4.80 (5.92%)

52.70 ±1.90
↓ 8.90 (14.45%)

64
86.57 ±0.38

–
67.60 ±0.95

–
84.67 ±0.99
↓ 1.90 (2.19%)

47.23 ±3.99
↓ 20.37 (30.13%)

86.63 ±2.08
↓ -0.06 (-0.07%)

9.80 ±1.11
↓ 57.80 (85.50%)

VT→VV
32

89.67 ±0.80
–

22.43 ±3.56
–

91.70 ±0.70
↓ -2.03 (-2.26%)

17.53 ±1.46
↓ 4.90 (21.85%)

91.63 ±1.05
↓ -1.96 (-2.19%)

9.27 ±1.30
↓ 13.16 (58.67%)

64
93.40 ±0.70

–
35.60 ±1.56

–
91.93 ±0.93
↓ 1.47 (1.57%)

18.37 ±1.00
↓ 17.23 (48.40%)

94.93 ±0.57
↓ -1.53 (-1.64%)

7.80 ±0.35
↓ 27.80 (78.09%)

OP→OC
32

65.57 ±1.27
–

23.57 ±1.01
–

60.73 ±0.45
↓ 4.84 (7.38%)

19.13 ±0.50
↓ 4.44 (18.84%)

63.73 ±0.12
↓ 1.84 (2.81%)

14.43 ±0.95
↓ 9.14 (38.78%)

64
75.60 ±1.47

–
31.63 ±1.02

–
71.20 ±0.87
↓ 4.40 (5.82%)

26.97 ±0.78
↓ 4.66 (14.73%)

71.63 ±1.84
↓ 3.97 (5.25%)

16.00 ±2.55
↓ 15.63 (49.42%)
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Figure 4: Results of target-specified NTL on watermarked data, where the “(src)” and “(tgt)” behind each
method name denote the accuracy on source and target domain, respectively.

and 8.89%, respectively. For challenging tasks with low-resolution images and more categories (e.g.,
OP→OC and C10→S10 with 32 × 32 image size), thanks to the disentanglement of content factor
and style factor and dual-path knowledge distillation, H-NTL can still learn effective non-transferable
representation and achieve source domain maintenance and target domain degradation, while tNTL
fails in both aspects. Overall, these results demonstrate the effectiveness of the proposed H-NTL in
target-specified NTL.
Target-specified NTL on watermark data. We also conduct target-specified NTL experiments
on watermark data, in which we use pixel-level mask patches as watermarks and add them to the
original source domain data to form target domain (Wang et al., 2022b). To test the ability of learning
non-transferable representations, we conduct experiments under different patch values. The value
reflects the degree of distribution shifts from the original source domain to the target domain with
human-added watermarks. It is more difficult for a model to learn non-transferable representations
with the patch value decreasing. The results on C10 and S10 are shown in Fig. 4. On either C10 or
S10, the target domain performance degradation of tNTL is gradually limited, with the patch value
decreasing. In contrast, H-NTL is slightly affected (S10) or even not affected (C10) by the patch
value dropping. This is because the disentanglement and dual-path knowledge distillation in H-NTL
can better distinguish and guide the fntl to fit content factor on the source domain and style factor on
the target domain, even only slight distribution shifts existing between source and target domain.

4.2 EXPERIMENTS ON SOURCE-ONLY NTL TASK

The results of source-only NTL tasks are shown in Table 2. For all datasets, the proposed H-NTL
outperforms sNTL (Wang et al., 2022b) on the evaluation metric of difference on source-target
domain performance, which reflects the overall advantages of the proposed H-NTL as well as the
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Table 3: Ablation Studies. For target-specified NTL and source-only NTL, the best results of “difference on
source-target domain performance” are highlighted in “bold”.

Task Method
C10→S10 VT→VV OP→OC

Source Target Source Target Source Target

– SL 86.57 ±0.38 67.60 ±0.95 93.40 ±0.70 35.60 ±1.56 75.60 ±1.47 31.63 ±1.02

ta
rg

et
-s

pe
ci

fie
d H-NTL

w/o C
10.80 ±0.61
↓ 75.77 (87.52%)

9.77 ±2.18
↓ 57.83 (85.55%)

8.87 ±0.50
↓ 84.53 (90.50%)

8.17 ±0.75
↓ 27.43 (77.05%)

1.93 ±0.31
↓ 73.67 (97.45%)

1.17 ±0.74
↓ 30.46 (96.30%)

H-NTL
w/o S

87.90 ±0.44
↓ -1.33 (-1.54%)

72.40 ±1.30
↓ -4.80 (-7.10%)

94.80 ±0.36
↓ -1.40 (-1.50%)

36.20 ±0.53
↓ -0.60 (-1.69%)

77.60 ±1.82
↓ -2.00 (-2.65%)

39.10 ±1.14
↓ -7.47 (-23.62%)

H-NTL
(full)

87.60 ±0.26
↓ -1.03 (-1.19%)

9.63 ±1.50
↓ 57.97 (85.75%)

94.60 ±0.44
↓ -1.20 (-1.28%)

8.20 ±0.92
↓ 27.40 (76.97%)

76.43 ±0.91
↓ -0.83 (-1.10%)

6.73 ±0.67
↓ 24.9 (78.72%)

so
ur

ce
-o

nl
y

H-NTL
w/o C

10.80 ±1.01
↓ 75.77 (87.52%)

9.87 ±1.21
↓ 57.73 (85.40%)

9.17 ±0.67
↓ 84.23 (90.18%)

8.60 ±1.45
↓ 27.00 (75.84%)

2.40 ±0.17
↓ 73.20 (96.83%)

1.40 ±0.52
↓ 30.23 (95.57%)

H-NTL
w/o S

87.93 ±1.67
↓ -1.36 (-1.57%)

66.07 ±2.38
↓ 1.53 (2.26%)

95.77 ±0.67
↓ -2.37 (-2.54%)

24.23 ±1.68
↓ 11.37 (31.94%)

76.93 ±0.42
↓ -1.33 (-1.76%)

31.60 ±0.75
↓ 0.03 (0.09%)

H-NTL
(full)

86.63 ±2.08
↓ -0.06 (-0.07%)

9.80 ±1.11
↓ 57.80 (85.50%)

94.93 ±0.57
↓ -1.53 (-1.64%)

7.80 ±0.35
↓ 27.80 (78.09%)

71.63 ±1.84
↓ 3.97 (5.25%)

16.00 ±2.55
↓ 15.63 (49.42%)

effectiveness of our style augmentation strategies for the source-only task. On SD→MT and VT→VV
(32 × 32), the source domain accuracies of sNTL slightly exceed our H-NTL (1.1% and 0.07%).
However, regarding the degradation of target domain accuracy, H-NTL outperforms sNTL by a large
margin (3.93% and 8.26%). For the task of C10→S10 (32× 32), due to the low resolution of images,
both sNTL and H-NTL are hard to learn effective non-transferable representations when only the
source domain is available. Owing to the disentanglement, H-NTL can still capture more effective
content factor and style factor and learn better non-transferable representations, with the difference
on source-target domain performance exceeding sNTL 3.97%.

4.3 ABLATION STUDIES

In this section, we explore the effectiveness of main components in our H-NTL. We conduct ablation
studies on three paired datasets in both target-specified and source-only tasks: C10→S10, VT→VV,
and OC→OP, with images resized to 64 × 64. As shown in Table 3, without the guidance of content
factors in the source domain (i.e., H-NTL w/o C), both the source and target domain performance
will drop to random classification accuracy (either target-specified or source-only task). Without the
guidance of style factors in target domain (i.e., H-NTL w/o S), the source and target domain accuracies
are comparable to or even exceed the accuracies of supervised learning (SL). This is because the
student NTL network fntl fits the disentangled content factors from the paired source-target domain
(in target-specified NTL) or original source and augmented source domain (in source-only NTL),
which leads to better generalizability. Only with the full guidance from content and style factors, i.e.,
H-NTL (full), the non-transferable representation learning can be successfully achieved.

4.4 ADDITIONAL EXPERIMENTS AND ANALYSES

Due to the page limitation, we present additional experiments and analyses in Appendices, which
include but are not limited to a toy experiment (Appendix A), additional experiments on high-
resolution images (Appendix D.1), IP protection (Appendix D.2), more baseline (Appendix D.3),
the influence of KD loss weight (Appendix D.4), the influence of style augmentation number
(Appendix D.5), disentanglement analysis (Appendix D.6) and visualization results (Appendix D.7).

5 CONCLUSION

In this paper, we propose a H-NTL method to handle the NTL problem. To understand the non-
transferable mechanism, we introduce a causal model to formalize the data generation process, in
which we separately model the unobservable contents and styles by two latent factors. Then, we
propose a variational inference framework to disentangle the naturally mixed content factor and style
factor from observable data. Furthermore, we harness the disentangled two factors as guidances for
learning non-transferable representations. By dual-path knowledge distillation, we enforce the source
domain representations learned by the student model to fit content factors and the target domain
representations to fit style factors. The learned representations follow optimal untransferability toward
the target domain and minimal impact on the source domain, thus boosting the NTL performance.
Extensive experiments are conducted to validate the effectiveness of H-NTL.
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APPENDICES

OVERVIEW:

• Appendix A contains a toy experiment to present the vulnerability of statistical methods.
• Appendix B contains full derivation of formulas in the main paper.
• Appendix C contains complementary experimental details.
• Appendix D contains additional experimental results and analyses.
• Appendix E contains discussion of the rationality of our causal model.

A TOY EXPERIMENT

In this section, through a toy experiment, we show that statistical methods (e.g., Wang et al. (2022b))
are easily misled to (i) fit spurious correlation between style factors and labels, and (ii) model fake
independence between content factors and labels, rather than the intrinsically causal relationship.
At the same time, we present a target domain masquerade attack toward these statistical methods by
simply imposing intervention on the source domain.

(a) MNIST (source) (b) USPS (target) (c) do(MNIST) (intervention)

Figure 5: A toy NTL experiment from MNIST to USPS.

As shown in Fig. 5, we conduct the toy NTL experiment on digit datasets, where we use MNIST (Deng,
2012) as the source domain and USPS (Hull, 1994) as the target domain. We only use two classes in
these digit datasets for the toy experiment, i.e., number “0” and number “1”. As shown in Fig. 5 (a),
each digit in the source domain has a human-added class-wise color (red for number “0” and green
for number “1”). In the target domain, as shown in Fig. 5 (b), we keep the original data. We randomly
selected 400 class-balanced samples from each domain for training and 200 for testing.

Moreover, in the testing phase, we are not satisfied with evaluating these methods by regular samples.
As shown in Fig. 5 (c), we intervene the source domain by simply changing the color of digits to
white, i.e., do(MNIST). In the current task, changing color will not influence the contents which
are the intrinsical causes of labels. What we expect is that an NTL model can fit content factors in
the source domain and style factors in the target domain, thus leading to the ideal and robust NTL
mechanism in line with human consciousness. If an NTL model cannot maintain source domain
performance under the intervention do(MNIST), it means that the model fits (i) spurious correlation
between style factors and labels, and (ii) fake independence between content factors and labels,
rather than the intrinsically causal relationship. At the same time, such intervention can be seen as a
target domain masquerade attack toward these methods.

Based on the above considerations, we train our causal-inspired H-NTL and the statistical-based
method proposed by Wang et al. (2022b) (we denote it as tNTL to avoid being confused with the task
name). Following Wang et al. (2022b), we use VGG-11 (Simonyan & Zisserman, 2015) pretrained on
ImageNet-1K (Deng et al., 2009) as backbones for both H-NTL and tNTL. To evaluate, we present
top-1 accuracy (Acc) on both the source and target domain. Results are reported as average with
standard deviation over three independent runs.

As shown in Table 4, both tNTL and H-NTL reach excellent NTL performance in regular testing set,
with the source domain (MNIST) accuracy reaching 100% and the target domain (USPS) performance
degrading to random classification. However, facing intervened MNIST data, the statistical-based
method (tNTL) failed to implement correct recognition, with the accuracy dropping to 49.17%. This
phenomenon illustrates that the tNTL fits the spurious correlation from style factors to labels (i.e.,
red→“0” and green→“1”), rather than the real content factors. Simultaneously, the tNTL relaxes the
statistical dependence between labels and content factors as well as other style factors (such as the
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Table 4: Results of the toy NTL experiment (MNIST→ USPS). We show averaged accuracy Acc (%)
with standard deviation from three independent runs.

Method MNIST USPS do(MNIST)
(source) (target) (intervention)

tNTL (Wang et al. (2022b), statistical-based) 100.00 ±0.00 50.83 ±1.04 49.17 ±3.33

H-NTL (ours, causal-inspired) 100.00 ±0.00 51.50 ±2.60 97.17 ±2.02

digital styles) to implement untransferability. In particular, the imposed relaxation between labels
and content factors belongs to fake independence. On the contrary, our causal-inspired H-NTL
correctly practices the ideal NTL mechanism in line with human consciousness, with the accuracy
still reaching 97.17% under intervention.

Overall, this toy experiment shows the vulnerability of statistical-based NTL methods. In practice,
fitting spurious correlation and fake independence will lead to the learned non-transferable rep-
resentations being fragile and sensitive to small natural or intervention-based domain shifts. This
further leads to the limitation on both source domain performance maintenance and target domain
performance degradation. Moreover, this also indicates the risk of being attacked by malicious
attackers through target domain masquerading.

B THE DERIVATION OF ELBO

In this section, we provide a detailed derivation of the evidence lower-bound (ELBO) in Eq. (4)
in the main paper. Now, we start with maximizing the log-likelihood p(x, y, d) of each datapoint
(x, y, d) from the dataset D. The log-likelihood of the joint distribution can be written as:

log p(x, y, d) = log∫
c
∫
s
p(x, y, d, c, s)dcds

= log∫
c
∫
s
p(x, y, d, c, s)

qφ(c, s∣x)
qφ(c, s∣x)

dcds

= logE(c,s)∼qφ(c,s∣x) [
p(x, y, d, c, s)
qφ(c, s∣x)

]

≥E(c,s)∼qφ(c,s∣x) [log
p(x, y, d, c, s)
qφ(c, s∣x)

] ≔ ELBO(x, y,d).

(8)

By applying the factorization in Eq. (3), we have:

ELBO(x, y, d) = E(c,s)∼qφ(c,s∣x) [log
p(c, s)pθy(y∣c, s)pθd(d∣c, s)pθx(x∣c, s)

qφ(c, s∣x)
] .

= E(c,s)∼qφ(c,s∣x) [log
p(c, s)

qφ(c, s∣x)
] + E(c,s)∼qφ(c,s∣x) [log pθy(y∣c, s)]

+ E(c,s)∼qφ(c,s∣x) [log pθd(d∣c, s)] + E(c,s)∼qφ(c,s∣x) [log pθx(x∣c, s)] .

(9)

In practice, to reduce computational costs and to allow our method efficiently infer latent factors, we
approximate P (Y ∣C, S) by assuming thatC contains sufficient information about Y (Yao et al., 2021;
Lu et al., 2018), i.e., P (Y ∣C, S) = P (Y ∣C), and such assumption is also applicable to P (D∣C, S).
Moreover, we separately infer C and S from only the input X by using two encoder modules q̂φc
and q̂φs to model the posterior distributions qφc(C∣X) and qφs(S∣X), respectively. Due to the fact
that the complex image X contains enough information about C and S in real scenarios (Yao et al.,
2021; Lu et al., 2018), such assumptions are reasonable and are expected not to have very large
approximation error. Therefore, the Eq. (9) can be derived as:

ELBO(x, y, d) = −KL(qφc(c∣x)∥p(C)) −KL(qφs(s∣x)∥p(S))
+ Ec∼qφc (c∣x) [log qθc(y∣c)] + Es∼qφs (s∣x) [log qθs(d∣s)]
+ Ec∼qφc (c∣x),s∼qφs (s∣x) [log pθx(x∣c, s)] ,

(10)

which is the final ELBO in the main paper (Eq. (4)).
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C COMPLEMENTARY EXPERIMENTAL DETAILS

In this section, we provide complementary experimental details. Appendix C.1 contains introduction
of all datasets. In Appendix C.2, we present more implementation details, including baselines, models,
training details, evaluation metrics, and running environments. Appendix C.3 contains network
architectures of our H-NTL. In Appendix C.4, we provide details about the style augmentations in
our source-only H-NTL. Appendix C.5 contains the full training algorithm of the source-only H-NTL.
Finally, in Appendix C.6, we provide a detailed process for conducting the ablation study.

C.1 DATASETS

Our experiments involve three basic tasks on digit datasets and three challenging tasks on real-
world datasets. The digit tasks contain three random-selected pairs from four digit datasets: MNIST
(MT) (Deng, 2012), MNIST-M (MM) (Ganin et al., 2016), SVHN (SN) (Netzer et al., 2011) and
SYN-D (SD) (Roy et al., 2018). For challenging tasks, we involve CIFAR10 to STL10 (Coates et al.,
2011) (C10→S10), VisDA (Peng et al., 2017) (VT→VV) and OfficeHome (Venkateswara et al., 2017)
(OP→OC). We provide more detailed introductions for each dataset as follows:
• Digits: Following Wang et al. (2022b), we involve digit datasets for evaluation. Digit datasets

include MNIST (MT) (Deng, 2012), USPS (US) (Hull, 1994), SVHN (SN) (Netzer et al., 2011),
MNIST-M (MM) (Ganin et al., 2016) and SYN-D (SD) (Roy et al., 2018). Each dataset contains
ten digits collected from real scenes or artificially constructed. We conduct experiments on three
random-selected pairs: MM→MT, SN→SD, and SD→MT.

• CIFAR10 & STL10: We also follow Wang et al. (2022b) to evaluate on CIFAR10 (C10) and STL10
(S10) (Coates et al., 2011) . Both C10 and S10 are ten-class classification datasets, which contain
six animal categories and four transportation categories. We use C10 as the source domain and S10
as the target domain.

• VisDA: VisDA (Peng et al., 2017) contains a training set VisDA-T (VT) and a validation set VisDA-
V (VV) of 12 object categories. Following Wang et al. (2022b), we consider the non-transferable
task from VT to VV.

• OfficeHome: OfficeHome (Venkateswara et al., 2017) contains four domains, where each domain
consists of 65 categories. The number of categories in OfficeHome is significantly more than
the above datasets, and thus, it’s more challenging for NTL methods to resist transferability. We
conduct NTL experiments from Product (OP) to Clipart (OC), where OP contains product images
without backgrounds and OC is a collection of clipart images.

C.2 IMPLEMENTATION DETAILS

Baselines. We use supervised learning (SL) and the non-transferable learning method proposed by
Wang et al. (2022b) as baselines. In order to avoid confusion between the method name of Wang
et al. (2022b) and the task name, we denote their methods as tNTL and sNTL for the target-specified
and source-only tasks, respectively. We provide brief introductions for baseline methods as follows:
• SL: We use a standard supervised learning pipeline with cross-entropy loss.
• tNTL: a target-specified NTL method inspired by information bottleneck. This method adds two

statistical dependence relaxation terms on standard supervised learning to resist transferability: (i)
maximizing the Kullback-Leible (KL) divergence between target domain representation and label,
and (ii) maximizing the maximum mean discrepancy (MMD) between the distribution of source
and target domain representations.

• sNTL: a source-only NTL method, where a generative adversarial network (GAN) is used to
synthesize fake target domain data with domain shifts. Thus, the source-only NTL can be solved
by the tNTL method.

Models. For a fair comparison, we follow the backbones in (Wang et al., 2022b) to conduct all
experiments. Specifically, for the backbones in VAE encoder modules (q̂φc and q̂φs) and student
network fntl, we apply VGG-11 (Simonyan & Zisserman, 2015) in digit tasks (MM→MT, SN→SD
and SD→MT), VGG-13 (Simonyan & Zisserman, 2015) in C10→S10, and VGG-19 in VT→VV and
OP→OC. All backbone networks are initialized as the pre-trained version of ImageNet-1K (Deng
et al., 2009). The detailed network architectures of the VAE encoder modules, the VAE classifier
modules, the VAE decoder modules, and the student network are shown in Appendix C.3.
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Training details. For basic digit tasks, we resize images to 32×32. For other challenging tasks,
we resize images to two different resolutions: 32×32 and 64×64. For training SL, we employ the
SGD as an optimizer with lr = 0.001 and set the batch size to 32. For tNTL and sNTL, we use their
released code7 and the same hyperparameters settings reported in their paper to run experiments. For
our proposed H-NTL, we employ the SGD as an optimizer with lr = 0.1 and set the batch size to
128. The disentanglement VAE is trained for 20 epochs, and the dual-path knowledge distillation is
trained for 30 epochs. The hyper-parameter λt is set to 1.0 for all datasets. In addition, the number of
image style augmentations is set to 10 when performing source-only NTL tasks. Following Wang
et al. (2022b), we randomly select 8,000 samples as training data and 1,000 samples as testing data
without overlap for digit tasks, C10→S10, and VT→VT. For OP→OC, we use 3,000 for training data
and 1,000 samples due to the limitation of the dataset size.

Evaluation metric. We show top-1 classification accuracy (Acc) on source/target domain respectively.
Results are reported as average with standard deviation over three independent runs. In addition,
we calculate the accuracy drop (∆ = Accsl − Accntl) and relative drop (∆% = ∆/Accsl) on
source/target domain, respectively.

Environment. Our code is implemented in Python 3.8.8 and PyTorch 1.8.0. All experiments are
conducted on a server running Ubuntu 20.04 LTS, equipped with an NVIDIA RTX A6000 GPU.

C.3 NETWORK ARCHITECTURE

In this section, we present the detailed network architectures of our VAE encoder modules (q̂φc and
q̂φs), VAE classifier modules (p̂θc and p̂θs), VAE decoder module (p̂θx) and the student network
fntl. In the VAE encoder modules (q̂φc and q̂φs ) and the student network fntl, we follow Wang et al.
(2022b) to use several popular architectures as backbones to extract image features. Specifically, we
apply VGG-11 (Simonyan & Zisserman, 2015) in digit tasks (MM→MT, SN→SD and SD→MT),
VGG-13 in C10→S10, and VGG-19 in VT→VV and OP→OC.

First of all, the architecture of the VAE encoder modules (q̂φc and q̂φs) is shown in Table 5. Specifi-
cally, img is a parameter corresponding to the input image size. If the image size = 32×32 (for the
three basic digit tasks and three challenging tasks), the img = 1. If the image size = 64×64 (only for
the three challenging tasks), the img = 2.

Table 5: The architecture of the VAE encoder modules (q̂φc and q̂φs), where the parameter img
corresponds to the input size.

Latent Mapping Mean µ Variance σ
Linear(512, 256) Linear(512, 256)

Pooling Layer AdaptiveAvgPooling([512, img, img], 512)

Feature Extractor Backbone Network
(VGG-11/VGG-13/VGG-19)

Then, the architecture of the VAE classifier modules (p̂θc and p̂θs ) is shown in Table 6. In particular,
the content factor classifier p̂θc contains a linear layer which maps the estimated 256-dim content
factor C to the classification space (10-dim for digits and C10→S10, 12-dim for VV→VT, and 65-
dim for OP→OC). Similarly, through a linear layer, the style factor classifier p̂θs maps the estimated
256-dim style factor S to the domain classification space whose dimension equals to domain_num
(in this paper, the domain_num = 2).

Table 6: The architecture of the VAE classifier modules (p̂θc and p̂θs). The class_num equals to the
number of categories, and the domain_num equals to the number of domains (= 2 in this paper).

Classifier content factor style factor
Linear(256, class_num) Linear(256, domain_num)

Next, the architecture of the VAE decoder modules (i.e., p̂θx) is shown in Table 7. Particularly, the
Conv4 layer only exists when the input image size equals to 64 × 64. The input layer of the decoder

7https://github.com/conditionWang/NTL

17



Published as a conference paper at ICLR 2024

Table 7: The architecture of the VAE decoder module (p̂θx ). The Conv4 layer will be removed if the
input image size equals to 32×32.

Output
Sigmoid, Conv2d(32, 3, 1, 1)
LeakyReLU, BatchNorm(32)

ConvTranspose2d(32, 32, 3, 2, 1, 1)

Conv4 LeakyReLU, BatchNorm(32)
ConvTranspose2d(32, 32, 3, 2, 1, 1)

Conv3 LeakyReLU, BatchNorm(32)
ConvTranspose2d(64, 32, 3, 2, 1, 1)

Conv2 LeakyReLU, BatchNorm(64)
ConvTranspose2d(128, 64, 3, 2, 1, 1)

Conv1 LeakyReLU, BatchNorm(128)
ConvTranspose2d(256, 128, 3, 2, 1, 1)

Input
Linear(512, 1024)

Concat
content factor style factor

first concat the 256-dim content factor C and the style factor S, and then maps them to a high
dimension feature to perform transposed convolution. The parameters of the transposed convolution
operation (i.e., ConvTranspose2d8) are: in_channels, out_channels, kernel_size, stride, padding, and
output_padding. In the final output layer, the parameters of the convolution operation (i.e., Conv2d9)
are: in_channels, out_channels, kernel_size, stride, and padding.

Finally, the architecture of the student model fntl is shown in Table 8. The architecture is the same as
Wang et al. (2022b) for a fair comparison. Especially, if the input image size equals to 32×32, the
parameter img = 1. If the image size equals to 64×64 (only for the three challenging tasks), the img
= 1. Besides, the class_num corresponds to the number of categories in each dataset.

Table 8: The architecture of student models fntl, where the parameter img corresponds to the input
size. The class_num equals to the number of categories.

Classifier
Linear(256, class_num).

Linear(256, 256), ReLU, Dropout;
Linear(512*img*img, 256), ReLU, Dropout;

Feature
Extractor

Backbone Network
(VGG-11/VGG-13/VGG-19).

C.4 STYLE AUGMENTATION FOR SOURCE-ONLY NTL TASK

In this section, we provide details about the style augmentations used in our source-only H-NTL. As
mentioned in the main paper, our aim is to impose interventions on the style factor S (i.e., do(S)),
which do not impact P (Y ∣C). In practice, we cannot obtain naturally entangled content factor C
and style factor S from a single source domain and subsequently manipulate the style factor value.
Thus, we leverage image style augmentations (Sohn et al., 2020; Berthelot et al., 2019; Saito et al.,
2021; Zheng et al., 2024) to implicitly impose interventions on source domain data. Our image style
augmentations are derived from RandAugment (Cubuk et al., 2020). For completeness, we briefly
present the list of image style augmentations we used in Table 9. For more details and corresponding
parameters, please refer to Cubuk et al. (2020). Specifically, in our experiments, all hyper-parameters
in these style augmentations follow Saito et al. (2021), and we do not tune any hyper-parameters.

In Fig. 6 and Fig. 7, we show the original and augmented source domain data on C10 and VT,
respectively. Each source domain image is augmented by a kind of style augmentation randomly
selected from the Table 9. We can see that these style augmentations do not influence the content
factor but significantly change the image style, thus satisfying our intervention aims.

8https://pytorch.org/docs/1.8.0/generated/torch.nn.ConvTranspose2d.html
9https://pytorch.org/docs/1.8.0/generated/torch.nn.Conv2d.html
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Table 9: List of image style augmentations. We only present names with brief descriptions. For
details and corresponding parameters, please refer to (Cubuk et al., 2020).

Augmentation Brief Description

Autocontrast Maximizes the image contrast by setting the darkest (lightest) pixel to
black (white), and then blends with the original image.

Brightness Adjusts the brightness of the image.
Color Adjusts the color balance of the image.

Contrast Controls the contrast of the image.
Cutout Sets a random square patch of side-length pixels to gray.

Equalize Equalizes the image histogram, and then blends with the original image.
Invert Inverts the pixels of the image, and then blends with the original image.

Posterize Reduces each pixel to a certain bit.
Rotate Rotates the image.

Sharpness Adjusts the sharpness of the image.
Shear_x Shears the image along the horizontal axis.
Shear_y Shears the image along the vertical axis.
Solarize Inverts all pixels above a certain threshold value.

Translate_x Translates the image horizontally by certain pixels.
Translate_y Translates the image vertically by certain pixels.

(a) Original images (b) Augmented images

Figure 6: Comparison of original images and augmented images on C10.

(a) Original images (b) Augmented images

Figure 7: Comparison of original images and augmented images on VT.

C.5 FULL ALGORITHM OF SOURCE-ONLY H-NTL

In this section, we provide the full algorithm for training source-only H-NTL. Briefly, in the source-
only NTL task, we conduct image style augmentations on source domain data to obtain OOD data.
Then, we see all OOD data augmented by different styles as the target domain, and we use the
accessible source domain and the target domain to train the H-NTL in the same way as target-
specified NTL. The detailed training procedure of source-only H-NTL is shown in Algorithm 2.
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Specifically, the augmentation pool A = {ai}Nai=1 contains Na kinds of style augmentations which are
randomly selected from the total style augmentation list (see Appendix C.4 and Table 9), where Na
is a hyper-parameter. In both disentanglement and dual-path knowledge distillation, we randomly
select different style augmentations from the pool A to augment each image in the source domain Ds.
This augmentation process is repeated in every epoch (i.e., the inner for-loop in the disentanglement
and dual-path knowledge distillation), effectively expanding the distribution range of the augmented
source domain data.

Algorithm 2 Train source-only H-NTL

1: Training set in source domain Ds = {xi, yi, di = 0}Nsi=1; Augmentation pool A = {ai}Nai=1; Batch-
size n; Disentanglement epoch Edis, KD epoch Ekd, VAE modules {q̂φc , q̂φs , p̂θx , p̂θy , p̂θd} and
the NTL network fntl.

2: for i = 1 to Edis do
3: for j = 1 to Ns do
4: Fetch the j-th sample xj in the source domain Ds;
5: Random select augmentation function a ∈ A;
6: Perform image style augmentation on the j-th sample: x̂j = a(xj);
7: end for
8: See augmented data as target domain Dt = D̂s = {x̂j , yj , dj = 1}Nsj=1;
9: Using Ds ∪Dt to train VAE {q̂φc , q̂φs , p̂θx , p̂θy , p̂θd} by maximizing ELBO;

10: end for
11: for i = 1 to Ekd do
12: for j = 1 to Ns do
13: Fetch the j-th sample xj in the source domain Ds;
14: Random select augmentation function a ∈ A;
15: Performing image style augmentation on the j-th sample: x̂j = a(xj);
16: end for
17: See augmented data as target domain Dt = D̂s = {x̂j , yj , dj = 1}Nsj=1;
18: Using Ds ∪Dt to train fntl through minimizing Lkd;
19: end for

C.6 THE DETAILED PROCESS FOR CONDUCTING THE ABLATION STUDY

The ablation studies in the main paper aim to explore the effectiveness of the main components (the
content factor C and the style factor S) in the H-NTL. To validate the importance of C for H-NTL,
we train the student model to only fit C of the source domain by using a single-path knowledge
distillation (denoted as H-NTL w/o C). The only difference between H-NTL w/o and the original
H-NTL is that the target domain path is released. Similarly, to validate the importance of S, we train
the student model to only fit S of the target domain (denoted as H-NTL w/o S). Then, we compare
them with the original H-NTL in our paper, i.e., H-NTL (full). The disentanglement processes are the
same for H-NTL w/o C, H-NTL w/o S, and H-NTL (full).

D ADDITIONAL EXPERIMENTS AND ANALYSES

This section contains additional experiments and analyses. In Appendix D.1, we show results of
the proposed H-NTL on high-resolution images. In Appendix D.2, we show results of H-NTL
on intellectual property protections. In Appendix D.3, we compare the proposed H-NTL with
an additional baseline. In Appendix D.4 and Appendix D.5, we analyze the influence of main
hyperparameters in our H-NTL. In Appendix D.6, we empirically analyze the disentanglement
between content factors and style factors. In Appendix D.7, we present visualization results.

D.1 RESULTS ON HIGH RESOLUTION DATASETS

We run additional evaluations with higher-resolution images. In detail, we run experiments on the
original resolution of VT→VV (112×112) (Peng et al., 2017) and OP→OC (224×224) (Venkateswara
et al., 2017) without resizing, thus showing the effectiveness of the proposed H-NTL on higher
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resolution images. Results of the proposed H-NTL on the target-specified NTL setting and source-
only NTL setting are shown in Table 10 and Table 11, respectively. On higher-resolution datasets, the
proposed H-NTL can still effectively maintain source domain performance (comparable to SL) and
significantly degrade the target domain performance.

Table 10: Results of target-specified H-NTL on high-resolution datasets.
Source
domain

Target
domain

Image
resolution

SL
(source/target)

H-NTL
(source/target)

source
drop

target
drop

VT VV 32×32 89.7/22.4 91.7/8.1 -2.0 14.3
VT VV 64×64 93.4/35.6 94.6/8.2 -1.2 27.4
VT VV 112×112 97.5/42.6 97.8/8.3 -0.3 34.3
OP OC 32×32 65.6/23.6 65.6/5.5 0.0 18.1
OP OC 64×64 75.6/31.6 76.4/6.7 -0.8 24.9
OP OC 224×224 86.0/35.5 84.9/3.6 1.1 31.9

Table 11: Results of source-only H-NTL on high-resolution datasets.
Source
domain

Target
domain

Image
resolution

SL
(source/target)

H-NTL
(source/target)

source
drop

target
drop

VT VV 32×32 89.7/22.4 91.6/9.3 -1.9 13.1
VT VV 64×64 93.4/35.6 94.9/7.8 -1.5 27.8
VT VV 112×112 97.5/42.6 96.7/8.2 0.8 34.4
OP OC 32×32 65.6/23.6 63.7/14.4 1.9 9.2
OP OC 64×64 75.6/31.6 71.6/16.0 4.0 15.6
OP OC 224×224 86.0/35.5 83.3/10.1 2.7 25.4

D.2 RESULTS ON IP PROTECTIONS

The practical application of the proposed H-NTL lies in the model intellectual property (IP) protec-
tions. Our H-NTL can provide two kinds of IP protection: ownership verification, and applicability
authorization. As you suggested, we discuss and run more experiments on ownership verification and
applicability authorization to further show the effectiveness of our H-NTL on real-world applications.

Ownership verification. The aim of ownership verification is to verify the ownership of a deep
learning model. The proposed H-NTL provides a solution for ownership verification by triggering
misclassification on the target domain (Wang et al., 2022b). Specifically, we can add a pre-defined
trigger patch (only known by the model owner) on the original dataset (i.e., the source domain)
and see them as the target domain. It is worth noting that such a pre-defined trigger patch can be
controlled to be shallow so that normal supervised learning (SL) models trained on the original source
domain can still have normal performance on the patched source domain. Then, we train a deep
learning model by using the proposed H-NTL on these two domains. After that, the training model
will perform poorly on the data with the patch but have a good performance on the data without the
patch. Thus, by observing the performance difference of a trained model on the source domain data
with and without the pre-defined trigger patch, we can verify whether a deep learning model belongs
to the model owner.

We have verify the strong performance of the proposed H-NTL on watermark data with different
patch values (results are shown in Section 4.1 and Fig. 4 in the main paper), which serves as the core
task of ownership verification. Here we run additional experiments of ownership verification, and
results are shown in Table 12. We can see that models trained with H-NTL behave differently on
the data with and without the patch, whereas SL models perform nearly the same. Accordingly, the
ownership of trained models can be verified.

Applicability authorization. Applicability authorization aims at authorizing models to certain
data for preventing their usage on unauthorized data (Wang et al., 2022b), which can be solved
by applying source-only H-NTL to restrict the model generalization ability to only the authorized
domain. Specifically, we add a pre-defined authorized patch to the original data to be authorized and
see them as the source domain. We regard the union of the original data (without the authorized
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Table 12: Results of H-NTL on ownership verification. "(p)" means patched data. The results of
H-NTL are highlighted in bold.

Source
domain

Target
domain

SL
(patch/non-patch)

H-NTL
(patch/non-patch)

MT MT(p) 98.8/98.5 98.6/10.6
US US(p) 98.9/98.8 99.4/14.3
SN SN(p) 87.9/87.4 87.8/8.5

MM MM(p) 92.8/92.0 93.4/9.7
SD SD(p) 96.3/95.9 96.1/9.5
C10 C10(p) 86.5/60.2 87.9/8.9
S10 S10(p) 88.1/82.0 89.5/10.9
VT VT(p) 93.4/92.2 95.1/8.3

patch), the augmented original data with and without the authorized patch as the target domain.
Then, we train a deep learning model by using the proposed H-NTL on these two domains. After
that, the trained model will only perform well on the authorized data (i.e., the original data with the
authorized patch). For unauthorized data (e.g., the original data without the authorized patch, the
data from other domains with or without the authorized patch), the trained model will perform poorly.
Thus, we achieve the model applicability authorization.

We run experiments of applicability authorization, and results are shown in Table 13 (Digits datasets)
and Table 14 (complex datasets). We can see that the model trained by H-NTL has good performance
on the authorized domain (highlighted in bold in each row) and poor performance on all unauthorized
domains. This shows the effectiveness of H-NTL in applicability authorization.

Table 13: Results of H-NTL on applicability authorization (digits datasets). "(p)" means data with
the authorized patch. In each row, the authorized domain is highlighted in bold. The last column
shows the averaged results on authorized and unauthorized domains (also highlighted in bold)

Source
domain

MT
(p)

US
(p)

SN
(p)

MM
(p)

SD
(p) MT US SN MM SD

H-NTL
(auth/unauth)

MT(p) 98.2 12.3 10.1 12.3 9.6 9.2 9.7 10.1 8.4 9.6 98.2/10.1
US(p) 9.5 99.2 6.0 10.8 10.2 9.5 17.2 6.0 10.8 10.2 99.2/8.9
SN(p) 16.5 18.8 88.3 11.9 10.5 8.9 9.2 17.0 10.3 10.0 88.3/12.6
MM(p) 20.3 17.2 14.5 92.2 10.9 9.7 17.2 5.8 12.5 11.0 92.2/13.2
SD(p) 8.7 29.5 22.0 17.1 94.4 8.1 7.5 9.3 10.9 11.9 94.4/13.9

Table 14: Results of H-NTL on applicability authorization (complex datasets). "(p)" means data with
the authorized patch. In each row, the authorized domain is highlighted in bold. The last column
shows the averaged results on authorized and unauthorized domains (also highlighted in bold).

Source domain C10(p) S10(p) C10 S10 H-NTL(auth/unauth)
C10(p) 87.4 9.7 10.6 8.9 87.4/9.7
S10(p) 12.7 88.3 8.9 11.2 88.3/10.9

Source domain VT(p) VV(p) VT VV H-NTL(auth/unauth)
VT(p) 92.0 8.6 10.9 9.5 92.0/9.7

D.3 MORE BASELINES

For a comprehensive evaluation, we further design an additional baseline method (denoted as
TargetClass) which can be used for non-transferable learning. Specifically, considering an N-class
non-transferable learning task, we take the same backbone as our main paper as a feature extractor
and use a classification head with N+1 classes to predict the N classes in the source domain, but
predict an additional “target class” as class N+1 for all samples in the target domain. Therefore, the
model trained by TargetClass will map all the target domain data to an isolated cluster that stays away
from the N source-domain-class clusters in the feature space, thus hindering the source-to-target
knowledge transfer.
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We run experiments under the same setting as our main paper, and results are shown in Table 15 (on
natural datasets) and Table 16 (on watermark target-domain). From the comparison, the proposed
H-NTL generally has better performance.

Table 15: Comparison of the new baseline (denoted as TargetClass) and the proposed H-NTL on
natural data. The best results are highlighted in bold.

Source
domain

Target
domain

Image
resolution

TargetClass
(source/target)

H-NTL
(source/target)

MM MT 32×32 92.8/9.5 93.1/9.9
SN SD 32×32 87.8/10.4 88.1/9.2
SD MT 32×32 97.1/12.6 97.1/11.0
C10 S10 32×32 81.3/50.2 80.6/28.1
C10 S10 64×64 85.8/22.0 87.6/9.6
VV VT 32×32 91.4/10.9 91.7/8.1
VV VT 64×64 94.2/7.9 94.6/8.2
OP OC 32×32 64.2/8.6 65.6/5.5
OP OC 64×64 72.2/6.6 76.4/6.7

Table 16: Comparison of the new baseline (denoted as TargetClass) and the proposed H-NTL on
natural data. The best results are highlighted in bold.

Source
domain

Target
domain

Patch
value

TargetClass
(source/target)

H-NTL
(source/target)

C10 C10(p) 20 83.0/10.7 87.8/7.9
C10 C10(p) 40 85.5/10.0 88.7/10.1
C10 C10(p) 60 85.5/8.8 87.3/9.8
S10 S10(p) 20 85.4/53.4 83.6/16.7
S10 S10(p) 40 85.9/20.4 87.4/12.5
S10 S10(p) 60 86.9/15.9 88.3/9.0

D.4 INFLUENCE OF KD WEIGHT

The main hyper-parameter in our proposed H-NTL is the KD weight λt which is used to balance the
loss values from source and target domain distillation paths. Actually, we always set the weight λt
to 1 and do not need to tune its value. In order to analyze its influence on the total NTL performance,
we change its value in a large range (from 10

−4 to 10) and conduct both target-specified/source-only
NTL tasks on C10→S10 and VT→VV. The results of target-specified and source-only NTL tasks are
shown in Fig. 8 and Fig. 9, respectively. In the target-specified NTL task, we can see that if we set
the λt too small, the network fntl is difficult to fit the style factors in the target domain, and thus, the
target domain performance cannot be degraded. If the weight λt is set too large, the network fntl will
be hard to fit the content factors in the source domain, which leads to the failure of source domain
performance maintenance. In the source-only NTL task, the influences of λt on maintaining source
domain performance and degrading target domain performance are both similar to the target-specified
NTL task. One difference is that the total NTL performance of source-only H-NTL is more vulnerable
to the weight λt due to the unseen target domain in source-only setting.

D.5 INFLUENCE OF THE NUMBER OF STYLE AUGMENTATION IN SOURCE-ONLY TASKS

A main hyper-parameter in source-only H-NTL is the number of image style augmentations. To
analyze its influence on the total performance of source-only NTL, we change its value from 1 to
12. The results on C10→S10 and VT→VV are shown in Fig. 10. We can see that the source domain
performance is not sensitive to the number of augmentations, but the target domain performance
degradation is limited under a small number of augmentations (e.g., ≤3). This limitation arises from
the restricted distribution of the augmented source domain data which is augmented with a small
number of styles and fails to encompass a sufficient range of out-of-distribution data. Thus, the target
domain performance degradation is hard to generalize to the real unseen target domain.
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Figure 8: The influence of λt in target-specified NTL tasks.
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Figure 9: The influence of λt in source-only NTL tasks.
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Figure 10: The influence of the number of style augmentations in source-only tasks.

D.6 DISENTANGLEMENT OF CONTENT AND STYLE FACTORS

In this section, we empirically analyze the effectiveness of the disentanglement between content
factors and style factors. For experimental validation, we conduct cross-prediction. In detail, we
employ the VAE encoders (q̂φc and q̂φs ) to extract the content factor C and style factor S from data,
and then we use both of them to predict class Y and domain D through VAE classifiers (p̂θy and
p̂θd ). The results are shown in Fig. 11, with subfigures (a) to (d) presenting the predictions of C-to-Y ,
C-to-D, S-to-Y , and S-to-D, respectively.

The results show that only content factors are meaningful in predicting class, and style factors are
meaningful in predicting domain. If we use content factors to predict domain (or use style factors
to predict class), the results are similar to random classification. These phenomenons empirically
indicate the effectiveness of our disentanglement between content factors and style factors.

D.7 VISUALIZATION

t-SNE visualization of non-transferable feature representations. As shown in Fig. 12 and Fig. 13,
we use t-SNE visualization (Van der Maaten & Hinton, 2008) to present the learned non-transferable
representations on C10→S10 and VT→VV, respectively. For intuitive comparison, we present feature
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Figure 11: Visualization of disentanglement between the content factor and the style factor on
C10→S10. The number in each cell denotes the top-1 classification accuracy (%).

representations learned by supervised learning (SL), target-specified H-NTL, and source-only H-NTL.
Particularly, those opaque dots represent source domain features, and transparent dots represent target
domain features. As shown in Fig. 12 (a) and Fig. 13 (a), although only trained in the source domain,
the target domain features of SL are overlapped with the source domain features and maintain a certain
discriminability. This leads to the meaningful performance of SL on the target domain. Compared to
SL, both target-specified and source-only H-NTL can clearly separate the source and target domain
features with a certain distance. In addition, the feature representations in the target domain are
randomly distributed due to the constraint of fitting style factors in the target domain distillation path.
Thus, the target domain performance is degraded to the accuracy of random classification. Moreover,
because of the disentanglement from paired source-target domains, the discriminability of features in
the source domain is maintained (or even enhanced) compared to SL.

E MORE DISCUSSION OF THE CAUSAL MODEL

In this section, we provide further explanation and discussion of our causal model. In Appendix E.1,
we discuss the statistical dependence between the content factor C and the style factor S in our
causal model. In Appendix E.2, we provide more explanation about the causal direction from the
style factor S to the domain D. In addition, we also consider another causal direction (i.e., D causes
S) and conduct basic experiments.
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(a) SL (b) target-specified H-NTL (c) source-only H-NTL

Figure 12: t-SNE Visualization of features on C10→S10. Different color denotes different class, and
opaque/transparent dots represent source/target domain data.

(a) SL (b) target-specified H-NTL (c) source-only H-NTL

Figure 13: t-SNE Visualization of features on VT→VV. Different color denotes different class, and
opaque/transparent dots represent source/target domain data.

E.1 DEPENDENCE OF THE CONTENT FACTOR C ON THE STYLE FACTOR S

The definition of the content factor C and the style factor S. In order to avoid being misled to fit
spurious correlation and fake independence, we distinguish the unobservable and naturally mixed
contents and styles by separately modeling them in our causal model. As shown in Fig. 2 in the main
paper, we decompose an instance X into two latent variables:

• Content factor C: This corresponds to the intrinsic, class-related information that is a cause of the
label Y in both the source and the target domain. For example, in the case where we use CIFAR10
as the source domain and STL10 as the target domain, C represents the object category that is
common to both the CIFAR10 and STL10 (e.g., bird, airplane, deer, etc.).

• Style factor S: Except for the content factor C, all other factors can belong to style factors.
For example, in the NTL task from the wildlife park to the zoo (Fig. 1 in the main paper), the
environments of wild and zoo are style factors. In the toy experiment (Appendix A), both the digit
colors and the digit typefaces belong to style factors.

The motivation of modeling the statistical dependence between C and S. As mentioned in the
introduction (Section 1 in the main paper), the common co-occurrence between contents and styles
in real-world scenarios causes that existing methods inadvertently fitting (i) spurious correlation
between styles and labels, and (ii) fake independence between contents and labels. We assume the
co-occurrence between contents and styles is caused by latent confounders (Von Kügelgen et al.,
2021; Schölkopf, 2022; Klindt et al., 2021), and thus, we model it by a statistical dependence between
the style factor S and the content factor C in our causal model (i.e., the dashed line in Fig. 2 in the
main paper). It is worth noting that in this paper, we do not aim at discovering the latent confounders
precisely. Motivated by existing problems in NTL, we propose to disentangle the C and S, thus
avoiding the contradictions between models and human understanding.

Assumptions about the statistical dependence betweenC and S. We only assume that the statistical
dependence between C and S has a weak relation in the target domain. Thus, the S in the target
domain barely can predict Y , which motivates us to fit S in the target domain during dual-path
knowledge distillation. We do not need to assume the strength of the statistical dependence in the
source domain, which means that the relation between S and C can be either strong or weak in the

26



Published as a conference paper at ICLR 2024

source domain. In real world scenarios, such assumptions are always satisfied. Empirically, our
experiments (Section 4 in the main paper) illustrate that by fitting S in the target domain, the fntl
always has random classification accuracies. Thus, our assumptions are reasonable.

E.2 CAUSAL RELATIONSHIP BETWEEN THE STYLE FACTOR S AND THE DOMAIN D

As shown in Fig. 14 (a), we mainly focus on the situation of S causing D in this paper (i.e., S → D)
(Huang et al., 2022; Liu et al., 2021; Mitrovic et al., 2021; Zhang et al., 2022). Besides, as shown in
Fig. 14 (b), D causing S (i.e., D → S) is also a popular situation considered by the community of
domain adaptation and domain generalization (Kong et al., 2022; Liu et al., 2021; Lu et al., 2021; Lin
et al., 2024). We argue that both directions are reasonable and do not contradict each other. In our
definition, the complex style factor S contains all other factors except the content content C. Parts of
the style factor S may depend on the sampling environment. If we determine the domain according
to the environment, it belongs to D → S. In contrast, sometimes we determine the domain by other
parts of the style factor S (e.g., whether containing human-added watermark or style augmentations).
In these scenarios, assuming S → D is more appropriate. Thus, both directions are reasonable and
may simultaneously exist between the style factor S and the domain D.

C

DS

X Y C

DS

X Y

(a) (b)

Figure 14: Causal models with different causal direction between S and D.

More importantly, we do not focus on discovering the concrete causal directions between variables in
this paper. For completeness, we expand our H-NTL to D → S (we denote it as H-NTL-D2S). We
illustrate the main principle of our H-NTL-D2S, based on which we conduct basic NTL experiments
to show the effectiveness of H-NTL in the situation of D → S.

Main principle of the H-NTL-D2S. In order to simultaneously infer content factor C and style
factor S from sampled data Ds ∪Dt, according to the causal model in Fig. 14 (b), we factorize the
joint distribution P (X,Y,C, S,D) as follows:

P (X,Y,D,C, S) = P (D)P (C, S∣D)P (Y ∣C, S)P (X∣C, S). (11)

Similar to the H-NTL focusing on S to D in the main paper, we also use VAE (Kingma & Welling,
2013) to infer latent factors C and S. Specifically, we use two encoder modules q̂φc and q̂φs to
model the posterior distributions qφc(C∣X) and qφs(S∣X) with learnable parameters φc and φs,
respectively. In addition, we use a decoder p̂θx to model the distribution pθx(X∣C, S) parameterized
by θx. To reduce computational costs and to allow our method efficiently infer latent factors, we
approximate P (C, S∣D) by assuming that X has sufficient information about C while inferring C
from S and D is insignificant (Yao et al., 2021; Lu et al., 2018). Similarly, we assume C contains
sufficient information to predict the label Y . Thus, we use an encoder p̂θs to model the distributions
pθs(S∣D) with learnable parameter θs and a classifier p̂θy to model the distributions pθy(Y ∣C) with
learnable parameter θy . Totally, the VAE can be presented as: {q̂φc , q̂φs , p̂θx , p̂θy , p̂θs}.

We follow the variational inference framework (Blei et al., 2017) to maximize the evidence lower-
bound (ELBO) from the sampled observed data (x, y, d) ∈ D. The ELBO(x, y, d) is derived as:

ELBO(x, y, d) = −KL(qφc(c∣x)∥p(C)) −KL(qφs(s∣x)∥pθs(s∣d))
+Ec∼qφc (c∣x) [log pθy(y∣c)]
+Ec∼qφc (c∣x),s∼qφs (s∣x) [log pθx(x∣c, s)] .

(12)

The detailed derivation of Eq. (12) is similar to Appendix B. We train the VAE by maximizing
ELBO(x, y, d) and thus obtain two encoders q̂φc(x) and q̂φs(x) for estimating unobservable content
factor C and style factor S, respectively. The remaining steps for non-transferable representation
learning are the same as our main paper.
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Experiments. As shown in Table 17, we present both target-specified and source-only NTL results
for H-NTL-D2S. These results demonstrate that H-NTL-D2S can significantly degrade target domain
performance and maintain source domain performance simultaneously, thus achieving the goal of
NTL. In summary, our H-NTL is still effective when considering D → S.

Table 17: Results of H-NTL-D2S on target-specified and source-only tasks. For each table cell,
the first line shows averaged accuracy Acc (%) with standard deviation, and the second line shows
accuracy drop ∆ (behind ↓) and relative drop ∆% (in brackets) compared to supervised learning (SL).

Source→
Target

Img
Size

SL H-NTL-D2S
(target-specified)

H-NTL-D2S
(source-only)

Source Target Source Target Source Target

MM→MT 32
94.30 ±0.79

–

97.47 ±0.40

–

93.15 ±0.21

↓ 1.15 (1.22%)

9.70 ±0.14

↓ 87.77 (90.05%)

90.50 ±0.99

↓ 3.80 (4.03%)

19.90 ±2.12

↓ 77.57 (79.58%)

SN→SD 32
87.47 ±0.55

–

50.33 ±5.32

–

88.00 ±0.26

↓ -0.53 (-0.61%)

10.67 ±0.83

↓ 39.66 (78.80%)

83.93 ±1.00

↓ 3.54 (4.05%)

9.57 ±0.75

↓ 40.76 (80.99%)

SD→MT 32
98.23 ±0.06

–

55.30 ±3.00

–

97.13 ±0.32

↓ 1.1 (1.12%)

11.13 ±3.11

↓ 44.17 (79.87%)

91.77 ±1.56

↓ 6.46 (6.58%)

12.80 ±7.57

↓ 42.50 (76.85%)

C10→S10 64
86.57 ±0.38

–

67.60 ±0.95

–

88.07 ±1.35

↓ -1.5 (-1.73%)

11.80 ±3.56

↓ 55.80 (82.54%)

88.53 ±0.32

↓ -1.96 (-2.26%)

9.77 ±0.71

↓ 57.83 (85.55%)

VT→VV 64
93.40 ±0.70

–

35.60 ±1.56

–

93.85 ±0.21

↓ -0.45 (-0.48%)

7.30 ±0.42

↓ 28.30 (79.49%)

95.05 ±0.49

↓ -1.65 (-1.77%)

7.95 ±1.77

↓ 27.65 (77.67%)

OP→OC 64
75.60 ±1.47

–

31.63 ±1.02

–

73.30 ±1.13

↓ 2.30 (3.04%)

7.80 ±0.42

↓ 23.83 (75.34%)

69.30 ±1.84

↓ 6.30 (8.33%)

15.05 ±3.04

↓ 16.58 (52.42%)

E.3 THE MOTIVATION OF USING VARIATIONAL INFERENCE FRAMEWORK

We follow the variational inference framework (Blei et al., 2017) to model the distribution of latent
variables P (C, S) from the observed data, thus modeling the generative process. Other frameworks
(such as auto-encoder (Wang et al., 2016)) cannot model the distribution. Moreover, there are also
alternative options (for example, the VAEGAN (Xian et al., 2019; Chen et al., 2023b; Hong et al.,
2022)) but with more complexity and may facing the problem of unstable training. Thus, the above
factors are major motivations for us to use the variational inference framework.

F LIMITATIONS AND FUTURE RESEARCH

In this section, we discuss the potential limitations of our work and areas for future research. The
major limitation of the proposed H-NTL is its training efficiency. Due to the two-stage training
processing (i.e., stage 1: disentanglement, stage 2: dual-path knowledge distillation), H-NTL needs
more time and computation resources for training. Of course, the sacrifice of training time is worth
it if we need better performance. Nevertheless, improving the training efficiency of H-NTL could
still become a valuable research direction in the future. However, it is worth noting that after being
deployed in practice, our H-NTL will not have any disadvantages in computational cost. In the
inference phase, we only need the student model fntl to predict. If the fntl has the same network
architecture as the network used in other NTL methods, H-NTL will occupy the same memory
and have the same inference speed as other NTL methods. Moreover, because of the effective
disentanglement and dual-path knowledge distillation, H-NTL allows a more lightweight student
network to be taught to learn better non-transferable representations. This implies the potential
advantages in the efficient inference of H-NTL in practical applications.
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