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Abstract

Prior multi-frame optical flow methods typically estimate flow repeatedly in a pair-
wise manner, leading to significant computational redundancy. To mitigate this, we
implement a Streamlined In-batch Multi-frame (SIM) pipeline, specifically tailored
to video inputs to minimize redundant calculations. It enables the simultaneous
prediction of successive unidirectional flows in a single forward pass, boosting
processing speed by 44.43% and reaching efficiencies on par with two-frame
networks. Moreover, we investigate various spatiotemporal modeling methods
for optical flow estimation within this pipeline. Notably, we propose a simple yet
highly effective parameter-efficient Integrative spatiotemporal Coherence (ISC)
modeling method, alongside a lightweight Global Temporal Regressor (GTR) to
harness temporal cues. The proposed ISC and GTR bring powerful spatiotemporal
modeling capabilities and significantly enhance accuracy, including in occluded
areas, while adding modest computations to the SIM pipeline. Compared to
the baseline, our approach, StreamFlow, achieves performance enhancements of
15.45% and 11.37% on the Sintel clean and final test sets respectively, with gains
of 15.53% and 10.77% on occluded regions and only a 1.11% rise in latency.
Furthermore, StreamFlow exhibits state-of-the-art cross-dataset testing results on
Sintel and KITTI, demonstrating its robust cross-domain generalization capabilities.
The code is available here.

1 Introduction

Optical flow estimation, which aims to model the per-pixel correspondence between two consecutive
frames, is a fundamental task in computer vision. It has various downstream video applications, such
as video generation [22, 33, 20], video editing [6, 51], and video compression [25, 19]. In video
streams, there is frequently a need for multi-frame input and continuous optical flow estimation.
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Nevertheless, previous multi-frame methods usually perform spatiotemporal modeling in a pairwise
way, which leads to redundant computation, as depicted in Fig. 1 and Alg. 1. Given input frames
It−1, It, It+1, previous pairwise methods such as VideoFlow [38] only output one forward flow
Ft→t+1. To derive the consecutive flow Ft−1→t, one additional forward pass with the input of
It−2, It−1, It is needed.

(b) The proposed SIM pipeline(a) Pairwise multi-frame pipeline

It-1                        It                       It+1

Ft-1,t Ft,t+1

It-2                       It-1                        It                       It+1

Ft-1,t Ft,t+1        

Figure 1: Comparison between the pairwise and the proposed Streamlined In-batch Multi-frame
(SIM) pipeline. Short dashed lines represent additional computations.

This gives rise to the design of what we refer to as in-batch estimation —a pipeline that simultaneously
predicts all successive unidirectional flows within one forward pass, which greatly reduces the
redundant computation. For instance, given input frames It−1, It, It+1, all consecutive flows Ft−1→t

and Ft→t+1 could be derived within one forward pass. It directly saves one forward pass time in the
decoder. When T frames are input simultaneously in the batch, there is still only one forward pass
needed to obtain T − 1 flows, and more time is served on average as T increases.

Nevertheless, despite the acceleration brought by the in-batch estimation, its alteration of the pipeline
renders it unable to directly apply past pairwise spatiotemporal modeling methods [16, 4, 38]. Notably,
an effective spatiotemporal modeling approach is the key to resolving problems such as occlusions
for multi-frame methods. Thus, this raises a new key question: Under the constraint of in-batch
estimation, how to perform effective spatiotemporal modeling while maintaining efficiency?

In this work, we propose StreamFlow, a streamlined multi-frame optical flow estimation method
tailored for video inputs. StreamFlow is made efficient through the Streamlined In-batch Multi-frame
(SIM) pipeline, which avoids repetitive calculations when predicting unidirectional flows for videos.
Furthermore, StreamFlow explores the challenge of effectively modeling spatiotemporal cues under
the constraint of non-overlapping in-batch estimation. StreamFlow explores various spatiotemporal
modeling methods and ultimately derives simple yet highly effective methods: a parameter-efficient
Integrative spatiotemporal Coherence (ISC) module during encoding, and a lightweight Global
Temporal Regressor (GTR) to decode all flows. Benefiting from these modules, StreamFlow achieves
remarkable performance on Sintel and KITTI datasets without self-supervised pre-training and the
aim of bidirectional flows. Moreover, StreamFlow attains state-of-the-art cross-dataset generalization
results with comparable efficiency compared to two-frame methods, as illustrated in Figure 2.

In summary, our contributions are as follows: (1) We propose a Streamlined In-batch Multi-frame
(SIM) pipeline for optical flow estimation, which eliminates the repetitive overlapping computation
when computing forward flows for video inputs. (2) Under the constraint of a non-overlapping
pipeline, we specifically designed the Integrative spatiotemporal Coherence (ISC) method to perform
spatiotemporal modeling without additional parameters. (3) For the SIM pipeline, we devise a
Global Temporal Regressor (GTR) during decoding to further exploit temporal cues with modest
additional computation cost. (4) The proposed StreamFlow achieves superior performances on
multiple benchmarks, particularly in occluded regions with comparable efficiency compared with
two-frame methods, resulting in substantial improvements in optical flow estimation.

2 Related work

Two-frame optical flow. Optical flow estimation in the form of a supervised learning task has
been performed by FlowNet [8] using Convolutional Neural Networks (CNN). The encoder-decoder
architecture of FlowNet predicts flow from coarse to fine using the hierarchy of the flow pyramid.
Thereafter, a number of refined coarse-to-fine approaches [12, 42, 43, 10, 11, 50, 54, 13] emerged.
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The flow pyramid is constructed for the coarse-to-fine approach, which predicts the flow based on the
flow guidance at a higher pyramid level. However, the flow guidance is often too coarse to capture
small motions delicately and creates errors in later estimation. RAFT [45] recently introduced an
iterative all-pairs flow transform technique, which enables the prediction of high-resolution flow and
recurrent refinement of the residual flow estimation. It addresses the challenges of small motions and
has consequently received high interest and performance in the field, inspiring numerous follow-up
works [15, 28, 55, 21, 27, 56, 47]. To further address the occlusion issue, SKFlow [44] begins by
expanding the spatial receptive field and designing effective large convolution kernel modules in the
decoder of the flow network, with modest computational cost. Although StreamFlow is based on
the SKFlow framework, it is designed to explore additional temporal cues and minimize redundant
computations that are prevalent in earlier multi-frame methods. Their methodologies and foundational
principles differ significantly.
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Figure 2: Comparison between performance and
efficiency. A larger bubble denotes more param-
eters. Models are trained via the (C+)T schedule
and tested on the Sintel final pass.

Multi-frame optical flow. Exploiting tempo-
ral cues in optical flow estimation is an effective
way to recover the occluded motion. Previous
works [37, 46, 32, 1, 16, 4, 38, 26] propose var-
ious approaches to fuse temporal cues, such as
leveraging previously predicted motion feature,
optical flow, or contextual information. For in-
stance, ContinualFlow [32] uses previous flow
priors to estimate the current occlusion map.
STaRFlow [1] passes extracted features in mul-
tiple scales, jointly with occlusion maps. [45]
proposes a warm-start strategy to initialize the
original flow with the past flow before predic-
tion. MFCFlow [4] and MFRFlow [16] propose
to leverage previously estimated motion features
during decoding via feed-forward CNNs and
self-similarity modeling, respectively. Neverthe-
less, these methods obtain a pairwise strategy
when handling video sequences, which divide
the input sequence into lots of overlapping groups and take huge repeated computations. Splat-
Flow [46] utilizes the differentiable splatting transformation to explore temporal cues. TransFlow [26]
decodes all flows simultaneously and achieves impressive results. However, it needs self-supervised
pre-training on the flow datasets to help the temporal modeling modules converge. Besides, its pure
transformer architecture does not have advantages in time. VideoFlow [38] employs TROF and MOP
modules to utilize multi-frame temporal cues and bidirectional optical flow to effectively mitigate
occlusion issues. Nevertheless, it still follows the pairwise method to predict multiple unidirec-
tional flows with the cost of predicting bidirectional flows. Differently, StreamFlow is proposed
to avoid redundant, overlapping computation for consecutive unidirectional flow predictions while
exploring efficient and effective temporal modules design under such a pipeline. It addresses the
redundancy problems previous pairwise methods including VideoFlow encountered, and achieves
excellent accuracy with latency similar to some two-frame methods.

3 Methodology

Algorithm 1 Pairwise Multi-frame Estimation
Input: frames Ii, size N , group size T
for i = 1 to N − T + 1 do

Fi =Model(Ii, Ii+1, ..., Ii+T−1).
end for

Algorithm 2 StreamFlow Multi-frame Estimation
Input: frames Ii, size N , group size T
Initialize i = 1, stride= T − 1.
repeat

Fi, ..., Fi+stride−1 = Model(Ii, ..., Ii+stride)
i = i+ stride

until i+ stride > N
j = N − stride
Fj , Fj+1, ..., FN = Model(Ij , Ij+1, ..., IN ).

In this Section, we introduce StreamFlow,
an efficient and effective in-batch frame-
work for multi-frame optical flow estima-
tion. Extensive experiments guided our
specific design of each module in Stream-
Flow. The key components of StreamFlow
consist of three parts: (1) The Stream-
lined In-batch Multi-frame (SIM) pipeline
for efficient multi-frame estimation, which
contributes to the speed improvement of
StreamFlow. (2) Integrative spatiotem-
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poral Coherence (ISC) modeling, which
is parameter-efficient and is specifically
designed for spatiotemporal modeling in
the encoder. (3) Global Temporal Regres-
sor (GTR), which is quite lightweight and
learns temporal relations during decoding. We will first give an overview of our methods in Sec-
tion 3.1, and then introduce each module in Section 3.2, Section 3.3, and 3.4, respectively. In the
end, we discuss the supervision in Section 3.5.

Ite
ra

tiv
e 

G
TR

0, 0, 0

Motion
Encoder

MotionUpdater

m1i ek

mki

gki

tki-1ck,k+1fki-1

tkimki fki

<,>

<,>

<,>

(a) Overall framework

…

Tem.

Tem.

Self
Attention

Feed
Forward

Self
Attention

Feed
Forward

Twins Encoder

Patch Embeddings

Twins 
Encoder

Integration

(b) Iterative GTR

Memory Bank

Spa.

Spa.

mTi
ck,k+1 fki-1

ek, tk

Split

Figure 3: Overview of StreamFlow. (a) illustrates the overall framework and <,> denotes the
dot-product operation. The computation of cost volume is limited to adjacent frames and is performed
once in one forward pass. Flows are initialized to zeros. (b) depicts the details of the GTR decoder.

3.1 Overview

The overall framework of StreamFlow is illustrated in Figure 3. For the basic encoder and decoder,
similar to VideoFlow [38], StreamFlow adopts the Twins transformer [5] as the encoder and utilizes
the motion encoder and updater in SKFlow [44] during decoding. The overall iterative-refinement
design that adopts an iterative decoder is the paradigm proposed in IRR [12] and followed by a lot of
subsequent works [44, 41, 15, 44, 9, 39]. Input frames are first passed to two feature encoders that
share the same architecture to extract the correlation feature and contextual feature, respectively. Then,
the multi-scale all-pairs correlation volume is calculated based on the correlation feature. Namely,
given feature embeddings e1 and e2 from the target frame and the reference frame, respectively:

cl(i, j,m, n) =
1

22l

2l∑
u

2l∑
v

〈
e1(i, j), e2(2

lm+ u, 2ln+ v)
〉
, (1)

where the derived cl(i, j,m, n) is the average over the correlation in the local 2l × 2l window. l
denotes the lth correlation level. u and v are the horizontal and vertical pixel motions, respectively.
⟨, ⟩ refers to the dot product function. In summary, cl(i, j,m, n) means the cost volume vector of e1
and e2 pooled with the 2l × 2l kernel.

Then, the iterative decoder refines the flows via several updates. As depicted in Figure 3, flows are
initialized to zeros. The derived multi-scale correlation volume, extracted context feature, and the
initialized flows are passed to the decoder, and then the refinement is conducted.

3.2 Streamlined in-batch multi-frame pipeline

As illustrated in Figure 1, previous pairwise multi-frame networks typically perform redundant com-
putations for video inputs, resulting in substantial computational overlap. We have briefly discussed
this issue in the first two paragraphs of Section 1. Specifically, given N frames {I1, I2, ..., IN}
and a group size of T (N ≥ T ≥ 3), pairwise methods need to form N − T + 1 groups,
namely, {I1, I2, ..., IT }, {I2, I3, ..., IT+1}, ..., {IN−T+1, ..., IN}. In each group, pairwise meth-
ods use spatiotemporal cues from other frames to compute the optical flow only for the current
frame. In this case, T − 1 times of forward process is performed to derive T − 1 flows. In
contrast, StreamFlow introduces a Streamlined In-batch Multi-frame (SIM) Pipeline designed to
minimize redundancy. For the same input, the SIM pipeline only forms ⌈N−1

T−1 ⌉ groups, namely,
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{I1, I2, ...IT }, {IT , IT+1, I2T−1}, ..., {IN−T+1, ..., IN}. In this case, frames are divided into non-
overlapping groups (except for the first frame of each group). Within each group, the SIM pipeline
calculates all uni-directional flows by modeling the spatiotemporal cues interconnecting all frames.
In other words, only one forward pass is needed to derive T − 1 flows. From this process, we could
learn that the upper limit of the saved time for the SIM pipeline is approximately α

T−1 , where α
represents the computational time of the decoder. To approach the theoretical limit as closely as
possible, a lightweight yet effective method of spatiotemporal modeling is crucial. This is precisely
the key contribution that StreamFlow adds to the SIM pipeline, which will be discussed in detail
in Section 3.3 and Section 3.4. Additionally, when directly comparing StreamFlow with other
multi-frame methods in practice, we find that the speed improvements with StreamFlow far exceed
the theoretical limits calculated above. This is because StreamFlow inherently includes a memory
bank mechanism in its encoder, whereas previous multi-frame methods required special additional
implementation to utilize Memory banks for caching features. Nevertheless, even when compared to
methods that include a memory bank, StreamFlow still achieves significant speed advantages due to
its efficiency in the decoder, as demonstrated in Figure 2 and Appendix A.1.

3.3 Integrative spatiotemporal coherence

During the encoding process, we propose an Integrative spatiotemporal Coherence (ISC) modeling
method, especially for the SIM pipeline. Our design principles for temporal modeling modules in the
decoder encompass two facets: firstly, adherence to the design criteria of the SIM pipeline, with a
focus on minimizing pair-wise overlap operations, such as the computation of cross-frame attention
between every pair of consecutive frames. Secondly, the modules should be efficient enough and not
impede the overall speed of the network.

Therefore, we design the ISC method, which introduces no additional parameters while learning
spatiotemporal relations efficiently and effectively. The ISC method inherently takes the original
modules in Twins. Specifically, after deriving patch embeddings from consecutive frames, patches
from different frames are reorganized along the spatial dimension. Subsequently, it models the
derived spatiotemporal graph using self-attention mechanisms and feed-forward layers in Twins,
which can be formulated as,

xj
d = I(xj

1,d,x
j
2,d, ...,x

j
T,d), (2)

yj
d = f(q(xj

d),k(x
j
d))v(x

j
d), (3)

xj
d = xj

d +Wprojy
j
d, (4)

where f(·, ·) is the attention function which conducts dot-product and softmax operation, xj
t,d is the

jth vector along spatial dimension at channel d of the tth frame. I denotes the integration operation,
which integrates temporally contiguous multiple input embeddings into a large feature embedding
along the spatial dimension. q,k and v is the derived query, key, and value vector. Wproj is the
projection matrix. By leveraging the derived spatiotemporal graph, the spatial and temporal relations
are learned effectively, and no additional parameters are involved.

3.4 Global temporal regressor

As for the decoder, we propose a Global Temporal Regressor (GTR) to predict and refine flows.
Compared with the previous widely used decoder [45, 15, 44, 28, 53, 27], GTR introduces the
temporal modeling module to exploit temporal cues from consecutive frames. Different from
VideoFlow [38] that concatenates motion features along a temporal dimension and implicitly learns
temporal relations or TransFlow [26] that applies a transformer symmetric to the encoder, the core
of GTR is super convolution kernels [44] and a lightweight temporal transformer block. The input
correlation volume, initialized flows, and contextual features are first passed into a motion encoder to
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derive motion features and then extracted for spatiotemporal features, which can be formulated as:

mk
i = M(fki−1, c

k,k+1), (5)

ri = FT
t=1(m

t
i), (6)

ski = A(mk
i , e

k), (7)

gk
i = C(ri, ski ), (8)

tki ,∆fki = U(mk
i ,g

k
i , t

k
i−1), (9)

fki = fki−1 +∆fki (10)

where mk
i is the derived motion feature of frame k at the ith update and fki−1 denotes the flow

of frame k after i − 1th refinement. ck,k+1 denotes the correlation volume between frame k and
k + 1. M denotes the motion encoder which is the same as that in SKFlow [44]. ri denotes the
temporal feature embedding extracted from the motion features of all frames. Notably, the caching
mechanism of the MemoryBank is employed, thus necessitating the calculation of ri only once for
different frames. F is a lightweight temporal-learning layer that consists of temporal attention and
feed-forward layers. ek refers to the feature embedding of frame k. Note that ek and ck,k+1 are not
updated during the refinement. A denotes the spatial cross attention inspired by [15], but takes mk

i

and ek as the input. C represents the concatenation operation and U refers to the motion updater.
tki denotes the extracted contextual information, which will be updated during each refinement. In
practice, the decoder estimates the residual of flow ∆fki . And the final flow fk is updated via ∆fki
during each refinement.

3.5 Supervision

StreamFlow adopts the overall loss in the same group as the total loss function. For each flow,
StreamFlow adopts the same loss function as successful two-frame networks. Namely, the weighted
sum for the predicted flows at different refinements. During both the training and the fine-tuning
process, the supervision can be formulated as follows:

L =

T−1∑
k=1

N∑
i=1

θN−i ||fki − fkgt||1, (11)

where fki refers to the flow of frame k at the ith refinement. T and N are the number of frames and
refinements, respectively. θ denotes the weights on corresponding estimated flows. fgt is the ground
truth flow and || · ||1 means the l1 distance between ground truth and our predicted flow. In practice,
N is set to 12, θ is set to 0.8, the same as previous works [38, 45, 44, 15] for a fair comparison.

4 Experiments
Experimental setup. In this study, we evaluate StreamFlow on the Sintel [3], KITTI [31], and
Spring [30] datasets, following previous works [44, 9, 7]. In previous works, models are initially
pre-trained on the FlyingChairs [8] and FlyingThings [29] datasets using the "C+T" schedule and
then are subsequently fine-tuned using the "C+T+S+K+H" schedule on Sintel and KITTI datasets.
After "C+T", the cross-dataset generalization tests are often performed, and the models from this
stage are frequently used for various cross-domain video downstream tasks [18, 23]. In "+S+K+H",
the evaluation typically focuses on intra-domain generalization capabilities. In specific, for Sintel,
models are trained on a combination of FlyingThings, Sintel, KITTI, and HD1K [17]. Models are then
trained on the KITTI dataset for KITTI evaluation and on the Spring dataset for Spring evaluation.

Implementation details. Our StreamFlow method is built with PyTorch [34] library, and our
experiments are conducted on the NVIDIA A100 GPUs. During training, we adopt the AdamW [24]
optimizer and the one-cycle learning rate policy [40], following previous works [45, 15, 44]. The
number of refinements in the decoder is set to 12, following previous works. Given the absence of
multi-frame data information in the Chairs dataset, we follow VideoFlow [38] to directly train on the
FlyingThings in the first stage. For the Spring dataset, we follow the settings of MemFlow [7] and
fine-tune the model for 180k steps. The remaining training configurations are consistent with prior
works [38, 44, 15, 45]. The temporal and non-temporal modeling modules are concurrently trained.
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Training Data Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final Fl-epe Fl-all Clean Final Fl-all

(C+)T

HD3 [52] 3.84 8.77 13.17 24.0 - - -
PWC-Net [42] 2.55 3.93 10.35 33.7 - - -
RAFT [45] 1.43 2.71 5.04 17.4 - - -
CRAFT [41] 1.27 2.79 4.88 17.5 - - -
AGFlow [28] 1.31 2.69 4.82 17.0 - - -
Separable Flow [53] 1.30 2.59 4.60 15.9 - - -
GMA [15] 1.30 2.74 4.69 17.1 - - -
SKFlow [44] 1.22 2.46 4.27 15.5 - - -
FlowFormer [9] 1.00 2.45 4.09 14.7 - - -
GAFlow [27] 1.02 2.45 3.98 15.0 - - -
TransFlow [26] 0.93 2.33 3.98 14.4 - - -
VideoFlow-BOF [38] 1.03 2.19 3.96 15.3 - - -
SplatFlow [46] 1.22 2.97 3.70 15.3 - - -
Ours 0.87 2.11 3.85 12.6 - - -

(C+)T+S+K+H

IRR-PWC [12] (1.92) (2.51) (1.63) (5.3) 3.84 4.58 7.65
MaskFlowNet [54] - - - - 2.52 4.17 6.10
Separable Flow[53] (0.69) (1.10) (0.69) (1.6) 1.50 2.67 4.64
PWC-Fusion [43] - - - - 3.43 4.57 7.17
StarFlow [1] - - - - 2.72 3.71 7.65
RAFT⋆ [45] (0.76) (1.22) (0.63) (1.5) 1.61 2.86 5.10
GMA⋆ [15] (0.62) (1.06) (0.57) (1.2) 1.39 2.47 5.15
GMFlowNet [55] (0.59) (0.91) (0.64) (1.5) 1.39 2.65 4.79
AGFlow⋆ [28] (0.65) (1.07) (0.58) (1.2) 1.43 2.47 4.89
SKFlow⋆ [44] (0.52) (0.78) (0.51) (0.9) 1.28 2.27 4.84
FlowFormer [9] (0.48) (0.74) (0.53) (1.1) 1.16 2.09 4.68
MFRFlow [16] (0.64) (1.04) (0.54) (1.1) 1.55 2.80 5.03
MFCFlow [4] (0.56) (0.89) (0.55) (1.1) 1.49 2.58 5.00
TransFlow [26] (0.42) (0.69) (0.49) (1.05) 1.06 2.08 4.32
VideoFlow-BOF [38] (0.37) (0.54) (0.52) (0.85) 1.00 1.71 4.44
SplatFlow [46] (0.53) (0.91) (0.80) (2.40) 1.12 2.07 4.61
Ours (0.28) (0.38) (0.47) (0.77) 1.04 1.87 4.24

Table 1: Quantitative results on Sintel and KITTI. The average End-Point Error (EPE) is reported as
the evaluation metric if not specified. ⋆ refers to the warm-start strategy [45] that use the previous flow
for initialization. Bold and underlined metrics denote the method that ranks 1st and 2nd, respectively.

4.1 Quantitative results

From Table 1 and Table 4.1, we can learn that StreamFlow achieves advanced 0-shot performance
on Sintel and KITTI. Compared to previous methods, StreamFlow reduces the 0-shot end-point
error by 0.16 and 0.08 on the challenging Sintel clean and final pass, respectively. On KITTI,
StreamFlow outperforms the previous state-of-the-art 0-shot results with 0.11 and 17.65% lower EPE
and Fl-all metric. Besides, without self-supervised pre-training or bi-directional flows, StreamFlow
attains commendable accuracy and efficiency on the challenging Sintel and KITTI test benchmarks
using (C)+T+S+K+H schedule. On the challenging Spring [30] dataset, StreamFlow also achieves
enhanced performance both before and after fine-tuning. A detailed analysis on its shortcomings is
in Section 5.

4.2 Occlusion analysis

In this section, we validate if StreamFlow could help improve the performance on the occlusions. We
compare StreamFlow with its base two-frame model Twins-SKFlow, which strengthens SKFlow [44]
with the Twins [5] encoder. Evaluations are conducted on the matched and unmatched areas of the
Sintel test dataset. The matched areas denote regions visible in adjacent frames and the unmatched
areas refer to regions visible only in one of two adjacent frames. Our models are trained using the
T+S+H+K schedule. We could learn that StreamFlow attains remarkable improvements on occluded
areas, as shown in Table 3. We also visualize the performance on occluded regions, which are shown
in the supplements. On the challenging Sintel final test set, StreamFlow attains the improvement of
10.77% and 11.83% on unmatched and matched regions, respectively. On the clean pass, StreamFlow
improves the performance by 15.53%, 15.56%, and 15.45% on unmatched, matched, and overall
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Method 1px EPE Fl WAUC
total low-det. high-det. matched unmat. rigid non-rig. not-sky sky s0-10 s10-40 s40+

RAFT† [45] 6.79 6.43 64.09 6.00 39.48 4.11 27.09 5.25 30.18 3.13 5.30 41.40 1.48 3.20 90.92
GMA† [15] 7.07 6.70 66.20 6.28 39.89 4.28 28.25 5.61 29.26 3.65 5.39 40.33 0.91 3.08 90.72
GMFlow† [49] 10.36 9.93 76.61 9.06 63.95 6.80 37.26 8.95 31.68 5.41 9.90 52.94 0.95 2.95 82.34
FlowFormer† [9] 6.51 6.14 64.22 5.77 37.29 3.53 29.08 5.50 21.86 3.38 5.53 35.34 0.72 2.38 91.68
MS-RAFT+† [14] 5.72 5.37 61.50 5.04 33.95 3.05 25.97 4.84 19.15 2.06 5.02 38.32 0.64 2.19 92.89
MemFlow† [7] 5.76 5.39 63.35 5.11 32.76 3.29 24.42 4.49 24.99 2.92 4.82 32.07 0.63 2.11 92.25
Ours† 5.22 4.87 59.55 4.56 32.34 2.87 23.00 4.44 17.06 2.60 4.49 29.07 0.61 1.86 93.25
CroCo-Flow [48] 4.57 4.21 60.59 3.85 34.20 2.19 22.50 4.48 5.87 1.23 4.33 33.13 0.50 1.51 93.66
MemFlow [7] 4.48 4.12 61.70 3.74 35.12 2.39 20.31 3.93 12.81 1.31 4.44 31.18 0.47 1.42 93.86
Ours 4.15 3.79 61.30 3.42 34.30 1.99 20.54 3.99 6.68 1.24 4.38 27.94 0.47 1.42 94.40

Table 2: Quantitative results on Spring test benchmark. Measures are from the official Spring website,
including the total score, EPE, Fl, WAUC, and detailed metrics such as 1px outlier rate, etc. Important
metrics are highlighted. † denotes 0-shot test using the checkpoint from “C+T+S+H+K".

Method Clean Final

Unm. Mat. All Unm. Mat. All

GMFlow [49] 10.56 0.65 1.74 15.80 1.32 2.90

GMFlowNet [55] 8.49 0.52 1.39 13.88 1.27 2.65

SKFlow [44] 7.24 0.55 1.28 11.51 1.46 2.28

FlowFormer [9] 7.16 0.42 1.16 11.30 0.96 2.09

TransFlow [26] 6.77 0.36 1.06 10.96 0.99 2.08

Baseline 7.60 0.45 1.23 11.70 0.93 2.11

Ours 6.42 0.38 1.04 10.44 0.82 1.87
Table 3: Occlusion analysis on Sintel test set. Unm. and Mat. denote performance on unmatched and
matched areas, respectively. "Baseline" denotes our baseline method Twins-SKFlow.

regions, respectively. From the table, we can learn that StreamFlow improves not only the flow
estimation in unmatched regions but also the estimation in matched regions.

4.3 Ablations

In this section, we verify the effectiveness of StreamFlow designs, as shown in Table 4. For a fair
comparison, all models are trained with the same settings on the FlyingThings dataset. Then we
evaluate each method on Sintel and KITTI. Below we will introduce each experiment in detail.

Input frame Baseline (Twins-SKFlow) StreamFlow (Ours)

Figure 4: Visualizations of results on Sintel and KITTI test sets. Differences are highlighted with red
bounding boxes. StreamFlow achieves fewer artifacts on both synthetic and real-world scenes. More
visualization results on DAVIS [35] and occluded regions are in the supplements.
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SIM pipeline. We test the efficiency of the vanilla pairwise pipeline and our SIM pipeline. Pairwise
methods utilize multi-frames to predict the flow of the current two frames and bring substantial
redundant computation, while the SIM pipeline estimates multiple flows concurrently and minimizes
the overlapping calculation. As shown in Table 4, the SIM pipeline brings great gain in efficiency.
Notably, there might be information loss for the SIM pipeline due to different frame distances. For
instance, given the frames It−1, It, It+1, the estimated flow Ft−1→t is typically less accurate than
that derived from the sequence It−2, It−1, It. However, this issue tends to be alleviated with longer
sequences. When the number of frames increases to 4, the impact on accuracy is significantly reduced.
We will discuss this issue in more detail in the appendix.

Temporal modules. In this part, we explore the performance and efficiency of different temporal
modeling methods in the flow encoder. Temporal attn refers to applying a temporal attention layer
after each spatial self-attention modeling in Twins. Pseudo conv [36] denotes stacking 1D convolution
layers in the temporal dimension to imitate 3D convolutions at minimal cost. We also apply 3D
convolutions at the end of the flow encoder to learn temporal relations. As shown in Table 4, our ISC
module achieves a good trade-off between efficiency and effectiveness. The improvements achieved
by other methods are not as pronounced. We hypothesize that the limited volume of optical flow
data impedes the efficient training of the spatiotemporal module from scratch to accomplish good
optimization. For comparison, VideoFlow does not apply temporal modeling modules in the encoder,
and TransFlow [26] applies self-supervised pre-training for better optimization.

Extra parameters. In this part, we aim to determine whether the performance gain is due to
the additional parameters or the effective temporal modeling method. To this end, we introduce
the additional parameters by widening the baseline network. Namely, we extract higher-dimension
features along the spatial dimension and concatenate them with the original motion feature. All models
in this section are equipped with the ISC module. "w/o" denotes the baseline Twins-SKFlow network.
"w" means adding additional parameters. "Ours" denotes the method equipped with our temporal
modeling modules. Results show the improvement achieved by simply adding more parameters is
minor, and the performance gain is primarily attributed to the effectiveness of StreamFlow modules.

Experiment Method Sintel KITTI Param Latency

Clean Final Occ Noc Fl-epe Fl-all (M) (ms)

SIM pipeline w/o 1.03 2.34 7.69 0.35 4.64 14.70 12.49 122.18
w/ 1.03 2.34 7.69 0.35 4.64 14.70 12.49 84.59

Tem. modules

w/o 1.03 2.34 7.69 0.35 4.64 14.70 12.49 84.59
Tem. attn 0.96 2.31 7.38 0.35 4.38 14.96 14.14 91.17
Pse. 3D conv 1.05 2.36 7.60 0.38 4.46 15.20 13.48 87.41
3D conv 0.98 2.34 7.63 0.33 4.57 15.59 16.03 93.05
ISC 0.97 2.29 7.11 0.32 4.14 14.16 12.49 88.35

Extra params
w/o 0.97 2.29 7.11 0.32 4.14 14.16 12.49 84.59
w/ 0.98 2.24 7.33 0.31 4.15 13.94 13.77 89.29
Ours 0.93 2.15 7.06 0.31 3.92 12.36 13.77 89.76

GTR module w/o 0.97 2.29 7.11 0.32 4.14 14.16 12.49 88.35
w/ 0.93 2.15 7.06 0.31 3.92 12.36 13.77 89.76

ISC module w/o 1.01 2.19 7.23 0.33 4.06 13.95 13.77 86.02
w/ 0.93 2.15 7.06 0.31 3.92 12.36 13.77 89.76

# Frames 3 0.93 2.15 7.06 0.31 3.92 12.36 13.77 89.76
4 0.87 2.11 6.24 0.31 3.85 12.62 14.25 85.53

Table 4: Ablations on our proposed design. All models are trained using the "C+T" schedule. The
number of refinements is 12 for all methods. The settings used in our final model are underlined.

GTR module. We also examined whether the GTR module could enhance flow predictions. "w/o"
means applying vanilla SKFlow decoder while "w" denotes using GTR. All models in this part utilize
the ISC module in the encoder. Table 4 demonstrates the necessity of incorporating the GTR, which
could achieve stable improvement on multiple benchmarks. We could learn that GTR especially helps
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the estimation on the challenging final pass, with the performance gain of 0.14. In supplements, we
give a more detailed discussion of its initialization, which is key to its training process.

ISC module. We verify the effectiveness of the proposed ISC module. All models in this part adopt
GTR as the flow decoder. From Table 4, we could learn that the ISC module is efficient and effective
in temporal modeling and greatly contributes to the improvement of the pipeline. It introduces no
additional parameters and a modest increase in runtime, while significantly boosting the performance.

# Frames. We delve into the influence of different numbers of frames, as illustrated in Table 4.
We set the number of frames to 4 due to limitations in GPU memory. From an efficiency standpoint,
augmenting the number of frames results in a higher proportion of redundant computations eliminated
by StreamFlow, consequently leading to a more substantial improvement in processing time. Although
there is an increase in the parameter count for temporal modeling, the efficiency is further enhanced
in the context of four input frames due to a reduced proportion of redundant computations, resulting
in a shorter average prediction time per frame compared to the three-frame setting.

4.4 Qualitative results

We demonstrate visualization results on both synthetic (Sintel [3]) and real-world scenes (KITTI [31]),
as shown in Figure 4. In the supplements, we also show the visualizations on the real-world dataset
DAVIS [35]. Our models are pre-trained using the T+H+S+K schedule. We could learn that
StreamFlow could still achieve remarkable qualitative results when generalized to real-world scenes.

4.5 Efficiency analysis

We evaluate the efficiency of the StreamFlow in terms of runtime and parameter counts. Our
experiments were conducted on NVIDIA A100 GPUs. Models are trained using the (C+)T schedule
and evaluated on the Sintel dataset. The runtime is measured as the average inference time per frame
of five runs on the Sintel training set. We could learn StreamFlow achieves comparable efficiency with
state-of-the-art two-frame methods while achieving superior performance. The key to maintaining
high efficiency is its SIM pipeline. StreamFlow does not perform pairwise redundant computation
and predicts all flows simultaneously. Another reason for the high speed is its CNN-based decoder.
We could learn that StreamFlow is much faster than the pure two-frame transformer architecture
FlowFormer. Besides, the specially designed lightweight temporal modules also contribute to the
performance, simultaneously aiding in better results compared to the 2-frame baseline Twins-SKFlow.

5 Limitations

StreamFlow faces two primary challenges: (1) GPU memory usage in training. Although it is not
an issue during inference (e.g., with a 432 × 1024 input, it needs about only 2.4 G and 3.3 G when
the # frame is 3 and 4, respectively). But it is significantly increased during training. The storage of
gradients and the batch size cause the GPU memory on a single card to reach approximately 40 G in a
4-frame setting. (2) Inter-group cues utilization. Limited to the SIM pipeline, StreamFlow is confined
to using only intra-group information, and it does not utilize inter-group information during modeling.
Despite achieving commendable results and surpassing some methods that incorporate inter-group
information, bidirectional flows, or self-supervised pre-training strategies in cross-dataset tests, how
to address this while maintaining good efficiency is a worthwhile issue to consider in future work.

6 Conclusion

In this work, we proposed StreamFlow, a multi-frame optical flow estimation approach proficient
in estimating optical flows across multiple video frames using efficient spatiotemporal relationship
mining. StreamFlow aims to estimate consecutive unidirectional optical flows with less overlapping
computation. It proposes to estimate multi-frame optical flows via the proposed SIM pipeline
and introduces efficient and effective ISC and GTR methods for temporal modeling under such
circumstances. Extensive experiments on multiple challenging benchmarks demonstrate the efficiency
and effectiveness of the proposed StreamFlow method.

10



Acknowledgements. This work was supported by The Major Key Project of PCL (PCL2024A02),
Natural Science Foundation of China (62271013, 62031013), Guangdong Province Pearl River
Talent Program (2021QN020708), Guangdong Basic and Applied Basic Research Foundation
(2024A1515010155), Shenzhen Science and Technology Program (JCYJ20230807120808017),
Shenzhen Fundamental Research Program (GXWD20201231165807007-20200806163656003), and
Sponsored by CAAI-MindSpore Open Fund, developed on OpenI Community (CAAIXSJLJJ-2023-
MindSpore07).

References
[1] Elaine Angelino, Daniel Yamins, and Margo Seltzer. Starflow: A script-centric data analysis

environment. In Provenance and Annotation of Data and Processes: Third International
Provenance and Annotation Workshop, IPAW 2010, Troy, NY, USA, June 15-16, 2010. Revised
Selected Papers 3, pages 236–250. Springer, 2010.

[2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for
video understanding? In ICML, volume 2, page 4, 2021.

[3] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source
movie for optical flow evaluation. In European conference on computer vision, pages 611–625.
Springer, 2012.

[4] Yonghu Chen, Dongchen Zhu, Wenjun Shi, Guanghui Zhang, Tianyu Zhang, Xiaolin Zhang,
and Jiamao Li. Mfcflow: A motion feature compensated multi-frame recurrent network for
optical flow estimation. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 5068–5077, 2023.

[5] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia,
and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers.
Advances in Neural Information Processing Systems, 34:9355–9366, 2021.

[6] Yuren Cong, Mengmeng Xu, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel Perez-Rua,
Bodo Rosenhahn, Tao Xiang, Sen He, et al. Flatten: optical flow-guided attention for consistent
text-to-video editing. In The Twelfth International Conference on Learning Representations,
2023.

[7] Qiaole Dong and Yanwei Fu. Memflow: Optical flow estimation and prediction with memory.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19068–19078, 2024.

[8] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), December 2015.

[9] Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang, Ka Chun Cheung, Hongwei Qin,
Jifeng Dai, and Hongsheng Li. Flowformer: A transformer architecture for optical flow. In
European Conference on Computer Vision, pages 668–685. Springer, 2022.

[10] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Liteflownet: A lightweight convolutional
neural network for optical flow estimation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8981–8989, 2018.

[11] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A lightweight optical flow cnn—revisiting
data fidelity and regularization. IEEE transactions on pattern analysis and machine intelligence,
43(8):2555–2569, 2020.

[12] Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5754–5763, 2019.

11



[13] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas
Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[14] Azin Jahedi, Maximilian Luz, Marc Rivinius, Lukas Mehl, and Andrés Bruhn. Ms-raft+: High
resolution multi-scale raft. International Journal of Computer Vision, 132(5):1835–1856, 2024.

[15] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and Richard Hartley. Learning to estimate
hidden motions with global motion aggregation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9772–9781, 2021.

[16] Yang Jiao, Guangming Shi, and Trac D Tran. Optical flow estimation via motion feature recovery.
In 2021 IEEE International Conference on Image Processing (ICIP), pages 2558–2562. IEEE,
2021.

[17] Daniel Kondermann, Rahul Nair, Katrin Honauer, Karsten Krispin, Jonas Andrulis, Alexander
Brock, Burkhard Gussefeld, Mohsen Rahimimoghaddam, Sabine Hofmann, Claus Brenner, et al.
The hci benchmark suite: Stereo and flow ground truth with uncertainties for urban autonomous
driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 19–28, 2016.

[18] Tengchuan Kou, Xiaohong Liu, Wei Sun, Jun Jia, Xiongkuo Min, Guangtao Zhai, and Ning Liu.
Stablevqa: A deep no-reference quality assessment model for video stability. In Proceedings of
the 31st ACM International Conference on Multimedia, pages 1066–1076, 2023.

[19] Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. Advances in Neural
Information Processing Systems, 34:18114–18125, 2021.

[20] Wei Li, Zehuan Yuan, Xiangzhong Fang, and Changhu Wang. Moflowgan: Video generation
with flow guidance. In 2020 IEEE International Conference on Multimedia and Expo (ICME),
pages 1–6. IEEE, 2020.

[21] Yingping Liang, Jiaming Liu, Debing Zhang, and Ying Fu. Mpi-flow: Learning realistic optical
flow with multiplane images. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13857–13868, 2023.

[22] Mingxiang Liao, Hannan Lu, Xinyu Zhang, Fang Wan, Tianyu Wang, Yuzhong Zhao, Wang-
meng Zuo, Qixiang Ye, and Jingdong Wang. Evaluation of text-to-video generation models: A
dynamics perspective. arXiv preprint arXiv:2407.01094, 2024.

[23] Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
video generation models. arXiv preprint arXiv:2310.11440, 2023.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[25] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An
end-to-end deep video compression framework. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11006–11015, 2019.

[26] Yawen Lu, Qifan Wang, Siqi Ma, Tong Geng, Yingjie Victor Chen, Huaijin Chen, and Dongfang
Liu. Transflow: Transformer as flow learner. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18063–18073, 2023.

[27] Ao Luo, Fan Yang, Xin Li, Lang Nie, Chunyu Lin, Haoqiang Fan, and Shuaicheng Liu. Gaflow:
Incorporating gaussian attention into optical flow. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9642–9651, 2023.

[28] Ao Luo, Fan Yang, Kunming Luo, Xin Li, Haoqiang Fan, and Shuaicheng Liu. Learning optical
flow with adaptive graph reasoning. arXiv preprint arXiv:2202.03857, 2022.

12



[29] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
arXiv:1512.02134.

[30] Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nalivayko, and Andrés Bruhn. Spring:
A high-resolution high-detail dataset and benchmark for scene flow, optical flow and stereo. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4981–4991, 2023.

[31] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint 3d estimation of vehicles and scene
flow. In ISPRS Workshop on Image Sequence Analysis (ISA), 2015.
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A Appendix

A.1 Comparison of latency using memory bank

As discussed in Section 3.2, to better demonstrate that the temporal advantage of StreamFlow is not
solely due to the memory bank, this section explores the efficiency comparison between StreamFlow
and other methods when using a memory bank. Given that the model’s runtime is closely related to the
coding implementation, this comparison prioritizes officially open-sourced multi-frame optical flow
methods. However, as of the writing of this paper, the choices for leading open-source multi-frame
methods are quite limited, and thus VideoFlow [38] was selected for comparison. The experimental
setup and the machine are consistent with those described in Section 4.5, and the measured time
is the average of five tests. The input is resized to 432× 1024, and the model is trained via (C+)T
manner. As shown in Table A.1, it can be observed that StreamFlow still exhibits good efficiency in
time. This is because, in addition to the memory bank, it further optimizes the average estimation
time in the decoder.

Method Sintel (clean) Sintel (final) Fl-EPE Fl-all Latency Hardware

VideoFlow-BOF [38] 1.03 2.19 3.96 15.3 122.37ms A100-40G

StreamFlow (Ours) 0.87 2.11 3.85 12.6 85.53ms A100-40G

Table 5: Comparison of latency using memory bank.

A.2 Impact of the frame distance

Within the SIM pipeline, the impact of different frame distance D indeed exists. For instance, the
flow Ft−1,t derived from It−2, It−1, It tends to be more accurate than that from It−1, It, It+1 due
to the different distance Dt−1,t−2 and Dt−1,t+1. As the frame distance increases, the information
provided may decrease, as confirmed by the results in Table 7. However, this impact might not
necessarily grow larger with more frames, which could be due to the affected frames mainly being
distributed at the head or the tail of a group. We could define the longest frame distance that provides
effective information as m. As the length of the group increases, there will be more frames in the
middle of the group (i.e., frames It within the interval [It−m, It+m] all lying within the group), and
fewer frames distributed on both ends. As shown in Table 7, the impact was weakened with 4 frames.
Maybe the future study on an appropriate choice of m is helpful for future multi-frame optical flow
work.

A.3 Detailed metrics on the Sintel test set

Table A.4 presents a more detailed comparison on the Sintel test set between StreamFlow and its
two-frame baseline. The detailed metrics including all/matched/unmatched EPE, d0-10, d10-60,
d60-140, s0-10, s10-40, s40+ are from the official Sintel website. We could learn that StreamFlow
performs exceptionally well in unmatched areas, validating its effectiveness in addressing occlusion
issues. Compared to the baseline method, it improved by 15.53% and 10.77% in the Matched areas
on the clean pass and final pass, respectively, and by 15.56% and 11.83% in the Unmatched areas.
Within different ranges of occlusion boundaries, it showed improvements of 15.13% and 10.30% at
d0-10, 15.79% and 13.51% at d10-60, and 10.00% and 12.50% at d60-140 on the clean pass and
final pass, respectively. For pixels moving at different speeds, it improved by 16.00% and 14.58%
at s0-10, 10.39% and 10.14% at s10-40, and 14.41% and 10.49% at s40+ on the clean pass and
final pass, respectively. It is shown that StreamFlow has outperformed its baseline on both the clean
pass and final pass, with a more pronounced improvement on the clean pass. The enhancements are
particularly noticeable in areas of occlusion and for objects moving at high speeds.

A.4 Relationship between image size and GPU memory

In this section, we show the GPU usage of StreamFlow. During the inference, without the optimization
in the third-party package, StreamFlow takes about 2.4 G and 3.3 G for 432 × 1024 inputs with
the number of frame set to 3 and 4, respectively. With PyTorch 2.2 and flash-attention, using 12
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refinements and 4 frames, the GPU memory usage for StreamFlow is shown in Table ??. Specifically,
when the image size increases by 4 times, the GPU memory usage increases to nearly 4.4 times.
When the image size is increased by 9 times, GPU memory usage grows to nearly 20 times. For
most current scenarios, StreamFlow still maintains a relatively moderate use of GPU memory. The
variation in GPU memory usage may be influenced by underlying optimizations in the framework.
We believe the memory usage could be further optimized in the future.

A.5 Qualitative analysis on real-world scenes

In this section, we facilitate our visualizations and evaluations using two prominent real-world
datasets, namely DAVIS [35]. The DAVIS dataset, short for Densely Annotated VIdeo Segmentation,
is a widely recognized benchmark in the field of computer vision. It comprises high-quality video
sequences captured in diverse scenarios, encompassing a broad range of challenging visual conditions
such as occlusions, motion blur, and dynamic object interactions. The dataset provides pixel-
level annotations for every frame, facilitating precise evaluation and comparison of various video
segmentation methods. The visualizations on the DAVIS dataset are shown in Figure 5. Our model
is pretrained using the "T" and "T+S+H+K" schedule and then fine-tuned on KITTI [31]. "T"
denotes the FlyingThings [29] dataset and "T+S+H+K" refers to the combination of the FlyingThings,
Sintel [3], HD1K [17], and KITTI datasets. Then we infer our models on the DAVIS dataset. The
number of refinements is set to 12. The number of input frames for each non-overlapping group is 3.
We could learn that StreamFlow demonstrates remarkable adaptability across real-world datasets,
showing its robust performance in challenging scenes for optical flow estimation. This is particularly
evident in scenarios such as the occlusion of the bear’s hind legs in the first row, first column, and the
small motion of the small tennis ball in the last column. Additionally, it can be observed that in the
motion captured in the first row, second, and third columns, the hind legs of the camel and the leg
movements of the dancer are also vividly delineated. These instances reaffirm its efficacy in diverse
and demanding environments for optical flow estimation.

A.6 Qualitative analysis on occluded regions

In this section, we focus on the performance of the occluded regions. As discussed in previous
works [15, 44], here we term occlusions as areas where pixels appear in the current frame while
disappearing in the next frame. We visualize the flow-error map on occluded regions of the Sintel
dataset with the official occlusion masks. All models are trained using the (C+)T schedule. As
shown in Figure 6, significant occluded areas are highlighted using red boxes. A darker color in the
flow-error map denotes a more significant error. We could learn that StreamFlow achieves better
overall performance, and attains leading performance on the occluded regions.

Image Size GPU Memory

360× 640 1.19 G
720× 1280 5.20 G
1080× 1920 24.11 G

Table 6: Relationship between input size and GPU memory usage during inference. The number of
frames is set to 4.

Method Sintel

clean final

T3 0.93 2.15
T3† 0.90 2.13
T4 0.87 2.11
T4† 0.86 2.11

Table 7: Impact of frame distance. † denotes using nearer frames.
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Data Method Unm. Mat. All d0-10 d10-60 d60-140 s0-10 s10-40 s40+

Clean Baseline 7.60 0.45 1.23 1.19 0.38 0.20 0.25 0.77 7.01
Ours 6.42 0.38 1.04 1.01 0.32 0.18 0.21 0.69 6.00

Final Baseline 11.70 0.93 2.11 2.33 0.74 0.40 0.48 1.38 11.92
Ours 10.44 0.82 1.87 2.09 0.64 0.35 0.41 1.24 10.67

Table 8: Results on Sintel test set. Unm. and Mat. denote performance on unmatched and matched
areas, respectively. "Baseline" denotes our baseline method Twins-SKFlow.

Image1

Image2

Flow

Image1

Image2

Flow

Figure 5: Visualizations of predicted flows on DAVIS [35]. StreamFlow demonstrates robust
generalization to other real-world datasets, performing well in challenging scenarios for optical flow
estimation, as evidenced by instances such as the occluded hind legs of the bear in the first column
and the small tennis ball in the last column.

A.7 Initialization of GTR

In this section, we investigate the impact of different GTR initialization methods. Previous works
in spatio-temporal modeling such as [2] have suggested initializing the temporal modules with zero
values. We employed two distinct initialization approaches, namely zero initialization and PyTorch’s
default initialization, and the corresponding results are presented in Table 9. Following training on
the FlyingThings dataset, the model was tested on the Sintel and KITTI datasets. It is evident from
the results that zero initialization could contribute to a better overall performance.

Method Sintel (Clean) Sintel (Final) KITTI (EPE) KITTI (Fl-all)

Default 0.91 2.20 4.05 13.44
Zero-init 0.93 2.15 3.92 12.36

Table 9: Comparison of different ways of initialization. All models are trained under the FlyingThings.
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Occlusion Maps

Flow Error Map (VideoFlow)

Flow Error Map (StreamFlow)
EPE: 2.44 EPE: 8.29

EPE: 11.68EPE: 9.07

Figure 6: Visualizations of the performance on the occluded regions. StreamFlow achieves compara-
ble performance even with advanced methods. All models are trained on the FlyingThings dataset. A
darker color in the flow error map denotes a higher estimation error compared with ground truth.
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either be a way to access this model for reproducing the results or a way to reproduce
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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11. Safeguards
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Answer: [NA]
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets in this work are cited and used properly.
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• The answer NA means that the paper does not use existing assets.
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