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Abstract

Fine-Tuning of LLMs using RLHF / RLAIF has been shown as a critical step to
improve the performance of LLMs in complex generation tasks. In such methods,
typically the responses are sampled from LLMs and human or model feedback
is provided at the response level. The feedback is then used to align the LLMs
to prefer decoding paths that will agree with the human feedback. Recent works
Amplayo et al. [2022], Wu et al. [2023] indicate that sentence-level labels provide
more accurate and interpretable feedback for LLM optimization. In this work,
we propose FRACTAL a suite of models to disaggregate response-level labels
into sentence-level (pseudo-)labels through a Multiple Instance Learning (MIL)
formulation, novel usage of prior information and maximum likelihood calibration.
We perform close to 2000 experiments across 6 datasets and 4 tasks that show
that FRACTAL can reach up to 93% of the performance of the fully supervised
baseline while requiring only around 10% of the gold labels. Furthermore, in a
downstream eval, employing these sentence-level pseudo scores in RLHF on the
Question Answering task leads to 6% improved performance. Our work is the first
to develop response-level feedback to sentence-level scoring techniques, leveraging
sentence-level prior information, along with comprehensive evaluations on multiple
tasks as well as end-to-end finetuning evaluation.

1 Introduction

Large language models (LLMs) are being increasingly used for various generation tasks like generate
text Gero et al. [2022], seek facts, answer complex queries Adiwardana et al. [2020], Menick et al.
[2022], and perform logical reasoning tasks Kojima et al. [2022]. The improvements to LLMs rely
heavily on their evaluation and preference feedback, typically from humans or automated model-
based scoring Ouyang et al. [2022], Touvron et al. [2023]. However, such feedback has typically been
taken at the response level, enabling efficient and cost-effective assessments of overall output quality.

An emerging body of research Amplayo et al. [2022], Lightman et al. [2023] suggests that the
sentence or step-level evaluation is more reliable over response-level evaluation. Finer-grained
feedback precisely localizes the strengths and weaknesses within a generated response. It further
provides greater interpretability, allowing for more targeted LLM fine-tuning by highlighting the
specific portions of a response that contribute to its overall quality. Wu et al. [2023] has shown that
collecting finer-grained human feedback results in considerably improved RLHF.

However, collecting fine-grained annotations adds significant cost due to the added quantity and
precision of human labor needed. Even in situations where it is feasible to directly collect fine-grained
feedback, doing so for the Side-by-Side (SxS) feedback Ouyang et al. [2022] remains challenging.
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Task Retrieval | MultiSpanQA Dataset

Input
Query

Who were the last people to be hanged in
england?

Retrieved
Context
(Re-
sponse)

Nevertheless , there remained a working gal-
lows at HMP Wandsworth , London , until
1994 , which was tested every six months un-
til 1992 . This gallows is now housed in the
Galleries of Justice in Nottingham, England.
In the United Kingdom : on 13 August 1964
, Peter Anthony Allen , at Walton Prison in
Liverpool , and Gwynne Owen Evans , at
Strangeways Prison in Manchester , were
executed for the murder of John Alan West
on 7 April that year . Scotland : Henry John
Burnett , 21 , on 15 August 1963 in Craig-
inches Prison , Aberdeen , for the murder of
seaman Thomas Guyan.

Gold Re-
sponse La-
bel

1 i.e. Retrieved Context is relevant to the
Input

Sentence [0, 0, 1, 0]
Labels -
FRAC-
TAL

i.e. third sentence contains the answer

Task Question Answering | QA-Feedback
Dataset

Input
Query

What is the name of the pirate in spongebob?

Input Con-
text

SpongeBob SquarePants - Puff endures one
of SpongeBob’s crashes or is otherwise
frightened, she puffs up into a ball. Spe-
cial episodes of the show are hosted by a
live action pirate named Patchy and his pet
parrot Potty, ...

Response
1

The SpongeBob SquarePants is an Ameri-
can animated television series based on the
cartoon series SpongeBob SquarePants. A
live action pirate named Patchy and his pet
parrot Potty, who host special episodes of
the show, are presented in a dual narrative
with the animated stories. Burger Beard is
the name of the pirate in the SpongeBob
SquarePants movie.

Response
2

The SpongeBob Movie: Sponge Out of Wa-
ter is a 2015 American live-action/animated
absurdist comedy film based on the animated
television series SpongeBob SquarePants. It
follows a pirate named Burger Beard, who
steals the Krabby Patty secret formula using
a magical book that makes any text writ-
ten upon it come true. SpongeBob and his
friends must travel to the surface to confront
Burger Beard and get the formula back.

Gold Pref-
erence La-
bel

1 i.e. Response 1 is better than Response 2

Sentence Response 1: [1, 1] ; Response 2: [1, 0, 0]
Labels -
FRAC-
TAL

i.e. Sentences 2 and 3 of Response 2 are
inaccurate.

Table 1: Our method, FRACTAL, dis-aggregates
response-level gold label into fine-grained
sentence-level labels. We can then use these
sentence-level labels for finetuning LLMs. These
examples are for the tasks of Retrieval and
Question Answering from MultiSpanQA and
QA-Feedback datasets.

In this paper, we argue that it is possible to con-
vert coarse response / paragraph level labels pro-
vided by humans into fine-grained sentence level
labels. We propose FRACTAL, a suite of model-
ing based techniques to dis-aggregate response-
level labels into sentence-level pseudo-labels
that accurately reflect the underlying quality dis-
tribution within a larger response.

We show across 6 datasets and 4 tasks that
FRACTAL can reach upto 93% of performance
of a sentence-level model that uses 10X the num-
ber of labels as the FRACTAL model. Tab. 1
shows two examples of how FRACTAL converts
a gold response label into precise sentence level
labels. We also apply FRACTAL to a the fine-
grained RLHF setting and show FRACTAL is
able to better glean information from the prefer-
ences and thereby provide a 6.2% boost to per-
formance over vanilla preference RLHF. To the
best of our knowledge, FRACTAL is the first ap-
proach to comprehensively study the task of fine-
grained scoring from aggregate text and demon-
strate practical applicability on Fine-Grained
RLHF.

As in supervised training, the first component of
FRACTAL is a methodology to train a model on
the response-labels to predict the scores (label
probabilities) for sentences. For this we lever-
age and build upon techniques from multiple
instance learning (MIL) and learning from label
proportions (LLP) (see Sec. A for previous work
on MIL and LLP). These have been used to train
predictive models on datasets partitioned into
bags or sets of instances. For the text-generation
tasks, we model each response as a bag and its
instances are the constituent sentences of the
response. Each bag has an aggregated label i.e.,
bag-label which is assumed to be derived from
the (unknown) instance-labels of the bag via
an aggregation function. The instance-labels
correspond to the sentence-labels and the aggre-
gated bag-label is the aggregated response-label.
In MIL, the aggregation is the MAX or MIN
of binary or ordinal instance-labels – applica-
ble to question-answering (relevance), summa-
rization and math reasoning tasks – while LLP,
which models the bag-label as the AVG of the
instance-labels, is applicable to retrieval tasks.
To estimate the instance-labels from bag-labels,
a standard technique in MIL and LLP is bag-
loss which minimizes a loss between the bag-
labels and the aggregated instance-predictions,
summed over all bags. While bag-loss is usually
a strong baseline, the use of only bag-labels is
seen to be insufficient supervision. To this ex-
tent, we propose use of prior distribution on
the instance-label modeled from application-
specific information.
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Figure 1: Overview of our proposed method, FRACTAL. Input is a set of responses each with a
response label. A response is a bag of sentences. The output is a model that can predict the score for
each sentence in a response. The semantic meaning of a score depends on how the response label was
defined. FRACTAL consists of two key components a) Bag-level loss functions and model training
(Section 3.1), and b) Max-Likelihood Pseudolabeling (Section 3.2)

We make the following contributions:

1. We propose a novel framework, FRACTAL, to disaggregate response labels into constituent
sentence-labels. We formulate the fine-grained prediction as a Multiple Instance Learning
(MIL) and Learning from Label Proportions (LLP) task. This abstraction allows us to
leverage baselines proposed for MIL/ LLP . Through our experiments, we show that this
formulation alone is not sufficient to demonstrate strong performance.

2. We introduce enhancements by adding priors over the instances. We propose to add two
types of priors for every instance in a bag based on document-sentence similarity scores and
correlations between sentences. The baseline MIL / LLP methods are augmented with prior
information as new loss terms as show in Sec. 3.1. To the best of our knowledge, use of
such priors to improve performance of MIL/LLP methods has not been studied before.

3. We develop pseudo-labeling strategies to calibrate instance-level model predictions into
labels which are consistent with the response-level labels, allowing us to train the model on
the derived pseudo-labels (refer Sec. 3.2). Our ablation experiments demonstrate that both
the prior inclusion and pseudo-labeling steps significantly help improve performance.

4. In order to study the performance of FRACTAL, we formulate a wide variety of tasks
shown in Sec. 4: retrieval, question answering, summarization, and math reasoning across 6
datasets. We define the required formulations for disaggregating response-level labels to
sentence-level labels applicable to these tasks. In intrinsic evals, FRACTAL achieves up to
93% of the performance of the fully supervised baseline while requiring only around 10%
of the number of labels.

5. In an extrinsic finetuning eval, FRACTAL also improves the performance of preference
RLHF by 6% through fine grained labeling.

2 Preliminaries

As mentioned in Section 1, we consider text-generation tasks where each response can be modeled as
a bag whose instances are the constituent sentences of the response. The bag-label is the response-
label while the sentence-labels correspond to the respective instance-labels. In the following, we
formally define the notion of instances, bags and their labels.

Let X be the underlying set of instances and Y be the label-set which is {0, 1, . . . , C} for some
C ∈ Z+ where C = 1 for binary and C > 1 for integer labels respectively. A dataset is a collection
of labeled instances.

A bag B is a subset of X and yB denotes its label which is thought to depend on the labels of the
instances in B via an aggregation function AGG which maps tuples with elements from Y to [0, C].
Specifically, if B = {x1, . . . ,xk} and yi is the label of xi (i ∈ [k]), then yB = AGG (y1, . . . ,yk).
Typically, AGG is either MIN, MAX or AVG.
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We consider prior information about the labels on individual instances, for e.g. through unsupervised
modeling. For each x in the dataset, its point-prior px ∈ [0, 1] is prior for yx/C where yx is the
underlying label of x and {0, . . . , C} is the label set as defined above. The pair-prior for a pair
(x, z) of instances is given by pxz ∈ [0, 1] and measures the correlation between x and z. Section
4 and Table 3 provide the specifics of the prior information for various datasets and tasks in our
experiments.

Some applications provide preference bag-labels which encode comparisons between pairs of bags.
Specifically, for a pair of bags (B1, B2) the preference bag-label yB2>B1 is 0 if yB1 > yB2 , and 1 if
yB1 < yB2 . There are no bag-labels, only preference bag-labels for some pairs of bags.

Modeling Task. Given as input a collection B of pairwise-disjoint (i.e., non-overlapping) bags along
with their bag-labels (or preference bag-labels), possibly along with the priors {px} or {pxz}, the
goal is to output a model predicting a score for each instance in X . In the preference evaluation, we
evaluate the model in terms of the accuracy of the preference labels assigned by the model on a test
set of bags. In the description of our techniques we will use CE to denote the cross entropy loss.

3 Our Techniques

We present the components of the FRACTAL method along with the BagLoss baseline approach.
(Refer Figure 1). The two main components of FRACTAL are (i) model training using bag-level loss
functions which incorporate the priors as defined in Section 2, and a (ii) pseudo-labeling technique
to use the model predictions to provide instance-level pseudo-labels using which the final model
training is trained.

3.1 Training with bag-loss and priors

We train a modelM on the collection {B ∈ B} of training bags B with aggregate labels yB . The
prediction M(x) of the model on any instance x is a probability distribution over the label-set
{0, . . . , C}, and we denote the probability of label ` byM(x)[`]. Also, by ỹ(x) we denote the soft-
label

∑
`∈{0,...,C} ` ·M(x)[`], assigned by the model to x. Let probAGG be an extension of AGG to

sequences of model-predictions. In particular, probAGG maps sequences (M(x1), . . . ,M(xk)) to
a probability distribution over {0, . . . , C}, for k ∈ Z+. We explicitly define probAGG for the tasks
used in our work in Appendix B.

The baseline BagLoss method optimizes the following loss, for a modelM:

Ltotbag(B,M) := |B|−1
∑
B∈B

CE (yB ,M(B)) (1)

whereM(B) = probAGG
(
(M(x))x∈B

)
is the aggregate prediction of B, andM(B)[`] is proba-

bility of label `.

PriorsBagLoss. In our bag loss with priors method, we have an additional loss which incorporates
the priors. For point-priors {px} we have:

Ltotpntprior(X ,M) := |X |−1
∑
x∈X

CE (px, ỹ(x)/C) (2)

while for pair-priors {pxz} the loss is

Ltotprprior(X ,M) := |X |−2
∑

(x,z)∈X 2

Lprprior (pxz, ỹ(x), ỹ(z)) (3)

where Lprprior is a specialized loss described in Appendix C. The total loss in PriorsBagLoss is a
convex combination of bag and prior losses:

LtotPB = λLtotbag + λ1Ltotpntprior + λ2Ltotprprior (4)

for some λ, λ1, λ2 ∈ [0, 1] s.t. λ + λ1 + λ2 = 1. The values λ, λ1 and λ2 are selected through a
hyperparameter search which is also described in Section 5.

Minibatch based model training. For a given batch size q, learning rate and optimizer as well as
hyperparameter λ ∈ [0, 1], we train the predictor modelM by doing the following for N epochs and
K steps per epoch:
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1. Sample a minibatch S of q bags BS ⊆ B.
2. Using current model predictions, compute Ltotbag, Ltotpntprior and Ltotprprior restricted only to

the bags and instances in S, and compute Ltot.
3. Using the required gradients from (1), (2) and (3) along with the optimizer and learning rate,

update the weights of the modelM.

Preference based bag-loss with priors. The approach is similar to that in the previous subsection,
where instead of Ltotbag we have a preference based loss for the pairs of bags S for which preference
labels are available. Define ỹ(B) :=

∑
`∈{0,...,C} ` ·M(B)[`] be the real-valued soft-label for a bag

B. For a pair of bags (B1, B2) with yB2>B1
be the preference-label, we incorporate the Bradley-

Terry model Bradley and Terry [1952] used in previous work , to measure the inconsistency of the
predictions with the preference label. Specifically, we define the loss:

Lpref(B1, B2, yB2>B1) := CE

(
yB2>B1 ,

ỹ(B2)

ỹ(B1) + ỹ(B2)

)
(5)

Lpref(B1, B2, yB2>B1
) is averaged over all pairs in S to obtain Ltotpref which we refer to as Pref-

BagLoss. The minibatch training now samples pairs of bags and computes Ltotpref restricted to the
sampled pairs. In the priors based augmentation, PriorsPrefBagLoss, Ltotpntprior and Ltotprprior losses
remain the same, over all the instances in the minibatch. In this case, the total loss is

LtotPPB = λLtotpref + λ1Ltotpntprior + λ2Ltotprprior. (6)

3.2 PSLAB: Pseudo-labeling

Our pseudo-labeling method, PSLAB uses the predictions of the modelM trained as per the tech-
niques described above, to output the max-likelihood instance-level labels for each bag, consistent
with the bag-label, i.e., an instance-level pseudo-labeling independently for each bag, which well-
defined since the bags are disjoint. We describe PsLab for the binary case of C = 1 and only for the
MIN aggregation since MAX is equivalent to MIN by flipping the labels.
Case {0, 1}-labels and MIN aggregation. Given bag B = {x1, . . . ,xk} and yB , we output a
pseudolabeling ΓB : {x1, . . . ,xk} → {0, 1} as follows: if yB is 1 then ΓB assigns 1 to all x ∈ B.

If not, we first set ΓB(x) = 1 for those x ∈ B on which the model prediction M(x) is biased
towards 1. If this results in all ΓB assigning 1 to all x ∈ B, then we let ΓB(z) = 0 for some z on
which the model predicts the smallest probability for label 1.

For C > 1 PSLAB is somewhat more involved and the algorithmic details along with a proof of
correctness are included in Appendix M.

Model Training on Pseudo-labels. After computing the pseudo-labels on the training bags, we
now have a train-set with labeled instances. The model retrained on this dataset is evaluated for
comparative performance.

4 Tasks and Datasets

Task Dataset Objective Train | Test Instances Train Bags
Long-form QA QA-Feedback Preference 93.8k | 9k 14k

Retrieval FirA Classification 102k | 20.4k 18k
Retrieval MultiSpanQA Classification 47k | 5.7k 5k

Summarization AquaMuSe Classification 13.5k | 2.5k 3k
Summarization WikiCatSum Classification 209k | 10.7k 45k
Math Reasoning PRM800K Classification 663k | 18.5k 98k

Table 2: Summary of the setup used for each
dataset

We consider following six datasets covering four
tasks listed under Tables 3 and 2. More details
on data processing in Appendix D.

Long-form Question Answering. We use QA-
Feedback dataset, an SxS preference dataset col-
lected and released by Wu et al. [2023]. These
are human preferences on pairs of model gener-
ated responses for input questions and relevant
passages from ASQA Stelmakh et al. [2023].

The data further contains segment-level annotations, and we make use of “irrelevance, repetition,
or incoherence” category for evaluation. The responses are the bags and the preferences are the
preference bag-labels.We use AVG as the aggregation function and point-prior is cosine similarity
between knowledge passages and each sentence of the response. Cosine-similarity represents the
semantic similarity or relevance between a sentence and the context and is an estimate of the sentence
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Dataset (Input for training) Bags Instances Task Prior

QA-Feedback (Question, Knowledge
Passage, Pair of Responses, Preference
Label)

Both responses are
treated as separate bags.

Sentences in a response + ques-
tion + Knowledge Passages

Learn sentence-level scores for relevance using only the
preference bag-label (indicates which response is better).
The aggregation function used is AVG

knowledge passage-
sentence cosine sim.,
corr. b/w sentences.

FirA (Paragraph, Query, Relevance
Score)

Paragraph sentence of the paragraph +
query

Learn {0, 1, 2, 3, 4}-valued relevance score for each sen-
tence wrt query. The aggregation function used is MAX

query-sentence cosine
similarity

MultiSpanQA (Context, Question, La-
bel (answer present in context)

Context Sentences of the context + Ques-
tions

Identify sentences of the context which contain the an-
swer to the question. We use MAX for this binary classi-
fication setup.

query-sentence cosine
sim., corr. b/w sen-
tences

AquaMuSe (Documents, Query, Sum-
mary, Entailment Label)

Summary Sentence of the summary + doc-
uments + query

Given a query, document and bag-level binary entailment
label, determine the non-entailed sentences in a summary.
MIN is the aggregate function used in this setup.

doc-sentence cosine
sim., corr. b/w sen-
tences

WikiCatSum (Documents, Summary,
Entailment Label)

Summary Sentence of a summary + docu-
ments

Given a document and bag-level binary entailment label,
determine the non-entailed sentences in a summary. MIN
is the aggregate function used in this setup.

doc-sentence cosine
sim., corr. b/w sen-
tences

PRM800K (MATH Problem, step-wise
solution, Label(correctness)

Solution to the MATH
problem

Step of the solution + question Using the binary aggregate label indicating the correct-
ness of the solution, identify all incorrect steps in the
solution.

question-step cosine
sim., corr. b/w steps

Table 3: Summary of the bags, labels, instances, annotations and priors for each dataset.

label. Specifically:

px := cosprior(x) = 0.5 (1 + 〈x,U〉/(‖x‖2‖U‖2)) (7)

where x and U are (embeddings of) a sentence and the relevant passage. Additionally, we incorporate
a pair-prior:

pxz := corrprior(x, z) = (1 + ρxz) /2 (8)

where ρxz is the Pearson’s correlation between sentence embeddings x and z and represents the
probability of two sentences have the same label.

Retrieval. We use two datasets for retrieval tasks: MultiSpanQA and FiRA. MultiSpanQA Li et al.
[2022] consists of question and retrieved context pairs, with annotated discontinuous answer spans
for the train and validation splits (See Tab. 1 for example). Both the instance and bag labels are
{0, 1}-valued. The FiRA dataset Hofstätter et al. [2020] comprises word-level relevance annotations
using {0, . . . , 4}-valued labels. We derive the sentence-level scores by taking the word-level average
across annotators and then the maximum across all words in a sentence. Similar to the previous
setup, we treat the paragraph as a bag, its sentences as instances, and employ MAX as the aggregation
function. The instance and bag-level belongs to the set {0, 1, 2, 3, 4}, with the goal of optimizing a
cross entropy loss. For both datasets, we integrate a correlation prior between sentence pairs and a
cosine-similarity prior (see (7), (8)) between the query and each sentence of the context.

Summarization. We utilize two datasets: WikiCatSum Perez-Beltrachini et al. [2019] and Aqua-
MuSe Kulkarni et al. [2020]. We adopt the binary entailment metric for this task. The reference
summaries already provided in these two datasets serve as the entailed summaries† with each sentence
considered positively entailed. To generate non-entailed summaries, we synthesize negatives similar
to Yin et al. [2021]. Examples of entailed and non-entailed summaries are provided in Appendix L,
along with the method of generation. As in previous tasks, we incorporate sentence-document cosine
similarity and sentence correlation priors into our methods. Additionally, we experiment with NLI
entailment scores Honovich et al. [2022] as priors for this task.

Math Reasoning. We utilize PRM800K dataset Lightman et al. [2023] releasing step-level annota-
tions for model-generated solutions to MATH problems Hendrycks et al. [2021]. The task at hand
is to identify all the incorrect steps in the solution. Similar to previous tasks, we experiment with
question-step cosine similarity prior and a correlation prior between steps of the solution.

5 Experiments

We evaluate FRACTAL along with baseline methods on the tasks and datasets described in Sec. 4.

Priors as Baselines. The following methods based on the priors described in Sec. 4 are directly used
as baselines to score the sentences as shown in Tab. 4:
Cosine Similarity: In this baseline, the semantic similarity of individual sentences of the response
with the input context is used to estimate their relevance score for the task. For this, we compute the
cosine similarity (see Eq. (7)) between the corresponding embeddings.

†In this work, we do not filter any noise present in the existing data splits.
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NLI - Entailment Scorer: For summarization and relevance tasks, we also compute entailment using
the NLI scorer from TRUE paper Honovich et al. [2022]. This is a T5x-11B model Raffel et al.
[2023] finetuned on several NLI datasets.

Method AUC-ROC AUC-PR Accuracy
MultiSpanQA (47k | 5.7k)
Supervised 0.734 ± 0.013 0.358 ± 0.009 0.872 ± 0.042
Cosine Similarity 0.455 0.135 0.851
NLI 0.631 0.366 0.859
Response-level Model 0.582 ± 0.113 0.221 ± 0.089 0.851 ± 0.007
BagLoss 0.662 ± 0.069 0.307 ± 0.075 0.849 ± 0.091
FRACTAL* 0.687 ± 0.062 0.329 ± 0.053 0.843 ± 0.049
FRACTAL/Supervised% 93.59% 91.89% 96.67%

QA Preference Feedback (93.8k | 9k)
Supervised 0.652 ± 0.008 0.611 ± 0.007 0.691 ± 0.015
Cosine Similarity 0.535 0.526 0.483
Response-level Model 0.491 ± 0.008 0.4643 ± 0.007 0.453 ± 0.015
PrefBagLoss 0.511 ± 0.004 0.53 ± 0.002 0.524 ± 0.007
FRACTAL** 0.537 ± 0.003 0.531 ± 0.003 0.519 ± 0.006
FRACTAL/Supervised% 82.36% 86.91% 75.11%

WikiCatSum (209k | 10.7k)
Supervised 0.831 ± 0.051 0.889 ± 0.062 0.714 ± 0.048
Cosine Similarity 0.408 0.829 0.362
NLI 0.639 0.817 0.648
BagLoss 0.478 ± 0.065 0.829 ± 0.038 0.569 ± 0.036
FRACTAL* 0.643 ± 0.031 0.875 ± 0.035 0.665 ± 0.062
FRACTAL/Supervised% 77.37% 98.42% 93.14%

AquaMuSe (13.5k | 2.5k)
Supervised 0.878 ± 0.007 0.925 ± 0.002 0.867 ± 0.008
Cosine Similarity 0.632 0.763 0.649
NLI 0.793 0.889 0.824
Response-level Model 0.695 ± 0.009 0.775 ± 0.007 0.673 ± 0.01
BagLoss 0.747 ± 0.007 0.824 ± 0.005 0.779 ± 0.01
FRACTAL* 0.815 ± 0.005 0.899 ± 0.006 0.833 ± 0.01
FRACTAL/Supervised% 92.71% 97.19% 96.08%

PRM800K (663k | 18.5k)
Supervised 0.652 ± 0.015 0.935 ± 0.013 0.727 ± 0.022
Cosine Similarity 0.51 0.876 0.516
Response-level Model 0.537 ± 0.057 0.879 ± 0.045 0.535 ± 0.076
BagLoss 0.562 ± 0.024 0.883 ± 0.029 0.671 ± 0.033
FRACTAL* 0.593 ± 0.014 0.901 ± 0.006 0.618 ± 0.016
FRACTAL/Supervised% 90.05% 96.35% 85.01%

Table 4: Evaluations on Test-set (instance-level).
Prefix * indicates PSLAB method and ** indicates
PriorsPrefBagLoss. Last row for each dataset has
% of supervised achieved by FRACTAL. Note:
PSLAB is not applicable QA Preference Feedback
and FRACTAL is the model trained using Prior-
sPrefBagLoss.

Trainable Baselines. These baselines use the
bag or instance labels to train models.
BagLoss: This uses BagLoss, Ltotbag, on bag-
labels (or PrefBagLoss Ltotpref in case of pref-
erence bag-labels) described in Sec. 3.
Response-level: For training, this uses entire re-
sponse as a singleton bag i.e. |B| = 1 with x1
= response. Inference is done on sentences.
Supervised: Trains directly on sentence-labels
i.e. Train Instances of Tab. 2 to provide an upper
baseline for comparison.

FRACTAL: As described in Sec. 3,
this involves PriorsBagLoss (or PriorsPref-
BagLoss) based model training using bag-
labels (or preference bag-labels) as well pri-
ors. In the tables, PriorsBagLoss(λ1, λ2) and
PriorsPrefBagLoss(λ1, λ2) denote the instanti-
ation of these methods with weights λ1 and λ2
for the losses corresponding to the point and
pair priors respectively (see (7), (8) and Sec.
3.1). For the WikiCatSum dataset, we incorpo-
rate NLI entailment scores as a prior, assigning
a weight of λ3 for the corresponding loss term.
The weight for bag-loss (or preference bag-loss)
is adjusted so that the sum of all the loss weights
is 1. PSLAB denotes the performance of the
model trained after pseudo-labeling the train-set
using the best performing prior augmented bag
loss. Note that when we only have preference
bag-labels i.e., in the QA Preference Feedback
dataset PSLAB is not applicable, and FRACTAL
provides the model trained using PriorsPrefBagLoss.

Model Training Setup. Details about the model architecture for different tasks, training setup and
hyperparameter tuning can be found in Appendix F.

5.1 Experimental Results
Method MAE MSE

Supervised 0.283 ± 0.072 0.141 ± 0.088
Response-level Model 0.319 ± 0.047 0.186 ± 0.098
BagLoss 0.304 ± 0.007 0.163 ± 0.002
PriorsBagLoss(0.2, 0.2) 0.294 ± 0.003 0.155 ± 0.001
FRACTAL 0.293 ± 0.001 0.152 ± 0.002
FRACTAL/Supervised increase% 3.5% 7.8%

Table 5: Test (instance-level) evaluation on FiRA.

Tab. 4 and 5 provide the detailed evaluations
of the baselines and FRACTAL i.e PSLAB with
best performing PriorsBagLoss. For QA Prefer-
ence Feedback, since PSLAB is not applicable,
FRACTAL provides the model trained using Pri-
orsPrefBagLoss. Tab. 6 provides the results for fine-grained RLHF on the QA-Feedback dataset
using the framework provided by Wu et al. [2023] by replacing the human annotations (supervised)
with relevance label predictions from our FRACTAL model trained only on preference labels. We
evaluated the performance of the generated summaries by calculating the ROUGE score between
them and the reference summaries across the entire test set. Additionally, we conducted human
evaluations for generated outputs of both the finetuned models on 175 samples to determine the
precision score. Annotators compare the generated text with the reference output, counting the
number of sentences in the generated text that contain information from the reference. Thus, the
precision represents the fraction of relevant sentences in the generated output.

Ablations. In Tab. 7 we provide an ablation study on the effectiveness of priors and show how much
addition of each prior contributes to the performance of BagLoss shown in Tab. 4. We also adapt
our loss functions to ingest instance-level data by adding the instance-level loss term. Tab. 8 shows

7



the performance of the fully supervised model trained on a randomly sampled subset 20% labeled
training instances, along with models trained using our methods on the hybrid dataset i.e., the 20%
labeled training instances along with the remaining bag-level train-set. Results for these ablations are
in Appendix G.

5.2 Discussion

Method ROUGE Precision

SFT + Preference RLHF 43.759 0.451
SFT + FineGrained RLHF (FRACTAL) 44.087 0.479

Table 6: Fine-grained RLHF on QA-Feedback.

FRACTAL is highly label-efficient while per-
forming close to full supervision. As we can
see from Tab. 2, the number of training bags
is only a small fraction of (10 to 25 %) of the
training instances. Thus, FRACTAL consumes
only 10 to 25 % of the labels required to train a
fully supervised model. Nevertheless, the classification performance of the FRACTAL method (Tab.
4) shows that it achieves > 90% of the performance of the fully supervised model for most of the
datasets/metrics except for QA Preference Feedback where the it recovers ≈ 80% of the supervised
baseline.

FRACTAL renders more precise sentence-level scores. From Tab. 4, we observe a consistent
improvement in the sentence scoring over the BagLoss as well as the Response-level baseline across
all these datasets in terms of AUC-ROC, bridging the performance gap between them and the best
approach supervised (instance-level trained) model. The use of priors along with pseudo-labeling
based model training allows for an improved estimation of task specific score for sentences. It is
interesting to note that BagLoss outperforms the Response-level baseline, suggesting that introduction
of aggregate loss based methods to estimate sentence-level scores is itself useful. Response-level
model trained with large response doesn’t generalize well to individual sentences.

Leveraging Prior improves Feedback Disaggregation. Among the key ideas of FRACTAL is to
augment BagLoss with cosine-similarity and correlation priors at the sentence-level (see (7) and
(8)). As observed from our ablations in Tab. 7 along with the results in Tab. 4, as well as Tab. 5
for FiRA, introducing the prior loss terms, provides substantially improved performance over either
using just the BagLoss, or the cosine-similarity/NLI baselines. In effect, our proposed combination
performs better than either of its constituents. We hypothesize that the priors provide sentence-level
insight which complements the aggregate label based optimization of BagLoss. While performance
of FRACTAL is sensitive to the weights of each loss component, during our hyperparameter sweep,
we find that the model tends to select an upweighted BagLoss term for most datasets and metrics
except for QA Preference Feedback.

Calibrated Pseudo-Labels are more helpful. From Tables 4, 5, 7 we can see that for all tasks
applying PSLAB produces outperforms the models trained using PriorsBagLoss. This indicates the
effectiveness of calibrating the disaggregated scores such that their aggregate matches the response
scores for training the final model.

Downstream Tasks benefit from sentence-level scoring. Wu et al. [2023] showed that using fine
grained human labels per segment level across 3 categories irrelevant, untruthful, completeness can
help improve performance. In the above setup, we replace the fine grained human labels of relevance
with the FRACTAL predictions (Refer Long-Form Question Answering task in Sec. 4). We observe
in Tab. 6 that FRACTAL (Row 2) helps improve performance over using only preference labels (Row
1) by around 6.2% in precision and 0.74% in the ROUGE score.

6 Conclusions

Our works casts the problem of deriving sentence-level scores from response-labels for complex text
generation tasks as that of learning from aggregated labels in the MIL and LLP frameworks. We
propose a novel method FRACTAL, which augments bag-loss using instance level priors to train
predictor models, along with a pseudo-labeling technique for improved model training. Extensive
evaluations of FRACTAL along with vanilla bag-loss and response-level model training baselines, as
well as off-the-shelf scorers demonstrate substantial performance gains from FRACTAL models on
six datasets spanning four tasks: retrieval, question answering, summarization, and math reasoning.
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FRACTAL: Fine-Grained Scoring from
Aggregate Text Labels (Appendix)
A Related Work

Multiple Instance Learning (MIL). Here the bag label is modeled as MAX or MIN of the its
(unknown) instance-labels (typically labels are {0, 1}-valued). Introduced to model drug activity
detection by Dietterich et al. [1997], MIL has been applied to domains like drug discovery Maron and
Lozano-Pérez [1997], time series prediction Maron [1998], retrieval Lozano-Pérez and Yang [2000]
and medical imaging Wu et al. [2015].Ramon and De Raedt [2000] proposed a bag-loss method
using log-sum exponential approximation to MIN, which was followed by adaptations of boosting
and logistic regression Zhang et al. [2005], Ray and Craven [2005], while specialized methods such
as EM-DD Zhang and Goldman [2001] have also been developed.

Learning from Label Proportions (LLP). Here the bag-label is the average of the instance-labels,
and arises in the context of label privacy concerns Rueping [2010], costly supervision Chen et al.
[2004] or lack of labeling instrumentation Dery et al. [2017]. Early work applied traditional supervised
learning techniques de Freitas and Kück [2005], Musicant et al. [2007], Rueping [2010], while those
of Quadrianto et al. [2009], Patrini et al. [2014] estimated model parameters from bag-labels and
Yu et al. [2013] proposed an SVM for LLP. Subsequent work used bag pre-processing Scott and
Zhang [2020], Saket et al. [2022] and trained deep networks Kotzias et al. [2015], Liu et al. [2019],
specifically Ardehaly and Culotta [2017] proposed the bag-loss method which is commonly used as a
baseline.

MIL and LLP for NLP. Applications such as sentiment analysis Pappas and Popescu-Belis [2014],
Angelidis and Lapata [2018] and document modeling Pappas and Popescu-Belis [2017] have previ-
ously admitted MIL techniques, while more recently Liu et al. [2022] modeled offensive language
detection as an MIL problem and proposed a mutual attention based mechanism. On the other hand,
the applications of LLP are relatively sparser: Ardehaly and Culotta [2016] applied it to domain
adaptation for text data, while recent work Chauhan et al. [2023] proposed a novel method improving
on the baseline model training technique of Ardehaly and Culotta [2017] for text classification.

For both MIL and LLP, previous works have proposed pseudo-labeling based model training methods,
in which the weak-supervision of bag-labels is used along with model predictions to derive pseudo-
labels which can be used to train or fine-tune models. For e.g. pseudo-labels are computed via
regularization Wang et al. [2023], Liu et al. [2021] or expectation-maximization Luo et al. [2020],
Barucic and Kybic [2022] techniques.

B Choice of probAGG

The extension for MIN is: probAGG (M(x1), . . . ,M(xk)) = M(xi∗) where i∗ :=
argmin (ỹ(x1), . . . , ỹ(xk))) is the index of the instance with the minimum soft-label as defined in
Section 3.1. We use the in-built TensorFlow (TF) tf_math_argmin function to compute argmin.
For MAX we use the tf_math_argmax function. We investigate other popular differentiable
approximations of the MIN function and present experimental results for the binary classifica-
tion setting in Appendix H. For AVG, we simply take the average of the model predictions i.e.,
probAGG (M(x1), . . . ,M(xk)) = (1/k)

∑k
i=1M(xi).

C Pair Prior Loss

The Lprprior introduced in Section 3.1 is defined as follows:

Lprprior (pxz, ỹ(x), ỹ(z)) :=∣∣∣∣pxz − ỹ(x)

C

ỹ(z)

C

∣∣∣∣ . ∣∣∣∣pxz − (1− ỹ(x)

C

)(
1− ỹ(z)

C

)∣∣∣∣ (9)
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We assume that pxz represents the probability of instances x and z having the same label. A low pxz
value indicates that these instances likely belong to different classes. We design a loss function that is
minimized when the predicted classes for both instances are consistent with the value of the prior.

D Details on Tasks and Datasets

Additional details for Retrieval and Summarization tasks described in Section 4

Retrieval. We use two datasets for retrieval tasks: MultiSpanQA and FiRA. MultiSpanQA Li et al.
[2022] consists of question and retrieved context pairs, with annotated discontinuous answer spans
for the train and validation splits (See Tab. 1 for example). We randomly select 25% of the train-split
as the test-split. Context is treated as a bag, with sentences as instances labeled 1 if they overlap with
annotated spans, and 0 otherwise. The MAX aggregation is used to indicate the presence an answer
in the context. Given all MultiSpanQA samples contain answers, we create negative bags for half of
the samples by extracting context chunks without answers. Thus, both the instance and bag labels are
{0, 1}-valued.

The FiRA dataset Hofstätter et al. [2020] comprises word-level relevance annotations using
{0, . . . , 4}-valued labels. We derive the sentence-level scores by taking the word-level average
across annotators and then the maximum across all words in a sentence. Similar to the previous
setup, we treat the paragraph as a bag, its sentences as instances, and employ MAX as the aggregation
function. The instance and bag-level belongs to the set {0, 1, 2, 3, 4}, with the goal of optimizing a
cross entropy loss.

For both datasets, we integrate a correlation prior between sentence pairs and a cosine-similarity prior
(see (7), (8)) between the query and each sentence of the context.

Summarization. We utilize two datasets: WikiCatSum Perez-Beltrachini et al. [2019] and Aqua-
MuSe Kulkarni et al. [2020].

We adopt the binary entailment metric for this task. The reference summaries already provided in
these two datasets serve as the entailed summaries† with each sentence considered positively entailed.
To generate non-entailed summaries, we synthesize negatives similar to Yin et al. [2021]. Firstly,
we perturb the reference summary through sentence replacement. This involves randomly selecting
k sentences, where k is less than the total sentences in the summary, and iteratively feeding their
left context to an PALM-2 Anil et al. [2023] to predict the next sentence. The predicted sentence
is then used to replace the selected one. Additionally, we explore the standard word replacement
technique, which randomly masks k words whose POS tags are among proper nouns, numbers, and
verbs, to introduce factual errors in the summaries. The masked words are then predicted using
BERT Devlin et al. [2018]. The perturbed sentences within the summary are considered non-entailed.
Thus, the sentence as well as bag labels are {0, 1}-valued with 1 indicating entailed and 0 non-
entailed, with MIN as the aggregation function. Examples of entailed and non-entailed summaries are
provided in Appendix L. As in previous tasks, we incorporate sentence-document cosine similarity
and sentence correlation priors into our methods. Additionally, we experiment with NLI entailment
scores Honovich et al. [2022] as priors for this task.

E Task Specific Discussion of Experimental Results

Following is the detailed per-task analysis:

Long-form Question Answering. As presented in Table 4, the model trained using our PriorsBa-
gLoss method on preference labels with the cosine-similarity prior has the best AUC-ROC, AUC-PR
and accuracy scores in the experiments on the QA-feedback dataset. It outperforms both BagLoss
as well as the cosine-similarity based baselines, the latter one by a significant margin. However, we
observe that the performance of the correlation prior based variant is worse than that of the BagLoss
baseline which itself is worse than the Response-level trained baseline.

†In this work, we do not filter any noise present in the existing data splits.
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Retrieval. In the MultiSpan-QA dataset experiments (Table 4) we observe that the model trained
by applying PsLab on the predictions of the model trained on PriorsBagLoss with a combination
of the cosine-similarity and correlation priors achieves the best AUC-ROC and AUC-PR scores (by
a significant gap) among the bag level baselines, while the variant with only the cosine-similarity
prior performs the second bet on these metrics. However, the Response-level trained model and
BagLoss achieve marginally higher accuracy scores. All these methods also handily outperform the
cosine-similarity baseline. From the FiRA dataset results (Table 5) we observe that the our prior
augmented BagLoss method, specifically the using both the priors, performs the best on mae as well
as mse metrics.

Summarization. The experimental results on the WikiCatSum dataset, presented in Table 4, show
that our PriorsBagLoss method with different combinations of the cosine-similarity and the correlation
priors, or using NLI as a prior, as well as the PsLab method on these models yield the best performance
(by a significant margin) in terms of AUC-ROC, AUC-PR and accuracy metrics. The comparative
baselines are the BagLoss, NLI and cosine-similarity. A similar trend is observed on the AquaMuse
dataset (Table 4) on which the our methods significantly outperform the bag-level baselines, in
particular the PsLab applied to the PriorsBagLoss method yields the best performing model.

Math Reasoning. On the PRM800k dataset, we observe from the experimental evaluations (Table
4) that the BagLoss and PriorsBagLoss methods are best performing among the bag-level baselines
and also outperform the cosine-similarity baselines. While PriorsBagLoss using a combination of
cosine-similarity and correlation priors achieves better AUC-ROC scores, BagLoss has significantly
better accuracy while the AUC-PR scores are similar.

F Model Training Setup

We use the same model architecture across all tasks: a Sentence-T5 Large encoder to generate
embeddings for text components, followed by a 2-hidden layer MLP with 73728 parameters for pre-
dicting sentence-level scores. To handle lengthy documents exceeding 2000 tokens in MultiSpanQA,
WikiCatSum, and AquaMuSe datasets, we partition documents into 1000-token paragraphs which
are encoded separately to improve embedding quality. Subsequently, attention weights representing
importance are learnt for each document split, and the document embedding is obtained through a
weighted sum of individual split embeddings. We report mean and standard deviation observed over
10 randomly seeded trials. We conduct grid search hyperparameter tuning to identify optimal parame-
ter configurations, including learning rates, weights of prior terms integrated into the loss function,
and batch sizes. The range of parameters we searched over and the list of optimal hyperparameters
for each dataset is provided in Appendix J.

G Ablation Studies

In Tab. 7 we provide an ablation study on the effectiveness of priors and show how much addition
of each prior contributes to the performance of BagLoss shown in Tab. 4. We also adapt our loss
functions to ingest instance-level data by adding the instance-level loss term. Tab. 8 shows the
performance of the fully supervised model trained on a randomly sampled subset 20% labeled
training instances, along with models trained using our methods on the hybrid dataset i.e., the 20%
labeled training instances along with the remaining bag-level training set. From Tab. 8 we observe
that with even 20% instance level labels, we are able to further improve the performance of FRACTAL
across all datasets in comparison to Tab. 4, while improving for most metrics on the supervised model
trained on 20% of the labeled instances.

H Results for Differentiable Minimum Approximations

In the binary-label case, the standard baseline is Mult which is just the product of the soft-labels.
More sophisticated approximations that we include in our study are LSE Ramon and De Raedt [2000],
ISR, NOR and GM Zhang et al. [2005] (see Sec. 2.4.1 of Babenko [2008] for details). For the binary
case, we can employ the in built TensorFlow (TF) approximation tf_reduce_min over the soft-label
(which is used for the loss functions) in our experiments, noting that MAX can be derived from MIN
applied to flipped variables in the binary case.
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Method AUC-ROC AUC-PR Accuracy
MultiSpanQA
PriorsBagLoss(0.2, 0) 0.668 ± 0.054 0.313 ± 0.04 0.836 ± 0.052
PriorsBagLoss(0, 0.2) 0.629 ± 0.055 0.279 ± 0.028 0.850 ± 0.033
QA Preference Feedback
PriosrPrefBagLoss(0.2, 0) 0.517 ± 0.004 0.495 ± 0.003 0.512 ± 0.006
PriorsPrefBagLoss(0, 0.4) 0.528 ± 0.003 0.521 ± 0.002 0.533 ± 0.004
PriorsPrefBagLoss(0.2, 0.5) 0.537 ± 0.003 0.531 ± 0.003 0.519 ± 0.006

WikiCatSum
PriorsBagLoss(0.2, 0, 0) 0.636 ± 0.019 0.877 ± 0.003 0.639 ± 0.01
PriorsBagLoss(0, 0.3, 0) 0.518 ± 0.005 0.719 ± 0.009 0.391 ± 0.006
PriorsBagLoss(0.2, 0.1, 0) 0.639 ± 0.021 0.885 ± 0.009 0.653 ± 0.013
PriorsBagLoss(0, 0, 0.4) 0.643 ± 0.024 0.881 ± 0.012 0.652 ± 0.017

PRM800K
PriorsBagLoss(0.6, 0) 0.573 ± 0.014 0.889 ± 0.008 0.624 ± 0.017
PriorsBagLoss(0, 0.1) 0.577 ± 0.023 0.925 ± 0.017 0.603 ± 0.038
PriorsBagLoss(0.5, 0.1) 0.588 ± 0.017 0.891 ± 0.006 0.622 ± 0.015

Table 7: Prior Ablation: Across all tasks, we see that using priors improves performance over all
baselines given in Table 4 and that Point,Pair priors have additive benefits.

Method AUC-ROC AUC-PR Accuracy
MultiSpanQA Supervised (20%) 0.658 ± 0.019 0.299 ± 0.013 0.828 ± 0.031
FRACTAL* 0.691 ± 0.031 0.325 ± 0.027 0.844 ± 0.051

QA Preference Supervised (20%) 0.576 ± 0.007 0.539 ± 0.004 0.603 ± 0.012
FRACTAL** 0.585 ± 0.015 0.54 ± 0.006 0.607 ± 0.008
WikiCatSum Supervised (20%) 0.773 ± 0.041 0.88 ± 0.019 0.652 ± 0.039
FRACTAL* 0.662 ± 0.016 0.881 ± 0.009 0.674 ± 0.005

PRM800K Supervised (20%) 0.592 ± 0.012 0.897 ± 0.01 0.686 ± 0.017
FRACTAL* 0.599 ± 0.007 0.912 ± 0.004 0.651 ± 0.009

Table 8: Hybrid learning ablations with 20% instance-level data. * indicates PSLAB method and **
indicates PriorsPrefBagLoss.

Table 9 has an ablation of Mult, GM and tf_reduce_min for the BagLoss and PriorBagLoss methods
on the WikiCatSum dataset, demonstrating that tf_reduce_min outperforms the others in AUC-ROC
and AUC-PR metrics.

I Aggregate and instance-level evaluations

We also include evaluations of the various methods on a test set of bags w.r.t. bag-level metrics using
the corresponding AGG approximations. Tables 10, 11, 12, 13, 14 and 11 contain the aggregate as
well as instance evaluations.

Table 16 compares the performance achieved on the WikiCatSum dataset by varying the percentage
of 1-bags in the training set.

Model AND Approx AUC-ROC AUC-PR
Instance Baseline - 0.837 0.894

BagLoss
Mult 0.449 0.785
GM 0.463 0.824
tf.reduce_min 0.478 0.829

PriorBagLoss(0.2, 0.1)
Mult 0.599 0.858
GM 0.631 0.862
tf.reduce_min 0.643 0.877

Table 9: Results for differentiable AND approximations on WikiCatSum dataset
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Evaluation Model AUC-ROC AUC-PR Accuracy Precision Recall

Aggregate

Cosine Similarity 0.488 0.287 0.698 0 0
NLI 0.6855 0.522 0.7453 0.7883 0.319
Response-level Model 0.681 ± 0.012 0.525 ± 0.081 0.726 ± 0.033 0.752 ± 0.011 0.428 ± 0.063
Sentence-level Model 0.653 ± 0.076 0.462 ± 0.050 0.723 ± 0.015 0.599 ± 0.093 0.435 ± 0.187
BagLoss 0.678 ± 0.082 0.525 ± 0.072 0.718 ± 0.057 0.717 ± 0.014 0.391 ± 0.033
0.8 BagLoss + 0.2 P1 0.683 ± 0.053 0.527 ± 0.02 0.722 ± 0.035 0.748 ± 0.009 0.461 ± 0.01
0.7 BagLoss + 0.2 P2 + 0.1 P1 0.665 ± 0.061 0.491 ± 0.04 0.727 ± 0.029 0.693 ± 0.018 0.316 ± 0.037

Instance

Cosine Similarity 0.455 0.135 0.851 0 0
NLI 0.631 0.366 0.859 0.872 0.178
Response-level Model 0.583 ± 0.187 0.217 ± 0.094 0.852 ± 0.003 0.529 ± 0.074 0.086 ± 0.04
Sentence-level Model 0.729 ± 0.016 0.354 ± 0.008 0.861 ± 0.046 0.717 ± 0.011 0.438 ± 0.072
BagLoss 0.661 ± 0.092 0.309 ± 0.127 0.852 ± 0.133 0.711 ± 0.074 0.24 ± 0.188
0.8 BagLoss + 0.2 P1 0.669 ± 0.063 0.311 ± 0.059 0.838 ± 0.071 0.65 ± 0.089 0.189 ± 0.112
0.7 BagLoss + 0.2 P2 + 0.1 P1 0.625 ± 0.07 0.271 ± 0.039 0.851 ± 0.021 0.639 ± 0.189 0.135 ± 0.098
FGLAB 0.693 ± 0.115 0.326 ± 0.071 0.842 ± 0.052 0.676 ± 0.043 0.228 ± 0.091

Table 10: Comparison of aggregate and instance-level performance on MultiSpanQA Dataset

Evaluation Method AUC-ROC AUC-PR Accuracy Precision Recall
Preference Cosine Similarity 0.4978 0.3952 0.477 0.379 0.4985

Response-level Model 0.546 0.4651 0.553 0.437 0.539
BagLoss 0.543 0.4644 0.5463 0.442 0.5324
PriorBagLoss(0.2,0) 0.568 0.4658 0.574 0.439 0.5467

Instance Sentence-level Model 0.647 0.611 0.686 0.722 0.418
Cosine Similarity 0.535 0.526 0.483 0.893 0.134
Response-level Model 0.491 0.4643 0.453 0.882 0.278
BagLoss 0.509 0.5269 0.5167 0.814 0.36
PriorBagLoss(0.2, 0) 0.516 0.4936 0.508 0.647 0.715

Table 11: Comparison of Preference and instance-level evaluation on QA Preference Feedback
Dataset

J Hyperparameter Tuning

The key hyperparameters in our approach include the weights of the bag loss and prior loss terms,
as well as the learning rate. We conducted a grid search over various values for these parameters to
identify the optimal combination for each dataset. The learning rates considered were {1e− 2, 1e−
3, 1e− 4, 1e− 5, 1e− 6}, and the weights for each term were selected from {0, 0.1, 0.2, · · · 1}. As
noted, we only consider convex combinations of the different loss terms, so combinations where the
sum of the coefficients exceeds 1 were excluded. Table 17 contains the best weights for our prior
augmented BagLoss method on different datasets, along with the best learning rates and batch size in
the bag-level training.

K Details on Test Splits

We use the original test split for all datasets except WikiCatSum, whenever applicable.
PRM800K: We use both Phase 1 and 2 of the PRM800K dataset and maintain the same test splits as
the original dataset. We split the train set into 75% for training and 10% for validation.
MultiSpanQA: We randomly select 25% of the train split to form the test split. This is because the

Evaluation Model MAE MSE

Aggregate
Instance-level Model 0.375 ± 0.09 0.247 ± 0.113
Response-level Model 0.320 ± 0.042 0.197 ± 0.017
BagLoss 0.326 ± 0.021 0.209 ± 0.007

Instance
Instance-level Model 0.283 ± 0.072 0.141 ± 0.088
Response-level Model 0.319 ± 0.047 0.186 ± 0.098
BagLoss 0.304 ± 0.007 0.163 ± 0.002
PriorBagLoss(0.3, 0) 0.298 ± 0.002 0.157 ± 0.004
PriorBagLoss(0.2, 0.2) 0.294 ± 0.003 0.155 ± 0.001

Table 12: Comparison of Aggregate and Instance-level evaluations on FirA Dataset
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Method AUC-ROC AUC-PR Accuracy Precision Recall
Instance Baseline 0.837 ± 0.062 0.894 ± 0.085 0.718 ± 0.085 0.926 ± 0.001 0.733 ± 0.003
NLI 0.639 0.817 0.648 0.834 0.559
Cosine Similarity 0.408 0.829 0.362 0.719 0.276
BagLoss 0.477 ± 0.093 0.831 ± 0.052 0.562 ± 0.047 0.769 ± 0.018 0.319 ± 0.048
PriorBagLoss(0.2, 0.1) 0.641 ± 0.028 0.879 ± 0.013 0.651 ± 0.017 0.897 ± 0.009 0.658 ± 0.082
PSLAB 0.645 ± 0.038 0.879 ± 0.057 0.663 ± 0.091 0.884 ± 0.076 0.661 ± 0.092
0.6*BagLoss + 0.4*NLI 0.642 0.885 0.653 0.914 0.619

Table 13: Instance-level Evaluation on WikiCatSum

Method AUC-ROC AUC-PR Accuracy Precision Recall
Sentence-level Model 0.613 ± 0.028 0.928 ± 0.021 0.709 ± 0.051 0.902 ± 0.018 0.993 ± 0.004
Response-level Model 0.528 ± 0.145 0.895 ± 0.037 0.521 ± 0.082 0.851 ± 0.055 0.577 ± 0.065
Cosine Similarity 0.420 0.873 0.496 0.888 0.683
BagLoss 0.569 ± 0.019 0.924 ± 0.011 0.688 ± 0.071 0.904 ± 0.014 0.955 ± 0.048
PriorBagLoss(0.5, 0) 0.582 ± 0.034 0.927 ± 0.009 0.534 ± 0.044 0.920 ± 0.014 0.606 ± 0.037
PriorBagLoss(0, 0.1) 0.579 ± 0.052 0.925 ± 0.017 0.603 ± 0.038 0.908 ± 0.020 0.794 ± 0.055
PriorBagLoss(0.1, 0.1) 0.580 ± 0.068 0.926 ± 0.024 0.563 ± 0.049 0.914 ± 0.028 0.708 ± 0.077
psl 0.597 ± 0.093 0.927 ± 0.004 0.578 ± 0.063 0.911 ± 0.009 0.713 ± 0.128

Table 14: Instance-level Evaluation on PRM800K

original dataset’s test split lacks annotated answer spans.
FiRA: We partitioned the samples into 75% for training, 10% for validation, and 15% for testing.
WikiCatSum: We subsample 750 samples from test splits of the Animal and Film domains.
AquaMuSe: The original test split of the abstractive version of AquaMuSe has been utilized for
testing purposes.
QA Feedback: Preference annotations were available for both the training and development sets.
We reserved the dev set for validation purposes and divided the original training dataset into an 80:20
ratio for training and testing. We only consider wins and losses and have removed any ties before
splitting the dataset.

L Generation of Perturbed Summaries from the WikiCatSum and
Aquamuse Datasets

We utilize two datasets: WikiCatSum and AquaMuSe for the entailment (or summarization) task.
The WikiCatSum dataset Perez-Beltrachini et al. [2019] is specifically designed for multi-document
summarization tasks, focusing on generating Wikipedia-style lead sections for entities within three
domains: Companies, Films, and Animals out of which we focus on the Films and Animals domains.
On the other hand, the AquaMuSe dataset Kulkarni et al. [2020] is tailored for multi-document,
question-focused summarization.

We adopt the binary entailment metric for this task. The reference summaries already provided in
these two datasets serve as the entailed summaries†. Each sentence in these summaries is considered
positively entailed. To generate non-entailed summaries, we synthesize negatives by employing
various manipulations, similar to Yin et al. [2021]. Firstly, we perturb the reference summary through
sentence replacement. This involves randomly selecting k sentences, where k is less than the total

†In this work, we do not filter any noise present in the existing data splits.

Method AUC-ROC AUC-PR Accuracy Precision Recall
Sentence-level Model 0.648 0.611 0.686 0.722 0.418
Cosine Similarity 0.535 0.526 0.483 0.893 0.134
Response-level Model 0.491 0.4643 0.453 0.882 0.278
BagLoss 0.509 0.5269 0.5167 0.814 0.36
PriorBagLoss(0.2, 0) 0.516 0.4936 0.508 0.647 0.715
PriorBagLoss(0, 0.4) 0.527 0.515 0.529 0.519 0.763
PriorBagLoss(0.2, 0.5) 0.532 0.522 0.521 0.738 0.469

Table 15: QA Preference Feedback Results (Instance Evaluation)
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Method AUC-ROC AUC-PR Accuracy
30% 1-bags
Supervised 0.735 ± 0.023 0.888 ± 0.006 0.762 ± 0.018
BagLoss 0.605 ± 0.011 0.879 ± 0.006 0.713 ± 0.015
PriorBagLoss(0.2, 0) 0.622 ± 0.018 0.887 ± 0.009 0.724 ± 0.032

40% 1-bags
Supervised 0.759 ± 0.028 0.887 ± 0.01 0.771 ± 0.015
BagLoss 0.569 ± 0.017 0.866 ± 0.004 0.694 ± 0.027
PriorBagLoss(0.2, 0) 0.618 ± 0.01 0.885 ± 0.006 0.723 ± 0.02

50% 1-bags
Supervised 0.831 ± 0.051 0.889 ± 0.062 0.714 ± 0.048
BagLoss 0.478 ± 0.065 0.829 ± 0.038 0.569 ± 0.036
PriorBagLoss(0.2, 0.1) 0.639 ± 0.021 0.881 ± 0.009 0.653 ± 0.013

60% 1-bags
Supervised 0.784 ± 0.02 0.886 ± 0.011 0.738 ± 0.027
BagLoss 0.617 ± 0.021 0.882 ± 0.014 0.697 ± 0.022
PriorBagLoss(0.2, 0) 0.629 ± 0.031 0.883 ± 0.01 0.668 ± 0.013

70% 1-bags
Supervised 0.721 ± 0.035 0.885 ± 0.013 0.743 ± 0.028
BagLoss 0.563 ± 0.019 0.861 ± 0.011 0.688 ± 0.025
PriorBagLoss(0.2, 0) 0.626 ± 0.017 0.886 ± 0.03 0.724 ± 0.033

Table 16: Comparison of performance achieved on the WikiCatSum dataset by varying the percentage
of 1-bags in the training set.

Dataset α1 α2 α3 Learning Rate Batch Size
QA-Feedback 0.3 0.2 0.5 1e-5 256
MultiSpanQA 0.8 0.2 0 1e-3 512
WikiCatSum 0.7 0.2 0.1 1e-4 1024
FiRA 0.6 0.2 0.2 1e-5 1024
AquaMuSe 0.7 0.2 0.1 1e-3 512
PRM800K 0.8 0.1 0.1 1e-4 64

Table 17: α1, α2, and α3 represent the coefficients of the BagLoss, cosine similarity prior and
correlation prior terms in the loss function.

sentences in the summary, and iteratively feeding their left context to an ULM to predict the next
sentence. The predicted sentence is then used to replace the selected one. Additionally, we explore
the standard word replacement technique, which randomly masks k words whose POS tags are among
proper nouns, numbers, and verbs, to introduce factual errors in the summaries. The masked words
are then predicted using BERT. The number of replaced sentences and words is randomly selected
for each sample. The perturbed sentences within the summary are considered non-entailed, while the
remaining unchanged sentences are deemed entailed. Thus, the sentence as well as bag labels are
{0, 1}-valued with 1 indicating entailed and 0 non-entailed, with MIN as the aggregation function.

Tables 18 and 19 contain the entailed and non-entailed (perturbed) summaries for the Aquamuse and
WikiCatSum datasets respectively.

M PsLab for Multiclass

Suppose that the label set is {0, . . . , C} where C ∈ Z+ and C > 1. With the setup as in Sec. 3.2,
here we describe PsLab for MAX aggregation which is used in the FirA dataset. Note that MIN
aggregation is equivalent to MAX with the ordering on the labels reversed.

Case {0, . . . , C}-labels and MAX aggregation. The algorithm AMAX
PsLab, on a given bag B and yB ,

outputs ΓB : B → {0, . . . , C} as

1. For each x ∈ B, let ΓB(x) = argmax`∈{0,...,C}M(x)[`].
2. If yB > maxx∈B ΓB(x) then:

(a) Let z := argmaxx∈BM(x)[yB ]/M(x)[Γ(x)].
(b) Assign ΓB(z) = yB .

3. else if yB < maxx∈B ΓB(x) then:
(a) Let S = {x ∈ B | ΓB(x) > yB}.
(b) For each x ∈ S: let ` = argmaxk∈{0,...,yB}M(x)[k]/M(x)[ΓB(x)], and set ΓB(x) = `.
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Type Summary

Reference Sum-
mary

She also is the first ever woman in Indian History to be nominated as the Rajya Sabha mem-
ber. She is considered the most important revivalist in the Indian classical dance form of
Bharatanatyam from its original’ sadhir’ style, prevalent amongst the temple dancers, Devadasis,
she also worked for the re-establishment of traditional Indian arts and crafts.

Word Replace-
ment

She also is the first ever woman in Indian History to be nominated as the Rajya Sabha Independent
member. She is considered the most important revivalist in the Indian classical dance form of
Kathak from its Nautch ’sadhir’ style, prevalent amongst the temple singers. Furthermore, she
also advocated for the re-establishment of traditional Indian arts and crafts.

Sentence
Replacement

She also is the first ever woman in Indian History to be nominated as the Rajya Sabha mem-
ber. She is considered the most important revivalist in the Indian classical dance form of
Bharatanatyam from its original’ sadhir’ style, prevalent amongst the temple dancers. She was
also a strong advocate for animal welfare and environmental protection, actively participating in
campaigns and legislative efforts throughout her life.

Table 18: Example of the entailed and non-entailed versions of the summary from AquaMuSe Dataset.
We either use entailed or non-entailed version.

Type Summary

Reference Sum-
mary

the gold spangle ( autographa bractea ) is a moth of the family noctuidae . it is found in europe
, across western siberia and the altai mountains , the northern caucasus , northern turkey and
northern iran . its wingspan is 42 – 50 mm . the forewings are brown and gray with large
rhomboid golden marks . the hindwings and body are lighter grayish brown . the moth flies from
july to august depending on the location , and migrates long distances . the larvae feed on a wide
range of plants including hieracium , tussilago farfara , plantago , crepis paludosa , taraxacum ,
urtica , lamium , stachys and eupatorium cannabinum .

Word Replace-
ment

the gold spangle ( autographa californica ) is a moth of the family noctuidae . it is found in
western north america , across california and the altai mountains , south dakota and new mexico
. its wingspan is 16 - 25 mm . the forewings are blue and gray with silver-white long lateral
part and a patch of chestnut brown . the hindwings and body are a grayish tan . the moth flies
from march to september depending on the location , and migrates long distances . the larvae
feed on a wide range of herbaceous plants including legumes such as fabaceae , alfalfas , peas ,
taraxacum , urtica , lamium , stachys and eupatorium cannabinum .

Sentence
Replacement

the gold spangle ( autographa bractea ) is a moth of the family noctuidae . it is found in europe
, across western siberia and the altai mountains , the northern caucasus , northern turkey and
northern iran . its wingspan is 42 – 50 mm . the forewing has an inner line below middle
finely golden in color, and the outer one is golden at the inner margin only . the hindwings and
body are lighter grayish brown . the moth flies from july to august depending on the location ,
and migrates long distances . Occupying waste ground, gardens and moorland, this species is
widespread and fairly common in the north of Britain .

Table 19: Example of the entailed and non-entailed versions of the summary from WikiCatSum
Dataset. We either use entailed or non-entailed version.

(c) If yB > maxx∈B ΓB(x) repeat Steps 2(a) and 2(b).
4. Output ΓB .

Note that AMAX
PsLab in the {0, 1}-label case, outputs the all 0s assignment for a bag B if yB = 0, and if

yB = 1, it first finds the max likelihood assignment, and if it is all 0s, then it sets the label of z to 1
which maximizesM(x)[1]/M(x)[0] =M(x)[1]/(1−M(x)[1]) which is the same as maximizing
M(x)[1]. Thus, this is equivalent to the algorithm for MIN aggregation described in Sec. 3.2 by
flipping the labels. Therefore, it suffices to prove the correctness of AMAX

PsLab, as we do in the following
lemma. To aid our proof, we shall use the definition of likelihood

G(M, B,Γ) :=
∏
x∈B
M(x)[Γ(x)] (10)

for bag B and Γ : B → {0, . . . , C}.
Lemma M.1. For any bag B with aggregate MAX label yB , the output ΓB of AMAX

PsLab maximizes
the likelihood over the set of labellings P := {ω : B → {0, . . . , C} | maxx∈B ω(x) = yB} i.e., it
satisfies:

G(M, B,ΓB) = max
ω∈P

G(M, B, ω) (11)
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Proof. Let us first define another set of labellings Q := {ζ : B → {0, . . . , C} | maxx∈B ζ(x) ≤
yB}. Clearly P ⊆ Q. We have the following lemma.

Lemma M.2. Let ζ∗ = argmaxζ∈QG(M, B, ζ) such that maxx∈B ζ
∗(x) < yB , and let z :=

argmaxx∈BM(x)[yB ]/M(x)[ζ∗(z)]. Then, with ω defined as ω(z) = yB and for all x ∈ B \
{z}, ω(x) = ζ∗(x), we have that G(M, B, ω) = maxω∈P G(M, B, ω).

Proof. Let ω∗ be a maximizer of G(M, B, ω) in P , i.e. G(M, B, ω∗) = maxω∈P G(M, B, ω).
Now since P ⊆ Q, we have that G(M, B, ζ∗) ≥ G(M, B, ω∗). Let z′ ∈ B s.t. ω∗(z′) = yB
which must exist by the definition of P . Now, for all x ∈ B \ {z′},M(x, ζ∗(x)) ≥M(x, ω∗(x)),
otherwise if there is some x violating this, then one could increase G(M, B, ζ∗) by changing ζ∗(x)
to ω∗(x). Thus, we can define ω′ ∈ P where ω′(z′) = ω∗(z′) = yB and for all x ∈ B \ {z′},
ω′(x) = ζ∗(x), so that G(M, B, ω′) ≥ G(M, B, ω∗). Now, in ω′ changing the label of z′ to ζ∗(z′)
followed by changing the label of z (defined in the statement of lemma) to yB yields ω and by the
definition of z, this does not decrease the likelihood, thus completing the proof.

Using the above lemma, we complete the proof by observing that at the start of Step 2(a), ΓB =
argmaxζ∈QG(M, B, ζ) s.t. maxx∈B ΓB(x) < yB . This of course is true when ΓB maximizes the
likelihood over all labelings. A simple argument shows that this is also true if ΓB is obtained from
Steps 3(b) followed by 3(c) satisfying the inequality in the latter: in this case ΓB is obtained from a
likelihood maximizer over all labelings, and then for each x whose label is greater than yB , its label
is changed to the one in {0, . . . , yB} which has the maximum probability.

N Limitations

Our method for label calibration and pseudo-labeling works well in classification tasks, leading to
better performance. However, applying this technique becomes difficult when dealing with preference
feedback. Also, if the bag size becomes very large, there is a risk of the bag-loss functions becoming
intractable.
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