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Abstract
Learning to assemble geometric shapes into a
larger target structure is a pivotal task in var-
ious practical applications. In this work, we
tackle this problem by establishing local corre-
spondences between point clouds of part shapes
in both coarse- and fine-levels. To this end, we
introduce Proxy Match Transform (PMT), an ap-
proximate high-order feature transform layer that
enables reliable matching between mating sur-
faces of parts while incurring low costs in mem-
ory and compute. Building upon PMT, we in-
troduce a new framework, dubbed Proxy Match
TransformeR (PMTR), for the geometric assem-
bly task. We evaluate the proposed PMTR on
the large-scale 3D geometric shape assembly
benchmark dataset of Breaking Bad and demon-
strate its superior performance and efficiency com-
pared to state-of-the-art methods. Project page:
https://nahyuklee.github.io/pmtr.

1. Introduction
Shape assembly aims to determine a precise placement for
each constituent part and construct a larger target shape
as a whole. This task holds paramount significance, espe-
cially in the context of various applications encompassing
robotics (Wang & Hauser, 2019; Zakka et al., 2020; Zeng
et al., 2021), manufacturing (Tian et al., 2022), computer
graphics (Li et al., 2012), and computer-aided design (Chen
et al., 2015; Jacobson, 2017). Despite its pivotal role in
industrial productivity and the plethora of applications, the
field of shape assembly remains relatively underexplored
in the literature due to the intricate challenge it presents:
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demands for comprehensive understanding of geometric
structures and analyses of pairwise relationships between
local surfaces of given input parts for accurate assembly.

There have been several recent attempts (Schor et al., 2019;
Li et al., 2020a; Wu et al., 2020; Li et al., 2020b; Huang
et al., 2020; Narayan et al., 2022; Chen et al., 2022; Wu
et al., 2023b) to address the task of shape assembly, but these
methods fall short of achieving accurate assembly. They
typically represent each part as a global embedding and
perform regression to predict a placement for each part. The
global encoding strategy for each part, while simplifying
the process, greatly limits local information by collapsing
spatial resolutions, which is necessary to localize mating
surface. Indeed, accurate shape assembly requires a detailed
analysis of both fine- and coarse-level spatial information
of the parts in recognizing mating surfaces and establish-
ing correspondences between the surfaces. Therefore, a
promising approach would be to retain the spatially-rich
part representations during the encoding phase and analyze
pairwise local correspondence relationships between them
for reliable localization and matching of mating surfaces.

In the realm of correspondence analysis within image match-
ing, prior methods (Rocco et al., 2018; Min & Cho, 2021;
Kim et al., 2022; Min et al., 2021; Rocco et al., 2020)
typically utilize a high-order feature transform, i.e., high-
dimensional convolution or attention, to achieve objectives
of localizing relevant instances and establishing correspon-
dences between them. The high-order feature transforms,
which assess structural patterns of correlations in high-
dimensional spaces, have been empirically validated for
their efficacy in identifying accurate visual matches. How-
ever, the quadratic complexity with respect to input spatial
resolution still remains as a significant drawback, limiting
their application to only low-resolution (coarse-grained)
inputs. Such a limitation becomes particularly problem-
atic in the context of geometric assembly since meticulous
alignment between parts requires to analyze high-resolution
(fine-grained) to precisely identify ‘geometric compatibility’
between mating surfaces to match.

In this paper, we address this issue by introducing a new
form of low-complexity high-order feature transform layer,
dubbed Proxy Match Transform (PMT), to tackle the chal-
lenges of geometric shape assembly. The layer is designed
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to align analogous local embeddings in feature space, e.g.,
points on mating surfaces, with sub-quadratic complexity,
thus offering low-complexity yet high-order approach as
illustrated in Fig. 1. We theoretically prove that the pro-
posed PMT layer can effectively approximate the conven-
tional high-order feature transforms (Rocco et al., 2018;
Choy et al., 2020; Min & Cho, 2021) under particular condi-
tions. To demonstrate its efficacy, we incorporate the PMT
layer into a coarse-to-fine matching framework Proxy Match
TransformeR (PMTR), which uses PMTs for both coarse-
and fine-level matching steps for establishing reliable cor-
respondences on mating surfaces. We compare our results
with recent state of the arts and provide thorough perfor-
mance analysis on the standard geometric shape assembly
benchmark dataset of Breaking Bad (Sellán et al., 2022).
The experiments demonstrate that our method outperforms
existing approaches by a significant margin while being
computationally efficient compared to the baselines.

Our main contributions can be summarized as follows:

• We introduce Proxy Match Transform (PMT), a low-
complexity high-order feature transform layer that ef-
fectively refines the matching of the feature pair.

• Our theoretical analysis shows that PMT effectively
approximates high-order feature transform while incur-
ring sub-quadratic memory and time complexity.

• The performance improvements in geometric shape as-
sembly over the state-of-the-art baselines demonstrate
the effectiveness and efficiency of our approach.

2. Related Work

3D shape assembly & registration. Previous research in
generative models for 3D objects has primarily focused on
building objects through the combination of basic 3D prim-
itives. One prevalent approach trains specialized models
tailored to individual object classes, enabling the assem-
bly of objects from volumetric primitives such as cuboids
(Tulsiani et al., 2017). Conversely, Khan et al. (2019) pro-
poses a unified model that can generate cuboid primitives
across various classes. Additionally, variational autoen-
coders (VAEs) have been employed to model objects as
compositions of cuboids, offering robust abstractions that
distill local geometric details and elucidate object correspon-
dences (Kingma & Welling, 2014; Jones et al., 2020).

Parallel to these developments, research in part assembly
has aimed to construct complete objects from predefined
semantic parts. The method of Li et al. (2020b) predicts
translations and rotations for part point clouds to assem-
ble a target object from an image reference. Extending
this, Narayan et al. (2022); Huang et al. (2020) have con-
ceptualized part assembly as a graph learning challenge,
utilizing iterative message passing techniques to integrate

parts into cohesive objects. These approaches heavily rely
on the PartNet dataset (Mo et al., 2019) to ensure seman-
tic correspondence between the assembled parts and the
target models, demonstrating that while geometric shapes
are foundational, semantic cues can significantly guide and
streamline the assembly process. Our research diverges
from these methods by focusing on the assembly of parts
without predefined semantics. A closely related method-
ology is that of Chen et al. (2022), which also tackles the
problem of 3D shape assembly by integrating implicit shape
reconstruction, providing a relevant benchmark.

Additionally, the concept of 3D shape assembly overlaps
with the domain of 3D registration, especially in scenar-
ios characterized by low overlap between a pair of point
clouds. Techniques such as those proposed by Huang et al.
(2021) and Yu et al. (2021) leverage self-attention and cross-
attention mechanisms within and across point cloud features
to transform 3D features, facilitating enhanced matching ac-
curacy. Qin et al. (2022) further advances this by embedding
transformation-invariant data into the positional embeddings
of transformer layers, optimizing the matching process in
low-overlap conditions. Despite their efficacy, the practi-
cal application of these methods in fine-grained matching
scenarios is often constrained by the quadratic complexity
associated with their matching layers, highlighting a critical
area for improvement in computational efficiency and scala-
bility. Our work addresses these challenges by proposing a
novel approach that optimizes the computational demands
of feature matching while maintaining high robustness.

High-order feature transform for matching. High-order
feature transforms are essential in (both image and point
cloud) matching tasks, helping to establish consensus among
correspondences within a high-dimensional space. Initially
introduced by Rocco et al. (2018), the concept of a learning-
based neighborhood consensus supports the identification
of accurate matches by leveraging neighboring ambiguous
matches between 2D images. This approach has also been
adapted for 3D registration tasks, notably by Choy et al.
(2020), who utilized a 6D sparse convolutional layer to fil-
ter out outlier correspondences. Given high computational
complexity associated with high-order feature transforms,
several studies have proposed methods to reduce this bur-
den. Techniques such as decomposing high-dimensional
convolutional kernels (Min et al., 2021) and sparsifying the
correlation map with top-k scores (Rocco et al., 2020) have
been effective. Further, Shi et al. (2023) enhanced matching
efficiency by creating a sparse correlation matrix through
the clustering of input tokens, significantly reducing the
number of tokens involved. More recent advancements have
integrated the self-attention mechanism to utilize global fea-
ture consensus effectively, although these methodologies,
proposed by Cho et al. (2021) and Kim et al. (2022), come
at a higher computational cost.
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High-order feature transform with quadratic complexity Product of PMTs with sub-quadratic complexity
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Tensor

Figure 1. Given a correlation score at position (x,y) (the edge between highlighted nodes) and its neighboring scores (all other edges),
vanilla high-order feature transform (shown on the left) leads to quadratic complexity due to its demand for memory-intensive pairwise
correlation scores. The product of two PMTs (shown on the right) effectively approximates this high-order transform only with sub-
quadratic complexity by avoiding direct construction of correlation scores, instead exchanging information through a low-dimensional
proxy tensor. The red/blue nodes and black edges represent the source/target features and the correlation scores between them, respectively.

Our work introduces the Proxy Match Transform (PMT),
which simplifies existing high-order feature transforms to
significantly reduce computational demands. We apply PMT
in a coarse-to-fine approach, identifying reliable correspon-
dences between the mating surfaces of input parts and subse-
quently refining them for precise assembly. There have been
several approaches relevant to ours such as leveraging local
geometric cues for assembly by Lu et al. (2023), the linear
approximations in convolutional networks by Denton et al.
(2014), sparse attention mechanisms by Zaheer et al. (2021),
low-rank approximations of self-attention by Chen et al.
(2020), and Gaussian kernel approximations by Chen et al.
(2021). Unlike these methods, however, which primarily
enhance processing within a single feature, PMT uniquely
addresses the challenge of efficient matching between two
distinct features, improving both computational efficiency
and the feature correspondence analysis, which are essential
for diverse applications like geometric shape assembly.

3. Proposed Approach
In the task of geometric shape assembly, analyzing geo-
metric compatibility between fractured shapes is of utmost
importance; the geometric properties of the mating surfaces
should exhibit consistency, where vertices, edges, and sur-
faces seamlessly fit together to form a coherent structure.
To achieve reliable localization of mating surfaces between
shapes, a model needs to analyze the compatibility of all
possible feature correspondences and accurately identify
spatially consistent matches. In the field of visual match-
ing and its applications (Rocco et al., 2018; Choy et al.,
2020; Min & Cho, 2021; Cho et al., 2021; Min et al., 2021),
a trending approach for assessing match reliability is the
utilization of high-order feature transform, e.g., convolu-
tion or self-attention. This technique effectively assesses
patterns within neighborhood matches in a differentiable
manner. Building upon these principles, we will now ex-
plore the theoretical formulation of high-order transform,

with a specific emphasis on its application for enhancing
pairwise feature correlation.

Preliminary. High-order convolution (Rocco et al., 2018;
Choy et al., 2020; Min & Cho, 2021) generalizes the stan-
dard convolution by taking as input more functions, feature
maps, or sets. In the context of our problem, we consider
two point clouds X = {xi ∈ R3}Ni=1 and Y = {yi ∈
R3}Mi=1, and focus on the 2nd-order convolution with two
sets of features FX and FY , associated with the two point
clouds, respectively. For ease of notation, we represent these
features in matrix form, i.e., FX ∈ R|X |×Demb , where Demb
is the feature embedding dimension, and indexes each fea-
ture embedding using its associated point x ∈ X such that
(FX )x ∈ RDemb , and same goes for FY . We also express
the feature correlation of two points from each point cloud,
x and y, as C(x,y) := (FX )x · (FY)

⊤
y ∈ R. The 2nd-order

convolution on (FX ,FY) with kernel K is then defined as:

Conv(FX ,FY)(x,y) :=∑
(n,m)∈N (x)×N (y)

C(n,m)K([n− x,m− y]), (1)

where N (·) represents a set of neighbor points and K :
R6 −→ R is a convolutional kernel, represented as a mapping
function that takes a displacement vector onto learnable
weight scalar.

Building upon insights from the work of Cordonnier et al.
(2020), we consider Lemma 1 which states that the conv
layer in Eq. 1 can be re-formulated as a form of multi-head
self-attention under sufficient conditions:

Lemma 1. Consider a bijective mapping of natural num-
bers, i.e., heads, onto 6-dimensional local displacements:
t(h) : [Nh] → ∆(x,y). Let A(h) ∈ R|X ||Y|×|X||Y| be an
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attention matrix that holds the following:

A
(h)
(x,y),(n,m) =

{
1, if t(h) = (n,m)− (x,y)

0, otherwise.
(2)

Then, for any high-dimensional convolution with a kernel
K : R6 −→ R, there exists {w(h) ∈ R}h∈[Nh] such that
following equality holds:

Conv(FX ,FY)(x,y) =
∑

h∈[Nh]

A
(h)
((x,y),:)C w(h). (3)

Proof. We refer to the Appendix A for the complete proof.

As illustrated in the left of Fig. 1, the 2nd-order convolution
(Eq. 1 and 3) is designed to disambiguate spatially consis-
tent correspondences and update their correlation values by
analyzing local correlation patterns around each point pair
(x,y) ∈ X × Y . Despite its good empirical performance
in literature (Rocco et al., 2018; Choy et al., 2020; Min &
Cho, 2021; Min et al., 2021), its critical limitation lies in
the quadratic complexity of correlation computation, i.e.,
O(|X | · |Y|), with respect to the input resolution, imposing
significant computational burdens during both the training
and inference phases. This restricts its practical applications
with large spatial resolution inputs, such as the geomet-
ric shape assembly task that demands high-resolution, i.e.,
geometric-level, input processing for geometric compatibil-
ity analysis to ensure precise correspondence alignments.

3.1. Proxy Match Transform: an efficient high-order
feature transform with sub-quadratic complexity

To overcome the limitation, we introduce an efficient feature
matching layer, dubbed Proxy Match Transform, which
approximates high-order convolution with sub-quadratic
complexity. Given a pair of features (FX ,FY) as inputs,
PMT layers with Nh heads1 are defined as follows:

PMT(FX ) :=
∑

h∈[Nh]

A
(h)
X FXP(h)⊤w

(h)
X , (4)

PMT(FY) :=
∑

h∈[Nh]

A
(h)
Y FYP

(h)⊤w
(h)
Y , (5)

where w
(h)
X ∈ R is a learnable weight scalar, A

(h)
X ∈

R|X |×|X| is local attention matrix2, and P(h) ∈ RDproxy×Demb

is proxy tensor that satisfies the following:

P(i)⊤P(j) =

{
IDemb , if i = j

0, otherwise.
(6)

1Similar to multi-head self-attention (Vaswani et al., 2017),
each head performs distinct attentions and feature transform, al-
lowing the layer to attend different aspects of inputs.

2To avoid the quadratic complexity of |X |×|X | in the attention
matrices, we adopt an implementation strategy similar to that
described in Thomas et al. (2019). We refer to Sec. 4.2 for details.

where Dproxy refers to the spatial resolution of the proxy
tensor satifying Dproxy ≪ |X |, |Y|. The constraint ensures
orthogonality between different proxy tensors. The rationale
behind this design is discussed in Sec. 3.2.

At each head, the layer initially constructs a correlation
between the input feature FX and the proxy tensor P(h)

such that C
(h)
X := FXP(h)⊤ in much smaller size of

|X | × Dproxy, compared to the pairwise feature correla-
tion C = FXFY

⊤ ∈ R|X |×|Y| as defined in Eq. 1. Af-
ter applying learnable weight w(h)

X , the output at position
(n,m) ∈ |X | × Dproxy is computed through a weighted-
sum of its neighborhood matches lying on the spatial di-
mension of feature map FX , e.g., {(n′,m)}n′∈N (n) where
|N (n)| = ϵ ≪ |X |. To formally put, the Proxy Match
Transform output at head h given input FX at position
(n,m) is defined as

PMT(FX )
(h)
(n,m) = A

(h)
X (n,:)FXP(h)⊤

(:,m)w
(h)
X

= A
(h)
X (n,:)C

(h)
X (:,m)w

(h)
X

=
∑

n′∈N (n)

A
(h)
X (n,n′)C

(h)
X (n′,m)w

(h)
X . (7)

PMT(FY)
(h) is similarly defined with a different set of

parameters of A(h)
Y and w

(h)
Y .

It is important to note that the PMT layers perform two
independent transforms for feature matching, one for FX
and the other for FY . Despite the independence, matching
between the feature pair is effectively facilitated by a shared
proxy tensor P. This proxy tensor allows for the exchange
of information between the features, eliminating the need to
construct and convolve memory-intensive pairwise feature
correlations, which often contain sparse and limited infor-
mative match scores. We demonstrate that how the PMT
effectively approximates existing high-order convolution
in Sec. 3.2 and empirically prove the efficacy of the use of
proxy tensor and different parameter sets in geometric shape
assembly in Sec. 4.4.

3.2. Constraints for Proxy Match Transform

In order for the Proxy Match Transforms to express the high-
order convolution, we assume the following constraints, (i)
orthonormality constraint: P(i)⊤P(j) = IDemb if i = j, and
(ii) zero-matrix constraint: P(i)⊤P(j) = 0 ∈ RDemb×Demb

otherwise for all i, j ∈ [Nh]. Under such conditions, a
dot product between two Proxy Match Transforms can ef-
fectively approximate high-order convolution. Our main
theoretical result is provided below.

Theorem 1. If we assume P(i)⊤P(j) = IDemb if i = j
and P(i)⊤P(j) = 0 otherwise for all i, j ∈ [Nh], and de-
fine A

(h)
(x,y),(n,m)

:= A
(h)
X (x,n) · A

(h)
Y (y,m)

and w(h) :=
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Figure 2. Overall pipeline of the Proxy Match TransformeR (PMTR) for pairwise shape assembly. The proposed architecture consists
of coarse-level matching and fine-level matching. Each part of matching uses coarse-level features and fine-level features, respectively,
acquired from the KPConv-FPN backbone as their input. Each matcher consists of Nt PMT layers in series. See Sec. 3.3 for details.

w
(h)
X w

(h)
Y , then, the dot-product of Proxy Match Trans-

form outputs with a sufficient number of heads Nh can
express high-dimensional convolutional layer with kernel
K : R6 −→ R: PMT(FX ) · PMT(FY)

⊤ = Conv(FX ,FY).

We refer to the Appendix A for the complete proof of the
theorem. For the proxy tensors to satisfy the conditions, we
design two auxiliary training objectives on proxy tensors,
orthonormal loss Lorth and zero loss Lzero, as follows:

Lorth =
∑

(i,j)∈[Nh]2

δ(i, j)(P(i)⊤P(j) − IDemb), (8)

Lzero =
∑

(i,j)∈[Nh]2

(1− δ(i, j))P(i)⊤P(j), (9)

where δ(i, j) provides 1 if i = j and 0 otherwise.

3.3. Overall architecture

The proposed architecture, dubbed Proxy Match Trans-
formeR (PMTR) comprises four main parts: (1) feature ex-
traction, (2) coarse-level matching, (3) fine-level matching,
and (4) transformation prediction & training objectives. As
illustrated in Fig. 2, our pipeline begins with the point cloud
pair embedding. The feature extraction network generates
three pairs of features, each at distinct spatial resolutions.
These feature pairs are subsequently fed to a corresponding
PMT layer, which facilitates both coarse-level matching (for
mating surface localization) and fine-level matching (for
geometric matching). The outputs from the coarse matching
phase are utilized to establish a preliminary correspondence
between the mating surfaces of the input parts, which is
crucial for identifying potential areas of alignment. Subse-
quently, the fine matching phase are designed to refine these

correspondences, focusing exclusively on reliable matches
identified during the coarse matching stage. This allows
for precise correspondence establishment, ensuring accurate
assembly as demonstrated by our experiments in Sec. 4.4.

Feature extraction. A pair of point cloud to match is
fed to a feature embedding network, reducing their spa-
tial resolution to provide coarse-level feature pair. Each
of two subsequent upsampling layers connected in series
provides features in more high-resolution. From this U-Net
shaped architecture, similarly to KPConv-FPN (Thomas
et al., 2019), the model gives three pairs of point cloud fea-
tures with different spatial resolutions: {(FXn ,FYn)}3n=1

where FXn
∈ R|Xn|×Dn-emb with |X1| < |X2| < |X3|, im-

plying FX1
is the coarse feature with the smallest number of

features. {Yi}3n=1 is similarly defined. The coarse feature
pair {(FX1

,FY1
)} is utilized for identifying potential mat-

ing surfaces to match while the others {(FXn ,FYn)}3n=2

are used precise geometric alignment between identified
potential surface matches.

Coarse-level matching. At this stage, PMT processes the
coarse feature pair {(FX1

,FY1
)}, aiming to evaluate poten-

tial local correspondence between the feature set. This is
achieved without directly computing the pairwise correla-
tion matrix FX1

· FY1

⊤, which would otherwise result in a
quadratic dimensionality of R|X1|×|Y1|. Instead, a pair of
PMTs operates in a manner that allows them to be refined
independently to provide two refined coarse-level features
(FXc

,FYc
) as follows:

PMT(FX1
) = FXc

, PMT(FY1
) = FYc

. (10)

Despite this independence, the transformations ensure that
the dot product of the refined features closely approximates
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the output of a high-order feature transformation. The ap-
proximation is conceptualized as if the features had under-
gone a high-order transform, according to Theorem 1:

PMT(FX1) · PMT(FY1)
⊤ = FXc · FYc

⊤ (11)
≈ Conv(FX1 ,FY1). (12)

This approach allows for the independent refinement of the
features while still capturing the essence of their interac-
tion, akin to high-order convolution, without the direct com-
putation of their pairwise correlation, thereby effectively
avoiding the burden of quadratic complexity.

Fine-level matching. In fine-level matching, we lever-
age the high-resolution feature pairs {(FXn

,FYn
)}3n=2 to

achieve more precise alignment. This stage mirrors the
coarse-level matching in its use of PMT layers for trans-
forming features but in a serial configuration. This setup
ensures that the output of one PMT layer serves as the
input to the next, such that PMT(FX2

) = FX3
and subse-

quently, PMT(FX3
) = FXf

, with an analogous sequence
for providing fine-level feature FYf

. Note that PMT ef-
fectively addresses the infeasibility of employing vanilla
high-order convolution for high-resolution matching, es-
pecially under conditions where |X |, |Y| > 1500, as ob-
served in our experiments. Compared to vanilla high-
order convolution with complexity of O(|X | · |Y|), render-
ing it infeasible for large-scale applications, the proposed
PMT having O(max(|X |, |Y|) ·Dproxy) complexity where
Dproxy ≪ |X |, |Y| provides a more efficient means of an-
alyzing feature correlations. In Sec. 4.4, we present an
apples-to-apples comparisons, illustrating the practical ad-
vantages of PMT over traditional matching methods, e.g.,
high-order convolution (Rocco et al., 2018).

Transformation prediction. After the coarse-level match-
ing, the refined feature pair (FXc ,FYc) is utilized to com-
pute correlation in size of |Xc| × |Yc| where each score at
position (x,y) is defined as exp(−||(FXc

)x − (FYc
)y||22)

similarly to the work of Qin et al. (2022). From |Xc| × |Yc|
number of scores, we collect top-k matches as reliable
coarse matches, laying the foundation for more granular
alignment at the subsequent fine-level matching. Building
on coarse-level matches and fine-level features, we employ
the point-to-node grouping method (Yu et al., 2021), which
clusters fine-level features that are spatially proximate to
the coarse matches, effectively sharpening the broad coarse-
level correspondence into more precise fine-level ones. In
essence, the computation of fine-level matches is directly
influenced by the groundwork laid at the coarse level, es-
tablishing a hierarchical refinement process. We then in-
corporate an optimal transport layer (Sarlin et al., 2020) to
the fine-level matches to obtain final correspondences for
the subsequent transformation prediction. Finally, similarly
to Qin et al. (2022), we use the final correspondences to
predict the relative transformation {R|t} between the point

cloud pair (X ,Y).

Training objectives. Following the previous 3D matching
literatures (Zhao et al., 2023; Wu et al., 2023a; Chen et al.,
2023; Yu et al., 2023), we adopt overlap-aware circle loss
Loc (Qin et al., 2022), and point matching loss Lp (Sarlin
et al., 2020), as our main training objectives for coarse- and
fine-level correspondence matching respectively. We direct
readers to the work of Qin et al. (2022) for further details
of Loc and Lp. With two auxiliary losses in Eq. 9, our main
training objective is defined as follows:

L = Loc + Lp + λorthLorth + λzeroLzero, (13)

where λorth and λzero are hyperparameters which are set to
1.0 in our experiments.

4. Experiments
In this section, we discuss the dataset and evaluation metrics
used (Sec. 4.1), implementation details (Sec. 4.2), the results
of pairwise shape assembly with comprehensive analysis
(Sec. 4.3), an in-depth ablation study to inspect the efficacy
of the proposed techniques (Sec. 4.4), and extension of our
evaluation to the task of multi-part assembly (Sec. 4.5).

4.1. Dataset and Evaluation Metrics

Dataset. In our experiments, we utilize the Breaking Bad
dataset (Sellán et al., 2022) which is a large-scale dataset of
fractured objects for the task of geometric shape assembly,
which consists of over 1 million fractured objects simu-
lated from 10K meshes of PartNet (Mo et al., 2019) and
Thingi10k (Zhou & Jacobson, 2016). For pairwise assembly
training and evaluation, we exclusively select a subset of the
Breaking Bad dataset containing two-part objects (Sec. 4.3).
For multi-part assembly, we expand our evaluation to in-
clude all samples in the dataset, encompassing objects with
2 to 20 parts (Sec. 4.5).

Evaluation metrics. Following the evaluation protocol of
Sellán et al. (2022), we measure the root mean square error
(RMSE) between the ground-truth and predicted rotation (R)
and translation (T) parameters, and the Chamfer distance
(CD) between the assembly results and ground-truth. In
addition, we introduce and report a new metric, called CoR-
respondence Distance (CRD), which is defined as Frobenius
norm between the input pair of the assembled point cloud;
unlike CD, CRD offers a more comprehensive measure of
correspondence, capturing both proximity and structural
alignment between the assembled objects. We compute the
evaluation metrics of RMSE (R) and RMSE (T) based on
relative transformation, e.g., rotation and translation, be-
tween the input fracture pair, instead of absolute pose as
in previous literature (Chen et al., 2022; Wu et al., 2023b)
by setting the largest fracture as an anchor and compute
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Table 1. Pairwise shape assembly results. Numbers in bold indicate the best performance and underlined ones are the second best.

Method Estimator Type Target
{R|t}

CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
(10−2) (10−3) (◦) (10−2) (10−2) (10−3) (◦) (10−2)

everyday artifact

Global (2019; 2020a)

MLP absolute
pose

27.77 15.26 110.74 30.61 19.26 7.16 86.30 21.02
LSTM (2020) 20.04 7.77 84.60 22.07 19.52 6.45 84.42 21.33
DGL (2020) 20.32 6.40 86.23 22.38 19.82 6.19 85.46 21.65
NSM (2022) 21.71 11.09 83.38 23.71 19.44 6.33 83.22 21.41
Wu et al. (2023b) 20.65 11.66 84.58 22.90 19.17 7.97 85.04 20.90

GeoTransformer (2022) correspondence
alignment

relative
transformation

0.61 0.51 22.81 7.28 0.89 0.70 33.23 10.30
Jigsaw (2023) 5.48 1.34 38.73 2.73 6.36 1.45 39.71 3.02
PMTR (Ours) 0.39 0.25 17.14 5.53 0.60 0.42 23.28 7.27

the relative transformation. The formal definitions of the
evaluation metrics can be found in Appendix D.

4.2. Implementation details

We implement our PMTR using PyTorch Lightning (Fal-
con & team, 2019). Experiments were conducted on a ma-
chine with Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz
and NVIDIA GeForce RTX 3090 GPU. For all experi-
ments, except the ones include GeoTransformer, we use
ADAM (Kingma & Ba, 2015) optimizer with a learning rate
of 1× 10−3 for 150 epochs. For GeoTransformer, we use
the identical settings but only reduce the learning rate to
1× 10−4 to prevent model divergence. To ensure uniform
point density among fractures, we uniform-sample approx-
imately 5,000 points on the surface of holistic objects and
allocate the number of sample points for each fracture pro-
portional to the surface area of each fracture. Each of both
coarse-level and fine-level matchers consists of 2 PMT(·)
layers (Nt = 2) with nonlinearity and group norm (Wu &
He, 2018). See Appendix C for further details.

Avoiding quadratic complexity of attention in PMT. In
our actual implementation, we use local, i.e., sparse, at-
tention for A(h)

X by collecting attention scores of ‘neigh-
borhood’ of each position, thus reducing attention size
to |X | × ϵ instead of |X | × |X | where ϵ ∈ N+ is the
number of neighbors: ϵ ≪ |X |. Specifically, atten-
tion at position x ∈ R3 denoted as A

(h)
X (x,:) ∈ R1×ϵ

are limited to the neighborhood of x, represented by
N (x). Then, the output of PMT at x is formulated as
PMT(FX )(x,:) =

∑
h∈[Nh]

A
(h)
X (x,:)FX (N (x),:)P

(h)⊤w
(h)
X

where FX (N (x),:) ∈ Rϵ×Demb is neighborhood features of
position x. This method significantly reduces the computa-
tional complexity typically associated with full pairwise at-
tention, which would otherwise be quadratic, i.e., |X |× |X |.
This reduction in complexity mirrors strategies found in
existing literature, such as those described by Thomas et al.
(2019). For simplicity in presentation, however, this pa-
per narrates with a conventional square attention matrix
A

(h)
X ∈ R|X |×|X| to illustrate our methodology. A similar

approach applies to the other matrix A
(h)
Y ∈ R|Y|×|Y|.

Assessment with relative transformations. Note that the
previous methods for pairwise geometric assembly (Li et al.,
2020a; Wu et al., 2020; Huang et al., 2020; Chen et al., 2022)
predict two different transformation parameters for the input
pair of parts to assemble them in 3D space. However, this
approach has a limitation in accurate evaluation: even if a
model perfectly assembles the pair of parts, the assessment
may be inaccurate if the assembled object does not match
the specific absolute pose of the ground truth. To address
this issue, we suggest to predict the relative transformation
between input parts, allowing us to focus solely on the
assembly rather than the predefined absolute poses.

4.3. Pairwise Shape Assembly

To evaluate our method, we categorize previous baseline
methods into two groups based on their approach to trans-
formation parameters {R|t} prediction. The first group
includes ‘regression methods’ that encode each part into a
global embedding and directly regress their absolute trans-
formations using MLP: Global (Li et al., 2020a), LSTM (Wu
et al., 2020), DGL (Huang et al., 2020), NSM (Chen et al.,
2022), and Wu et al. (2023b). The second group consists of
‘matching-based methods’ that estimate relative transforma-
tions by aligning their predicted correspondences between
each pair of parts: GeoTransformer (Qin et al., 2022) and
Jigsaw (Lu et al., 2023).

Experimental results and analysis. We evaluate our
method and compare it against baseline methods on the
everyday and artifact subsets of the Breaking Bad
dataset. Tab. 1 presents the results, demonstrating that our
method consistently outperforms all baseline methods on
both subsets. In Fig. 4, we provide qualitative comparisons
between ours and the baselines, using mesh representation
for better visualization.

To provide deeper insights to the learned shared proxy P(h),
we visualize how the proxy and the refined coarse-level fea-
tures (FXc and FYc ) are distributed in the feature space via
t-SNE. As shown in Fig. 3, The visualization reveals that
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Table 2. Ablation study on the proxy sharing. By sharing proxy
tensor in each Proxy Match Transform layer, two independent
feature transforms share information, yielding the highest score.

Ref. proxy shared CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
proxy (10−2) (10−3) (◦) (10−2)

(a) ✗ ✗ 0.53 0.47 21.04 6.93
(b) ✓ ✗ 0.44 0.31 18.66 5.97

Ours ✓ ✓ 0.39 0.25 17.14 5.53

Table 3. Ablation study on the contribution of Lorth and Lzero.
They constrains Proxy Match Transform in approximating the
high-dimensional convolution layers, yielding the highest score.

Ref. Lorth Lzero
CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
(10−2) (10−3) (◦) (10−2)

(a) ✗ ✗ 0.43 0.31 18.82 6.23
(b) ✓ ✗ 0.43 0.32 17.87 5.73
(c) ✗ ✓ 0.43 0.27 18.77 6.02

Ours ✓ ✓ 0.39 0.25 17.14 5.53

subsets of the source and target features (orange and light-
blue) and the proxy (purple) form distinct clusters (Fig. 3
(a)) with closer proximity, implying higher correlation with
the proxy. In Fig. 3. (b), we visually mark those points in 3D
space. Notably, the points with the highest correlation (red
and blue) with the proxy are predominantly located on the
“mating surfaces” of the parts, revealing that the proxy effec-
tively facilitates the information exchange between given
feature pair without the burden of quadratic complexity.

4.4. Ablation studies

Effect of proxy tensor in assembly. To verify the effect
of proxy tensor in PMT, we conducted a series of abla-
tion studies on the everyday subset of the Breaking Bad
dataset. Specifically, we examine the impact of the shared
proxy tensor by either removing it or using two different
proxies instead of a shared one. The results, summarized
in Tab. 2, clearly indicate that both removing the proxy and
not sharing it lead to a significant decline in assembly per-
formance. This underscores the efficacy of the shared proxy
in facilitating information exchange in PMT.

Next, we explore the impact of Lorth and Lzero, which serve
as the sufficient conditions to constrain the PMT layer to
represent the high-dimensional convolutional layers, as de-
tailed in Sec. 3.2. The results are presented in Tab. 3; as
evident from the table, the best performance is achieved
when both losses are incorporated. This highlights that the
significance of these constraining conditions for PMT, as
they are crucial in enabling PMT to effectively approximate
the high-dimensional convolution.

Comparison between different matchers. To demonstrate
the efficacy and efficiency of the proposed matching layer,
PMT, we conduct ablations by either removing it (None)
or replacing it with different layers: a single linear trans-

Table 4. Ablation study on the choice of fine-level matcher.
Proxy Match Transform layer at fine-level yields the best assembly
accuracy while incurring low-compute complexity than baselines.

Ref. Coarse-level Fine-level CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
Matcher Matcher (10−2) (10−3) (◦) (10−2)

(a)

PMT

None 0.53 0.43 20.70 6.63
(b) Linear 0.47 0.37 17.55 5.68
(c) MLP 0.49 0.38 17.35 5.69
(d) HDC Out of memory error
(e) GeoTr Out of memory error

Ours PMT 0.39 0.25 17.14 5.53

Table 5. Ablation study on the impact of Proxy Match Trans-
form as a fine-level matcher. Proxy Match Transform layer con-
sistently boosts performance with various coarse-level matchers.

Ref. Coarse-level Fine-level CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
Matcher Matcher (10−2) (10−3) (◦) (10−2)

(a) None None 0.69 0.57 27.71 8.78
(b) PMT 0.60 0.52 24.66 7.42

(c) Linear None 0.64 0.53 26.14 7.42
(d) PMT 0.55 0.50 22.44 6.69

(e) MLP None 0.66 0.50 26.93 7.35
(f) PMT 0.57 0.44 23.74 7.03

(g) HDC None 0.76 0.63 27.75 8.68
(h) PMT 0.63 0.48 23.43 7.08

(i) GeoTr None 0.61 0.51 22.81 7.28
(j) PMT 0.48 0.33 23.91 7.32

(k) PMT None 0.53 0.43 20.70 6.63
Ours PMT 0.39 0.25 17.14 5.53

formation (Linear), multi-layer perceptron (MLP), high-
dimensional convolution (HDC by Min et al. (2021)), and
GeoTransformer (GeoTr by Qin et al. (2022)). In Tab. 4,
we compare ours with other layers at fine-level; Undoubt-
edly, the layers without any information exchange between
source and target features, e.g., None, Linear, and MLP,
show dramatic drops in performance. While the matching
layers of HDC and GeoTr cause out-of-memory-error due
to their quadratic complexity, being unable to be incorpo-
rated at fine-level with large input spatial resolutions, the
proposed PMT not only efficiently processes source and
target features without memory burden but also effectively

source (non-mating)
source (mating)

target (mating)
target (non-mating)

proxy

source (nearest sup. point)
source (others)

target (others)
target (nearest sup. point)

(a) (b)

Figure 3. (a) t-SNE visualization of proxy tensor (colored in pur-
ple), source features FXc and target features FYc . The source and
target features are colored in warm (red) and cool (blue) tones,
respectively, and those on mating surfaces are colored in orange
and lightblue. (b) Feature visualization in 3D space. Source X1

and target features Y1 with closer proximity to the proxy tensor are
highlighted in red and blue, respectively, and features on mating
surfaces are highlighted in orange and lightblue. For this visualiza-
tion, we use proxy tensor at a head index of h = 0: P(0).

8



3D Geometric Shape Assembly via Efficient Point Cloud Matching

Table 6. Multi-part assembly results on the Breaking Bad dataset.

Method
CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ PACRD ↑ PACD ↑ CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ PACRD ↑ PACD ↑
(10−2) (10−3) (◦) (10−2) (%) (%) (10−2) (10−3) (◦) (10−2) (%) (%)

everyday artifact

Global (2019; 2020a) 27.79 15.30 55.42 15.31 36.42 37.90 26.42 14.92 54.41 14.48 36.67 36.97
LSTM (2020) 27.69 15.23 54.78 15.24 36.74 38.97 28.15 14.61 53.59 15.49 36.67 37.25
DGL (2020) 27.90 13.23 55.76 15.33 36.99 39.70 27.48 13.91 54.66 15.10 36.66 37.40
Wu et al. (2023b) 28.18 19.70 54.98 15.59 35.66 36.28 26.02 15.81 54.35 14.27 36.63 37.02
Jigsaw (2023) 14.13 11.82 41.12 11.74 52.48 60.26 16.10 9.53 42.01 17.47 56.93 65.58
PMTR (Ours) 6.51 5.56 31.57 9.95 66.95 70.56 5.67 4.33 31.58 10.08 66.96 71.61

GTOursJigsawDGLLSTMGlobal NSM Wu et al. GeoTr

JigsawGlobal GTDGLLSTM Wu et al. Ours

Figure 4. Qualitative results of pairwise shape assembly (Upper row) and multipart shape assembly (Bottom row) on Breaking Bad dataset.

exchanges information between them via proxy tensor. In
Tab. 5, similar experiments are conducted at coarse-level.
As evident from the tables, incorporating the PMT layer as
both fine and coarse matcher consistently leads to superior
performance, affirming its superiority over the state-of-the-
art matching layers (Min et al., 2021; Qin et al., 2022).

4.5. Multi-part Assembly

To assess the generalizibility of our method, we extend our
evaluation to include multiple input parts, i.e., multi-part as-
sembly, which requires the model to understand the pairwise
correspondence relationships among all input parts. Utiliz-
ing the two-part assembly framework (Fig. 2), it begins with
computing relative transformations between each pair of the
P parts. We then construct a pose graph wherein each node
and factor respectively represent an individual part and the
predicted relative transformation, i.e., pose, between two
parts. To optimize this pose graph for assembly, we employ
a recent transformation averaging method detailed in the
work of Dellaert et al. (2020). After the optimization, we
evaluate our method using the metrics from pairwise assem-
bly, supplemented by Part Accuracy (PACD) (Huang et al.,
2020) – the percentage of parts with Chamfer Distance less
than the predefined threshold of 0.01 – as well as CRD-
based Part Accuracy (PACRD) with 0.1 threshold. As seen
from Tab. 6 and Fig. 4, our method significantly surpasses all
baselines on all metrics on the multi-part assembly, demon-
strating robust generalization to multiple input scenarios.
For details on the evaluation metrics, refer to Appendix D.

5. Scope and Limitations
Despite the advances in efficient point cloud matching and
shape assembly, our method still faces several limitations.
First, the accuracy of our method can be compromised in
scenarios with extremely low overlap between point clouds,
which can hinder the identification of reliable correspon-
dences. Second, our method, like many others in the field,
requires extensive training on domain-specific datasets to
achieve optimal performance. Third, while our experiments
demonstrate the efficacy of PMT in shape assembly tasks,
it have not been extensively tested across other potential
applications such as robotics, manufacturing, digital artistry,
or even restoration of ancient artifacts via more accurate
and detailed part assembly. Thus, the applicability of our
approach beyond geometric shape assembly remains to be
fully validated. We leave this to future work.

6. Conclusion
We have introduced a low-complexity, high-order feature
transform layer, Proxy Match Transform, designed for effi-
cient approximation of traditional compute-intensive high-
order feature transforms. The significant performance im-
provements over the recent state of the arts with lower com-
putational load indicate that its effective real-world appli-
cability from artifact reconstruction to manufacturing. Al-
though the proposed method has been applied exclusively
to geometric shape assembly, its remarkable improvements
across various evaluation metrics indicate its profound po-
tential for broad applications.
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A. Theoretical Analysis of Proxy Match Transform
We now derive sufficient conditions such that Proxy Match Transform can express high-dimensional convolution. Our main
theoretical result is given below.

Theorem 1. If we assume P(i)⊤P(j) = IDemb if i = j and P(i)⊤P(j) = 0 otherwise for all i, j ∈ [Nh], and define
A

(h)
(x,y),(n,m)

:= A
(h)
X (x,n) · A

(h)
Y (y,m)

and w(h) := w
(h)
X w

(h)
Y , then, the dot-product of Proxy Match Transform outputs

with a sufficient number of heads Nh can express high-dimensional convolutional layer with kernel K : R6 −→ R:
PMT(FX ) · PMT(FY)

⊤ = Conv(FX ,FY).

Proof. We first take the dot-product of Proxy Match Transform outputs and simplify:

PMT(FX ) · PMT(FY)
⊤ =

 ∑
h∈[Nh]

A
(h)
X FXP(h)⊤w

(h)
X

 ∑
h∈[Nh]

A
(h)
Y FYP

(h)⊤w
(h)
Y

⊤

(14)

=
∑

(i,j)∈[Nh]2

w
(i)
X A

(i)
X FXP(i)⊤P(j)FY

⊤A
(j)⊤
Y w

(j)
Y (15)

=
∑

(i,j)∈[Nh]2

δ(i, j)
(
w

(i)
X A

(i)
X FXFY

⊤A
(j)⊤
Y w

(j)
Y

)
(16)

=
∑

h∈[Nh]

w
(h)
X A

(h)
X FXFY

⊤A
(h)⊤
Y w

(h)
Y , (17)

where δ(i, j) provides 1 if i = j and 0 otherwise. Using definitions of A(h) ∈ R|X ||Y|×|X||Y| and w(h) ∈ R, the output at a
specific position (x,y) ∈ R6 is as follows:

(PMT(FX ) · PMT(FY)
⊤)(x,y) =

∑
h∈[Nh]

A
(h)
X (x,:)FXFY

⊤A
(h)⊤
Y (:,y)

w(h) (18)

=
∑

h∈[Nh]

∑
(n,m)∈X×Y

A
(h)
X (x,n)FX (n,:)FY

⊤
(:,m)A

(h)⊤
Y (m,y)

w(h) (19)

=
∑

h∈[Nh]

 ∑
(n,m)∈X×Y

A
(h)
X (x,n) ·A

(h)
Y (y,m)

C(n,m)w
(h) (20)

=
∑

h∈[Nh]

A
(h)
((x,y),:)C w(h). (21)

Now consider the following Lemma:

Lemma 1. Consider a bijective mapping of natural numbers, i.e., heads, onto 6-dimensional local displacements: t(h) :
[Nh] → ∆(x,y). Let A(h) ∈ R|X ||Y|×|X||Y| be an attention matrix that holds the following:

A
(h)
(x,y),(n,m) =

{
1, if t(h) = (n,m)− (x,y)

0, otherwise.
(22)

Then, for any high-dimensional convolution with a kernel K : R6 −→ R, there exists {w(h) ∈ R}h∈[Nh] such that following
equality holds:

Conv(FX ,FY)(x,y) =
∑

h∈[Nh]

A
(h)
((x,y),:)C w(h). (23)
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Proof. Consider high-dimensional convolution at position (x,y):

Conv(FX ,FY)(x,y) :=
∑

(n,m)∈N (x)×N (y)

C(n,m)K([n− x,m− y])

=
∑

(ννν,µµµ)∈∆(x,y)

C(x,y)+(ννν,µµµ)K((ννν,µµµ))

=
∑

h∈[Nh]

C(x,y)+t(h)K(t(h)) ( t(h) : [Nh] → ∆(x,y) )

=
∑

h∈[Nh]

C(x,y)+t(h)w
(h) ( w(h) := K(t(h)) ∈ R )

=
∑

h∈[Nh]

 ∑
(n,m)∈X×Y

1[t(h) = (n,m)− (x,y)]C(n,m)

w(h)

=
∑

h∈[Nh]

A
(h)
((x,y),:)Cw(h). (24)

By applying Lemma 1, we conclude that the dot-product of Proxy Match Transform outputs is equivalent to the high-order
convolution. ■

B. Efficiency of Proxy Match Transform
To demonstrate the superiority of the proposed PMT, we provide the efficiency comparison between different matchers, e.g.,
Geometric Transformer (GeoTr) by Qin et al. (2022) and Proxy Match Transform (PMT), both during training and inference
phases in Tab. 7. “Coarse-only” and “Coarse + Fine” refer to two different Proxy Match TransformeR (PMTR) models with
PMT integrated only at the coarse-level and both levels, respectively. Specifically, we measure the computational efficiency
by employing Floating Point Operations Per Second (FLOPS), and to assess the memory overhead and footprint, we record
the peak memory usage for each method during both the training and inference phases, as well as the number of parameters.
We also provide the training/inference times required for each matcher. For clarity in our comparison, when measuring the
FLOPS, number of parameters, and train/inference times, we exclude those associated with the backbone and focus solely
on the matchers: the coarse- or fine-level matcher.

Table 7. Efficiency comparison results between GeoTr (Qin et al., 2022) and PMT. Lower is better.

Method Coarse-level Fine-level FLOPS ↓ # Param. ↓ Mem. train ↓ Mem. test ↓ Train time ↓ Inference time ↓
Matcher Matcher (G) (K) (GB) (GB) (ms) (ms)

GeoTransformer (2022) GeoTr None 9.67 926.85 6.96 3.10 8.93 8.04
PMTR (Coarse-only) PMT None 0.45 273.85 2.12 0.28 4.06 3.23
PMTR (Coarse + Fine) PMT PMT 0.78 296.15 3.78 0.88 5.35 3.75

The results clearly indicates that PMT delivers substantial reductions not only in training/inference time but also in memory
requirements. Notably, PMT is approximately ×21.5 more efficient in FLOPS, needs ×3.4 more compact number of
parameters and ×3.28 / ×11.07 less required memory for training/inference phases compared to GeoTr. Such efficiency is
crucial, as it facilitates the practical deployment of our fine-level matcher for intricate matching tasks.
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C. Additional implementation Details
Attention Calculation. We adopt the relative-position encoding strategy of PerViT (Min et al., 2022) to compute the
attention A

(h)
X . Specifically, we compute pairwise Euclidean distances RX ∈ R|X |×|X| each of which entry at position

q,k ∈ R3 is defeind as (RX )q,k = ||q− k||2. An MLP processes this to provide an attention score A(h)
X . A(h)

Y is similarly
defined. We refer the readers to the work of Min et al. (2022) for additional details.

Model hyperparameters. For the backbone network, we utilize KPConv-FPN (Thomas et al., 2019) with subsampling
radius of 0.01. We leverage global attention matrix for coarse-level matcher, and local attention matrix (See Sec. 4.2) for
fine-level matchers. The number of attention heads Nh is set to 4. Refer to Tab. 8 the rest of hyperparameters. Each matcher
takes a specific input and output feature pair, applies a type of attention mechanism, and uses various hyperparameters
crucial for its operation.

Table 8. Detail configurations and hyperparameters of different type of matchers. AY similarly defined.

Matcher Type Input Feature Pair Output Feature Pair Attention Type Demb i-th PMT Dproxy

Coarse-level matcher {FX1
,FY1

} {FXc
,FYc

} global attention A
(h)
X1

∈ R|X1|×|X1| 512 1 32
2 128

Fine-level matcher {FX2 ,FY2} {FX3 ,FY3} local attention A
(h)
X2

∈ R|X2|×ϵ 256 1 16
2 64

Fine-level matcher {FX3
,FY3

} {FXf
,FYf

} local attention A
(h)
X3

∈ R|X3|×ϵ 128 1 8
2 32

D. Evaluation Metrics
We employ four different metrics to assess the results. Consider a pair of input point clouds {X ,Y}. The ground truth SE(3)
relative pose between the point clouds is represented by {RGT, tGT}, while the prediction is denoted as {R, t}. We define
T(·) as a function that transform input pose with corresponding rotation R and translation t.

Chamfer Distance (CD). The chamfer distance between two point clouds S1, S2 is defined as

dCD(S1, S2) =
1

S1

∑
x∈S1

min
y∈S2

∥x− y∥22 +
1

S2

∑
y∈S2

min
x∈S1

∥x− y∥22, (25)

which measures the sum of the distance between nearest neighbor correspondences between point clouds. To assess the
quality of shape assembly, we measure the chamfer distance between ground truth assembly and the prediction as:

CD = dCD(T(X ) ∪ Y,TGT(X ) ∪ Y). (26)

CoRrespondence Distance (CRD). While the Chamfer distance calculates the distance between two point clouds, its ability
to capture more complex features of the object’s geometry, such as symmetry and rotation, is limited. To overcome this
limitation, we define a new metric, CoRrespondence Distance (CRD). CRD is simply defined as the Frobenius norm between
two point clouds:

CRD =
1

L

L∑
i=1

∥(T(X ) ∪ Y)i − (TGT(X ) ∪ Y)i∥F , (27)

where L = |X |+ |Y| is the size of assembled object. By considering all pairwise distances between point clouds, it offers a
more comprehensive measure of similarity, capturing both proximity and structural alignment:

Rotational-, Translational-RMSE (RMSE(R), RMSE(T)). Finally, to directly measure the prediction accuracy of transfor-
mation parameters, we compute the root mean square error (RMSE) between predicted and ground-truth rotation and
translation, respectively. Following the protocols of Sellán et al. (2022), we use Euler angle representation for rotation:

RMSE(R) =
1√
3
∥R−RGT∥F , RMSE(T) =

1√
3
∥t− tGT∥F . (28)
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Additional metrics for multi-part assembly. Also, we employ two additional metrics to evaluate multi-part assembly
performance. Consider a set of input point clouds P = {Pi}Pi=1 with P parts. The ground truth SE(3) relative poses between
the point clouds are represented by {TGT

i }Pi=1, while the prediction is denoted as {Ti}Pi=1. Similar to pairwise assembly,
the assembled object can be represented with

⋃P
i=1 Ti(Pi). Note that in our context, the direction of pose is defined as the

transformation that aligns each part Pi with the coordinate frame of largest fracture as anchor.

Part Accuracy (Chamfer Distance-based). Part accuracy (PA) (Li et al., 2020b) is defined as the percentage of fractures with
Chamfer Distance (CD) less than the predefined threshold τCD = 0.01:

PACD =
1

P

P∑
i=1

1
(
dCD(Ti(Pi),T

GT
i (Pi)) < τCD

)
. (29)

Part Accuracy (Correspondence Distance-based). Our proposed CoRrespondence Distance (CRD) can be seamlessly
adapted for Part Accuracy (PA) evaluation. This adaptation involves substituting the Chamfer Distance (CD) with the
CoRrespondence Distance (CRD), and setting the threshold τCRD = 0.1:

PACRD =
1

P

P∑
i=1

1

 1

|Pi|

|Pi|∑
j=1

∥Ti(Pi)j −TGT
i (Pi)j∥F < τCRD

 . (30)
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E. Additional Qualitative Results

GTOursJigsawDGLLSTMGlobal NSM Wu et al. GeoTr

Figure 5. Additional qualitative results of pairwise shape assembly on Breaking Bad dataset.

17



3D Geometric Shape Assembly via Efficient Point Cloud Matching

GTOursJigsawDGLLSTMGlobal Wu et al.

Figure 6. Additional qualitative results of multipart shape assembly on Breaking Bad dataset.
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