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ABSTRACT

Deep Reinforcement Learning (Deep RL) and Evolutionary Algorithms (EA) are
two major paradigms of policy optimization with distinct learning principles, i.e.,
gradient-based v.s. gradient-free. An appealing research direction is integrating
Deep RL and EA to devise new methods by fusing their complementary advan-
tages. However, existing works on combining Deep RL and EA have two common
drawbacks: 1) the RL agent and EA agents learn their policies individually, ne-
glecting efficient sharing of useful common knowledge; 2) parameter-level policy
optimization guarantees no semantic level of behavior evolution for the EA side.
In this paper, we propose Evolutionary Reinforcement Learning with Two-scale
State Representation and Policy Representation (ERL-Re2), a novel solution to
the aforementioned two drawbacks. The key idea of ERL-Re2 is two-scale repre-
sentation: all EA and RL policies share the same nonlinear state representation
while maintaining individual linear policy representations. The state representation
conveys expressive common features of the environment learned by all the agents
collectively; the linear policy representation provides a favorable space for efficient
policy optimization, where novel behavior-level crossover and mutation operations
can be performed. Moreover, the linear policy representation allows convenient
generalization of policy fitness with the help of the Policy-extended Value Function
Approximator (PeVFA), further improving the sample efficiency of fitness estima-
tion. The experiments on a range of continuous control tasks show that ERL-Re2
consistently outperforms advanced baselines and achieves the State Of The Art
(SOTA). Our code is available on https://github.com/yeshenpy/ERL-Re2.

1 INTRODUCTION

Reinforcement learning (RL) has achieved many successes in robot control (Yuan et al., 2022), game
AI (Hao et al., 2022; 2019), supply chain (Ni et al., 2021) and etc (Hao et al., 2020). With function
approximation like deep neural networks, the policy can be learned efficiently by trial-and-error
with reliable gradient updates. However, RL is widely known to be unstable, poor in exploration,
and struggling when the gradient signals are noisy and less informative. By contrast, Evolutionary
Algorithms (EA) (Bäck & Schwefel, 1993) are a class of black-box optimization methods, which is
demonstrated to be competitive with RL (Such et al., 2017). EA model natural evolution processes
by maintaining a population of individuals and searching for favorable solutions by iteration. In each
iteration, individuals with high fitness are selected to produce offspring by inheritance and variation,
while those with low fitness are eliminated. Different from RL, EA are gradient-free and offers several
strengths: strong exploration ability, robustness, and stable convergence (Sigaud, 2022). Despite the
advantages, one major bottleneck of EA is the low sample efficiency due to the iterative evaluation of
the population. This issue becomes more stringent when the policy space is large (Sigaud, 2022).

Since EA and RL have distinct and complementary advantages, a natural idea is to combine these
two heterogeneous policy optimization approaches and devise better policy optimization algorithms.
Many efforts in recent years have been made in this direction (Khadka & Tumer, 2018; Khadka
et al., 2019; Bodnar et al., 2020; Wang et al., 2022; Shen et al., 2020). One representative work
is ERL (Khadka & Tumer, 2018) which combines Genetic Algorithm (GA) (Mitchell, 1998) and
DDPG (Lillicrap et al., 2016). ERL maintains an evolution population and a RL agent meanwhile.
The population and the RL agent interact with each other in a coherent framework: the RL agent
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learns by DDPG with diverse off-policy experiences collected by the population; while the population
includes a copy of the RL agent periodically among which genetic evolution operates. In this way, EA
and RL cooperate during policy optimization. Subsequently, many variants and improvements of ERL
are proposed, e.g., to incorporate Cross-Entropy Method (CEM) (Pourchot & Sigaud, 2019) rather
than GA (Pourchot & Sigaud, 2019), to devise gradient-based genetic operators (Gangwani & Peng,
2018), to use multiple parallel RL agents (Khadka et al., 2019) and etc. However, we observe that
most existing methods seldom break the performance ceiling of either their EA or RL components
(e.g., Swimmer and Humanoid on MuJoCo are dominated by EA and RL respectively). This indicates
that the strengths of EA and RL are not sufficiently blended. We attribute this to two major drawbacks.
First, each agent of EA and RL learns its policy individually. The state representation learned by
individuals can inevitably be redundant yet specialized (Dabney et al., 2021), thus slowing down the
learning and limiting the convergence performance. Second, typical evolutionary variation occurs at
the level of the parameter (e.g., network weights). It guarantees no semantic level of evolution and
may induce policy crash (Bodnar et al., 2020).

In the literature of linear approximation RL (Sutton & Barto, 1998) and state representation learn-
ing (Chung et al., 2019; Dabney et al., 2021; Kumar et al., 2021), a policy is usually understood
as the composition of nonlinear state features and linear policy weights. Taking this inspiration,
we propose a new approach named Evolutionary Reinforcement Learning with Two-scale State
Representation and Policy Representation (ERL-Re2) to address the aforementioned two drawbacks.
ERL-Re2 is devised based on a novel concept, i.e., two-scale representation: all EA and RL agents
maintained in ERL-Re2 are composed of a shared nonlinear state representation and an individual
linear policy representation. The shared state representation takes the responsibility of learning
general and expressive features of the environment, which is not specific to any single policy, e.g.,
the common decision-related knowledge. In particular, it is learned by following a unifying update
direction derived from value function maximization regarding all EA and RL agents collectively.
Thanks to the expressivity of the shared state representation, the individual policy representation
can have a simple linear form. It leads to a fundamental distinction of ERL-Re2: evolution and
reinforcement occur in the linear policy representation space rather than in a nonlinear parameter
(e.g., policy network) space as the convention. Thus, policy optimization can be more efficient
with ERL-Re2. In addition, we propose novel behavior-level crossover and mutation that allow to
imposing variations on designated dimensions of action while incurring no interference on the others.
Compared to parameter-level operators, our behavior-level operators have clear genetic semantics
of behavior, thus are more effective and stable. Moreover, we further reduce the sample cost of EA
by introducing a new surrogate of fitness, based on the convenient incorporation of Policy-extended
Value Function Approximator (PeVFA) favored by the linear policy representations. Without loss
of generality, we use GA and TD3 (and DDPG) for the concrete choices of EA and RL algorithms.
Finally, we evaluate ERL-Re2 on MuJoCo continuous control tasks with strong ERL baselines and
typical RL algorithms, along with a comprehensive study on ablation, hyperparameter analysis, etc.

We summarize our major contributions below: 1) We propose a novel approach ERL-Re2 to integrate
EA and RL based on the concept of two-scale representation; 2) We devise behavior-level crossover
and mutation which have clear genetic semantics; 3) We empirically show that ERL-Re2 outperforms
other related methods and achieves state-of-the-art performance.

2 BACKGROUND

Reinforcement Learning Consider a Markov decision process (MDP), defined by a tuple
⟨S,A,P,R, γ, T ⟩. At each step t, the agent uses a policy π to select an action at ∼ π(st) ∈ A
according to the state st ∈ S and the environment transits to the next state st+1 according to transition
function P(st, at) and the agent receives a reward rt = R(st, at). The return is defined as the dis-
counted cumulative reward, denoted byRt =

∑T
i=t γ

i−tri where γ ∈ [0, 1) is the discount factor and
T is the maximum episode horizon. The goal of RL is to learn an optimal policy π∗ that maximizes
the expected return. DDPG (Lillicrap et al., 2016) is a representative off-policy Actor-Critic algorithm,
consisting of a deterministic policy πω (i.e., the actor) and a state-action value function approximation
Qψ (i.e., the critic), with the parameters ω and ψ respectively. The critic is optimized with the Tempo-
ral Difference (TD) (Sutton & Barto, 1998) loss and the actor is updated by maximizing the estimated
Q value. The loss functions are defined as: L(ψ) = ED[(r + γQψ′(s′, πω′(s′))−Qψ(s, a))

2] and
L(ω) = −ED[Qψ(s, πω(s))], where the experiences (s, a, r, s′) are sampled from the replay buffer
D, ψ′ and ω′ are the parameters of the target networks. TD3 (Fujimoto et al., 2018) improves DDPG
by addressing overestimation issue mainly by clipped double-Q learning.

2



Published as a conference paper at ICLR 2023

Conventional value functions are defined on a specific policy. Recently, a new extension called
Policy-extended Value Function Approximator (PeVFA) (Tang et al., 2022) is proposed to preserve
the values of multiple policies. Concretely, given some representation χπ of policy π, a PeVFA
parameterized by θ takes as input χπ additionally, i.e., Qθ(s, a, χπ). Through the explicit policy
representation χπ , one appealing characteristic of PeVFA is the value generalization among policies
(or policy space). PeVFA is originally proposed to leverage the local value generalization along the
policy improvement path to improve online RL (we refer the reader to their original paper). In our
work, we adopt PeVFA for the value estimation of the EA population, which naturally fits the ability
of PeVFA well. Additionally, different from the on-policy learning of PeVFA adopted in (Tang et al.,
2022), we propose a new off-policy learning algorithm of PeVFA which is described later.

Evolutionary Algorithm Evolutionary Algorithms (EA) (Bäck & Schwefel, 1993) are a class of
black-box optimization methods. EA maintains a population of policies P = {π1, π2, ..., πn} in which
policy evolution is iteratively performed. In each iteration, all agents interact with the environment for
e episodes to obtain Monte Carlo (MC) estimates of policy fitness {f(π1), f(π2), ..., f(πn)} where
f(π) = 1

e

∑e
i=1[

∑T
t=0 rt | π]. The policy with higher fitness is more likely to be selected as parents

to produce the next generation in many ways such as Genetic Algorithm (GA) (Mitchell, 1998) and
Cross-Entropy Method (CEM) (Pourchot & Sigaud, 2019). With GA, offspring are generated by
applying genetic operators: the parents πi and πj are selected randomly to produce offspring π′

i and
π′
j by performing the crossover operator, i.e., π′

i, π
′
j = Crossover(πi, πj) or the mutation operator

π′
i = Mutation(πi). In most prior methods, the crossover and mutation operate at the parameter

level. Typically, k-point crossover randomly exchange segment-wise (network) parameters of parents
while Gaussian mutation adds Gaussian noises to the parameters. Thanks to the diversity brought by
abundant candidates and consistent variation, EA has strong exploration ability and convergence.

3 RELATED WORK

Recently, an emergent research field is integrating the advantages of EA and RL from different
angles to devise new methods (Sigaud, 2022), for example, combining EA and RL for efficient policy
optimization (Khadka & Tumer, 2018; Bodnar et al., 2020), using EA to approximate the greedy
action selection in continuous action space (Kalashnikov et al., 2018; Simmons-Edler et al., 2019;
Shi & Singh, 2021; Shao et al., 2021; Ma et al., 2022), population-based hyperparameter tuning of
RL (Jaderberg et al., 2017; Pretorius & Pillay, 2021), and genetic programming for interpretable RL
policies (Hein et al., 2018; Hein, 2019). In this work, we focus on combining EA and RL for efficient
policy optimization. ERL (Khadka & Tumer, 2018) first proposes a hybrid framework where a DDPG
agent is trained alongside a genetic population. The RL agent benefits from the diverse experiences
collected by the EA population, while the population periodically includes a copy of the RL agent.
In parallel, CEM-RL (Pourchot & Sigaud, 2019) integrates CEM and TD3. In particular, the critic
function of TD3 is used to provide update gradients for half of the individuals in the CEM population.
Later, ERL serves as a popular framework upon which many improvements are made. CERL (Khadka
et al., 2019) extends the single RL agent to multiple ones with different hyperparameter settings to
make better use of the RL side. GPO (Gangwani & Peng, 2018) devises gradient-based crossover and
mutation by policy distillation and policy gradient algorithms, respectively. Further, PDERL (Bodnar
et al., 2020) devises the Q-filtered distillation crossover and Proximal mutation to alleviate the policy
crash caused by conventional genetic operators at the parameter level. All these works adopt no
sharing among agents and each agent of EA and RL learns its own state representation, which is
inefficient and specialized. By contrast, our approach ERL-Re2 makes use of a expressive state
representation function which is shared and learned by all agents. Another common point of these
works is, evolution variations are imposed at the parameter level (i.e., policy network). Despite the
existence of GPO and PDERL, the semantics of genetic operators on policy behavior cannot be
guaranteed due to the nonlinearity nature of policy parameters. In ERL-Re2, we propose behavior-
level crossover and mutation operators that have clear semantics with linear policy representations.

4 REPRESENTATION-BASED EVOLUTIONARY REINFORCEMENT LEARNING

In this section, we introduce the overview of ERL-Re2 to gain the holistic understanding of the key
concept. In addition, we introduce how ERL-Re2 can be realized by a general form of algorithm
framework. We defer the concrete implementation details in Sec. 5.
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4.1 THE CONCEPT OF TWO-SCALE STATE REPRESENTATION AND POLICY REPRESENTATION
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Figure 1: The left represents ERL framework and the right rep-
resents ERL-Re2 framework. In ERL-Re2, all the policies are
composed of the nonlinear shared state representation Zϕ and an
individual linear policy representation W .

The previous algorithms that
integrate EA and RL for pol-
icy optimization primarily fol-
low the ERL interaction architec-
ture shown on the left of Fig. 1,
where the population’s policies
offer a variety of experiences for
RL training and the RL side in-
jects its policy into the popula-
tion to participate in the iterative
evolution. However, two signif-
icant issues exist: 1) each agent
maintains an independent nonlin-
ear policy and searches in param-
eter space, which is inefficient
because each agent has to inde-
pendently and repeatedly learn
common and useful knowledge.
2) Parameter-level perturbations
might result in catastrophic fail-
ures, making parameter-level evolution exceedingly unstable.

To address the aforementioned problems, we propose Two-scale Representation-based policy con-
struction, based on which we maintain and optimize the EA population and RL agent. The policy
construction is illustrated on the right of Fig. 1. Specifically, the policies for EA and RL agents are all
composed of a shared nonlinear state representation zt = Zϕ(st) ∈ Rd (given a state st) and an indi-
vidual linear policy representation W ∈ R(d+1)×|A|. We refer to the different representation scopes
(shared/individual + state/policy representation) of the policy construction as the two scales. The
agent i makes decisions by combining the shared state representation and the policy representation:

πi(st) = act(Zϕ(st)
TWi,[1:d] +Wi,[d+1]) ∈ R|A|,

where W[m(:n)] denotes the slice of matrix W that consists of row m (to n) and act(·) de-
notes some activation function (e.g., tanh)1. In turn, we also denote the EA population by
P = {W1,W2, ...,Wn} and the RL agent by Wrl. Intuitively, we expect the shared state repre-
sentation Zϕ to be useful to all possible policies encountered during the learning process. It ought to
contain the general decision-related features of the environment, e.g., common knowledge, while not
specific to any single policy. By sharing the state representation Zϕ, it does not require each agent
to learn how to represent the state independently. Thus, higher efficiency and more expressive state
representation can be fulfilled through learning in a collective manner with the EA population and
RL agent. Since Zϕ is responsible for expressivity, each individual policy representation can have a
straightforward linear form that is easy to optimize and evaluate (with PeVFA).

4.2 THE ALGORITHM FRAMEWORK OF ERL-RE2

Due to the representation-based policy construction, the state representation function Zϕ determines
a policy space denoted by Π(ϕ), where we optimize the individual representations of the EA and RL
agents. The optimization flow of ERL-Re2 is shown in Fig. 2. The top and bottom panels depict
the learning dynamics of Zϕ and the agents, respectively. In each iteration t, the agents in the EA
population P and the RL agent Wrl evolve or reinforce their representations in the policy space
Π(ϕt) provided by Zϕt

(Sec. 5.2). After the optimization at the scale of individual representation,
the shared state representation is optimized (i.e., ϕt → ϕt+1) towards a unifying direction, derived
from value function maximization regarding all the EA and RL agents (Sec. 5.1). By this means,
the shared state representation is optimized in the direction of a superior policy space for successive
policy optimization. In an iterative manner, the shared state representation and the individual policy
representations play distinct roles and complement each other in optimizing the EA and RL agents.

In principle, ERL-Re2 is a general framework that can be implemented with different EA and RL
algorithms. For the side of EA, we mainly consider Genetic Algorithm (GA) (Mitchell, 1998)

1We use deterministic policy for demonstration while the construction is compatible with stochastic policy.
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Figure 2: The optimization flow of ERL-Re2. In an iterative fashion, the shared state representation
and individual linear policy representations are optimized at two scales.

as a representative choice while another popular choice CEM (Pourchot & Sigaud, 2019) is also
discussed in Appendix F. Our linear policy representation can realized the genetic operations with
clear semantics. For the side of RL, we use DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto et al.,
2018). For efficient knowledge sharing and policy optimization, we learn a shared state representation
by all the agents, then we evolve and reinforce the policies in the policy representation space rather
than in the original policy parameter space.

A general pseudo-code of ERL-Re2 is shown in Algorithm 1. In each iteration, the algorithm proceeds
across three phases (denoted by blue). First, each agent of EA and RL interacts with the environment
and collects the experiences. Specifically, the agents in the EA population P have the probability
1− p to rollout partially and estimate the surrogate fitness with higher sample efficiency (Line 5-6),
in contrast to the conventional way (Line 7-8). Next, evolution and reinforcement update /optimize
their policy representations in the linear policy space (Line 13-14). The agents are optimized by EA
and RL, where RL agent learns with additional off-policy experiences collected by the agents in P
(Line 14) and periodically injects its policy to P (Line 15). Finally, the shared state representation is
updated to provide superior policy space for the following iteration (Line 17).

5 EVOLUTION AND REINFORCEMENT IN REPRESENTATION SPACE

In this section, we present the algorithm details of how to optimize the two-scale representation. In
addition, we introduce a new surrogate of policy fitness to further improve the sample efficiency.

5.1 OPTIMIZING THE SHARED STATE REPRESENTATION FOR A SUPERIOR POLICY SPACE

The shared state representation Zϕ designates the policy space Πϕ, in which EA and RL are conducted.
As discussed in the previous section, the shared state representation takes the responsibility of learning
useful features of the environment from the overall policy learning. We argue that this is superior
to the prior way, i.e., each agent learns its individual state representation which can be less efficient
and limited in expressivity. In this paper, we propose to learn the shared state representation by the
principle of value function maximization regarding all EA and RL agents. To be specific, we first
detail the value function approximation for both EA and RL agents. For the EA agents, we learn a
PeVFA Qθ(s, a,Wi) based on the linear policy representation Wi in EA population P; for the RL
agent, we learn a critic Qψ(s, a). In principle, RL can use PeVFA as its critic. We experimentally
show that both approaches can achieve similar performance in Appendix.D.4. The loss functions of
Qθ and Qψ are formulated below:

LQ(θ) = E(s,a,r,s′)∼D,Wi∼P

[
(r + γQθ′ (s′, πi(s′),Wi)−Qθ (s, a,Wi))

2
]
,

LQ(ψ) = E(s,a,r,s′)∼D

[
(r + γQψ′ (s′, π′

rl(s
′))−Qψ (s, a))

2
]
,

(1)

where D is the experience buffer collected by both the EA and RL agents, θ′, ψ′ denote the target
networks of the PeVFA and the RL critic, π′

rl denote the target actor with policy representation W ′
rl,

and recall πi(s) = act(Zϕ(s)TWi,[1:d] +Wi,[d+1]) ∈ R|A|. Note that we make Qθ and Qψ take the
raw state s as input rather than Zϕ(s). Since sharing state representation between actor and critic

5



Published as a conference paper at ICLR 2023

Algorithm 1: ERL with Two-scale State Representation and Policy Representation (ERL-Re2)
1 Input: the EA population size n, the probability p of using MC estimate, the partial rollout length H
2 Initialize: a replay buffer D, the shared state representation function Zϕ, the RL agent Wrl, the EA

population P = {W1, · · · ,Wn}, the RL critic Qψ and the PeVFA Qθ (target networks are omitted here)
3 repeat
4 # Rollout the EA and RL agents with Zϕ and estimate the (surrogate) fitness
5 if Random Number > p then
6 Rollout each agent in P for H steps and evaluate its fitness by the surrogate f̂(W ) ▷ see Eq. 3
7 else
8 Rollout each agent in P for one episode and evaluate its fitness by MC estimate
9 Rollout the RL agent for one episode

10 Store the experiences generated by P and Wrl to D
11 # Individual scale: evolution and reinforcement in the policy space
12 Train PeVFA Qθ and RL critic Qψ with D ▷ see Eq. 1
13 Optimize the EA population: perform the genetic operators (i.e., selection, crossover and mutation) at

the behavior level for P = {W1, · · · ,Wn} ▷ see Eq. 4
14 Optimize the RL agent: update Wrl (by e.g., DDPG and TD3) according to Qψ ▷ see Eq. 5
15 Inject RL agent to the population P periodically
16 # Common scale: improving the policy space through optimizing Zϕ
17 Update the shared state representation: optimize Zϕ with a unifying gradient direction derived from

value function maximization regarding Qθ and Qψ ▷ see Eq. 2
18 until reaching maximum steps;

may induce interference and degenerated performance as designated by recent studies (Cobbe et al.,
2021; Raileanu & Fergus, 2021). Another thing to notice is, to our knowledge, we are the first to
train PeVFA in an off-policy fashion (Eq. 1). We discuss more on this in Appendix F.

For each agent of EA and RL, an individual update direction of the shared state representation Zϕ is
now ready to obtain by ∇ϕQθ(s, πi(s),Wi) for any Wi ∈ P or ∇ϕQψ(s, πrl(s)) through πi and πrl
respectively. This is the value function maximization principle where we adjust Zϕ to induce superior
policy (space) for the corresponding agent. To be expressive, Zϕ should not take either individual
update direction solely; instead, the natural way is to take a unifying update direction regarding all
the agents (i.e., the currently targeted policies). Finally, the loss function of Zϕ is defined:

LZ(ϕ) = −Es∼D,{Wj}K
j=1∼P

[
Qψ (s, πrl (s)) +

K∑
j=1

Qθ (s, πj (s) ,Wj)
]
, (2)

where K is the size of the sampled subset of EA agents that engage in updating Zϕ. By minimizing
Eq. 2, the shared state representation Zϕ is optimized towards a superior policy space Πϕ pertaining
to all the EA and RL agents iteratively, as the learning dynamics depicted in Fig. 2. Note that the
value maximization is not the only possible choice. For a step further, we also investigate on the
incorporation of self-supervised state representation learning in Appendix D.

5.2 OPTIMIZING THE POLICY REPRESENTATION BY EVOLUTION AND REINFORCEMENT

Given the shared state representation Zϕ, all the agents of EA and RL optimize their individual policy
representation in the policy space Π(ϕ). The fundamental distinction here is, that the evolution and
reinforcement occur in the linear policy representation space rather than in a nonlinear policy network
parameter space as the convention. Thus, policy optimization can be efficiently conducted. Moreover,
the linear policy representation has a special characteristic: it allows performing genetic operations at
the behavior level. We detail the policy representation optimization of EA and RL below.

The evolution of the EA population P mainly consists of: 1) interaction and selection, 2) genetic
evolution. For the process of interaction and selection, most prior methods rollout each agent in
P for one or several episodes and calculate the MC fitness. The incurred sample cost is regarded
as one major bottleneck of EA especially when the population is large. To this end, we propose a
new surrogate fitness based on the PeVFA Qθ (Eq. 1) and partial rollout. At the beginning of each
iteration, we have a probability p to rollout the EA population for H steps. For each agent Wi, the
surrogate fitness is estimated by H-step bootstrapping (Sutton & Barto, 1998):

f̂(Wi) =

H−1∑
t=0

γtrt + γHQθ(sH , πi(sH),Wi). (3)
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Thanks to the PeVFA Qθ, the surrogate fitness can be conveniently estimated and reduce the sample
cost effectively. Moreover, one key point is that f̂(Wi) is free of the off-policy bias in the surrogate
proposed in the concurrent work (Wang et al., 2022). To be concrete, the proposed surrogate fitness
for EA agents in (Wang et al., 2022) is estimated by bootstrapping based on the RL critic and
uniformly samples from the replay buffer. Apparently, the off-policy bias in their surrogate comes
from the mismatch of value functions between specific EA agents and the RL agent, and the mismatch
between initial state distribution and the replay buffer. By contrast, our surrogate fitness obviates
such mismatches by bootstrapping from PeVFA and using partial rollout. We experimentally prove
that f̂(Wi) is more efficient. Therefore, according to the fitness estimated by MC or our surrogate,
parents with high fitness are more likely to be selected as parents. The details of the selection process
follow PDERL (Bodnar et al., 2020).

For the process of genetic evolution, two genetic operators are involved: crossover and mutation.
Typical k-point crossover and Gaussian mutation that directly operate at the parameter level can
easily lead to large fluctuations in the decision and even cause a crash to policy (Gangwani & Peng,
2018; Bodnar et al., 2020). The reason behind this is that the policy parameter is highly nonlinear to
behavior, thus the natural semantics could be hardly guaranteed by such parameter-level operators.
In contrast, recall the linear policy representation W in a matrix form. Each row W[i] determines
the i-th dimension of action and thus the change to W[i] does not affect the behavior of other
dimensions. Based on the granularity of clearer semantics, we propose novel behavior-level crossover
and mutation, as the illustration in Fig.3. For the behavior-level crossover (b-Crossover), the
offspring are produced by inheriting the behaviors of the parents at the corresponding randomly
selected dimensions. For the behavior-level mutation (b-Mutation), each dimension of behavior
has the probability α to be perturbed. Formally, we formulate the two operations below:

(Wc1 ,Wc2) = (Wp1 ⊗d1 Wp2 ,Wp2 ⊗d2 Wp1) = b-Crossover(Wp1 ,Wp2),

Wm1
=Wp1 ⊗d̂1 P1 = b-Mutation(Wp1),

(4)

𝒘𝑝1

𝒘𝑝𝟐

𝒘𝒄1

𝒘𝒄𝟐

Crossover Mutation

𝒘𝒎1

𝒘𝒎𝟐

Figure 3: Behavior-level crossover and mutation op-
erators in ERL-Re2. The offspring and parents are
indexed by c1, c2,m1,m2 and p1, p2 respectively.

where d1, d2, d̂1 are the randomly sampled sub-
sets of all dimension indices, P1 is the ran-
domly generated perturbation matrix, and we
useA⊗dB to denoteA being replaced byB at
the corresponding rows in d. For the dimension
selection and perturbation generation, we fol-
low the same approach used in (Bodnar et al.,
2020) (detailed in Appendix C) and we analyze
the hyperparameter choices specific to our ap-
proach in Sec. 6.3. By imposing variations on
specific behavior dimensions while incurring
no interference on the others, our proposed op-
erators (i.e., b-Crossover and b-Mutation) can be more effective and stable, as well as more
informative in the sense of genetic semantics.

As to the learning of the RL agent Wrl, it resembles the conventional circumstance except done with
respect to the linear policy representation. Taking DDPG (Lillicrap et al., 2016) for a typical example,
the loss function of Wrl is defined below, based on the RL critic Qψ (learned by Eq. 1):

LRL(Wrl) = −Es∼D

[
Qψ (s, πrl(s))

]
. (5)

The RL agent learns from the off-policy experience in the bufferD collected also by the EA population.
Meanwhile, the EA population incorporates the RL policy representation Wrl at the end of each
iteration. By such an interaction, EA and RL complement each other consistently and the respective
advantages of gradient-based and gradient-free policy optimization are merged effectively.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUPS

We evaluate ERL-Re2 on six MuJoCo (Todorov et al., 2012) continuous control tasks as commonly
used in the literature: HalfCheetach, Swimmer, Hopper, Ant, Walker, Humanoid (all in version 2).
For a comprehensive evaluation, we implement two instances of ERL-Re2 based on DDPG (Lillicrap
et al., 2016) and TD3 (Fujimoto et al., 2018), respectively. We compare ERL-Re2 with the following
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Figure 4: Performance comparison between ERL-Re2 and baselines (all in the TD3 version).
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Figure 5: Performance comparison between ERL-Re2 and baselines (all in the DDPG version).

baselines: 1) basic baselines, i.e., PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), DDPG,
TD3 and EA (Mitchell, 1998); 2) ERL-related baselines, including ERL (Khadka & Tumer, 2018),
CERL (Khadka et al., 2019), PDERL (Bodnar et al., 2020), CEM-RL (Pourchot & Sigaud, 2019).
The ERL-related baselines are originally built on different RL algorithms (either DDPG or TD3), thus
we modify them to obtain both the two versions for each of them. We use the official implementation
and stable-baseline3 for the mentioned baselines in our experiments. For a fair comparison, we
compare the methods built on the same RL algorithm (i.e., DDPG and TD3) and fine-tune them
in each task to provide the best performance. All statistics are obtained from 5 independent runs.
This is consistent with the setting in ERL and PDERL. We report the average with 95% confidence
regions. For the population size n, we consider the common choices and use the best one in {5, 10}
for each concerned method. We implement our method ERL-Re2 based on the codebase of PDERL
and the common hyperparameters remain the same. For the hyperparameters specific to ERL-Re2
(both DDPG and TD3 version), we set α to 1.0 and select H from {50, 200}, K from {1, 3}, p from
{0.3, 0.5, 0.7, 0.8} for different tasks. All implementation details are provided in Appendix E.

6.2 PERFORMANCE EVALUATION

We evaluate ERL-Re2 and baselines in TD3 and DDPG versions separately. The results in Fig.4
and Fig.5 show that both ERL-Re2 (TD3) and ERL-Re2 (DDPG) significantly outperform other
methods in most tasks. It is worth noting that, to our knowledge, ERL-Re2 is the first algorithm
that outperforms EA in Swimmer. We can see that both ERL-Re2 (TD3) and ERL-Re2 (DDPG)
achieve a 5x improvement in convergence rate compared to EA and obtain higher and more stable
performance. Moreover, in some more difficult environments such Humanoid which is dominated by
RL algorithms, ERL-Re2 also achieves significant improvements. Overall, ERL-Re2 is an effective
and general framework that significantly improves both EA and RL in all the six tasks while other
methods fails. Beyond MuJoCo, we also demonstrate the performance improvement achieved by
ERL-Re2 in several visual control tasks of DMC (Tassa et al., 2018) in Appendix D.5.

6.3 SUPERIORITY OF COMPONENTS & PARAMETER ANALYSIS

We conduct experiments to compare our proposed genetic operators and surrogate fitness with other
related methods. In Fig.6a, we compare the behavior-level operators with other alternatives. The
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(d) Ablation study on surrogate fitness

Figure 6: Comparative evaluation of the components in ERL-Re2 and ablation study.
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Figure 7: Analysis of main hyperparameters.

results show that the behavior-level operators are more effective than other operators. Next, we
examine whether the surrogate fitness estimate f̂(Wi) (i.e., H-step bootstrapping (PeVFA)) is better
than using the RL critic to evaluate fitness based on the latest state from replay buffer (Wang et al.,
2022) (i.e., buffer (Critic)). The results in Fig.6b show that using PeVFA is more effective than using
the RL critic. This is because the RL critic cannot elude the off-policy bias while PeVFA is free of it
thanks to the generalized approximation. Second, we provide ablation study on how to update Zϕ
and analyze the effect of different K. We evaluate ERL-Re2 (TD3) with different K ∈ [1, 3] and
ERL-Re2 (TD3) with only PeVFA or critic to optimize the shared state representation. The results in
Fig.6c demonstrate the conclusion of two aspects: 1) K affects the results and appropriate tuning
are beneficial; 2) both the RL critic and PeVFA play important roles. Only using the RL critic or
PeVFA leads to inferior shared state representation, crippling the overall performance. Third, we
perform ablation experiments on f̂(Wi). The results in Fig.6d show that using f̂(Wi) can deliver
performance gains and achieve further improvement to ERL-Re2 especially in Swimmer.

For hyperparameter analysis, the results in Fig.7a show that larger α is more effective and stable,
which is mainly since that larger α can lead to stronger exploration. Thus we use α = 1.0 on all
tasks. Finally, the results in Fig. 7b demonstrate that p has an impact on performance and appropriate
tuning for different tasks is necessary. It is worth noting that setting p to 1.0 also gives competitive
performances, i.e., do not use the surrogate fitness f̂(Wi) (see blue in Fig. 6d).
Others Due to space limitations, more experiments on the hyperparameter analysis of H , β, differ-
ent combinations of genetic operators, incorporating self-supervised state representation learning, the
interplay between the EA population and the RL agent and etc. are placed in Appendix D.

7 CONCLUSION

We propose a novel approach called ERL-Re2 to fuse the distinct advantages of EA and RL for
efficient policy optimization. In ERL-Re2, all agents are composed of the shared state representation
and an individual policy representation. The shared state representation is endowed with expressive
and useful features of the environment by value function maximization regarding all the agents. For
the optimization of individual policy representation, we propose behavior-level genetic operators and
a new surrogate of policy fitness to improve effectiveness and efficiency. In our experiments, we have
demonstrated the significant superiority of ERL-Re2 compared with various baselines.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant No.62106172),
the “New Generation of Artificial Intelligence” Major Project of Science & Technology 2030
(Grant No.2022ZD0116402), and the Science and Technology on Information Systems Engineering
Laboratory (Grant No.WDZC20235250409, No.WDZC20205250407).

REFERENCES

T. Bäck and H. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evol.
Comput., 1(1):1–23, 1993.

I. Belghazi, S. Rajeswar, A. Baratin, R. D. Hjelm, and A. C. Courville. Mutual information neural
estimation. In International conference on machine learning, pp. 531–540. PMLR, 2018.

C. Bodnar, B. Day, and P. Lió. Proximal distilled evolutionary reinforcement learning. In AAAI, pp.
3283–3290, 2020.

W. Chung, S. Nath, A. Joseph, and M. White. Two-timescale networks for nonlinear value function
approximation. In ICLR, 2019.

K. Cobbe, J. Hilton, O. Klimov, and J. Schulman. Phasic policy gradient. In ICML, volume 139 of
Proceedings of Machine Learning Research, pp. 2020–2027, 2021.

W. Dabney, A. Barreto, M. Rowland, R. Dadashi, J. Quan, M. G. Bellemare, and D. Silver. The
value-improvement path: Towards better representations for reinforcement learning. In AAAI, pp.
7160–7168, 2021.

F. Faccio, L. Kirsch, and J. Schmidhuber. Parameter-based value functions. In ICLR, 2021.

M. C. Fontaine and S. Nikolaidis. Differentiable quality diversity. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, 2021.

S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, volume 80 of Proceedings of Machine Learning Research, pp. 1582–1591,
2018.

T. Gangwani and J. Peng. Policy optimization by genetic distillation. In ICLR, 2018.

D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
2018.

Xiaotian Hao, Weixun Wang, Jianye Hao, and Yaodong Yang. Independent generative adversarial
self-imitation learning in cooperative multiagent systems. arXiv preprint arXiv:1909.11468, 2019.

Xiaotian Hao, Zhaoqing Peng, Yi Ma, Guan Wang, Junqi Jin, Jianye Hao, Shan Chen, Rongquan Bai,
Mingzhou Xie, Miao Xu, et al. Dynamic knapsack optimization towards efficient multi-channel
sequential advertising. In International Conference on Machine Learning, pp. 4060–4070. PMLR,
2020.

Xiaotian Hao, Weixun Wang, Hangyu Mao, Yaodong Yang, Dong Li, Yan Zheng, Zhen Wang, and
Jianye Hao. Api: Boosting multi-agent reinforcement learning via agent-permutation-invariant
networks. arXiv preprint arXiv:2203.05285, 2022.

D. Hein. Interpretable Reinforcement Learning Policies by Evolutionary Computation. PhD thesis,
2019.

10



Published as a conference paper at ICLR 2023

D. Hein, S. Udluft, and T. A. Runkler. Interpretable policies for reinforcement learning by genetic
programming. Eng. Appl. Artif. Intell., 2018.

M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, and S. Levine. Scalable deep reinforcement learning for vision-based robotic
manipulation. In CoRL, volume 87 of Proceedings of Machine Learning Research, pp. 651–673,
2018.

S. Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. In NeurIPS,
pp. 1196–1208, 2018.

S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, and K. Tumer. Collaborative
evolutionary reinforcement learning. In ICML, volume 97 of Proceedings of Machine Learning
Research, pp. 3341–3350, 2019.

A. Kumar, R. Agarwal, T. Ma, A. C. Courville, G. Tucker, and S. Levine. Dr3: Value-based deep
reinforcement learning requires explicit regularization. arXiv preprint arXiv:2112.04716, 2021.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning with
augmented data. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. In ICLR, 2016.

Y. Ma, T. Liu, B. Wei, Y. Liu, K. Xu, and W. Li. Evolutionary action selection for gradient-based
policy learning. arXiv preprint arXiv:2201.04286, 2022.

S. Majumdar, S. Khadka, S. Miret, S. McAleer, and K. Tumer. Evolutionary reinforcement learning
for sample-efficient multiagent coordination. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. PMLR, 2020.

M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

F. Ni, J. Hao, J. Lu, X. Tong, M. Yuan, J. Duan, Y. Ma, and K. He. A multi-graph attributed
reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling
problem. In KDD, pp. 3441–3451, 2021.

J. Parker-Holder, A. Pacchiano, K. M. Choromanski, and S. J. Roberts. Effective diversity in
population based reinforcement learning. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

B. Peng, T. Rashid, C. S. de Witt, P. Kamienny, P. H. S. Torr, W. Boehmer, and S. Whiteson. FACMAC:
factored multi-agent centralised policy gradients. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 12208–12221, 2021.

A. Pourchot and O. Sigaud. CEM-RL: combining evolutionary and gradient-based methods for policy
search. In ICLR, 2019.

K. W. Pretorius and N. Pillay. Population based reinforcement learning. In SSCI, pp. 1–8, 2021.

R. Raileanu and R. Fergus. Decoupling value and policy for generalization in reinforcement learning.
In ICML, volume 139 of Proceedings of Machine Learning Research, pp. 8787–8798, 2021.

11



Published as a conference paper at ICLR 2023

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C. Hung, P. H. S.
Torr, J. N. Foerster, and S. Whiteson. The starcraft multi-agent challenge. In Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
Montreal, QC, Canada, May 13-17, 2019, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

L. Shao, Y. You, M. Yan, S. Yuan, Q. Sun, and J. Bohg. GRAC: self-guided and self-regularized
actor-critic. In CoRL, volume 164 of Proceedings of Machine Learning Research, pp. 267–276,
2021.

Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang Liu.
Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement learn-
ing. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pp. 3371–3377. ijcai.org, 2020.

Z. Shi and S. P. N. Singh. Soft actor-critic with cross-entropy policy optimization. arXiv preprint
arXiv:2112.11115, 2021.

O. Sigaud. Combining evolution and deep reinforcement learning for policy search: a survey. arXiv
preprint arXiv:2203.14009, 2022.

R. Simmons-Edler, B. Eisner, E. Mitchell, H. S. Seung, and D. D. Lee. Q-learning for continuous
actions with cross-entropy guided policies. arXiv preprint arXiv:1903.10605, 2019.

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep neuroevolution:
Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive computation and
machine learning. MIT Press, 1998.

H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, C. Yu, H. Mao, W. Liu, Y. Yang, W. Tao, and
L. Wang. What about inputting policy in value function: Policy representation and policy-extended
value function approximator. In AAAI, pp. 8441–8449, 2022.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS, pp.
5026–5033, 2012.

Y. Wang, K. Xue, and C. Qian. Evolutionary diversity optimization with clustering-based selection
for reinforcement learning. In International Conference on Learning Representations, 2021.

Y. Wang, T. Zhang, Y. Chang, B. Liang, X. Wang, and B. Yuan. A surrogate-assisted controller for
expensive evolutionary reinforcement learning. Information Sciences, 2022.

Yifu Yuan, Jianye Hao, Fei Ni, Yao Mu, Yan Zheng, Yujing Hu, Jinyi Liu, Yingfeng Chen, and
Changjie Fan. Euclid: Towards efficient unsupervised reinforcement learning with multi-choice
dynamics model. arXiv preprint arXiv:2210.00498, 2022.

12



Published as a conference paper at ICLR 2023

A LIMITATIONS & FUTURE WORK

For limitations and future work, firstly our work is empirical proof of the effectiveness of the ERL-
Re2 idea and we provide no theory on optimality, convergence, and complexity. Secondly, one
critical point is the expressivity of the shared state representation, which is not optimally addressed
by this work. Self-supervised state representation learning and nonlinear policy representation
with behavior semantics can be potential directions. Thirdly, diversity is one key aspect of EA
while in ERL-Re2 we currently do not consider an explicit mechanism or objective to optimize
the diversity of EA population (and also RL policy). One important future work is to integrate
Quality-Diversity principle (Parker-Holder et al., 2020; Fontaine & Nikolaidis, 2021; Wang et al.,
2021) for further development of ERL-Re2. Fourthly, most current ERL methods including our
ERL-Re2 are model-free. Obviously, the model-free paradigm limits the advance in sample efficiency.
One promising direction can be ERL with a world model, as a pioneer work (Ha & Schmidhuber,
2018) has demonstrated the feasibility with CMA-ES. For the final one, we follow the convention in
the literature and evaluate ERL-Re2 on MuJoCo in the main text and additional tasks DMC (Tassa
et al., 2018) with image inputs in Appendix D.5; while performance in other environments, e.g.,
Atari (Mnih et al., 2013), is not thoroughly studied.

B COMPARISON BETWEEN ERL AND ERL-RE2

In this section, we compare ERL (Khadka & Tumer, 2018) and ERL-Re2 in detail. The ERL
framework is currently one popular framework to integrate EA and RL for policy optimization. We
illustrate the difference between the two frameworks intuitively in Fig.8. On the foundation of the
interaction schema between EA and RL in ERL, ERL-Re2 makes all policies composed of the shared
state representation and individual policy representations. Based on the shared state representation,
useful common knowledge can be delivered efficiently among agents. Meanwhile, the linear policy
representations allow for imposing the novel behavior-level crossover and mutation operations, which
are more stable and effective.

We detail how to update the shared state representation by the principle of value function maximization.
Here we illustrate the process in Fig. 9 to help the readers understand it more intuitively. After
interacting with the environment for t steps, we optimize the shared state representation t times. In
each update, we maximize Q(s, a) of the RL agent on the one hand. On the other hand, we sample
K policies {W1, ...WK} from the population to maximize Q(s, a,Wi). Finally, the shared state
representation is optimized toward a unifying direction according to Eq. 2.

Env

EA based on actor  

Experiences

Inject RL 
policy to 
EA 
population

RL based on actor 

Env

EA based on Policy 
Representation  

Experiences

Inject RL 
policy to 
EA 
population

RL based on Policy 
Representation  

Shared State 
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Evaluation Evaluation

Figure 8: Comparison between ERL (Khadka & Tumer, 2018) and ERL-Re2. The left shows the
interaction between EA and RL in ERL, and the right shows the interaction between EA and RL in
ERL-Re2.

C DETAILS OF GENETIC ALGORITHM IN ERL-RE2

In this section, we provide the genetic algorithm flow and the corresponding pseudo-code in Al-
gorithm 2. Since ERL-Re2 is built on the official code of PDERL (Bodnar et al., 2020), thus all
hyperparameters and genetic algorithm flow remain the same.
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Figure 9: The illustration on how to update shared state representations. In each update, we sample
K policy representations from the population. Based on this, ERL-Re2 updates the shared state
representation network with PeVFA and critic according to Eq. 2.

Specifically, we first get the fitness of all policies in the population and divide all policies into three
groups: elites, winners, and discarders. We choose the best e policies as the elites E (In PDERL, e is
different across tasks. We choose 1 for all tasks in ERL-Re2). Then we randomly select 3 policies
from the non-elites policies and choose the best one as the winner. Then we repeat the process for
n− e times and get the set of these policies Win without duplicates. The policies that are not selected
as the elites and winners are denoted as discarders Dis. After sorting the categories, we perform
the crossover operator. Specifically, we obtain the parents Wp1 and Wp2 by cloning the randomly
sampled policies from E and Win respectively. For each action dimension ai, the weights and biases
corresponding to the ai-th action of Wp1 will be replaced by those of Wp2 with probability 50%.
Conversely, the weights and biases of Wp2 will be replaced by those of Wp1 . After the exchange, we
get two offspring and replace the policies in Dis with these offspring. We repeat the above crossover
process until all the policies in Dis are replaced. Then we perform mutation on all policies except the
elites with a probability 90%. For the selected agent, we perturb the weights corresponding to each
action with probability α. For each selected action, the same kind of perturbation is added to a certain
percentage (i.e., β) parameters. Specifically, we perform a small Gaussian perturbation, a large
Gaussian perturbation, or reset these parameters with probability 90%, 5%, and 5%, respectively. By
completing the above operation, one iteration of population evolution is completed. Except for α and
β we introduced, we use the same settings of the hyperparameters as in PDERL.

D COMPLETE EXPERIMENTAL DETAILS AND FULL RESULTS

This session provides more experiments to help understand ERL-Re2 more comprehensively. We
report the average with 95% confidence region based on 5 different seeds. A navigation summary of
additional experiments is provided as follows:

Exp 1 Ablation study on behavior-level crossover and mutation operators.

Exp 2 Evaluation of different choices of H used in the calculation of our surrogate fitness in Eq. 3.

Exp 3 Analysis of the repeated episodes used in the calculation of our surrogate fitness in Eq. 3.

Exp 4 Evaluation of different choices of the mutation ratio β in Algorithm 2.

Exp 5 Evaluation of different choices of population size.

Exp 6 Experiments on using the idea of ERL-Re2 to improve EA, i.e., Improve EA with the shared
state representation and individual policy representations.

Exp 7 A comparative experiment on participation rates of the elites and discarders.

Exp 8 Experiments on the change of the average/maximum/minimum return of the population
before and after optimizing the shared state representation.

Exp 9 Further exploration on unsupervised learning to improve shared state representation.

Exp 10 Further exploration on the Value Improvement Path (VIP) (Dabney et al., 2021) to improve
shared state representation..
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Algorithm 2: Genetic Algorithm in ERL-Re2

1 Input: the EA population size n, the probability α and β
2 Initialize: the shared state representation function Zϕ, the EA population P = {W1, · · · ,Wn},
3 repeat
4 # Obtain Fitness
5 Rollout the EA policies with Zϕ and get the (surrogate) fitness
6 # Perform selection operators
7 Rank the populations based on fitness and select the best several (1 in ERL-Re2) policies as the elites E
8 Randomly select 3 policies other than the elites and retain the best policies as the winner, and repeat the

process to collect a set of winners as the winners Win
9 Policies that are not selected as the elites and winners are collected as discarders Dis.

10 # Perform crossover operators b-Crossover(Ww1 ,Ww2)
11 while Dis is not empty do
12 select two discarders Wdi ,Wdj from Dis
13 random select Wi from E and clone Wi as one parent Wp1

14 random select Wj from Win and clone Wj as the other parent Wp2

15 for index ai in action dimension do
16 if random number < 0.5 then
17 Wp1 = Wp1 ⊗ai Wp2

18 else
19 Wp2 = Wp2 ⊗ai Wp1

20 use Wp1 and Wp2 to replace Wdi and Wdj and remove Wdi and Wdj from Dis

21 # Perform mutation operators b-Mutation(Wpi)
22 for W in all non-elite agents do
23 if random number <0.9 then
24 for index ai in action dimension do
25 if random number < α then
26 Add minor (90%), drastic (5%) Gaussian perturbations, or reset parameters (5%) to

randomly selected β parameters from W[ai]

27 else

28 else

29 until reaching maximum training steps;

Exp 11 Evaluation of different architectures, i.e., maintaining a PeVFA and an RL Critic for EA and
RL separately or only a PeVFA for both EA and RL.

Exp 12 Time-consuming analysis of ERL-Re2 (TD3) and other related algorithms.

Exp 13 Analysis of the number of parameters of ERL-Re2 (TD3) and other related algorithms.

Exp 14 Experiments on the influence of other factors i.e., layer normalization, discount reward, and
actor structure.

Exp 15 More experiments on Deepmind Control Suite (Tassa et al., 2018) with pixel-level inputs.

Exp 16 More experiments on Starcraft II (Samvelyan et al., 2019).

Exp 17 The experiments on MuJoCo with longer timesteps.

Exp 18 Combine ERL-Re2 with SAC and evaluate on MuJoCo.

D.1 ADDITIONAL ABLATION & HYPERPARAMETER ANALYSIS

In this subsection, we provide experiments on ablation and hyperparameter analysis in Exp 1, Exp 2,
Exp 3, Exp 4, Exp 5, Exp 6.

Exp 1: To demonstrate the respective roles of operators, we perform ablation experiments on the
behavior-level crossover and mutation operators. ERL-Re2 (TD3) w/o crossover(mutation) means
using parameter-level crossover(mutation) in ERL to replace the behavior-level crossover(mutation).
The results in Fig. 10 show that both behavior-level mutation and crossover operators can deliver
performance gains and the best performance can be obtained by using a combination of both.
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Figure 10: Ablation study on behavior-level crossover and mutation operators in ERL-Re2 (TD3).
The results show that both the mutation and crossover can bring performance gains and the best
performance can be obtained by using a combination of both.
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Figure 11: Parameter analysis on ERL-Re2 (TD3) with different H . The results show that ERL-Re2
(TD3) is not sensitive to H but proper adjustment can get better results.

Exp 2: To analyze the effect of hyperparameter H on performance, we evaluate ERL-Re2 (TD3)
with different H on Swimmer and Walker. The results in Fig. 11 show that ERL-Re2 is not sensitive
to H , but appropriate adjustments can deliver some performance gains.

Exp 3: In the surrogate function f̂(Wi) in Eq. 3, we do not consider the repeated episodes. Here we
provide experiments to perform the analysis. The results in Fig.12 show that one episode is often
enough to achieve a good performance. To reduce hyperparameters and simplify the tuning process,
we set the episode to 1 in all tasks.

Exp 4: To analyze the effect of hyperparameter β on performance, we evaluate ERL-Re2 (TD3)
with different β on Swimmer and Walker. The results in Fig. 13 show ERL-Re2 is not very sensitive
to β. The β determines the degree of mutation for an action. A large β means strong exploration.
According to our experience, in some stable environments such as Swimmer and HalfCheetach, a
larger β is generally chosen, while in some unstable environments such as Walker and Hopper, a
smaller β is chosen.

Exp 5: Although the population size remains consistent 5 across all tasks in our experiments, we
give some additional experiments to explore the effect of population size on performance. The
results in Fig. 14 show that 5 is more effective than 10 in ERL-Re2 (TD3). The main reason behind
this may come from the fact that when the population is too large, the number of steps that the RL
agent interacts with the environment is drastically reduced, which may lead to a decrease in RL
performance. This problem can be solved by considering a more efficient mechanism for evaluating
the individuals to reduce the total interaction of EA properly to improve the number of steps of RL
interactions. For a fair comparison, we also evaluate other algorithms based on different population
size 5 and 10 and report the best performance.

Exp 6: We provide an ablation study on ERL-Re2 without the RL side, which can verify whether
the idea of ERL-Re2 can improve EA. Specifically, we construct the policies with the share state
representation and individual policy representations in EA and maintain a PeVFA to share the useful
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Figure 12: Experiments on the repeated episodes with different H as the surrogate of the fitness.
10× 20 means that repeat 10 episodes with 20 steps (i.e., H = 20) and get the average as the fitness.
In the results, 1 ×H is effective in the tasks. To reduce hyperparameters and simplify the tuning
process, we use 1 episode in all tasks.
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Figure 13: Parameter analysis of the mutation ratio β in ERL-Re2 (TD3). The results show that
ERL-Re2 (TD3) is not sensitive to β but proper adjustment can get better results..

common knowledge in the population. The results in Fig. 15 show that the idea of ERL-Re2 can
significantly improve EA, which demonstrates the validity of the idea of ERL-Re2.

D.2 FURTHER UNDERSTANDING ERL-RE2

In this subsection, we provide experiments to help readers better understand the advantages of
ERL-Re2 in Exp 7 and Exp 8.

Exp 7: To further investigate the reason why ERL-Re2 is more efficient than ERL and PDERL,
we provide a comparative experiment on elites and discarded rates of RL agents. The results in
Fig. 16 show that RL agent in ERL-Re2 (TD3) is selected as elites with a larger probability and as
discarders with a smaller probability than RL agent in ERL(TD3) and PDERL(TD3), which indicates
that both EA and RL in ERL-Re2 (TD3) have more competitive effects on population evolution than
in ERL(TD3) and PDERL(TD3).

Exp 8: To further study the effect of the state representation on the population, we record the added
undiscounted return after optimizing the shared state representation. Specifically, we record the
change in average return, maximum return, and minimum return of the population before and after
the optimization of the shared state representation. The results in Fig. 17 show the improvement
of shared state representations can improve the average reward of the population, where the major
improvement comes from poor policies. This demonstrates that the optimization of shared state
representations can construct a better policy space for all policies, thus facilitating the evolution of
the population.

17



Published as a conference paper at ICLR 2023

0 100000 200000 300000 400000 500000 600000
Time Steps

1000

2000

3000

4000

5000

6000

Un
di

sc
ou

nt
ed

 R
et

ur
n

Ant

10
5

0 100000 200000 300000 400000 500000 600000 700000 800000
Time Steps

1000

2000

3000

4000

5000

Un
di

sc
ou

nt
ed

 R
et

ur
n

Walker

Figure 14: Comparison of ERL-Re2 (TD3) with different population sizes. 5 is more effective than
10 in ERL-Re2 (TD3). Thus we set 5 for population size in all tasks. For a fair comparison, we also
evaluate other baselines with 5 and 10 and report the best performance.
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Figure 15: Comparison of EA and EA with Re2. With Re2, the performance of EA can be further
improved, which indicates that the idea of ERL-Re2 can be integrated with EA and further improve
EA.

D.3 ADVANCED STATE REPRESENTATION

In this subsection, we further explore how to learn more effective shared state representation in Exp
9 and Exp 10.

Exp 9: We conduct additional exploration to enable further improvements of shared state represen-
tations by unsupervised learning. To make the representation have dynamic information about the
environment, we add the mutual information (MI) loss to the first layer of the shared state represen-
tation network. Specifically, When given current state s and the next state s′, we want to make the
representation based on s and s′ have a high correlation with the corresponding action a, which can
be donated as I(s, s′; a). We use the MINE (Belghazi et al., 2018) to estimate MI. MINE is a neural
network to estimate the MI of any two random variables. To make the shared state representation
contain the information, we obtain one variable by combining the representations of s and s′ from the
first layer of the shared state representation network and use the representations and a as the inputs to
MINE. We evaluate ERL-Re2 (TD3) with the MI loss and ERL-Re2 on Ant and Walker. The results
in Fig.18 show that the MI loss can bring some performance improvement in Ant and fail in Walker.
We find that the MI loss has both good and bad effects on the final performance. A more stable and
efficient way to improve the performance is left as a subsequent work.

Exp 10: Inspired by the idea of VIP (Dabney et al., 2021), we conduct experiments to optimize
the shared state representation with the previous policy representations. Specifically, we optimize
the shared state representation with policy representations not only current but also the previous
generation. The results in Fig. 19 show that this approach does not guarantee performance gains.
This is just an initial attempt to see how the shared state representation can be further improved by
self-supervised learning, which deserves subsequent study. We consider this as future work.

D.4 DISCUSSION OF OTHER ASPECTS

In this subsection, we further discuss some other aspects of ERL-Re2 such as the architectures
selection, time consumption, the number of parameters and other factors in Exp 11, Exp 12, Exp 13,
Exp 14.
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Figure 16: Comparisons of probabilities of RL agent being selected as the elite (left) and discarder
(right) of the population in ERL-Re2 (TD3), ERL(TD3), and PDERL(TD3). The results show that
both EA and RL in ERL-Re2 (TD3) have more competitive effects on population evolution than in
ERL(TD3) and PDERL(TD3).
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Figure 17: the policy performance change in the EA population after optimizing the shared state
representation. Max/Min/Mean means the change of the best/worst/average performance in the
population before and after the optimization. The results demonstrate that the optimization of shared
state representations can construct a better policy space for all policies, thus facilitating the evolution
of the population.

Exp 11: In ERL-Re2, we introduce a PeVFA for EA while maintaining the RL critic for RL. In
principle, RL can also be improved by the PeVFA. leading to only one PeVFA for both the EA and
RL agents. Both architectures can achieve useful common knowledge sharing. To further verify
the effectiveness, we conduct comparison experiments between these two architectures in the TD3
version. The results in Fig. 20 show that similar performance can be obtained with both architectures.
But to preserve the flexibility and corresponding characteristics of RL methods, we retain the original
critic. From the perspective of RL, our architecture does not make changes to the original structure,
e.g., maintaining the architecture of the value function, and this separately maintained approach is
more convenient to analyze and combine. Therefore, we choose this architecture as the final solution.

Exp 12: We evaluate the time consumption of different algorithms on Walker. The experiment is
carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. We
evaluate the time consumption of each algorithm individually with no additional programs running
on the device. As shown in Table 1, ERL-Re2 incurs some additional time consumption compared to
other methods. The main time consumption comes from the training of PeVFA and the shared state
representation. 94.73% of the total time is spent on training. If the researchers are sensitive to time
overhead, a distributed approach can be used to reduce the time overhead.

Exp 13: We provide the number of parameters (i.e., weights and biases) on HalfCheetach in Table
2. The results show that ERL-Re2 (TD3) is competitive with other methods in terms of the number
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Figure 18: Comparisons of ERL-Re2 (TD3) and ERL-Re2 (TD3) with MI loss (i.e., Self-supervised
loss). MI loss brings certain performance improvements in Ant, which is worth further research in the
future.

of parameters. The number of parameters of ERL-Re2 (TD3) is mainly derived from PeVFA, i.e.,
47.9%. In addition, ERL-Re2 has better scalability capability than other ERL-related methods as the
population size increases. Since ERL-Re2 only introduces a linear policy instead of an independent
nonlinear policy network for each agent. For example, on HalfCheetach, when the population size
increase to 100, ERL-Re2 only need additional 22.4% parameters (i.e., 171570), while other methods
such as CERL(TD3) and CEM-TD3 needs additional 1047378600 parameters, which is not feasible.

Exp 14: We provide more experiments to eliminate the influence of some other factors. In the official
codebase of ERL and PDERL, layer normalization is used for both actor and critic. Our code is
built on the codebase of PDERL, thus ERL-Re2 also uses layer normalization. But in the official
codebase of TD3, layer normalization is not employed. To exclude the effect of layer normalization,
we provide experiments of TD3 with layer normalization. The results in Fig.21 show that TD3 with
layer normalization has a similar performance to TD3, which demonstrates that the strengths of
ERL-Re2 do not come from the layer normalization.

Second, we want to exclude the influence of discount rewards on performance. Thus we provide
experiments by comparing ERL-Re2 (TD3) using MC return of one episode as the surrogate of the
fitness and ERL-Re2 (TD3) using discount MC return of one episode as a surrogate of the fitness.
The results in Fig. 22 show that only using discounted MC return as the surrogate of the fitness is not
effective as using undiscounted MC return, which indicates that the advantages of ERL-Re2 do not
come from the discounted form in the surrogate fitness f̂(Wi).

Third, the network structure of the actor of ERL and PDERL is not consistent with the structure
of the TD3 paper. Thus we provide a comprehensive comparison, one maintains the structure of
the original paper and one is consistent with the structure in the TD3 paper. The results in Fig. 23
and Fig. 24 show that the algorithms with the structure of the TD3 paper improve the performance
in some environments and degrade in others. We can find that a large network structure (i.e., the
structure of TD3 paper) leads to large fluctuations in ERL such as Swimmer, where EA plays a more
critical role than RL. The main reason behind this is that parameter-level crossover and mutation
in large networks are more unstable than in small networks. In summary, ERL-Re2 (TD3) is still
significantly better than the best performance in both structures.

Table 1: Time consumption of different algorithms on Walker2d every 10000 steps. The additional
time consuming comes mainly from the training of PeVFA and shared state representations. Dis-
tributed training can solve this problem.

Algorithm ERL-Re2 (TD3) TD3 PDERL(TD3)
seconds 396.14 215.5 251.37
algorithm ERL(TD3) CERL(TD3) CEM-TD3
seconds 223.86 502.45 241.82
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Figure 19: Comparisons of ERL-Re2 (TD3) and ERL-Re2 (TD3) with VIP (Dabney et al., 2021).
We design two versions. The version 1 means firstly optimizing PeVFA with the current and
previous generation’ policy representations, then optimizing the state representations with these
policy representations. The version 2 means directly optimizing the state representations with the
current and previous generation’ policy representations.
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Figure 20: The comparative experiment of two architectures. Only PeVFA for both EA and RL is
using the PeVFA to update RL without introducing the RL Critic. PeVFA for EA and Critic for RL is
the architecture chosen in this paper. The results show that both architectures are feasible and can
achieve competitive performances.

D.5 EXPERIMENTS WITH VISUAL STATE INPUTS

We evaluate whether ERL-Re2 could bring improvement in Deepmind Control Suite (Tassa et al.,
2018) with visual state inputs in Exp 15.

Exp 15: We evaluate ERL-Re2 on four tasks. In these tasks, we take pixel-level images as inputs.
Specifically, we implement ERL-Re2 based on RAD (Laskin et al., 2020) (which can be simply
viewed as SAC + Image Augmentation for image inputs). We follow the conventional setting and
provide the performance comparison in 100k environment steps. We use 4 representative DMC tasks,
covering different robot morphology. The results shown in Table 3 are means and stds over 5 seeds.

We can observe that ERL-Re2 also leads to significant improvements in visual control, which
demonstrates the effectiveness of ERL-Re2, while other methods fail. The main reason is that
population evolution is very inefficient without knowledge sharing with image inputs, since each
individual needs to learn common information from images independently, which is more difficult to
learn than the state-level tasks. This also indicates that the techniques of addressing visual states (e.g.,
image augmentation) are orthogonal to our method, which is worthwhile for further development in
the future.

D.6 EXPERIMENTS IN HIGH-DIMENSIONAL COMPLEX TASKS

For complex high-dimensional tasks, we choose the multi-agent the StarCraft II micromanagement
(SMAC) benchmark (Samvelyan et al., 2019) as the testbed for its rich environments and high
complexity of control. The SMAC benchmark requires learning policies in a large action space.
Agents can move in four cardinal directions, stop, take noop (do nothing), or select an enemy to
attack at each timestep. Therefore, if there are ne enemies in the map, the action space for each allied
unit contains ne + 6 discrete actions. To solve these high complexity tasks, we need to integrate
ERL-Re2 with Multi-Agent Reinforcement Learning (MARL) algorithm. Fortunately, ERL-Re2 can

21



Published as a conference paper at ICLR 2023

Table 2: The number of parameters (i.e., weights and biases) for different algorithms on HalfCheetach.
For ERL and PDERL, we use | to separate the results for two implementations: the left one uses the
same structure as in the original paper, and the right one is aligned with the settings in the TD3 paper.

Algorithm ERL-Re2 (TD3) CERL(TD3) PDERL(TD3) CEM-TD3 ERL(TD3)
number 765508 1553462 456302|1553462 1553462 456302|1553462
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Figure 21: The comparative experiment of TD3 with and without layer normalization. The results
demonstrate that the strengths of ERL-Re2 do not come from the layer normalization.

be combined with the MARL algorithms easily. Specifically, we need to maintain a population of
teams (i.e., Multiple policies that control multiple agents for collaboration are treated as a team).
Each policy in the team needs to follow the two-scale representation-based policy construction.
Thus knowledge can be efficiently conveyed through shared representations and reinforcement and
evolution occur in the linear policy space.

For the base MARL algorithm, we choose FACMAC, an advanced Multi-Agent Reinforcement
Learning algorithm published in NeurIPS 2021 (Peng et al., 2021). Then we combine ERL-Re2
with FACMAC and evaluate it on six tasks. Our implementation is based on the official code of
FACMAC2 and the hyperparameters are kept consistent. To simplify hyperparameter introduced by
ERL-Re2, we set p to 1.0, K to 1 on all tasks and select β from {0.2, 0.05, 0.01}. For baselines, we
compare ERL-Re2 with MERL (Majumdar et al., 2020) except FACMAC and EA. To the best of our
knowledge, MERL is the only work that combines EA and MARL for policy search. The difference
is that MERL is applied to environments with dense agent-specific rewards (optimized by RL) as well
as sparse team rewards (optimized by EA). For comparison, we use EA and MARL(i.e., FACMAC)
to jointly optimize the team rewards of SMAC. The results in Figure 25 show that ERL-Re2 can
significantly improve FACMAC in terms of convergence speed and final performance. It is worth
noting that the joint action space of so_many_baneling, MMM2, 3s5z and 2c_vs_64zg is greater
than 100 dimensions, which demonstrates that ERL-Re2 can bring improvements to the original
algorithm in high-dimensional complex control tasks. Through the above experiments, we further
demonstrated the efficiency and generalization of ERL-Re2.

D.7 EXPERIMENTS ON MUJOCO WITH LONGER TIMESTEPS

In Figure 4, we provide the experiments on MuJoCo with 1 million timesteps, which is mainly
consistent with the training timestep in SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018).
To demonstrate the competitiveness of ERL-Re2 in longer timesteps, we provide the experiments
in the TD3 version with 3 million timesteps. Since Swimmer and Hopper have already achieved
convergence performance, we mainly provide the experiments on the remaining four tasks. The
results may differ slightly from those in the main text, as they are obtained by running on different

2https://github.com/oxwhirl/facmac
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Figure 22: Comparison experiment using one episode MC return and one episode discounted MC
return. The experiments do not use f̂(Wi) as a surrogate of the fitness. The results indicate the
strengths of ERL-Re2 do not come from the discounted design.

Table 3: Comparisons on Deepmind Control Suite with image inputs.

Environments Cartpole Swingup Cheetah Run Finger Turn hard Walker Walk
ERL-Re2 (RAD) 854.453 ± 17.582 508.619 ± 22.622 197.35 ± 83.388 567.417 ± 139.278
RAD 728.66 ± 149.219 472.594 ± 29.595 126.725 ± 48.954 498.867 ± 142.509
ERL(RAD) 527.81 ± 126.48 329.709 ± 132.674 93.6 ± 130.53 287.969 ± 57.168
PDERL(RAD) 471.164 ± 220.221 331.903 ± 29.614 150 ± 70.711 252.492 ± 93.01
CEM-RAD 694.909 ± 44.74 421.574 ± 20.891 50.25 ± 67.67 66.042 ± 19.23
Steps 100k 100k 100k 100k

servers. The results in Figure 26 show ERL-Re2 still significantly outperforms other algorithms with
3 million timesteps, which further verifies the efficiency of ERL-Re2.

E METHOD IMPLEMENTATION DETAILS

All experiments are carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz.

E.1 IMPLEMENTATION OF BASELINES

For all baseline algorithms, we use the official implementation. In our paper, there are two main
implementations, one combines TD3 and the other combines DDPG. Many of these official imple-
mentations contain two implementations such as CEM-RL3 and CERL4. For methods that do not have
two implementations such as ERL5 and PDERL6 (both based on DDPG), we modify the DDPG to
TD3 which is a very simple and straightforward extension. For the basic algorithm TD37, we use the
official implementation. For EA, we use the official implementation in PDERL. For SAC and PPO,
we use the implementation from stable-baseline38. We fine-tuned ERL-related baselines, mainly
including population size, episodes of agents interacting with the environment in the population, elite
rate, injection frequency, etc.

E.2 NETWORK ARCHITECTURE

This section details the architecture of the networks. Our code is built on the official codebase of
PDERL. Most of the structure remains the same. For structures specific to our framework, the shared

3https://github.com/apourchot/CEM-RL
4https://github.com/intelai/cerl
5https://github.com/ShawK91/Evolutionary-Reinforcement-Learning
6https://github.com/crisbodnar/pderl
7https://github.com/sfujim/TD3
8https://github.com/DLR-RM/stable-baselines3
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Figure 23: The comparative experiment of ERL with different actor structures. With the structure
of the TD3 paper, ERL improves performance in some tasks and degrades in other tasks. The
parameter-level operators in a large network can make performance easily crash. (See Swimmer). In
summary, ERL-Re2 (TD3) is still significantly better than the best performance of the two structures.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

1000

2000

3000

4000

5000

6000

Un
di

sc
ou

nt
ed

 R
et

ur
n

Ant

Original structure
Structure of TD3 paper

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

500

1000

1500

2000

2500

3000

3500

Un
di

sc
ou

nt
ed

 R
et

ur
n

Hopper

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

1000

2000

3000

4000

5000

6000

Un
di

sc
ou

nt
ed

 R
et

ur
n

Walker

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0
50

100
150
200
250
300
350
400

Un
di

sc
ou

nt
ed

 R
et

ur
n

Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0

2000

4000

6000

8000

10000

12000

Un
di

sc
ou

nt
ed

 R
et

ur
n

HalfCheetach

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0

1000

2000

3000

4000

5000

Un
di

sc
ou

nt
ed

 R
et

ur
n

Humanoid

)

Figure 24: The comparative experiment of PDERL with different actor structures. With the structure
of the TD3 paper, PDERL improves performance in some tasks and degrades in other tasks. In
summary, ERL-Re2 (TD3) is still significantly better than the best performance of the two structures.

state representation network is constructed by two fully connected layers with 400 and 300 units. The
policy representation is constructed by one fully connected layer with action_dim units.

PeVFA takes state, action and policy representation as inputs and maintains double Q networks
which are similar to TD3. The policy representation can be regarded as a combination of a matrix
with shape [300,action_dim] (i.e., weights) and a vector with shape [action_dim] (i.e., biases)
which can be concatenated as a matrix with shape [300 + 1,action_dim]. We first encode
each vector with shape [300 + 1] of the policy representations with 3 fully connected layers with
units 64 and leaky_relu activation function. Thus we can get an embedding list with shape
[64,action_dim] and get the final policy embedding with shape [64] by taking the mean value
of the embedding list in the action dimension. With the policy embedding, we concatenate the
policy embedding, states, and actions as the input to an MLP with 2 fully connected layers with
units 400 and 300 and get the predicted value by PeVFA. The activation functions in PeVFA all use
leaky_relu. We list structures in Table 4 and 5. For other structures, we take the settings directly
from the codebase of PDERL. The network structure is the same in ERL-Re2 (TD3) and ERL-Re2
(DDPG).
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Figure 25: Performance comparison between ERL-Re2 and baselines (all in the FACMAC version).
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Figure 26: Performance comparison between ERL-Re2 and baselines (all in the TD3 version with 3
million timesteps).

E.3 HYPERPARAMETERS

This section details the hyperparameters across different tasks. Some hyperparameters are kept
consistent across all tasks. Population size is 5 for both ERL-Re2 (TD3) and ERL-Re2 (DDPG).
α for mutation operators is 1.0 for both ERL-Re2 (TD3) and ERL-Re2 (DDPG). The number of
episodes of interaction with the environment for surrogate fitness is 1. γ is 0.99 except 0.999 for
Swimmer (all baselines follow this setting). Since ERL-Re2 is built on PDERL, other settings remain
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Table 4: The structures of the shared state representation network and policy representations.

Shared State Representation Network Policy Representation
(state_dim, 400) (300,action_dim)

tanh tanh
(400,300)

tanh

Table 5: The structure of PeVFA.

PeVFA
(state-action_dim+ 64, 400) (301, 64)

leaky_relu leaky_relu
(400, 300) (64, 64)

leaky_relu leaky_relu
(300, 1) (64, 64)

the same. In addition, we list other hyperparameters specific to ERL-Re2 which varied across tasks in
Table 6 and Table 7. In addition to this, we find that ERL-Re2 is very stable, and if you don’t want
to tune too many hyperparameters, competitive performance can be obtained when keeping K and
β consistent with the settings in the table and do not use our surrogate fitness (i.e., p=1.0). We prove
this in Fig.6d.

Table 6: Details of the hyperparameters of ERL-Re2-TD3 that are varied across tasks.

Env name p β H K
HalfCheetach 0.3 1.0 200 1
Walker 0.8 0.2 50 1
Swimmer 0.3 1.0 200 3
Hopper 0.8 0.2 50 3
Ant 0.5 0.7 200 1
Humanoid 0.5 0.5 200 1

F ADDITIONAL DISCUSSION

F.1 THE ALTERNATIVE OF REPLACING GA BY CEM

In this paper, we use GA as the basic evolutionary algorithm to combine with different RL algorithms.
ERL-Re2 can utilize different evolutionary algorithms to exploit the advantages of these algorithms.
Here we discuss how to use CEM (Pourchot & Sigaud, 2019) to replace GA in ERL-Re2.

The pseudo-code is shown in Algorithm 3. To achieve this, we need to modify two aspects: 1)
population generation. 2) population evolution. For the first aspect, we need to use CEM to generate
the population instead of pre-defining the entire population by constructing a mean policy Wµ to
sample the population based on a predefined covariance matrix Σ = σinitI. For the second aspect,
we need to select the top T policies to update Wµ and Σ = σinitI instead of the crossover and
mutation operators.

F.2 TRAINING PEVFA IN AN OFF-POLICY FASHION

To our knowledge, PeVFA (Tang et al., 2022) and related variants are trained in an on-policy
fashion in prior works. In the original paper of PeVFA, a newly implemented PPO algorithm, called
PPO-PeVFA is studied. In PPO-PeVFA, the algorithm saves states, returns and the corresponding
policies in a replay buffer; then a PeVFA Vθ(s, χπ) is trained by the Monte-Carlo method, based
on the experiences collected in the replay buffer with some policy representation χπ. Note that
although historical experiences are replayed, each policy uses its own collected experiences to
train Vθ, thus being on-policy. Training the PeVFA Vθ in off-policy manner needs to introduce
additional mechanisms such as importance sampling method, which are not implemented in their
work. Similarly, this case can be also be found in (Faccio et al., 2021).
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Table 7: Details of the hyperparameters of ERL-Re2-DDPG that are varied across tasks.

Env name p β H K
HalfCheetach 0.5 1.0 200 1
Walker 0.8 0.2 50 1
Swimmer 0.3 0.5 200 3
Hopper 0.8 0.7 50 3
Ant 0.7 0.5 200 1
Humanoid 0.7 0.5 200 1

Algorithm 3: ERL-Re2 with Cross Entropy Method (CEM)
1 Input: Σ = σinitI and T of CEM, the EA population size n, the probability p of using MC estimate, the

partial rollout length H
2 Initialize: Initialize the mean policy Wµ of CEM. a replay buffer D, the shared state representation

function Zϕ, the RL agent Wrl, the RL critic Qψ and the PeVFA Qθ (target networks are omitted here)
3 repeat
4 # Draw the CEM population P
5 Draw the population P = {W1, · · · ,Wn} from N (πµ,Σ)
6 # Rollout the EA and RL agents with Zϕ and estimate the (surrogate) fitness
7 if Random Number > p then
8 Rollout each agent in P for H steps and evaluate its fitness by the surrogate f̂(W ) ▷ see Eq. 3
9 else

10 Rollout each agent in P for one episode and evaluate its fitness by MC estimate
11 Rollout the RL agent for one episode
12 Store the experiences generated by P and Wrl to D
13 # Individual scale: evolution and reinforcement in the policy space
14 Train PeVFA Qθ and RL critic Qψ with D ▷ see Eq. 1
15 Optimize CEM: rank all policies with fitness and use the top T policies to update CEM.
16 Optimize the RL agent: update Wrl (by e.g., DDPG and TD3) according to Qψ ▷ see Eq. 5
17 # Common scale: improving the policy space through optimizing Zϕ
18 Update the shared state representation: optimize Zϕ with a unifying gradient direction derived from

value function maximization regarding Qθ and Qψ ▷ see Eq. 2
19 until reaching maximum training steps;

In this work, we train PeVFA in an off-policy manner for the first time. We achieve this in a
more efficient way by training a PeVFA Qθ(s, a,W ) with 1-step TD learning and the linear policy
representation W . That is, the value function of each policy can be learned (with its representation
Wi and Qθ) from any off-policy experience (s, a, s′, r) according to Eq. 1. We emphasize that this
is appealing, and we believe that this can realize effective training of PeVFA. In turn, the ability of
PeVFA in conveying the value generalization among policies can be better rendered. We will further
investigate the potential of this point in the future.

We use PeVFA to provide value estimates for each agent (in the EA population). One may note
that the same purpose can be achieved by maintaining a conventional Q network for each agent
individually. However, this means suffers from the issue of scalability, resulting in significant time
and resource overhead. In addition, this approach does not use policy representations and thus cannot
take advantage of value function generalization to improve value function learning.
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