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Abstract

Incremental learning (IL) usually addresses catastrophic forgetting of old tasks when learning
new tasks by replaying old tasks’ raw data stored in a memory, which can be limited by its
size and the risk of privacy leakage. Recent non-exemplar IL methods store class centroids as
prototypes and perturb them with high-dimensional Gaussian noise to generate synthetic data
for replaying. Unfortunately, this approach has two major limitations. First, the boundary
between embedding clusters around prototypes of different classes might be unclear, leading
to serious catastrophic forgetting. Second, directly applying high-dimensional Gaussian noise
produces nearly identical synthetic samples that fail to preserve the true data distribution,
ultimately degrading performance. In this paper, we propose YoooP, a novel exemplar-free
IL approach that can greatly outperform previous methods by only storing and replaying
one prototype per class even without synthetic data replay. Instead of merely storing class
centroids, YoooP optimizes each prototype by (1) shifting it to high-density regions within
each class using an attentional mean-shift algorithm, and (2) optimizing its cosine similarity
with class-specific embeddings to form compact, well-separated clusters. As a result, replaying
only the optimized prototypes effectively reduces inter-class interference and maintains clear
decision boundaries. Furthermore, we extend YoooP to YoooP+ by synthesizing replay data
preserving the angular distribution between each class prototype and the class’s real data
in history, which cannot be obtained by high-dimensional Gaussian perturbation. YoooP+
effectively stabilizes and further improves YoooP without storing real data. Extensive
experiments demonstrate the superiority of YoooP/YoooP+ over non-exemplar baselines in
terms of different metrics. The source code will be released upon acceptance of the paper.

1 Introduction

Catastrophic forgetting McCloskey & Cohen (1989) refers to deep neural networks forgetting the acquired
knowledge from the previous tasks disastrously while learning the current task. This stands in stark contrast
to human learning, where new knowledge is integrated without erasing prior understanding. To bridge this
gap, incremental learning (IL) Gepperth & Hammer (2016); Wu et al. (2019); Douillard et al. (2022); Wang
et al. (2022a); Goswami et al. (2024) has emerged as a paradigm that enables AI systems to continuously
learn from evolving data.

In the past few years, a variety of methods Roady et al. (2020); Cong et al. (2020); Wang et al. (2021); Xue
et al. (2022) have been proposed to mitigate catastrophic forgetting in IL. In this work, we are interested in a
very challenging scenario, called class-incremental learning (CIL). CIL is particularly challenging because
it requires the model to recognize all learned classes without any task identifier during inference. CIL
is especially susceptible to catastrophic forgetting due to overlapping feature representations between old
and new tasks Zhu et al. (2021b). To address this issue, many prior studies have adopted exemplar-based
approaches Rebuffi et al. (2017); Wu et al. (2019); Zhao et al. (2020); Wang et al. (2022b) that store a
subset of old class samples in a memory buffer for replay. However, these methods face inherent limitations
related to memory capacity and privacy. Thus, non-exemplar-based methods Li & Hoiem (2017); Lopez-Paz &
Ranzato (2017); Mallya & Lazebnik (2018); Cong et al. (2020); Xue et al. (2022) have been proposed, which
avoid storing raw data by relying on regularization, parameter isolation, or generative models to mitigate
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catastrophic forgetting. Unfortunately, solely applying regularization is often insufficient, parameter isolation
increases network size, and generative models can be unstable.

Recently, prototype-based methods Zhu et al. (2021b;a); Petit et al. (2023) have attracted attention in
non-exemplar CIL. These approaches store a single class-mean prototype as the class centroid for each old
class and replay synthetic data augmented from these prototypes in future tasks. Notably, PASS Zhu et al.
(2021b) augments stored prototypes via high-dimensional Gaussian noise. However, our observations reveal
that such an augmentation strategy may actually degrade prediction accuracy (Sec. 4.1). The underlying
issue is twofold. First, simply generating class-mean prototypes without further optimization leads to diffuse
clusters of embeddings with unclear decision boundaries between classes. Consequentially, the prototype is
less representative, resulting in serious catastrophic forgetting while training future tasks. Second, as shown in
Fig. 1(a)-Prototype Augmentation, directly adding high-dimensional Gaussian noise on the prototype yields
nearly identical synthetic samples that fail to capture the true distribution of old tasks’ class embeddings,
ultimately decreasing performance.

Motivated by these limitations, we propose to optimize prototype learning and develop a novel proto-
type augmentation strategy for CIL. In this work, we introduce YoooP, a new non-exemplar CIL method
that stores and replays only one representative prototype per class without relying on synthetic data.

Figure 1: Comparison of previous prototype-based
(left) methods with our YoooP/YoooP+ (right). Pre-
vious methods (e.g., PASS) typically store and average
all class embeddings to form a class-mean prototype,
which is then augmented inappropriately (e.g., by di-
rectly adding high-dimensional Gaussian noise). In
contrast, YoooP adopts a mini-batch attentional mean-
shift method, which constructs representative proto-
types from a small batch of embeddings. Prototype
optimization further refines these prototypes to form a
more compact feature space. YoooP+ further enhances
performance by synthesizing data with stored original
angular distribution of old tasks. Comparing (I) and
(II) demonstrates the benefit of prototype optimization
in forming compact feature spaces, while comparing
(III) and (IV) shows the advantage of our augmentation
strategy in preserving realistic sample distributions.

The main challenge is obtaining well-separated pro-
totypes that capture the essence of their respective
classes. To achieve this, we introduce prototype
optimization (Fig. 1 (II)). First, we employ a mini-
batch attentional mean shift-based method to shift
each class prototype toward high-density regions of
its corresponding embeddings (the moving path in
Fig. 1 (II)). Next, we optimize the angular distance
between the prototype and the class-specific embed-
dings to form tight, compact clusters (comparing the
(I) and (II) in Fig. 1). As a result, each prototype
becomes highly representative of its class. Conse-
quently, only replaying the prototype can effectively
reduce inter-class interference and maintain clear de-
cision boundaries. Building on YoooP, we further
develop YoooP+, which extends our approach with
a novel prototype augmentation technique. Instead
of directly adding high-dimensional Gaussian noise,
YoooP+ synthesizes data by combining a rotation
matrix in high-dimensional space with the stored
angular distribution between each class’s prototype
and its corresponding real data. As shown in Fig. 1
(IV), this strategy produces synthetic data that more
faithfully reflects the true embedding distribution of
old classes and yields higher-quality samples.

Our contributions are four-fold: 1) We propose
YoooP, a novel non-exemplar CIL algorithm that
stores and replays a single prototype per class with-
out synthetic data. 2) To the best of our knowledge,
we are the first to explore prototype optimization
in CIL, which effectively reduces inter-class interfer-
ence and maintains clear decision boundaries. 3) We
extend YoooP to YoooP+, which develops a new
prototype augmentation technique that synthesizes
high-quality data reflective of the original distribution. 4) Extensive evaluations on multiple benchmarks
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demonstrate that both YoooP and YoooP+ significantly outperform non-exemplar baselines in terms of
average incremental accuracy, average accuracy, and average forgetting.

2 Related Work

Regularization-based method. This method aims to alleviate catastrophic forgetting by introducing
additional regularization terms to correct the gradients and protect the old knowledge learned by the model Li
& Hoiem (2017); Rannen et al. (2017); Kirkpatrick et al. (2017); Lee et al. (2017); Liu et al. (2018); Masana
et al. (2022). Existing works mainly adopt weight regularization to reduce the impact of learning new
knowledge on the weights that are important for old tasks. However, it is very hard to design reasonable and
reliable metrics to measure the importance of model parameters. Thus, solely using regularization-based
methods is always insufficient.

Parameters isolation-based method. This line of work can be divided into dynamic network expansion
and static network expansion. Dynamic network expansion methods adopt individual parameters for each task,
so they need a large memory to store the extended network for each previous task during training Yoon et al.
(2017); Ostapenko et al. (2019); Yan et al. (2021); Xue et al. (2022). Conversely, static network expansion
approaches Serra et al. (2018); Mallya & Lazebnik (2018); Mallya et al. (2018); Zhu et al. (2022) dynamically
expand the network if its capacity is not large enough for new tasks, and then adapt the expanded parameters
into the original network. Those methods can achieve remarkable performance, but they are not applicable
to a large number of tasks.

Data replay-based method. This solution Wu et al. (2018); Rostami et al. (2019); Cong et al. (2020)
mainly employs deep generative models to generate synthetic samples of old classes in order to mitigate
privacy leakage. Most existing works Shin et al. (2017); Rios & Itti (2018); Ostapenko et al. (2019); Lesort
et al. (2019) focus on Variational Autoencoder (VAE) and Generative Adversarial Network (GAN). However,
these methods suffer from the instability of generative models and inefficient training for complex datasets.

Prototype-based method. Recent works Zhu et al. (2021b;a); Petit et al. (2023) avoid generating pseudo
samples by storing class-representative prototypes and then augmenting them to enhance classifier performance
and mitigate catastrophic forgetting. Typical approaches include PASS Zhu et al. (2021b) and its variants,
IL2A Zhu et al. (2021a), and FeTrIL Petit et al. (2023). However, these methods rely solely on the class-mean
prototype without further optimization, which can result in diffuse embedding clusters and unclear decision
boundaries between classes. Consequently, severe catastrophic forgetting may occur during incremental
training, and inappropriate augmentation can further degrade performance. A recent study Goswami et al.
(2024) has leveraged class-mean prototypes as classifiers, using a Nearest Class Mean (NCM) approach
to correct prototype drift during sequential training. Nevertheless, compared to standard gradient-based
classifiers, NCM is limited in its ability to learn complex decision boundaries when task distributions shift
significantly. In this work, we propose prototype optimization to learn a compact feature space that yields
more representative prototypes, and we introduce a novel prototype augmentation strategy to generate
high-quality synthetic data to mitigate catastrophic forgetting.

3 Proposed Method

In this section, we first describe YoooP, which optimizes the prototype for each class using an attentional
mean-shift method. To further improve prediction accuracy, we extend YoooP to YoooP+ by generating
synthetic data from the stored prototypes.

Problem Description. Given a sequence of tasks, each associated with a set of classes Ct and a training
set Dt ≜ (xi, yi)i = 1nt with yi ∈ Ct, class-incremental learning (CIL) aims to train a model f(x; [θ, w]) ≜
G(F (x; θ); w) that predicts probabilities for all classes C1:t ≜

⋃t
i=1 Ci without catastrophic forgetting. The

model consists of a feature extractor F (·; θ), which produces compact representations, and a classifier G(·; w),
with predictions given by softmax(G(F (x; θ); w)). Since the parameters θ and w are updated solely using the
current task’s data, the model typically suffers from catastrophic forgetting. To address this challenge, we
propose YoooP and its extension YoooP+ to preserve clear class boundaries as tasks are learned sequentially.
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Figure 2: Framework of the proposed YoooP and YoooP+. YoooP only needs to replay one stored prototype
for each class while YoooP+ is trained on synthetic data generated from stored prototypes. (a) Prototype
optimization aims to learn a compact feature space and obtain a representative prototype for each class. (b)
Prototype augmentation aims to generate synthetic data of old classes from stored prototypes and angular
distribution using a m-dimensional space rotation matrix.

3.1 YoooP

YoooP comprises two main components: (i) prototype optimization to learn a compact feature space and
obtain a representative prototype for each class, and (ii) new task learning with prototype replay.

For (i), we propose a mini-batch attentional mean-shift-based method to shift each class prototype toward
high-density regions of its embeddings. Then, we optimize the angular distance between the prototype
and the class-specific embeddings to form a tight, compact cluster. As a result, each prototype becomes
highly representative. Consequently, replaying only the optimized prototype effectively reduces inter-class
interference and maintains clear decision boundaries.

For (ii), when learning a new task, we augment its training set with the stored prototypes from previous tasks.
In the YoooP, replaying only the memorized prototypes of old classes can efficiently retain clear boundaries
between classes and mitigate catastrophic forgetting.

3.1.1 Prototype Optimization

To obtain a representative prototype without storing all sample embeddings (unlike the traditional class-mean
prototype), we propose a mini-batch attentional mean-shift-based method. Specifically, for task-t with classes
Ct, and for each class k ∈ Ct, we construct a graph of sample representations zi = F (xi; θ) connected to the
prototype pk. We then shift pk toward a high-density region by moving it toward a weighted average of the
normalized representations of all samples in class-k and subsequently normalizing pk, i.e.,

pk ← (1− λ)pk + λ
∑

i∈[nt]:yi=k

ak,i ·
zi

∥zi∥2
, pk ←

pk

∥pk∥2
, (1)

where λ controls the step size of the mean-shift and nt is the size of the training set for task-t. Unlike the
original mean-shift algorithm, the weights ak,i are determined by learnable dot-product attention between
each sample zi and the prototype pk, i.e.,

ak ≜ softmax(āk), āk ≜ [āk,1, · · · , āk,nt ], āk,i = c(zi, pk) ≜ ⟨zi, pk⟩
∥zi∥2 · ∥pk∥2

. (2)
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In practice, when nt is large, we apply a mini-batch version of Eq. 1 over multiple steps, replacing i ∈ [nt]
with i ∈ B, where B is a mini-batch.

After obtaining a representative prototype for each class, we optimize the similarity between class-specific
embeddings and their prototype, to form a compact cluster of each class in the feature space. To achieve
that, We train the representation model F (·; θ) to produce zi = F (xi; θ) such that each sample is close to its
class prototype and distant from other classes’ prototypes. This is achieved by minimizing the loss as follows,

Lt,P (θ) ≜ 1
|Ct|

1
nt

∑
k∈Ct

∑
i∈[nt]:yi=k

ℓ ([c(zi, pj)]j∈C1:t , k) , (3)

where ℓ(·, ·) is a cross-entropy loss, in which the first argument is the logits defined by a similarity measure
c(·, ·), and the second argument k is the ground truth label. Optimizing this loss ensures that embeddings
concentrate around their respective prototype, forming compact clusters. Thus, replaying only one prototype
per class effectively reduces harmful inter-class interference while training future tasks.

3.1.2 New Task Learning with Prototype Replay

To mitigate catastrophic forgetting of previous tasks’ classes C1:t−1, YoooP replays stored class prototypes
during new task training. Specifically, we augment the training set for task t with prototypes from previous
classes C1:t−1. The classification objective for all classes C1:t is,

Lt,C(θ, w) ≜ 1
|Ct| · nt

∑
k∈Ct

∑
i∈[nt]:yi=k

ℓ([c(zi, wj)]j∈C1:t , k) + 1
|C1:t−1|

∑
k∈C1:t−1

ℓ([c(pk, wj)]j∈C1:t , k), (4)

Furthermore, to preserve the performance of learned prototypes while training future tasks, it is necessary to
retain the performance of extractor F (·; θ) on previous tasks. Following previous work Hou et al. (2019); Zhu
et al. (2021b), we employ knowledge distillation (KD) Hou et al. (2019) as follows,

Lt,KD(θ) ≜ 1
nt

∑
i∈[nt]

∥F (xi; θ)− F (xi; θt−1)∥2
2. (5)

Thus, the overall training objective at task t is,

YoooP : min
θ,w

Lt(θ, w) = Lt,P (θ) + Lt,C(θ, w) + γ ∗ Lt,KD(θ). (6)

where γ is the weight of KD loss.

In summary, Lt,P (θ) shifts the current task’s embeddings toward their class prototype, forming compact
clusters. Lt,C(θ, w) trains the model using both current task data and the replayed prototypes, while Lt,KD(θ)
preserves the extractor’s performance on previous tasks. Together, these objectives enable the model to learn
new tasks without forgetting previous ones.

3.2 YoooP+

Although prototype-only replay in YoooP is highly effective in mitigating catastrophic forgetting, it is still
insufficient to reflect the true embedding distribution of old classes without replaying raw instances. Hence,
we propose an extension, YoooP+, which replays synthetic data augmented from the stored prototypes.

3.2.1 Prototype Augmentation.

To generate high-quality synthetic data that matches the real embedding distribution of old classes,
we propose a novel prototype augmentation strategy. Our method draws synthetic data for each
class from the real angular distribution between the class prototype and its specific embeddings.
To simplify the augmentation, we first normalize each prototype to a unit vector, generate syn-
thetic data in the normalized space, and then rotate the synthetic data back. As shown in Fig. 3,
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we sample cosine similarity values from the stored
real angular distribution, P (āk,i), which is repre-
sented by a histogram with Nb bins. These sampled
cosine similarities are used to generate synthetic data
for each class. Consequently, the angular distribution
between each class prototype and its synthetic data
faithfully preserves P (āk,i). In contrast, approaches
like PASS add high-dimensional noise to saved proto-
types, causing significant divergence from the actual
angular distribution.

Specifically, by using the stored P (āk,i), we are able
to synthesize a data point z′

i that has a similar angu-
lar distance to the prototype pk as zi for replaying.
This leads to YoooP+ whose replay of each previous
class is conducted on multiple synthetic data points
instead of a single prototype.

In particular, we firstly derive a rotation ma-
trix R(pk, u) that can recover pk from a unit vec-
tor u = [1, 0, · · · , 0] on an unit m-sphere, i.e.,
pk = R(pk, u) × u. To synthesize a sample z′

i of
class-k as a proxy to zi (a previously learned sample of class-k), we then randomly draw vi in the vicinity
of u, i.e.,

vi = [ãk,i, ϵ2, · · · , ϵm], ãk,i ∼ P (āk,i) (7)

To ensure ∥vi∥2 = 1, we draw ϵi ∼ N (0, 1) for i ∈ {2, · · · , m} at first and then rescale them by ϵi ←√
1−(ãk,i+ϵ1)2

/
∑m

i=2
ϵ2

i · ϵi. Thereby, we have uT vi = ãk,i, whose distribution approximates the distribution of
cosine similarity āk,i between real sample zi and its associated class prototype pk.

Next, we create z′
i from vi. As pk = R(pk, u)× u, we apply the same rotation matrix R(pk, u) to vi to

obtain z′
i, i.e.,

z′
i = R(pk, u)× vi. (8)

This operation preserves the similarity between u and vi in the transformed space between pk and z′
i. By

sampling a synthetic data point z′
i for each removed real sample zi, we construct a replay dataset for all seen

classes C1:t−1.

3.2.2 New Task Learning with Prototype Augmentation

After generating the synthetic data, YoooP+ learns a new task task-t by replaying the synthetic dataset D′
t

as follows,
D′

t ≜ {(z′
i, k) : k ∈ C1:t−1, z′

i = R(pk, u)× vi, vi = [ãk,i, ϵ2, · · · , ϵm]} . (9)

The training objective for task-t with replayed synthetic data is

Lt,C+(θ, w) ≜ 1
|Ct| · nt

∑
k∈Ct

∑
i∈[nt]:yi=k

ℓ(c(zi, w), k) + 1
|D′

t|
∑

(z,k)∈D′
t

ℓ(c(z, w), k). (10)

Overall, the training objective Lt(θ, w) of YoooP+ at task-t combines the prototype-learning loss, the
synthetic-data replay augmented loss, and the KD loss as follows,

YoooP+ : min
θ,w

Lt(θ, w) = Lt,P (θ) + Lt,C+(θ, w) + γ ∗ Lt,KD(θ). (11)

3.3 Practical Improvement to YoooP/YoooP+

Besides, we adopt the following commonly used techniques to mitigate the forgetting.
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Model Interpolation. We apply model interpolation to retain the knowledge of the previous model θt−1
and avoid overfitting to the current task. Specifically, after learning task-t, we update the current θt by the
following interpolation between θt−1 and θt, i.e.,

θt ← (1− β)θt−1 + βθt, (12)

where β ∈ [0, 1] and we set β = 0.6 in experiments. Since θt is mainly trained on task-t, such simple
interpolation between θt−1 and θt leads to a more balanced performance on all tasks.

“Partial Freezing” of Classifier. Following Li & Hoiem (2017), instead of completely freezing the classifier
parameters for previously learned classes, wk, k ∈ C1:t−1, we scale down the gradients of these parameters by
a small factor α. Specifically, the gradient update is modified as follows,

∇wk
Lt(θ, w)← α∇wk

Lt(θ, w), ∀k ∈ C1:t−1 (13)

This strategy helps prevent significant drift of the classifier parameters for previously learned classes.

We provide the complete procedure of YoooP and YoooP+ in Algorithm 1 in Appendix A.

4 Experiment

In this section, we first compare the proposed YoooP and YoooP+ with non-exemplar-based baselines in
three datasets. Then we assess the quality of synthetic data augmented from memorized prototypes. Lastly,
we do ablation studies to explore the impact of different key components. We also explore the sensitivity of
hyper-parameters in Appendix B.

Datasets. To better evaluate the performance of our proposed methods, we perform on three different
scale datasets: CIFAR-100 Krizhevsky et al. (2009), TinyImageNet Yao & Miller (2015), and a subset of
ImageNet-1000 Russakovsky et al. (2015) (Sub-ImageNet). CIFAR-100 contains 100 classes of images, which
include 50,000 training images and 10,000 test images, and the image size is 32× 32. TinyImageNet contains
200 classes of images, which include 100,000 training images and 10,000 test images, and the image size is
64× 64. For the Sub-ImageNet, the detailed description and the results are shown in Appendix C.

Experimental settings. We implement all experiments using PyTorch Paszke (2019), and compare our
methods with baselines provided by PyCIL Zhou et al. (2021), a popular toolbox for continual incremental
learning (CIL). Following prior works Zhu et al. (2021b;a), we adopt ResNet-18 He et al. (2016) as the
backbone network for all methods. For YoooP and YoooP+, we train with the SGD optimizer with an
initial learning rate of 0.01, which is decayed by a factor of 0.1 every 20 epochs. Models are trained for 60
epochs per task using a batch size of B = 256. For knowledge distillation loss (Eq. 6 for YoooP and Eq. 11
for YoooP+), we set a large weight γ = 30. Additionally, we save the cosine similarity distribution into a
histogram consisting of Nb = 100 bins within the interval [0, 1] for prototype analysis (Fig. 3). For evaluation,
we consider two standard CIL settings: “zero-base,” where the total classes are evenly split into multiple
incremental phases (i.e. 5 or 10 phases) trained sequentially, and “half-base,” where half of the classes are
learned initially and remaining classes are evenly incremented. Following previous practice Zhu et al. (2021b),
all classes in each dataset are arranged in a fixed random order, and reported results are averaged across three
runs with a fixed random seed for reproducibility. Additionally, we also perform 20 phases under different
settings on TinyImageNet in Appendix D.

Baselines. We compare our proposed YoooP and YoooP+ methods with representative non-exemplar-based
methods, including LwF Li & Hoiem (2017), PASS Zhu et al. (2021b), SSRE Zhu et al. (2022), IL2A Zhu
et al. (2021a), FeTrIL Petit et al. (2023), and ADC Goswami et al. (2024). Notably, ADC employs an NCM
classifier Rebuffi et al. (2017) while YoooP/YoooP+ and other baseline methods perform with a normal
classifier with softmax. To further show the impressive performance of our proposed methods, we also
compare the performance with some exemplar-based methods on TinyImageNet in Appendix E.

Protocol. We evaluate all methods using three commonly adopted metrics in IL: average incremental
accuracy Rebuffi et al. (2017) (AIA), the average accuracy after training the last task Rebuffi et al. (2017)
(AA), and average forgetting Chaudhry et al. (2018) (AF).
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Table 1: Average incremental accuracy (AIA) and average accuracy after training the last task (AA) of
the proposed YoooP/YoooP+ and baselines on CIFAR-100 and TinyImageNet under half-base setting with
different phases.“half-10” means half-base with 10 phases, “half-5” means half-base with 5 phases. (⋆) denotes
methods using “Nearest Class Mean” (NCM) classifier. Bold: the best among non-exemplar methods.
Underline: the second best among non-exemplar methods.

Datasets CIFAR-100 TinyImageNet

Method AIA [%]↑ AA [%]↑ AIA [%]↑ AA [%]↑
half-5 half-10 half-5 half-10 half-5 half-10 half-5 half-10

LwF Li & Hoiem (2017) 49.00 37.46 27.93 17.09 34.46 23.34 21.34 13.56
SSRE Zhu et al. (2022) 63.38 61.29 52.35 49.27 50.45 47.88 40.48 39.47
IL2A Zhu et al. (2021a) 62.97 52.44 48.89 33.08 45.27 43.34 34.54 33.73
FeTrIL Petit et al. (2023) 67.57 67.43 58.38 57.45 51.79 50.10 42.51 41.76
⋆ADC Goswami et al. (2024) 65.62 61.71 54.31 49.12 52.36 47.12 43.00 37.18
PASS Zhu et al. (2021b) 64.10 57.41 54.80 45.71 48.61 39.99 38.69 30.23
PASS w/o Aug 59.34 55.41 49.64 43.02 46.06 42.84 37.12 33.56
YoooP (Ours) 66.19 58.99 56.61 47.09 62.30 58.66 53.94 49.40
YoooP+ (Ours) 67.40 61.83 58.54 50.81 65.57 61.72 58.56 52.40

Table 2: Average incremental accuracy (AIA) and average accuracy after training the last task (AA) of
the proposed YoooP/YoooP+ and baselines on CIFAR-100 and TinyImageNet under zero-base setting with
different phases.“b0-10” means zero-base with 10 phases, “b0-5” means zero-base with 5 phases. (⋆) denotes
methods using “Nearest Class Mean” (NCM) classifier. Bold: the best among non-exemplar methods.
Underline: the second best among non-exemplar methods.

Datasets CIFAR-100 TinyImageNet

Method AIA [%]↑ AA [%]↑ AIA [%]↑ AA [%]↑
b0-5 b0-10 b0-5 b0-10 b0-5 b0-10 b0-5 b0-10

LwF Li & Hoiem (2017) 58.95 47.73 39.87 25.88 46.44 35.00 29.50 17.80
SSRE Zhu et al. (2022) 58.05 46.58 40.99 29.75 47.13 38.54 29.90 22.78
IL2A Zhu et al. (2021a) 59.91 42.92 43.69 27.21 42.16 33.72 25.67 22.46
FeTrIL Petit et al. (2023) 61.41 48.61 44.54 31.07 44.55 36.51 28.23 20.59
⋆ADC Goswami et al. (2024) 68.60 61.93 57.49 47.00 60.09 53.51 47.46 37.32
PASS Zhu et al. (2021b) 60.33 51.94 43.61 35.81 47.11 40.15 31.05 26.31
PASS w/o Aug 59.02 55.47 45.19 42.41 50.25 42.71 36.27 30.17
YoooP (Ours) 65.24 58.99 52.08 44.78 60.26 53.73 49.04 40.26
YoooP+ (Ours) 69.61 63.30 57.56 49.60 61.92 56.47 51.32 44.25

4.1 Main Results

In this section, we compare the performance of our proposed methods YoooP and YoooP+ across various
datasets under different settings with various baselines and discuss the results.

Evaluation on half-base setting. We first evaluate the proposed methods under half-base settings with
5 and 10 phases. Results shown in Tab. 1 indicate that YoooP/YoooP+ consistently performs well across
CIFAR-100 and TinyImageNet datasets. On CIFAR-100, YoooP+ attains performance comparable to FeTrIL,
which achieves strong results by training the model only at the initial task while fixed in the future tasks.
Although FeTrIL effectively preserves initial task knowledge, this strategy severely restricts the model’s
capacity to adapt and improve representations for subsequent tasks, particularly when these differ significantly
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from the initial task. Thus, the FeTrIL fails to achieve great performance if the initial task contains little
knowledge and the future tasks have a large gap between the first task. Therefore, the proposed YoooP and
YoooP+ beat the FeTrIL on both datasets under zero-base settings and surpass the FeTrIL on TinyImageNet
under half-base settings. Specifically, on TinyImageNet, YoooP outperforms FeTrIL by 10.51% and 8.56%
(AIA), and 11.43% and 7.64% (AA) under the respective phases. Furthermore, YoooP+ exhibits even greater
improvements over FeTrIL, achieving 13.78% and 11.62% (AIA), and 16.05% and 10.64% (AA). YoooP and
YoooP+ also clearly surpass ADC by a large margin, reinforcing our methods’ capability to dynamically
capture richer class representations, particularly on more challenging datasets like TinyImageNet. Similarly,
the incremental accuracy progression under the half-base setting is depicted in the upper row of Fig. 4.

Evaluation on zero-base setting. Next, we evaluate the proposed methods against baseline approaches
on CIFAR-100 and TinyImageNet datasets under zero-base settings with 5 and 10 phases. As shown in
Tab. 2, our proposed YoooP consistently outperforms non-NCM baselines that rely on the standard classifier
layer. Specifically, compared to PASS, which achieves the best results among non-NCM baselines, YoooP
achieves accuracy improvements of 4.91% and 7.05% (AIA) and 8.47% and 8.97% (AA) under 5 and 10
phases respectively on CIFAR-100. On TinyImageNet, the advantages of YoooP are even more pronounced,
exceeding PASS by 13.15% and 13.58% (AIA), and by 17.99% and 13.95% (AA) under the respective phases.
This impressive performance is because YoooP leverages prototype optimization, enabling the model to
learn more discriminative and compact representations. To further mitigate catastrophic forgetting, YoooP+
augments the training with synthetic data derived from these optimized prototypes. Consequently, YoooP+
surpasses PASS by 9.28%, 11.36% (AIA), and by 13.95%, 13.79% (AA) on CIFAR-100. On TinyImageNet,
the performance gap is even more notable: 14.81%, 16.32% for AIA, and 20.27%, 17.94% for AA under
the respective phases. Additionally, YoooP surpasses ADC, which employs the Nearest Class Mean (NCM)
classifier, on TinyImageNet under zero-base settings and YoooP+ significantly surpasses ADC on both
datasets under zero-base settings. We also show the performance while training the model incrementally on
each task in the bottom row in Fig. 4.

Evaluation on Average Forgetting. We also evaluate the average forgetting (AF) under zero-base
settings on CIFAR-100 and TinyImageNet. As shown in Tab. 3, our proposed methods, YoooP and YoooP+,

Table 3: Average forgetting (AF) of the proposed
YoooP/YoooP+ and baselines on CIFAR-100 and Tiny-
ImageNet under zero-base setting with different phases.“b0-
10” means zero-base with 10 phases, “b0-5” means zero-
base with 5 phases. (⋆) denotes methods using “Nearest
Class Mean” (NCM) classifier. Bold: the best among
non-exemplar methods. Underline: the second best among
non-exemplar methods.
AF [%]↓ CIFAR-100 TinyImageNet
Methods b0-5 b0-10 b0-5 b0-10
LwF Li & Hoiem (2017) 43.80 51.80 45.79 54.40
SSRE Zhu et al. (2022) 15.44 12.13 16.31 19.94
IL2A Zhu et al. (2021a) 26.94 25.07 20.89 26.10
FeTrIL Petit et al. (2023) 18.88 16.14 15.13 15.32
⋆ADC Goswami et al. (2024) 19.15 21.21 15.35 23.92
PASS Zhu et al. (2021b) 23.66 18.78 22.00 20.69
PASS w/o Aug 28.11 29.55 24.01 26.00
YoooP (Ours) 21.24 22.69 16.49 25.02
YoooP+ (Ours) 18.75 15.41 14.28 19.24

achieve relatively low average forgetting compared
to most baseline methods. Although some baselines
exhibit lower AF, this is primarily due to their sharp
accuracy decline in initial incremental phases fol-
lowed by persistently low performance, as shown in
Tab. 2 and clearly illustrated by the incremental
accuracy curves in the bottom row of Fig. 4. In con-
trast, YoooP and YoooP+ effectively maintain higher
incremental accuracy (AIA and AA) throughout all
phases (Tab. 2), genuinely mitigating catastrophic
forgetting while maintaining superior overall perfor-
mance.

Discussion. Our experimental results yield three
main findings: (1). Comparing PASS w/o Aug and
PASS in Tab. 2 and Tab. 1, adding high-dimensional
Gaussian noise for prototype augmentation can hurt
performance, especially under zero-base settings and
the half-base setting with 10 phases on TinyIma-
geNet. This is because high-dimensional Gaussian
noise produces sparse, nearly equidistant data (the
curse of dimensionality). In contrast, YoooP+ generates synthetic data in angular space using a rotation
matrix while preserving the real angular distribution, which consistently improves prototype performance. (2).
The ADC with NCM shows an advantage only in the CIFAR-100 zero-base setting. As shown in Tab. 2 and
Tab. 1, ADC outperforms YoooP on CIFAR-100 under zero-base conditions but does not surpass YoooP+ and
fails to outperform YoooP in other settings. Furthermore, in the half-base configuration, several non-NCM
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(a) CIFAR-half-5 (b) CIFAR-half-10 (c) Tiny-half-5 (d) Tiny-half-10

(e) CIFAR-zero-5 (f) CIFAR-zero-10 (g) Tiny-zero-5 (h) Tiny-zero-10

Figure 4: Performance comparison of each task across different methods on CIFAR-100 and TinyImageNet
under different settings while training model incrementally. “zero-5,10”: “zero-base” with 5 and 10 phases
settings. “half-5,10”: “half-base” with 5 and 10 phases settings.

methods outperform ADC. This occurs because NCM relies solely on class-mean prototypes and avoids
gradient updates to mitigate catastrophic forgetting, limiting its ability to learn complex decision boundaries
when task distributions shift significantly. In contrast, a normal classifier with softmax benefits from gradient
updates that enable the learning of complex boundaries and better generalization. In the half-base setting,
where the initial task has abundant data and later tasks have fewer samples, the pronounced distribution shift
leads to a performance drop (comparing the performance of ADC between two tables) and the loss of ADC’s
initial advantage. (3). The proposed YoooP and YoooP+ consistently outperform other non-exemplar-based
methods across different datasets under various settings. They achieve higher AIA and AA while maintaining
lower AF, demonstrating robust performance.

4.2 Comparison of Synthetic Data for YoooP+ and PASS

In this experiment, we randomly selected five classes from the CIFAR-100 dataset (task t) under a zero-base
setting with 10 phases. We then compared the angular distributions of synthetic data generated from stored
prototypes by YoooP+ and PASS, as illustrated in Fig. 5. The upper row of Fig. 5 pertains to the original
distribution (also the angular distribution stored in YoooP+), representing the cosine similarities between the
representations F (·; θ) and the stored prototypes for each class. In contrast, the bottom row of Fig. 5 shows
the distributions of cosine similarities between the same prototypes and the synthetic data generated by
PASS. We observe that PASS produces synthetic samples whose cosine similarities are heavily concentrated
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Figure 5: Top row: histograms of the original cosine similarity āk,i (Eq. 2) between each class’s prototype
and the real samples (top). The augmented samples of YoooP+ are drawn from the original histograms.
Bottom row: histograms of the cosine similarity between each class’s prototype and the augmented samples
for PASS. PASS fails to preserve the distribution of the original data.

(a) YoooP+ for Task 1 (b) YoooP+ for Task 2 (c) YoooP+ for Task 3

(d) PASS for Task 1 (e) PASS for Task 2 (f) PASS for Task 3

Figure 6: Visualization of the distribution of representations encoded by YoooP+ and PASS on CIFAR-100
base-0 phase 10 setting. The lighter gray points in “Task 2" and “Task 3" represent the distribution of the
previous tasks’ data.

near 1.0, indicating that these augmented data are nearly identical to the stored prototypes. This narrow
distribution leads to reduced diversity and, consequently, diminished performance, as also evidenced in Fig. 4,
Tab. 2, and Tab. 1. In comparison, YoooP+ draws its synthetic data based on the original cosine-similarity
distribution (top row). This strategy more effectively restores the representations of the original data and
helps YoooP+ generate higher-quality synthetic samples than PASS.
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4.3 Comparison of the representations for YoooP+ and PASS

In addition, we compare the learned representations produced by YoooP+ and PASS. Fig. 6 shows the
distribution of representations on CIFAR-100 under zero-base setting with 10 phases for the first three tasks.
Because YoooP+ employs prototype optimization in the first task, it forms more compact class clusters than
PASS. In Tasks 2 and 3, YoooP+ continues to encode input data within well-defined boundaries, whereas PASS
does not. In Fig. 6 (b), (c), (e), and (f), the light gray points represent data from previous tasks. We observe
in (b) and (c) that YoooP+ keeps old and new tasks well separated, while PASS struggles to distinguish
between the distributions of old and current tasks. This is because YoooP+ not only creates compact
clusters via prototype optimization but also synthesizes high-quality data from the original cosine-similarity
distribution, effectively preserving boundaries for old tasks.

4.4 Ablation Studies

Figure 7: Ablation study of different components in
YoooP+. “-M” means without model interpolation,
“-P” means without prototype optimization.

We conduct ablation studies to assess the influence
of three key components on model performance: pro-
totype optimization (P), synthetic data replay, and
model interpolation (MI). Fig. 7 presents the results
on CIFAR-100 under the zero-base setting with 10
phases. In particular, YoooP (Class Mean) uses
the class-mean for prototype generation (similar to
PASS) while still employing the prototype optimiza-
tion loss in Eq. 3, YoooP (-P) omits prototype opti-
mization, YoooP (-MI) excludes model interpolation,
and YoooP (-P-MI) removes both. From Fig. 7, pro-
totype optimization proves crucial, as YoooP (-P)
suffers a substantial drop in accuracy compared to
the full YoooP. When comparing YoooP and YoooP
(Class Mean), YoooP achieves slightly higher accu-
racy while utilizing a mini-batch attentional mean-
shift-based method that requires fewer stored sample
embeddings than the conventional class-mean approach (see Appendix F). Moreover, YoooP+ (which incor-
porates prototype augmentation) further improves prediction accuracy relative to YoooP. Although model
interpolation (MI) contributes a modest performance boost by retaining prior knowledge and ensuring
current-task performance, the difference between YoooP (-P) and the other variants indicates that prototype
optimization remains the most critical factor.

5 Conclusion

In this work, we developed two non-exemplar-based methods, YoooP and YoooP+, for class-incremental
learning. Specifically, YoooP only needs to store and replay one optimized prototype for each class without
generating synthetic data from stored prototypes. As an extension of YoooP, YoooP+ proposed to create
synthetic data from the stored prototypes and the stored distribution of cosine similarity with the help of a
high-dimensional rotation matrix. The evaluation results on multiple benchmarks demonstrated that both
YoooP and YoooP+ can significantly outperform the baselines in terms of accuracy and average forgetting.
Importantly, this work offered a new perspective on optimizing class prototypes for exemplar-free CIL. We
also show more experimental results in Appendix G.
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