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Figure 1: Different antialiasing techniques for SDF-based scene rendering. The full scene shown on the left is rendered at 720p with our
antialiasing method (CTSS). The zoomed-in patches compare the original non-antialiased image against renders with antialiasing achieved using
4x supersampling antialiasing (SSAA) and CTSS. While 4xSSAA quadruples rendering time, antialiasing with CTSS incurs a significantly
lower performance cost (≈1.3×) and generally provides similar edge smoothing and overall visual quality for most geometric edges.

ABSTRACT

While Signed Distance Fields (SDFs) in theory offer infinite level of
detail, they are typically rendered using the sphere tracing algorithm
at finite resolutions, which causes the common rasterized image
synthesis problem of aliasing. Most existing optimized antialias-
ing solutions rely on polygon mesh representations; SDF-based
geometry can only be directly antialiased with the computationally
expensive supersampling or with post-processing filters that often
lead to undesirable blurriness and ghosting. In this work, we present
cone-traced supersampling (CTSS)1, an efficient and robust spatial
antialiasing solution that naturally complements the sphere tracing
algorithm, does not require casting additional rays per pixel or offline
pre-filtering, and can be easily implemented in existing real-time
SDF renderers. CTSS performs supersampling along the traced ray
near surfaces with partial visibility identified by evaluating cone
intersections within a pixel’s view frustum. We further devise a
specialized sampling strategy to minimize the number of shading
computations and aggregate the collected samples based on their cor-
related visibility. Depending on configuration, CTSS incurs roughly
15-30% added computational cost and significantly outperforms
conventional supersampling approaches while offering comparative
antialiasing and visual image quality for most geometric edges.
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1 INTRODUCTION

Whereas conventional polygon meshes cannot fully represent curved
surfaces, Signed Distance Fields (SDFs) provide a continuous and
smooth implicit representation of a surface [41]. Various mathe-
matical properties of SDFs have been actively studied in computer
graphics and vision applications [14,20]. SDF-based representations
may be used to facilitate certain real-time geometric calculations and
manipulations [17,31,38,48]; renderers may even fully omit conven-
tional 3D modelling in favor of SDF-based representations [37, 40].
Furthermore, as SDFs offer guaranteed continuity and differentia-
bility [41], they are naturally applicable to deep learning for tasks
involving shape representation and reconstruction [13, 26, 42, 47].

Instead of explicitly defining the geometric structure of an object,
SDFs encode the distance to the boundary of a given shape for any
point in space [41]; the sign further indicates whether the current
point is inside or outside the object. Visualization of SDF-based ob-
jects requires modifications to the conventional rendering pipelines
since most graphical renderers are designed for polygon mesh geom-
etry. Rendering SDFs is thus typically done with sphere tracing [21],
an algorithm that iteratively converges along a given ray towards the
zero-value iso-surface of an SDF – the boundary of the associated
shape – thereby enabling its shading and further processing.

1Interactive CTSS demo and code on Shadertoy: https://www.
shadertoy.com/view/7lSXWK

https://www.shadertoy.com/view/7lSXWK
https://www.shadertoy.com/view/7lSXWK


Because modern renderers commonly rely on rasterization to sam-
ple and shade object surfaces within a scene at a predefined grid-like
pattern of pixels – regardless of the underlying shape representation
– rendering is prone to aliasing artifacts due to undersampling. Rep-
resenting a pixel by a single discrete point sample limits the ability
to resolve subpixel features and variation, leading to visually jagged
appearance as well as spatial and temporal noise when combined
with motion. Visible aliasing artifacts are a significant detriment to
perceived image quality of the rendered imagery: antialiasing is thus
one of the fundamental challenges in real-time computer graphics.

Many common antialiasing solutions rely on variants of super-
sampling to aggregate multiple samples per pixel thus reducing the
visibility of aliasing artifacts at the cost of added computational
overhead [1, 9, 56]. However, due to the popularity of conventional
3D representations, most of the optimized antialiasing methods are
designed for mesh-based geometry, preventing their application for
rendering SDFs. Post-processing [33, 44] and temporal filters [54],
on the other hand, often result in blurriness or ghosting artifacts with
lower overall image quality when compared to the expensive but
high-quality supersampling.

As SDFs naturally facilitate evaluation of cone intersections,
the original work on sphere tracing [21] foresees the theoretical
application of pre-filtered cone tracing for antialiasing in SDF-
based pipelines. Practical implementations, however, indicate that
this comes at the cost of substantial offline preprocessing, addi-
tional memory requirements, and significantly reduced performance
[2, 19, 23, 49]. Nevertheless, cone tracing is a powerful general tool
in graphics: cones have a wider receptive field and can approximate
the entire view frustum or more accurately describe the footprint
of a pixel. Partial cone intersections further allow to identify local
proximity to surfaces, which can be leveraged for various graphical
effects, such as soft shadows and global illumination [11] as well as
screen-space reflections [24].

In this paper, we address antialiasing specifically in the context of
rendering SDFs and introduce Cone-Traced Supersampling (CTSS),
a practical cone-tracing-based spatial antialiasing method that natu-
rally complements the sphere tracing algorithm with no pre-filtering
and minimal computational overhead. Unlike conventional super-
sampling which naively collects multiple samples for every pixel,
CTSS performs contextual supersampling along the traced ray: we
collect additional shaded color samples near object surfaces as de-
tected by partial cone intersections within the given pixel’s footprint.
We further introduce a specialized sampling strategy to minimize
the number of collected samples, optimizing the performance of our
method, and aggregate collected samples by resolving sub-pixel visi-
bility to keep track of sample correlation, which we find is necessary
for consistent antialiasing. Compared to a baseline implementation
of sphere tracing, CTSS incurs approximately 15-30% reduction
in framerate, significantly outperforming conventional SDF-based
antialiasing methods while providing high-quality antialiasing com-
parable to 4×-8× supersampling for most geometric edges.

The rest of this document is structured as follows: in Sect. 2,
we provide an overview of the relevant literature focusing on SDF-
based representations and rendering as well as various antialiasing
techniques. Sect. 3 covers our proposed antialiasing solution, cone-
traced supersampling (CTSS), including optimization and implemen-
tation details. We provide empirical results in Sect. 4, comparing
CTSS to other available antialiasing solutions for SDF rendering
in terms of visual quality and performance. We conclude the pa-
per in Sect. 5 with a discussion of limitations and possible future
improvements.

2 RELATED WORK

A brief overview of relevant literature is provided, with a primary
focus on Signed Distance Fields and antialiasing methods.

Signed Distance Fields. Unlike explicit models that directly de-
scribe the geometry of 3D objects, implicit surfaces are typically
defined by the iso-contour of a level-set function f : R3 → R . For
SDFs, an object is described by encoding the distance to the closest
point on the object’s surface [41], such that the implicit shape corre-
sponds to the region defined as {x ∈ R3 : f(x) ≤ 0}. Points inside
the object are thus characterized by negative SDF values, while the
zero-value SDF iso-surface is the object’s boundary. Compared to
meshes and point clouds, SDFs can describe continuous surfaces
with arbitrary resolution and varying topologies. SDFs can also be
easily expressed as voxel fields [12, 38], occupancy maps [36], and
even directly encoded with neural networks [13, 42, 47].
Rendering SDFs. To visualize an SDF-based object, the implicit
surface can first be polygonized [14, 32, 41] allowing the use of
existing rendering techniques at the expense of accuracy and large
memory and computational overhead. Alternatively, SDFs can be
more accurately rendered in real-time using sphere tracing [21], an
iterative algorithm that asymptotically converges along a particular
ray to the zero isosurface of the SDF function.
Sphere Tracing. Similarly to ray tracing, the ultimate goal of
sphere tracing is to determine if a ray intersects with a given shape.
Ray-SDF intersections occur along the zero-value isosurface of the
SDF. The sphere tracing algorithm asymptotically approaches the
surface by advancing along a given ray with step distance equal to
the current SDF value, i.e., the radius of an unbounding sphere [22].
This guarantees no immediate intersection with the implicit surface
and no over-stepping, with eventual convergence to the zero-value
boundary of the SDF function f . Mathematically, sphere tracing can
be expressed iteratively as

ti+1 = ti + SDF(pt), (1)

where ti and ti+1 correspond to the current and next depth val-
ues along a given ray, respectively, while pt is the point in space
associated with ti defined as

pt = ro + rdti, (2)

given the traced ray with origin ro and direction rd.
SDFs provide solely the distance to the object and not the direc-

tion to the corresponding point; this results in asymptotic conver-
gence, approaching but never truly reaching the surface. In practical
implementations, intersections occur when the value of the distance
function SDF(pt) falls below some predefined threshold ϵ. Sphere
tracing thus often involves hundreds of steps to reach the threshold
value and each iteration requires evaluating the SDF at the current
position. Furthermore, SDF values naturally decrease when nearing
a surface thereby reducing the step size and further slowing down
the convergence.

Compared to classical ray tracing which casts infinitesimally
thin rays from the viewpoint, the sphere tracing algorithm is more
similar to beam or spherical cone tracing as it terminates with a finite
controllable threshold. Moreover, the footprint of a pixel is more
accurately described using beams or cones, which would normally
require casting multiple rays (e.g., supersampling, Monte-Carlo
methods [45]). Lastly, while cone tracing can become prohibitively
complex for mesh-based representations with thousands of primitive
polygons, it is by design trivial with SDFs.
Antialiasing Methods. Although the simplistic supersampling
antialiasing (SSAA) can reduce the adverse effect of aliasing, it
incurs large computational and memory costs hindering its applica-
tion to real-time rendering; a multitude of specialized antialiasing
techniques have thus been developed to address the limitations of
SSAA. For instance, high frequency detail can be prefiltered for
textures [39, 51], specular highlights [28], and shadows [43], and
then more accurately sampled according to the pixel’s footprint. Al-
ternatively, with hidden surface removal mechanisms providing a



more efficient method to resolve sub-pixel visibility [6, 7], modern
graphical pipelines typically decouple the expensive shading opera-
tions from the relatively cheap geometric coverage sampling [56]
and improve on SSAA by using variants of multi-sampling antialis-
ing (MSAA) [1] that leverage various strategies to further reduce the
number of shading calculations [8, 10, 16, 46, 50]. However, as such
methods operate with polygon primitives, they are not applicable for
rendering SDFs.

Antialiasing can also be achieved via image enhancement and
post-processing filters [27, 33, 34, 44]: gradient discontinuities or
various special patterns can be detected in an image and the prob-
lematic areas can be smoothed out via blurring to provide a less
jagged appearance. Temporal antialiasing and reconstruction meth-
ods [29,35,52,54,55] further improve the stability and quality of the
antialiased image by leveraging a history buffer of the past frames
to filter out noise and gather additional geometric and color infor-
mation. With the recent popularity of deep learning, antialiasing
was also successfully achieved with neural networks via real-time
super-resolution [15] and neural upsampling [53], although such
methods tend to require proprietary hardware and setup complexity.

In the context of rendering SDFs, it may also be relevant to con-
sider sphere tracing acceleration techniques as these may indirectly
contribute to antialiasing by reducing the computational cost of com-
puting additional samples per pixel, i.e., via cheaper supersampling.
Typically, such methods contextually increase the step size of sphere
tracing in an attempt to speed up convergence to the surface and
thus to minimize the number of SDF evaluations, which are the most
computationally demanding component [3, 4, 18, 30]. Since these
methods specifically concern accelerating sphere tracing and not
antialiasing, we do not explore them in this work.

3 CONE-TRACED SUPER SAMPLING

We term our antialiasing solution Cone-Traced SuperSampling
(CTSS) as our method relies on detecting cone intersections and
acquiring multiple shaded color samples within the view frustum of
a given pixel. Conventional sphere tracing evaluates a single inter-
section per pixel. Supersampling further sub-divides the pixel into
k independent sphere tracing instances. CTSS, on the other hand,
collects up to k samples per pixel along the original ray and corre-
lates sample visibility by keeping track of accumulated occlusion.
We evaluate cone intersections – this is trivial with SDFs as it only
requires comparing the current SDF value to the cone radius at the
current ray depth – to identity surfaces with partial visibility, which
are then sampled to resolve sub-pixel detail and achieve antialiasing.
Moreover, instead of terminating at the first intersection with a sur-
face, we adaptively control the minimum step size for sphere tracing
to continue iterating until full cone occlusion is detected to ensure
that all visible surfaces are identified.

In what follows, we will describe our modifications to the con-
ventional sphere tracing algorithm to evaluate partial geometric
intersections within the footprint of a given pixel, our efficient sam-
pling strategy to minimize the number of shading computations,
and how we compute the final antialiased color by aggregating the
collected samples based on correlated surface visibility.

3.1 Cone Tracing for CTSS

While we reuse the overall iterative mechanism of sphere tracing,
CTSS additionally evaluates cone intersections along the traced ray.
We define the size of the traced cone such that its circular base
passes through the four corners of a given pixel to ensure full pixel
coverage. Cone tracing and CTSS computations only require tan(θ),
where θ is the half cone angle. Assuming that the vertical number
of pixels corresponds to unit distance in camera space and given
the viewport’s vertical resolution Iy , we express tan(θ) as the ratio

between half pixel size dp and the camera’s focal length F :

tan(θ) =
dp
F

=

√
2

F × Iy
. (3)

For cones with small angle θ, cone radius Rc can be quite accurately
approximated for any ray depth t as

Rc = t× tan(θ). (4)

Due to the effect of perspective in rectangular viewports, pixels
at the center of the image have slightly wider cone coverage than
pixels on the extremities; this is mainly noticeable for cameras with
small focal length and lower resolutions. However, for most practical
setups, we find that ignoring the effect of perspective is an acceptable
approximation. That is, we treat all pixels as if they were aligned
along the central view direction. We can further easily modify the
coverage of a cone by applying a constant multiplier to the property
tan(θ) or directly Rc, i.e., we can enforce cone coverage to cover
more than a single pixel. Note that Rc is diagonal across a pixel;
pixel coverage must be scaled by a factor of

√
2 when converting to

cone radius.
Lastly, because SDF values approach zero or can turn negative

near the surface – this prevents further progression along the ray
and slows down the convergence of sphere tracing – in order to
continue tracing past a surface, we must enforce a lower bound on
the step size. The step size should be small enough to guarantee
adequate intersection detection, but large enough to escape a hard
hit. To satisfy this condition, we compute an adaptive lower bound
for the step size as smin = αRc, where α < 1 and Rc is the current
cone radius. For CTSS, we set α = 0.5, which offers a balance of
speed and accuracy. We describe our strategy to correct intersection
detection to account for non-optimal step sizes in Sect. 3.6.

3.2 Cone Occlusion
It is convenient to describe cone intersections in terms of cone occlu-
sion, i.e., an estimate of how much of the traced cone is occupied by
a given geometric intersection. Given the SDF value d and the cone
radius Rc for the current iteration of sphere tracing, we compute
cone occlusion ω similarly to the method presented by Ban et al. [5]:

ω =
1− d/Rc

2
. (5)

We graphically illustrate cone occlusion in Fig. 2. Negative ω
values occur when Rc < d, corresponding to no cone intersection.
Positive cone occlusion implies d < Rc, indicating that a cone
intersection is detected. Full cone coverage occurs inside the surface
when d < −Rc (SDF is negative inside the object). We term
these different types of cone intersections as soft (0 < ω) and
hard (0.5 < ω) hits. While the original sphere tracing algorithm
terminates when the first hard hit is detected along the traced ray, i.e.,
d < ϵ for some small threshold ϵ (using cone occlusion, 0.5−ϵ < ω),
CTSS continues cone tracing until full cone occlusion (1.0− ϵ < ω)
to ensure that all visible surfaces are encountered.

d = Rc d = Rc / 2

d = 0

0.5

d = -Rc / 2 

0.75

d = -Rc

0.0 0.25 1.0

Figure 2: Cone intersections with varying cone occlusion. The
traced surface is shown in blue; the cones, as circular cross sections.
The ratio of SDF value d to cone radius Rc is directly correlated
with cone occlusion ω. Adapted from [5].



3.3 Sampling Strategy

CTSS analyzes sphere tracing iterations with cone intersections to
select where to collect shading samples. Naively, we could sample
the local color at each iteration with non-zero cone occlusion, but
as sphere tracing may require hundreds of iterations to converge to
the surface and partial intersections with geometry may occur at any
iteration, this is largely impractical due to computational constraints.
It is also necessary to avoid oversampling the same surface multiple
times as this may cause potentially biased and inconsistent results.

To avoid the computationally expensive iteration-based sampling,
we first identity hit groups, defined as a set of subsequent iterations
with a continuous cone intersection. Hit groups tend to naturally
split the traced ray into segments. A given hit group gi has an entry
point at ray depth tin – the first position for the associated cone
intersection – and may have an exit point at tout. While the ray
segment associated with a hit group gi is not exactly on the surface
of the evaluated SDF, it effectively approximates the local surface
and can be actively sampled. In theory, the visible representation
of a hit group can be computed as an integral of all visible colors
from the associated surface; in practice, we find that a single color
sample is in most cases sufficient to describe an entire hit group.
Moreover, since not all points on the surface within gi are visible
to the observer due to local occlusion and normal orientation, it is
critical to position the sample adequately.

The instinctive solution is to sample at the average position of
a given hit group gi or at the point with the smallest SDF value
(locally maximal cone occlusion), i.e., somewhere between tin and
tout. However, we find that this simple approach often results in
shading the surface at grazing angles or, even worse, with the surface
normal oriented away from the observer. Instead, we opt to shade
at the entry point of a given hit group gi, i.e., at the associated ray
length tin. The local geometry at the entry point ensures that the
surface will be oriented towards the observer, thus avoiding the
problem of backface shading. If a hard hit is detected for a particular
group, the sample is collected at the position of the first hard hit in
gi and not the entry point. To avoid double sampling soft hits that
become hard hits, we sample the entry point tin only once the exit
point tout is identified, indicating that the trace is exiting proximity
with a surface and thus not leading to a hard hit.

We illustrate the geometric configuration of our sampling scheme
for a generic trace in Fig. 3. In this example, three soft hit groups are
detected within the tested cone; the second and the third groups both
contain a hard hit, and the trace terminates with full cone occlusion
in the third group. As per our strategy, CTSS will collect three
shaded color samples indicated on the x-axis of the plot: the entry
point of the first soft hit group at t1in, the hard hit in the second
group at t2h, and the final hard hit in the third group at t3h.

Ray Length t

g1 g2 g3

t1in t2in t2out t3in t3ht1out

ro rd

t2h

Figure 3: Geometric properties of cone-traced supersampling along
the traced ray and for a given surface (in blue). Soft hit groups gi
are illustrated as red segments along the central ray, with the normal
vectors at relevant points shown in green; the sample points recorded
by CTSS are indicated as red circles on the x-axis. Note that the
second group contains a hard hit at t2h, but CTSS continues tracing
until full cone occlusion is detected at t3h.

Figure 4: Macroscopic model of cone-SDF intersections. A segment
of the traced cone is visualized (left) as a cylinder; the intersecting
surface defined by the SDF is assumed to be macroscopically planar.
Projected onto the pixel footprint, the surface is seen (right) as a half-
space, thus describing its visible coverage within the pixel. Adapted
from [23].

3.4 Subpixel Surface Visibility

Not all surfaces detected within the traced cone are equally visible
from the original view point. Geometry may be partially occluded
by previously encountered surfaces or due to local occlusion within
a hit group. The detected hit groups should then accordingly have
unequal visual contributions to the final observed color.

With CTSS, we resolve sub-pixel visibility to allocate weights for
the collected samples. Similar to differential cone-tracing presented
by Heitz and Neyret [23], we estimate the visible contribution of a
given surface by computing its relative occupancy in the pixel’s foot-
print. Heitz and Neyret assume that the macroscopic curvature of the
surface is negligible, hence the surface can be locally approximated
as a plane. As illustrated in Fig. 4, the cone-SDF intersection is mod-
elled from the perspective of the camera, i.e., along the 2D circular
cross-section of the traced cone representing the pixel. Given the
surface normal n⃗ projected on the pixel footprint to obtain n⃗p, the
SDF value d, and the cone radius Rc, the surface in the cross-section
of the cone is represented as a 2D half-space defined by n⃗p and a
distance d away from the center of the cone. As the plane naturally
divides the pixel into two regions, we can test against the half-space
to compute a 2D surface visibility mask over the pixel.

Borrowing from differential cone-tracing, which likewise takes
inspiration from the A-Buffer originally described by Carpenter [6],
we pack the visibility mask in the bits of a single 32-bit integer. The
visibility of a surface is encoded in the number of ones in the bitmask;
surface clipping computations become simple boolean operations.
We can thus efficiently correlate the visibility between subsequent
hit groups by keeping track of occlusion using a global visibility
bitmask M updated after each sample. The mask M is initialized
with all zeros to indicate zero occlusion; for each new sample, we
compute the associated visibility bitmask mi, test against M to
remove invisible bits, and lastly, update M with the newly occluded
bits before moving on to the next sample.

The final antialiased color C is computed as the weighted sum

C =

∑
i wiCi∑
i wi

, (6)

given the shaded color contributions Ci of the detected hit groups
and the corresponding visibility-based weights 0 < wi < 1, where
wi = bitCount(mi)/32. With this modification, we effectively
increase the resolution of the trace by considering sub-pixel visibility,
which largely benefits the visual quality of the final antialiased image.
We illustrate the associated visual improvement in Fig. 5 (c) and (e) ,
while (b) and (d) demonstrate that simply averaging the samples with
uniform weights results in a visual effect similar to edge extrusion
with the original aliasing. The difference is even clearer when the
cone coverage of CTSS is manually increased to multiple pixels.



(b) U1 (c) W1 (d) U5 (e) W5(a) No AA

Figure 5: CTSS sample aggregation using uniform U and visibility-
based weights W. The surface (blue) with no antialiasing is shown
in (a) as reference; CTSS with 1 pixel cone coverage shown in (b)
and (c), and CTSS with 5 pixel coverage in (d) and (e).

(a) (b)
Figure 6: Visibility bitmask encoded in a 32-bit integer as (a) 4× 8
mask from A-Buffer [6], (b) 6×6 mask with omitted corners (ours).

3.5 Visibility Bitmask Implementation
Unlike the original 4× 8 bitmask encoding sub-pixel visibility used
by differential cone-tracing and the A-Buffer, we use a 6×6 bitmask
with the corner bits omitted to more closely match the circular cross-
section of the traced cone (see Fig. 6). Moreover, while Heitz and
Neyret pre-compute and store all possible visibility bitmasks in a
look-up table, we compute local visibility masks in real-time. Our
bitmask implementation has insignificant computational overhead,
but eliminates the need for additional textures. We define the visible
region with a line of the form y = ax+ b in the local frame of the
cross-section of the traced cone, with the slope a and y-intercept b
expressed as

a = −nx/ny, (7)

b = d(n2
x + n2

y)/ny, (8)

given projected normal n⃗p = (nx, ny) and the local SDF value d.
Note that to avoid overflow and division by zero when computing a
and b, we clamp the minimum absolute values in n⃗p.

Pixel footprint is given by the traced cone with radius Rc, hence
the mask spans 2Rc. We solve for the relative positions 0 < xi <
2Rc over six horizontal lines corresponding to the six rows of our
6× 6 bitmask. The positions xi are then converted to the number
of required bit-shifts to apply to a full 111111 bitmask to encode
the desired coverage, and the orientation of coverage is given by n⃗p.
For example, 000111 corresponds to half coverage from the right
with xi = Rc, and requires 111111 to be shifted right by three bits;
coverage from the left implies left bit shifts.

3.6 Backtracing Correction
Regular sphere tracing accurately converges to the ray-SDF intersec-
tion since the step size is equal to the local SDF value. However, if
the step size has a lower bound – which is the case for CTSS – the
safe stepping distance with no intersection is no longer guaranteed
near the surface, hence hard hit detection becomes less accurate.
In addition, the entry and exit points for cone intersections are al-
ways determined with spatial delay regardless of the step size, as
illustrated in Fig. 7.

CTSS samples shading information at the positions of hard hits
and cone hit entry points. Sampling delayed hits may cause visual
artifacts and inconsistencies, e.g., shading inside the surface or
at surfaces not facing the observer. To more accurately represent

Rs

Ray Length t

Rs

titi-1 ts

ro rd

Figure 7: Backtracing at the cone intersection entry point. Since
sphere tracing detects a “delayed” cone intersection at ti, the true
cone intersection entry point occurs earlier, between ti−1 and ti.
Regions tested for intersection are shown as purple circles (radius
equals local SDF value); orange semi-transparent circles show the
associated cone radii; solid red circle depicts our safe cone radius
and the corrected intersection entry point after backtracing.

intersections with local geometry, we apply “backtracing” to step
backwards along the traced ray by a safe fallback distance that
ensures no intersection. Given ray depth values ti−1 and ti for two
subsequent sphere tracing iterations with a cone intersection at ti but
not at ti−1, we estimate a safe ray depth ts such that ti−1 < ts < ti.

For hard hits, we must correct intersection detection due to non-
optimal step size for sphere tracing with CTSS, i.e., di−1 ≤ ti−ti−1,
where di−1 is the SDF value at previous iteration. We simply return
to the previously determined safe ray depth ts = ti−1 + di−1.

For cone intersections, we define ts in terms of a safe cone radius
Rs = ti − ts. We reuse Equation 4 to express Rs in terms of the
cone coverage angle θ as

Rs = ts × tan(θ), (9)

and then compute ts as

ts =
ti

1 + tan(θ)
. (10)

The geometry of our safe cone with the circular base located at ray
depth ts along the traced ray ensures that no cone intersection oc-
curs with the SDF and provides a more reliable entry point estimate
during cone tracing. Backtracing correction is also applied to the in-
tersection exit point. The involved calculations are very simple with
negligible performance cost, while the corrected positions produce
much more reliable shading samples.

4 EXPERIMENTS AND RESULTS

We tested various resolutions and scene complexities representative
of popular workloads to evaluate the performance and the robustness
of CTSS, and compare our antialiasing solution to sphere tracing
with supersampling (SSAA) in terms of image quality and computa-
tional load. All our tests were performed on a Windows 10 machine
with an Intel® Core™ i7-11900K CPU and NVIDIA GeForce RTX
3090 GPU. We implemented sphere tracing with and without CTSS
in Shadertoy1 [25] (GLSL) for exploration and in Unity Engine [48]
(HLSL) for performance evaluations. We also tested a variant of
CTSS with relaxed termination criteria (CTSS-R), which terminates
at the first hard hit (half cone occlusion), offering faster antialiasing
but lower image quality. For SSAA, we sample on a uniform k × k
grid for each pixel (e.g., 2× 2 for 4xSSAA).

Since the overall performance, accuracy, and final rendered image
given by sphere tracing largely depend on the value of the SDF
threshold used to determine intersections with the geometry, it was
necessary to set equivalent thresholds for sphere tracing with and
without CTSS. To ensure consistent comparison, we implemented
sphere tracing with an adaptive cone-based threshold for intersection
detection. This small modification uses a termination threshold that
increases with ray depth instead of a constant value.



Table 1: Performance evaluation in various scenes and resolutions comparing no antialiasing, supersampling, and CTSS. For each method, we
report the frametime (FT) in milliseconds as well as the ratio against the reference performance with no antialiasing.

Scene Primitives Random Box Random Shape Sponza SDF1 Sparse Shape
Resolution 1280x720 2560x1440 1280x720 2560x1440 1280x720 2560x1440 1280x720 2560x1440 1280x720 2560x1440

Method
FT

(ms)
Ratio

FT
(ms)

Ratio
FT

(ms)
Ratio

FT
(ms)

Ratio
FT

(ms)
Ratio

FT
(ms)

Ratio
FT

(ms)
Ratio

FT
(ms)

Ratio
FT

(ms)
Ratio

FT
(ms)

Ratio
Avg

Ratio
No AA 4.67 1.0 17.1 1.0 7.07 1.0 25.14 1.0 14.59 1.0 47.58 1.0 6.62 1.0 25.82 1.0 8.67 1.0 23.67 1.0 1.0
4x SS 20.82 4.46 66.25 3.87 29.47 4.17 103.5 4.12 61.16 4.19 192.2 4.04 28.38 4.29 106.42 4.12 36.82 4.25 96.82 4.09 4.16
CTSS 6.08 1.30 20.38 1.19 9.72 1.37 34.78 1.38 19.21 1.32 59.73 1.26 9.04 1.37 31.96 1.24 11.08 1.28 31.08 1.31 1.30

CTSS-R 5.15 1.10 17.98 1.05 9.12 1.29 32.41 1.29 17.92 1.23 57.24 1.20 6.96 1.05 27.78 1.08 10.02 1.16 28.02 1.18 1.16

No AA CTSS CTSS-R

4xSSAA 4xSSAA+CTSS 9xSSAA

No AA CTSS CTSS-R

4xSSAA 4xSSAA+CTSS 9xSSAA

Figure 8: Image quality comparison between CTSS and supersampling (SSAA). We showcase CTSS renders at 720p for two scenes:
Sponza SDF and Random Shape. SSAA collects multiple samples for every pixel resulting in uniform antialiasing quality. CTSS performs
supersampling specifically near object boundaries but not for flat surfaces, textures, or edges that it cannot detect. As a result, CTSS
provides comparable visual quality near object edges but is overall less consistent; CTSS-R provides a marginally smaller visual improvement.
Combining CTSS and supersampling yields superior quality at fewer samples per pixel as demonstrated by 4xSSAA + CTSS.

We summarize the pseudocode for sphere tracing with CTSS in
Algorithm 1. Note several simplifications for clarity, for instance,
we omit definitions for readily available logical tests – e.g., for hit
entry and exit. We similarly omit certain configurable parameters.

4.1 Performance Analysis

Table 1 presents our performance assessment for various scenes and
resolutions. The tests were run using our HLSL implementation for
sphere tracing and CTSS in Unity Engine; we used Unity’s Profiler
and Profile Analyzer tools, and report the mean frametime for 600
subsequent frames. Averaging the results from all our tested scenes,
CTSS contributes to roughly 30% overhead, while CTSS-R is even
more efficient incurring only 16% slowdown. CTSS scales well for
scenes with different geometric complexity, and produces consistent
performance results under various configurations.

While supersampling approaches essentially multiply the required
amount of work by the supersampling factor – e.g., 4xSSAA quadru-
ples the computational load – CTSS results in a marginal increase
in computation correlated with the number of complex pixels in the
rendered image, significantly improving the performance of antialias-
ing. Because CTSS extends sphere tracing with supersampling and
collects multiple color samples along the traced ray, it is naturally
slower than sphere tracing itself (no AA). CTSS contains additional
logic and increases the number of shading operations per pixel. Fur-

No AA CTSS CTSS-R

Figure 9: Affected pixels for CTSS and CTSS-R. Complex pixels
(highlighted) occur at object contours. Full CTSS antialiases more
pixels as it continues tracing until full cone occlusion, potentially
encountering multiple hit groups. CTSS-R stops at the first hard hit,
detects fewer hit groups, and thus antialiases fewer pixels.

thermore, sphere tracing slows down near object boundaries due to
small step sizes; as CTSS continues sphere tracing until full cone
occlusion is detected, it may encounter multiple surface boundaries,
slowing down multiple times. CTSS-R eliminates the possibility of
recurrent proximity to surfaces leading to better performance.

4.2 Antialiasing Quality Analysis
We qualitatively analyze the image quality of the five tested scenes
rendered with different antialiasing solutions and showcase two of
the fives scenes in Fig. 8. Compared to uniform supersampling,
CTSS specifically targets spatial regions near edges, as partial cone
intersections naturally occur at grazing angles in proximity with
geometry; CTSS does not antialias textures or flat geometry as no
edges are detected in these regions. We further illustrate the visual
difference between CTSS and CTSS-R in Fig. 9. CTSS-R soft-
ens the appearance for pixels near the object’s boundary but does
not directly antialias pixels with existing hard hits; antialiasing is
achieved by smoothing the extruded edge. The full implementation
of CTSS, on the other hand, traces until full pixel occlusion and
applies antialiasing to both sides of the edge leading to improved
visual quality. Lastly, SSAA and CTSS can be combined for im-
proved visual quality by supersampling in three dimensions: in pixel
space (2D) plus along the traced ray (3D). For instance, 4xSSAA
and CTSS provide visual quality comparable to 9xSSAA at less
than half the cost. Combining antialiasing in ray-space (CTSS) and
image-space (supersampling) thus yields the best visual quality.

5 DISCUSSION

In this section we describe the key configurable CTSS parameters
that influence the visual quality and performance, provide a brief
discussion of limitations, and highlight directions for future work.

5.1 CTSS Configurations

Cone Coverage. The standard CTSS implementation with cone
coverage set to a single pixel can be modified to use larger cones for
intersection detection: cone radius Rc, defined in Equation 4, can be

1Sponza SDF from https://github.com/mmerchante/

sdf-gen-unity

https://github.com/mmerchante/sdf-gen-unity
https://github.com/mmerchante/sdf-gen-unity


Algorithm 1: Pseudocode for weighted CTSS
Input: Ray origin ro, ray direction rd, SDF function f ,

tangent of cone angle tanTheta, maximum ray
traversal distance D

Output: Antialiased color for a given pixel
1 t = ti = 0 // current and sample ray depths

2 M = 0 // global visibility mask

3 ωmax = 0 // keep track of max occlusion

4 c = (0, 0, 0) // accumulates pixel color

5 wt = 0 // total sample weight

6 while t < D do
7 p = ro + trd // current position

8 d = f(p) // SDF evaluation

9 Rc = t× tanTheta // current cone radius

10 ω = (1− d/Rc)/2 // cone occlusion metric

11 if soft hit then
12 ωmax = max(ωmax, ω) // max occlusion

13 if (soft hit entry) or (first hard hit entry ) then
14 ti = t // update hit sample position

15 if (soft hit exit) or (full cone occlusion) then
/* sample current group */

16 mi = visibilityMask() // sample visibility

17 mi = mi ∧ !M // visibility correlation

18 wi = bitCount(mi)/32 // sample weight

19 c = c+ wi × shade(ro, rd, ti) // update color

20 wt = wt + wi // update total weight

21 M = M ∨mi // update global mask

22 if full cone occlusion then
23 break // exit the loop, stop tracing

/* always advance at least by Rc/2 */

24 t = t+max(d,Rc/2)

25 return c/wt // normalize by total weight

multiplied by a constant. We observe that the visual smoothness of
edges naturally increases with cone coverage wider than one pixel.
Since CTSS-R only applies outer edge extrusion and smoothing –
limiting the visible antialiasing effect – increasing its cone coverage
improves the produced image quality. CTSS-R-2p (with two pixel
coverage) then more closely matches the visual smoothing achieved
with CTSS-1p. Note that expanding cone coverage leads to slightly
reduced performance as more samples are collected and may cause
visual artifacts for larger coverage values.
Minimum Step Size. The value for minimum step size (see
Sect. 3.1) during CTSS is critical for performance. Smaller min-
imum values result in higher intersection detection accuracy but
severely impact render time. We find that the step size of at least
Rc/2 provides an adequate trade-off between accuracy and perfor-
mance. Note that the minimum step size should be at most Rc

in order to not step over hard hits as well as to conform to our
backtracing correction strategy.
Number of Samples. For typical scene complexities, CTSS detects
anywhere between one to eight hit groups per pixel. Limiting the
maximum number of collected samples is nevertheless a practical
constraint. That being said, we identify little performance gain
associated with limiting the number of samples per pixel as this
is naturally achieved with cone tracing and our sampling scheme.
Lastly, we note that coverage and shading computations may be
decoupled, i.e., record sampling positions while tracing, but delay
shading until later. Limiting the number of samples then reduces the
memory requirements as fewer sample positions need to be recorded.

No AA CTSS 4xSSAA

Figure 10: Limitations of antialising with CTSS. In red, correctly
antialiased external edge; in blue, internal edge undetectable by
our sampling strategy; in green (left to right), non-antialized color
discontinuities from shadows, floor texture (checkerboard), and
specular/reflection. CTSS performs geometric antialiasing at object
contours, but does not antialias flat regions.

Shading Calculations. Shading can be computed either as soon
as the hit groups are detected, or delayed until sphere tracing with
CTSS is completed. With delayed sampling, it is necessary to
record a list of ray depth values ti and the associated visibility
masks mi during tracing. We term these two variants ASAP and
Delayed, respectively. The ASAP strategy is most straightforward
and requires the least amount of additional logic. The delayed
variant allows to decouple coverage and shading but requires more
memory. It also allows for computation in separate passes, i.e.,
running all coverage and all shading computations separately. We
did not implement delayed sampling for CTSS, but it may offer
further performance optimizations. This property can be leveraged
using multiple passes in shader implementations. It may also be
relevant when using neural SDFs (e.g., [13,42]) as batching multiple
SDF computations is then desirable for adequate performance.
Visibility Threshold. CTSS continues tracing until full cone oc-
clusion or full bitmask visibility. Given our 32-bit integer mask,
we can also opt to terminate tracing when the visibility mask has
some set number of k < 32 bits filled. Best antialiasing quality is
achieved with k = 32 but smaller visibility thresholds offer a minor
speed up. This is demonstrated with CTSS-R terminating at half
cone occlusion, which is similar to k = 16.

5.2 Limitations of CTSS

Antialiasing. CTSS performs geometric antialiasing by detecting
and sampling distinct hit groups during sphere tracing. We identify
hit groups by their entry and exit points, and allocate a single shaded
color sample per group. As a result, CTSS is incapable of resolving
color discontinuities caused by textures, normals, and specular high-
lights that may occur within a single hit group. For instance, Fig. 9
highlights pixels where CTSS collects multiple samples: while the
depth discontinuities near object contours – external edges – are
detected and correctly antialiased, regions with relatively continuous
depth – internal edges – cannot be identified. Similarly, flat regions
with color variation cannot be detected under our sampling scheme.
These properties are further illustrated in Fig. 10. Lastly, given our
sampling strategy based on hit groups and our assumption that the
macroscopic curvature of the surface is negligible, CTSS cannot
accurately represent surfaces that are significantly smaller than the
pixel size.
Applicability. While sphere tracing can non-optimally evaluate a
function f that is not a true SDF but satisfies f(p) ≤ SDF(p), CTSS
may produce inconsistent antialiasing when rendering f . When f
underestimates the true distance to the object’s surface, cone inter-
section detection is inconsistent and CTSS cannot correctly compute
the visibility of the corresponding surface within a pixel. Although
CTSS works well for piece-wise functions (as demonstrated by the
highly complex Sponza SDF scene in Fig. 1 and Fig. 8), visual arti-
facts may be present when CTSS is applied to non-Eikonal functions
where ∥∇f(x)∥ ̸= 1.



5.3 Future Work
While internal edges and color discontinuities are problematic for
antialiasing with CTSS, an interesting direction for future work is
to improve our sampling scheme optimization. More specifically,
we may contextually collect multiple samples per hit group based
on the group’s local geometric properties, i.e., to further subdivide
the hit group. One such possible detection strategy could examine
the surface normals at different scales to identify distinct surfaces
within a single group. Alternatively, to avoid potentially unnecessary
normal computations, we could also simply look at the length to
depth ratio of a hit group and allocate additional samples accordingly.
Despite the additional computational cost of more sophisticated
sampling strategies, we believe these costs can likely be justified for
addressing the antialiasing limitations described above.

CTSS may further allow for rendering SDF objects with trans-
parency. Since our modification to sphere tracing limits the mini-
mum step size, we continue sphere tracing past a surface intersection,
thus possibly encountering multiple surfaces. In the context of trans-
parent objects, we may use a similar sphere tracing modification to
correctly evaluate multiple surfaces per pixel. While CTSS currently
uses a visibility bitmask to describe the local contribution of a given
surface to the final pixel color, we can extend this to accumulate non-
binary visibility thus considering transparent objects. For instance,
this can be achieved by using K bitmasks to encode K levels of
transparency.

6 CONCLUSION

We present cone-traced supersampling (CTSS), an efficient antialias-
ing solution for SDF-based rendering that leverages cone tracing
to perform supersampling along the traced ray without casting ad-
ditional rays per pixel or offline pre-filtering. Our method scales
well to various levels of scene complexity, offers consistent image
quality comparative to 4× - 8× supersampling for most geometric
edges at a fractional computational cost, and is simple to imple-
ment on top of conventional sphere tracing. These advantages make
CTSS an attractive method for a variety of real-time SDF rendering
applications.
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[18] E. Galin, E. Guérin, A. Paris, and A. Peytavie. Segment tracing using

local lipschitz bounds. Computer Graphics Forum, 39(2):545–554,
2020. doi: 10.1111/cgf.13951

[19] J. D. Genetti, D. Gordon, and G. Williams. Adaptive supersampling
in object space using pyramidal rays. Computer Graphics Forum, 17,
1998.

[20] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit
Curves and Surfaces: Mathematics, Data Structures and Algorithms.
Springer Publishing Company, Incorporated, 1st ed., 2009.

[21] J. Hart. Sphere tracing: A geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer, 12, 06 1995. doi: 10
.1007/s003710050084

[22] J. Hart, D. Sandin, and L. Kauffman. Ray tracing deterministic 3-d
fractals. ACM SIGGRAPH Computer Graphics, 23:289–296, 07 1989.
doi: 10.1145/74333.74363

[23] E. Heitz and F. Neyret. Representing Appearance and Pre-filtering Sub-
pixel Data in Sparse Voxel Octrees. In C. Dachsbacher, J. Munkberg,
and J. Pantaleoni, eds., EGGH-HPG’12 - Eurographics conference on
High Performance Graphics, pp. 125–134. Eurographics, Paris, France,
June 2012. Best Paper HPG 2012. doi: 10.2312/EGGH/HPG12/125
-134

[24] L. Hermanns, T. Franke, and A. Kuijper. Screen space cone tracing
for glossy reflections. In S. Lackey and R. Shumaker, eds., Virtual,
Augmented and Mixed Reality, pp. 308–318. Springer International
Publishing, Cham, 2016.

[25] P. Jeremias and I. n. Quilez. Shadertoy: Live coding for reactive
shaders. In ACM SIGGRAPH 2013 Computer Animation Festival,
SIGGRAPH ’13, p. 1. Association for Computing Machinery, New
York, NY, USA, 2013. doi: 10.1145/2503541.2503644

[26] Y. Jiang, D. Ji, Z. Han, and M. Zwicker. Sdfdiff: Differentiable
rendering of signed distance fields for 3d shape optimization. CoRR,
abs/1912.07109, 2019.

[27] J. Jimenez, J. Echevarria, T. Sousa, and D. Gutiérrez. Smaa: Enhanced
subpixel morphological antialiasing. Computer Graphics Forum (Proc.
EUROGRAPHICS 2012), 31, 05 2012. doi: 10.1111/j.1467-8659.2012
.03014.x

[28] A. Kaplanyan, S. Hill, A. Patney, and A. E. Lefohn. Filtering distri-
butions of normals for shading antialiasing. In Proceedings of High

https://www.gdcvault.com/play/1026184/Truly-Next-Gen-Adding-Deep
https://www.gdcvault.com/play/1026184/Truly-Next-Gen-Adding-Deep


Performance Graphics, HPG ’16, p. 151–162. Eurographics Associa-
tion, Goslar, DEU, 2016.

[29] B. Karis. High quality temporal supersampling. http://advances.
realtimerendering.com/s2014/epic/TemporalAA.pptx, 2014.
ACM SIGGRAPH Courses: Advances in Real-Time Rendering in
Games.

[30] A. Knoll, Y. Hijazi, A. E. Kensler, M. Schott, C. D. Hansen, and
H. Hagen. Fast ray tracing of arbitrary implicit surfaces with interval
and affine arithmetic. Computer Graphics Forum, 28, 2009. doi: 10.
1111/j.1467-8659.2008.01189.x

[31] J. Linietsky, A. Manzur, and G. C. Contributors. Godot engine, 2021.
[32] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-

tion 3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):163–169, aug 1987. doi: 10.1145/37402.37422

[33] T. Lottes. FXAA. Technical report, NVIDIA, 2009.
[34] H. Malan. Edge Anti-aliasing by Post-Processing, pp. 265–289. 06

2010. doi: 10.1201/b10648-21
[35] A. Marrs, J. Spjut, H. Gruen, R. Sathe, and M. McGuire. Adaptive

temporal antialiasing. In Proceedings of the Conference on High-
Performance Graphics, HPG ’18. Association for Computing Machin-
ery, New York, NY, USA, 2018. doi: 10.1145/3231578.3231579

[36] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In
2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 4455–4465, 2019. doi: 10.1109/CVPR.2019.00459

[37] M. Molecule. Dreams. https://www.mediamolecule.com/games/
dreams/, 2020.

[38] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
fusion: Real-time dense surface mapping and tracking. In 2011 10th
IEEE International Symposium on Mixed and Augmented Reality, pp.
127–136, 2011. doi: 10.1109/ISMAR.2011.6092378

[39] M. Olano and D. Baker. Lean mapping. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
I3D ’10, p. 181–188. Association for Computing Machinery, New York,
NY, USA, 2010. doi: 10.1145/1730804.1730834

[40] S. Order. Claybook game. https://www.claybookgame.com/,
2018.

[41] S. Osher and R. Fedkiw. The Level Set Methods and Dynamic Implicit
Surfaces, vol. 57, pp. xiv+273. 05 2004. doi: 10.1115/1.1760520

[42] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape
representation. CoRR, abs/1901.05103, 2019.

[43] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering an-
tialiased shadows with depth maps. SIGGRAPH Comput. Graph.,
21(4):283–291, Aug. 1987. doi: 10.1145/37402.37435

[44] A. Reshetov. Morphological antialiasing. In Proceedings of the Con-
ference on High Performance Graphics 2009, HPG ’09, p. 109–116.
Association for Computing Machinery, New York, NY, USA, 2009.
doi: 10.1145/1572769.1572787

[45] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo
Method. Wiley Publishing, 3rd ed., 2016.
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