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Abstract

Photorealistic object appearance modeling from 2D images is a constant topic in vision
and graphics. While neural implicit methods (such as Neural Radiance Fields) have shown
high-fidelity view synthesis results, they cannot relight the captured objects. More recent
neural inverse rendering approaches have enabled object relighting, but they represent sur-
face properties as simple BRDFs, and therefore cannot handle translucent objects. We
propose Object-Centric Neural Scattering Functions (OSFs) for learning to reconstruct ob-
ject appearance from only images. OSFs not only support free-viewpoint object relighting,
but also can model both opaque and translucent objects. While accurately modeling sub-
surface light transport for translucent objects can be highly complex and even intractable
for neural methods, OSFs learn to approximate the radiance transfer from a distant light to
an outgoing direction at any spatial location. This approximation avoids explicitly modeling
complex subsurface scattering, making learning a neural implicit model tractable. Exper-
iments on real and synthetic data show that OSFs accurately reconstruct appearances for
both opaque and translucent objects, allowing faithful free-viewpoint relighting as well as
scene composition. In our supplementary material, we include a video for an overview.

1 Introduction

Modeling the geometry and appearance of 3D objects from captured 2D images is central to many applications
in computer vision, graphics, and robotics, such as shape reconstruction (Mescheder et al., 2019; Park et al.,
2019; Chang et al., 2015), view synthesis (Hedman et al., 2018; Mildenhall et al., 2020; Sitzmann et al.,
2019a), relighting (Zhang et al., 2021c; Bi et al., 2020b;a), and object manipulation (Simeonov et al., 2021).
Traditional inverse rendering approaches (Zhou et al., 2013; Nam et al., 2018) focus on directly estimating
objects’ shape and material properties; they then compose them using the estimated surface properties.
These explicitly reconstructed object representations often lead to visible artifacts or limited fidelity when
rendering images using the recovered object assets.

Recently, neural implicit methods have attracted much attention in image-based appearance modeling. They
implicitly represent objects and scenes using deep neural networks (Lombardi et al., 2019; Sitzmann et al.,
2019a;b). Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) are one of the most representative
methods due to their high-fidelity view synthesis results. NeRFs implicitly model a scene’s volumetric
density and radiance via coordinate-based deep neural networks, which can be learned from images via
direct volume rendering techniques (Max, 1995). However, NeRFs only reconstruct the outgoing radiance
fields under a fixed lighting condition. Thus, they cannot relight the captured objects or compose multiple
objects into new scenes.

To address this problem, a few neural inverse rendering methods (Zhang et al., 2021b;a; Boss et al., 2021a;
Zhang et al., 2021c) have been proposed to jointly estimate lighting, material properties, and geometry from
images. The disentanglement of illumination enables relightable object appearance modeling. However, these
methods all assume simple Bidirectional Reflectance Distribution Functions (BRDFs) when modeling surface
properties, without taking subsurface light transport into consideration∗. Therefore, they can only model
the appearance of opaque objects and cannot handle translucent objects with complex material properties.

∗We use “simple BRDFs” to refer to BRDFs that do not consider subsurface scattering.
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Figure 1: We propose a new neural object representation, Object-Centric Neural Scattering Functions (OSFs),
to reconstruct object appearance from only images. OSFs can handle objects with complex materials or
shapes (e.g., the translucent bunny), and support both free-viewpoint relighting and scene composition.

We observe that subsurface scattering effects are the key to relighting translucent objects. However, accu-
rately modeling subsurface scattering can be complex and even intractable for neural implicit representations,
because each sampling operation for numerical integration requires a complete forward pass of the network.
This leads to a prohibitive computational cost in both time and memory.

To address this challenge, we propose Object-Centric Neural Scattering Functions (OSFs) for image-based
relightable neural appearance reconstruction. An OSF learns to approximate the cumulative radiance transfer
function, which models radiance transfer from a distant light to any outgoing direction at any spatial location
for an object. This enables the use of a volumetric rendering formulation to learn from images, while being
able to approximate both opaque and translucent object appearances. Thus, OSFs allow free-viewpoint
relighting from only 2D images (see Figure 1).

Modeling object-level light transport allows neural scene composition with trained OSF models, as light
transport effects such as object shadows and indirect lighting can be naturally incorporated. To demonstrate
this, we present a simple and computationally tractable method for scene composition. To further accelerate
neural scene rendering, we introduce two improvements on OSFs scene rendering that allow magnitudes of
acceleration without compromising rendering quality.

Experiments on both real and synthetic objects demonstrate the effectiveness of our OSF formulation. We
show that OSFs enable free-viewpoint relighting of both translucent and opaque objects by learning from
only 2D images. We also show that in scene composition using the reconstructed objects, our approach
significantly outperforms baseline methods.

In summary, our contributions are threefold. First, we introduce the concept of the cumulative radiance
transfer function that models object-centric light transport. Second, we propose the Object-Centric Neural
Scattering Functions (OSFs) that learn to approximate the cumulative radiance transfer function from only
2D images. OSFs allow free-viewpoint relighting and scene composition of both opaque and translucent objects.
Third, we show experimental results on both real and synthetic objects, demonstrating the effectiveness of
OSFs in free-viewpoint relighting and scene composition.

2 Related Work

Neural appearance reconstruction. Traditional methods use Structure-From-Motion (Hartley & Zisser-
man, 2003) and bundle adjustment (Triggs et al., 1999) to reconstruct colored point clouds. More recently, a
number of learning-based novel view synthesis methods have been proposed, but they require 3D geometry
as inputs (Hedman et al., 2018; Thies et al., 2019; Meshry et al., 2019; Aliev et al., 2020; Martin-Brualla
et al., 2018). Recently, neural volume rendering approaches have been used to reconstruct scenes from only
images (Lombardi et al., 2019; Sitzmann et al., 2019a). However, the rendering resolution of these methods
is limited by the time and computational complexity of the discretely sampled volumes. To address this
issue, Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) directly optimizes a continuous radiance
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field representation using a multi-layer perceptron. This allows for synthesizing novel views of realistic im-
ages at an unprecedented level of fidelity. Various extensions of NeRF have also been proposed to improve
efficiency (Liu et al., 2020; Yu et al., 2021; Garbin et al., 2021; Reiser et al., 2021), generalization (Niemeyer
& Geiger, 2021; Yu et al., 2022; Yang et al., 2021), quality (Oechsle et al., 2021; Barron et al., 2021a;b;
Verbin et al., 2021; Zhang et al., 2020), compositionality (Ost et al., 2021) etc. While these neural methods
produce high-quality novel views of a scene, they do not support relighting. In contrast, our approach aims
at relightable appearance reconstruction.

Learning-based relighting. Learning-based methods that relight images without explicit geometric rea-
soning have been proposed (Sun et al., 2019; Xu et al., 2018; Zhou et al., 2019), but they are not 3D-aware.
Following the recent surge of neural 3D scene representations and neural differentiable rendering (Tewari
et al., 2020; Mildenhall et al., 2020), neural relightable representations (Bi et al., 2020b;a; Boss et al., 2021a;
Srinivasan et al., 2021; Zhang et al., 2021c; Baatz et al., 2021) and neural inverse rendering methods (Zhang
et al., 2021b;a; Boss et al., 2021b) have been developed to address this limitation. However, most of them
assume simple BRDFs which do not consider subsurface scattering in their formulations, and thus they can-
not model translucent object appearances for relighting. In contrast, our method allows the reconstruction
of both opaque and translucent object appearances. Some existing methods also approximate subsurface
light transport for participating media (Kallweit et al., 2017; Zheng et al., 2021). However, they either
need specific designs such as spherical harmonics and BRDF modeling (Zheng et al., 2021) or require 3D
groundtruth data (Kallweit et al., 2017), while our method learns a general object representation from only
images.

Precomputed light transport. Our OSFs learn to approximate a cumulative radiance transfer function,
which is based on the classical idea from the precomputed light transport methods including the precomputed
radiance transfer (Sloan et al., 2002) (also see (Lehtinen, 2007) and (Ramamoorthi, 2009) for overviews).
These methods map incoming basis lighting to outgoing radiance, while we additionally learn to encapsulate
the object-specific light transport at the visible surface. Related ideas include the classical reflectance
field (Debevec et al., 2000; Garg et al., 2006). Our method is also related to classical techniques for modeling
aggregate scattering behavior (Moon et al., 2007; Lee & O’Sullivan, 2007; Meng et al., 2015; Blumer et al.,
2016). These techniques consider modeling the full asset-level internal scattering, a more general form than
our cumulative radiance transfer. Our cumulative radiance transfer function borrows the general idea from
these classical methods and adapts to neural implicit volumetric rendering framework for relightable and
compositional appearance modeling from images. This adaptation allows using the power of deep networks
to approximate complex light transport. Recently a few neural methods have been proposed to model light
transport of complex materials (Kuznetsov, 2021; Baatz et al., 2021), e.g., Baatz et al. (2021) represent
surface texture as neural reflectance fields which is technically relevant to ours. However, they need meshes
as explicit object geometry, while ours learns object representations from only images.

3 Approach

We aim for relightable neural appearance reconstruction of both opaque and translucent objects from 2D
images. To achieve this, we propose Object-centric neural Scattering Functions (OSFs) that learn to approx-
imate subsurface scattering effects in a computationally tractable way. In the following, we first introduce
our OSF formulation and discuss its relations to phase functions and BSSRDFs (Sec. 3.1). Then we show
how we can model translucent objects (Sec. 3.2) and opaque objects (Sec. 3.3) with OSFs. Finally, we discuss
how to learn OSFs from 2D images (Sec. 3.4) and compose multiple learned OSFs (Sec. 3.5).

3.1 OSF Formulation

Our OSFs are based on Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020), which learn view-dependent
emitted radiance at any point in space. NeRFs can be formulated by {Lout(x, ωout), σ(x)} = NN(x, ωout),
where Lout denotes the outgoing radiance, x denotes a 3D spatial location, σ denotes the volumetric density,
ωout denotes an outgoing radiance direction, and NN denotes a learnable deep neural network. Inspired from
the principles of volume rendering (Kajiya & Von Herzen, 1984), the computational model for radiance L(r)
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Figure 2: Relations to classical graphics concepts for modeling subsurface scattering effects.
The process of light transport from an unobstructed distant light to a point x inside a translucent object
is complex: 1) the light (radiance) hit a point on the visible surface area; 2) the surface transmits some
amount of the light into the object interior; 3) the transmitted light scatters within the object; 4) some
light finally arrives at x from incoming directions ωin; 5) the arrived light scatters to directions ωout; and
6) this process happens at all points on the visible surface, and the final outcome is the accumulated result.
Phase functions only model 4) and 5), so one has to account for the other steps by multiple integrations.
BSSRDFs encapsulate steps 2) - 5), so they require two integrations for step 1) and step 6). In contrast,
our OSF formulation encapsulates the entire process that takes all steps into account. This abstraction of
modeling the whole process as cumulative radiance transfer eliminates the need of any integration, making
it computationally tractable to use in neural volume rendering.

of a camera ray r(t) = o − tωout with near and far bounds tn and tf is given by:

L(r) =
∫ tf

tn

T (t)σ(r(t))Lout(r(t), ωout)dt, (1)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds) denotes the transmittance along the ray from tn to t.

While a NeRF can render high-fidelity novel views of a captured object, it does not support relighting
because it is based on the absorption-plus-emission model (Max, 1995), which itself is light source–agnostic.
Namely, NeRFs model Lout as the emitted radiance after all light transport has occurred. To address this
limitation, we propose OSFs that model Lout as the scattered radiance due to external light sources instead.
More specifically, OSFs learn to approximate the cumulative radiance transfer from an unobstructed distant
light, in addition to the volume density:

{ρ(x, ωlight, ωout), σ(x)} = NN(x, ωlight, ωout), (2)

where ρ(x, ωlight, ωout) denotes the cumulative radiance transfer function, which is defined as the ratio of two
quantities. The numerator is the outgoing radiance Lout(x, ωout) in the direction of ωout at location x that is
caused by an unobstructed distant light Llight(ωlight) from direction ωlight. The denominator is Llight(ωlight).
It is cumulative about all paths that Llight(ωlight) scatters to x. See Figure 2 for an illustration.

Given the cumulative radiance transfer function ρ, the scattered outgoing radiance Lout is given by

Lout(x, ωout) =
∫

S2
ρ(x, ωlight, ωout)Llight(ωlight)dωlight. (3)

We assume the object itself does not emit light. We argue that this distant light assumption in ρ is acceptable
and can allow relighting with environment maps that are also distant light.

Phase Functions vs. BSSRDFs. vs. Cumulative Radiance Transfer. The cumulative radiance
transfer function ρ approximates a complex radiance transfer process from an unobstructed distant light to
an outgoing direction at a location, including those inside the object. It is conceptually akin to a phase
function that describes the scattered radiance distribution at a specific location in a scattering process. It is
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also related to the Bidirectional Scattering Surface Reflectance Distribution Functions (BSSRDFs) (Jensen
et al., 2001). See Figure 2 for a detailed comparison of these concepts.

Below we list the major distinctions against phase functions:

• Generally, a phase function is local, i.e., it depends only on the material/media (and in some cases
also geometry) at the location. In contrast, the cumulative radiance transfer function ρ is object-
specific and spatially varying even if the object is made from a uniform homogeneous material. This
is because ρ potentially needs to account for a complex process, including the light transport for all
surface points that are visible to the distant light, the subsurface scattering effects, and the radiance
transfer at a specific location. Thus, this process depends on both the material and the object
geometry at x, as well as the light direction.

• Phase functions for some naturally occurring isotropic media only need 1 Degree of Freedom (DoF)
for angular distribution, i.e., the cosine between incoming and outgoing radiance directions (see
Chapter 11 in Pharr et al. (2016)). However, ρ generally needs 4 DoF for angular distribution: 2
DoF of light direction because the light direction can interact with object geometry to affect the
incoming radiance distribution at any given x, and 2 DoF of outgoing direction as we want to model
view-dependent effects as in NeRFs (Mildenhall et al., 2020).

Compared to BSSRDFs, which are surface models that describe how light is transported between any two
rays that hit a surface, ρ is used in a volumetric rendering process. OSFs do not explicitly model surface
properties.

3.2 Modeling Translucent Objects with OSFs

Our OSF formulation can model the appearance of translucent objects in a computationally tractable way for
volumetric neural implicit methods, while directly modeling the radiance transfer in a volumetric scattering
process is intractable. In direct modeling, Lout(x, ωout) =

∫
S2 p(x, ω, ωout)Lin(ω)dω, where p denotes a phase

function, Lin denotes the incoming radiance at location x from the direction ω. The recursive dependency of
Lin over the unit sphere in the media makes the equation very difficult to solve (Novák et al., 2018; Max &
Chen, 2005). From the computational perspective, to numerically compute this integral to train the neural
network, one needs to account for the whole sphere (due to subsurface scattering) through dense sampling.
However, for neural implicit methods, each sample requires a forward pass of the deep network, leading
to a high computation cost. Moreover, training deep networks often requires saving intermediate variables
for auto-differentiation (Paszke et al., 2017), which demands a massive amount of GPU memory for dense
sampling. As a result, it can become computationally intractable to train the neural network in this way. In
contrast, during training, we use lighting setups that match well the assumption of a single directional light
source; the spherical integration in Eq. (3) thus reduces to a single evaluation. The key feature of OSFs is
that they approximate the complex cumulative radiance transfer process using the expressive power of deep
neural networks.

3.3 Modeling Opaque Objects with OSFs

Apart from modeling translucent objects, our OSF formulation is also able to model opaque objects. The-
oretically, the formulation may subsume surface light transport when modeling opaque convex objects. To
see this, we consider a single distant light source from ωlight, the light transport at a visible surface point
can be described by

L(r) = f(xsurf, ωlight, ωout)Llight |n(xsurf) · ωlight| , (4)

where f denotes a BRDF, xsurf denotes the first surface point hit by the camera ray r, and n(x) denotes the
unit normal vector at x. We have used the single distant light assumption to solve the integration. Now we
consider an ideal case, where an OSF learns that σ(x) = δ(x − xsurf) for all xsurf. This solves the integration
in Eq. (1) and gives

L(r) = Lout(xsurf, ωout) = ρ(xsurf, ωlight, ωout)Llight. (5)
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We can see that if the learned OSF satisfies ρ(xsurf, ωlight, ωout) = f(xsurf, ωlight, ωout) |n(xsurf) · ωlight| for
all surface points, then it subsumes the surface light transport with the BRDF. Although a neural network
cannot perfectly represent a delta function for σ(x), in our experiments, we observe that empirically OSFs
learn to approximate the surface light transport for opaque objects of both convex and concave shapes.

3.4 Learning OSFs from Images

We aim to learn OSFs from only 2D images, allowing easy capture of real objects. As discussed in Section 3.1,
we prefer a tractable training setup. Thus, we propose capturing object images using only a single distant
light source, which leads to a light source radiance function Llight(ω) = L0δ(ω − ω0), where L0 and ω0 are
obtained from the capture setup. We can define the sampling Probabilistic Density Function (PDF) for
lighting as PDFlight(ω) = δ(ω − ω0) and this gives an analytic solution of the integration in Eq. (3):

Lout(x, ωout) = E
ω∼PDFlight(ω)

[
ρ(x, ω, ωout)

Llight(ω)
PDFlight(ω)

]
(6)

= ρ(x, ω0, ωout)L0. (7)

We capture images of the object-to-reconstruct under different ω0 in a dark room. We describe our accessible
real data capture setup using two iPhones in Section 4.1.

Given Eq. (7), the camera ray radiance L(r) defined in Eq. (1) is trivially differentiable with respect to
OSFs. We follow the learning strategy from NeRFs (Mildenhall et al., 2020), which models the pixel color
of a ray in an analog to radiance instead of the raw radiometric quantity to simplify learning. This may be
interpreted as allowing the neural network to implicitly deal with the camera response that maps camera ray
radiance to pixel color (also see a recent discussion in Mildenhall et al. (2021)). We also follow NeRFs to use
quadrature to compute Eq. (1), and use positional encoding and hierarchical volume sampling to facilitate
training (i.e., we use a coarse network for coarse sampling a ray to give a rough estimation of transmittance
distribution, and then use a fine network to do additional informed sampling to further reduce variance).
The loss function for learning an OSF is thus defined as

L = Er

[
∥Ĉcoarse(r) − C(r)∥2 + ∥Ĉfine(r) − C(r)∥2

]
, (8)

where C(r) denotes the groundtruth pixel color for ray r, Ĉcoarse(r) denotes the predicted color by the
coarse network, and Ĉfine(r) denotes the predicted color by the fine network. During testing, we only use
the predicted colors of the fine network.

3.5 Composing Multiple Learned OSFs

We show how we can use the learned OSFs for visually plausible scene composition. Note that due to the
complexity of the problem and the approximations made by OSFs, physical correctness may not be guaranteed
in the following discussion. Below we present a simple and computationally tractable approximation for
composing multiple learned OSFs. We leave the design of physically correct scene composition algorithms
as future work.

We restrict our discussion to a scene with multiple objects represented by OSFs, and we assume a single
distant light source to illuminate the scene. In this case, the light distribution in Eq. (3) can potentially
contain two parts: one for direct lighting, and the other for indirect lighting. We discuss them separately
below, and then provide an algorithm for rendering a composed scene.

Direct lighting. Direct lighting is assumed to be a distant light, so the major point to consider is solving
visibility. Notice that although OSFs allow reconstructing translucent object appearances, we do not model
advanced light transport effects including transmitted lights or caustics in this work, but only consider
shadows caused by light visibility. While solving for hard visibility can be tricky for OSFs, because they
do not have the concept of surface just like NeRFs, the transmittance T in Eq. (1) can be seen as a soft
measure for visibility. Therefore, we use a shadow ray rshadow(t) = x − tωlight to solve for visibility at x. We
volume-render this shadow ray for all other OSFs in the scene with compositional rendering (Niemeyer &
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Geiger, 2021), and use the obtained transmittance T (t) = exp(−
∫ t

tn
σ(rshadow(s))ds) to serve as visibility:

Ldirect = T (tf )L0, where we abuse tf to denote the far bound of the shadow ray and L0 to denote the light
radiance. Given Ldirect, we compute outgoing radiance using Eq. (7).

Notice that this is a biased estimation for translucent objects, because the visibility is solved by the ray
cast from a single point x, while the cumulative transfer function ρ assumes the full light visibility for the
object surface (Figure 2). Therefore, if a translucent object is partially occluded from the distant light,
the outgoing radiance is underestimated for those points casting occluded shadow rays, and overestimated
for those points casting unobstructed shadow rays. This also happens for concave opaque objects due to
global transport. But for ideally learned OSFs of convex opaque objects (i.e., they degenerate to BRDFs) as
discussed in section 3.3, the estimation is unbiased.

Indirect lighting. Besides direct lighting, we also want to account for indirect lighting in evaluating Eq. (3).
To do this, we use Monte Carlo integration with uniform sampling of solid angles. Specifically, we cast a ray
from x to the sampled direction, and volume-render the ray using Eq. (1) to obtain the incoming radiance.
Due to high computational cost, we only consider one-bounce indirect lighting. Similar to direct lighting,
the estimation is biased for translucent objects, because ρ assumes distant light, while inter-reflection from
objects do not meet this assumption. Nonetheless, our experiments show that our approximation can create
reasonably faithful scene composition results in Sec. 4.3.

3.6 Accelerating OSF Rendering

The standard rendering procedure must be repeated per pixel to render an image. The total cost of rendering
a single image with Npixel pixels and Nobject objects is thus

O((NpixelNsampleNobject)(NlightNsampleNobject)d−1), (9)

where Nsample denotes the number of samples per ray-object pair, Nlight denotes the number of light sources,
and d denotes the number of light bounces we model. There are many samples for which we must query
OSFs, which can result in significant rendering time. We introduce two approaches to improve rendering
efficiency: (i) reducing sample query time by KiloOSF and (ii) excluding rays that do not intersect with
objects.

KiloOSF. To accelerate OSFs, in the same spirit as KiloNeRF (Reiser et al., 2021), we introduce a variant
of our model called KiloOSF that represents the static scene with a large number of independent and small
MLPs. KiloOSF represents each object with thousands of small MLPs, each responsible for a small portion
of the object, making each individual MLP sufficient for photo-realistic rendering.

Specifically, we subdivide each object into a uniform grid of resolution r = (rx, ry, rz). Each grid cell is of 3D
index i = (ix, iy, iz). We define a mapping m from position x to index i through spatial binning as follows:

m(x) = ⌊(x − bmin)/(bmax − bmin)⌋, (10)

where bmin and bmax are the respective minimum and maximum bounds of the axis-aligned bounding box
(AABB) enclosing the object. For each grid cell, a small MLP neural network with parameters Θ(i) is used
to represent the corresponding portion of the object. Then, the color and density values at a point x can
be obtained by first determining the index m(x) responsible for the grid cell that contains this point, then
querying the respective small MLP:

{ρ(x, ωlight, ωout), σ(x)} = NNΘ(m(x))(x, ωlight, ωout), (11)

Following KiloNeRF, we use a “training with distillation” strategy. We first train an ordinary OSF model
for each object and then distill the knowledge of the teacher model into the KiloOSF model. We also use
empty space skipping and early ray termination to increase rendering efficiency. See Reiser et al. (2021) for
details.

Excluding non-intersecting rays. In addition to using KiloOSF, we also implement a sampling procedure
that precludes the evaluation of rays that do not intersect with objects. Our sampling procedure assumes
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(b) Shadow ray sampling(a) Primary ray sampling

Figure 3: Sampling procedure. (a) Scene with a camera, light source, and object bounding boxes. Primary
rays are sent from the camera into the scene. Rays that do not intersect with objects are pruned. Of the
intersecting rays, we sample points within intersecting regions. (b) Shadow rays from each sample are sent
to the light source, and samples within intersecting regions are evaluated.

access to (rough) bounding box dimensions for each object. In practice, such a bounding box can be
automatically computed from a trained OSF by extracting the object’s bounding volume (using the predicted
alpha values). As shown in Fig. 3, for each ray and each object of interest, we intersect the ray with the
object’s bounding box. If the ray does not intersect with the object’s bounding box, then no computation
is required for the ray-object pair. If the ray does intersect with the object’s bounding box, we adopt the
intersection points as the near and far sampling bounds for the ray-object pair. Thus the NpixelNobject
(number of primary rays) and NlightNobject (number of secondary rays) are upper bounds on the number of
rays that need to be evaluated. In practice, a single ray often only intersects with at most one object in
the scene, which means that the proposed rendering procedure is not significantly more expensive than the
single object setting.

Compared with traditional volumetric path tracing methods, our OSF model does not require running path
tracing within each object (by evaluating itself during secondary ray computations) to simulate intra-object
light bounces, because it learns the object-level scattering function that directly predicts the effects after all
light bounces (reflections) and occlusions (shadows) within an object have occurred. Therefore, OSFs are
faster than alternative methods such as NRFs (Bi et al., 2020a), which relies on simulating intra-object light
bounces while querying its learned BRDF model.

4 Experiments

We validate our approach by free-viewpoint relighting on both synthetic and real-world objects, including
translucent and opaque ones. Furthermore, we also demonstrate that OSFs allow visually plausible scene
composition by showcasing a scene with both synthetic and real objects. We leave implementation details
in our supplementary material.

4.1 Data and baselines

In our experiments, we use two real and six synthetic objects.

Real image capture setup. We use an easily accessible image-capturing setup, where we take photos with
two iPhone 12 in a dark room. We use the flash of a cellphone Plight as a distant light source. We position
Plight such that it is far away from the object (the distance to the object is about 10 times compared to the
object diameter). We use the other cellphone Pimage as a camera without using its flash. We capture 20
images from random viewpoints for a single random light direction, and we repeat this for 10 different light
directions. This gives us a dataset of 200 images from different viewpoints. We split our dataset such that
all 20 images of a randomly chosen light direction are held out for testing and all other images for training.
We use a standard Structure from Motion (SfM) method, COLMAP (Schonberger & Frahm, 2016), to solve
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Figure 4: Free-viewpoint relighting for translucent objects from ObjectFolder.

Ground truth OSF (ours) o-NeRF PhySG NeRD Ground truth OSF (ours) o-NeRF PhySG NeRD

Figure 5: Results on free-viewpoint relighting for real translucent objects captured by a cellphone.

for camera poses for all images. To calibrate light position, we additionally take a photo using Plight for
every light position, and solve the camera pose together with other captured images. Photos taken by Plight
are only used for light direction calibration but not for training. In order for SfM to work well in the dark
room, we place highly-textured newspaper pieces surrounding the captured object to provide robust feature
points, and use a foreground segmentation network (Qin et al., 2020) to extract clean object images after
SfM.

Synthetic images. We use 5 synthetic objects from the ObjectFolder (Gao et al., 2021) dataset, as well as
a Stanford bunny. We assign translucent materials to half of them and opaque materials to the other half.
For each synthetic object, we render 1,000 images, each of which is under a random light direction and a
random viewpoint. We use 500 images for training and 500 for testing.

Baselines. We consider the following baselines:

o-NeRF (Mildenhall et al., 2020): We train a NeRF for each object and refer to it as o-NeRF. For scene
composition, each object is rendered separately. We also add shadows like our OSFs, denoting them as
o-NeRF + Shadow.

PhySG (Zhang et al., 2021b): A recent representative neural inverse rendering method that jointly estimates
lighting, materials, and geometry from multi-view images and masks of shiny objects.

NeRD (Boss et al., 2021a): A recent representative neural relightable representation that decomposes the
appearance into a neural BRDF field and environment lighting.
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Ground truth OSF (ours) o-NeRF PhySG NeRD Ground truth OSF (ours) o-NeRF PhySG NeRD

Figure 6: Free-viewpoint relighting for opaque objects from ObjectFolder.

PSNR↑ SSIM↑ LPIPS↓
o-NeRF 23.69 0.811 0.137
PhySG 26.63 0.941 0.046
NeRD 24.39 0.892 0.125
OSF (ours) 34.06 0.923 0.035

Table 1: Results for free-viewpoint relighting on
translucent objects from ObjectFolder.

PSNR↑ SSIM↑ LPIPS↓
o-NeRF 17.63 0.725 0.331
PhySG 16.81 0.833 0.185
NeRD 21.94 0.815 0.182
OSF (ours) 27.06 0.865 0.051

Table 2: Results for free-viewpoint relighting on real
translucent objects captured by a cellphone.

We use the following standard metrics in all our comparisons: peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) (Wang et al., 2003), and a perceptual metric LPIPS (Zhang et al., 2018).

4.2 Free-Viewpoint Relighting

OSF takes light directions as input in addition to the camera viewpoint; thus, it inherently supports simulta-
neous relighting and novel view synthesis. We use a variety of objects for evaluation, including three opaque
synthetic objects from the ObjectFolder dataset (Gao et al., 2021), three translucent synthetic objects, and
two real-world translucent objects.

We train one model per object. For each synthetic object, we train on 400 images with randomized viewpoint
and lighting, and test on 100 images of novel viewpoint and lighting. For each real object, we train on 200
captured images with 10 different light directions, and test on 20 images with a novel light direction.

Relighting synthetic translucent objects. We show qualitative (Figure 4) and quantitative (Table 1)
comparisons on synthetic translucent objects. Our approach significantly outperforms the baseline methods.
It successfully models the material and shape of the objects, and accurately relights them from varied
viewpoints compared to the ground truth. In contrast, o-NeRF and methods that parameterize materials by
BRDFs, such as PhySG and NeRD, fail to produce complex shading effects, and instead relight the entire
body of the object.

Relighting real translucent objects. To demonstrate that our approach works well on challenging real-
world translucent objects, we capture images of two objects with a cell phone in a dark room from different
camera viewpoints under varied light directions with a point light source. We show quantitative (Table 2)
and qualitative (Figure 5) results of two translucent soaps. Our method consistently outperforms the baseline
methods. While both o-NeRF, PhySG, and NeRD cannot recover the correct shading effects on the objects,
our approach well captures the detailed textures on the surface of the objects.
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PSNR↑ SSIM↑ LPIPS↓

o-NeRF 20.93 0.817 0.181
PhySG 22.30 0.884 0.125
NeRD 21.12 0.866 0.106
OSF (ours) 31.60 0.905 0.065

Table 3: Results for free-viewpoint
relighting on opaque objects.

PSNR↑ SSIM↑ LPIPS↓

o-NeRF+Shadow 17.21 0.678 0.244
OSF (ours) 35.57 0.927 0.031

Table 4: Free-viewpoint relighting re-
sults for scene composition.

FPS↑ PSNR↑

OSF 0.27 0.035
KiloOSF 16.13 0.037

Table 5: Evaluation of
KiloOSF on relighting
translucent objects.

Ground truthOSF (ours)o-NeRF + Shadow

Rendered scene

New viewpoint

Relighting

Figure 7: Scene composition results for a translucent bowl, an opaque airplane, and an opaque floor.

Relighting synthetic opaque objects. In Figure 6, we show the free-viewpoint relighting results for
synthetic opaque objects. o-NeRFs predict radiance fields instead of modeling light transport; therefore,
they do not perform well in novel lighting conditions. OSFs also outperform PhySG and NeRD. While
baselines fail to predict self-shadows, our method produces more accurate appearance of the objects under
novel lighting conditions. We show quantitative results in Table 3, where OSFs also significantly outperform
all baselines.

4.3 Scene Composition

Since OSFs are object-centric representations that model light transport for an object instead of appearances
under specific lighting conditions, they allow trained models to be readily composed into new scenes. To
evaluate neural scene composition, we use a translucent and an opaque object with randomized poses, lighting
directions, and viewpoints. We show examples in Figure 7. We compare with the o-NeRF+Shadow baseline.
Qualitatively, while o-NeRF+Shadow produces incorrect shadows and artifacts, our method generates more
realistic compositions that match the ground truth. We also show quantitative results in Table 4, where we
observe that OSFs significantly outperform o-NeRF+Shadow.
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Ours w/o shadow or indirect Ours w/o indirect Indirect only Full (Ours)

Figure 8: Scene composition results on real objects. We compare to ablated versions of our model. “Ours w/o
shadow or indirect” considers only direct illumination. “Ours w/o indirect” includes both direct illumination
and shadows. “Indirect only” considers only indirect illumination.

Composing real objects. In the rightmost column of Figure 8, we further show qualitative examples of
scene composition using real objects from Bi et al. (2020a). In the first row, we show the composition results
of real objects on the synthetic floor. In the second row, we compose the objects into a real background
scene from Mildenhall et al. (2020) where the light sources are randomized to approximate the unknown
environment lighting. In both examples, our approach demonstrates good composition results with realistic
shadows.

Ablation study. In the left three columns of Figure 8, we show an ablation study comparing our full
model to two variants: (1) ours without shadow or indirect lighting, and (2) ours without indirect lighting.
Without accounting for shadow or indirect lighting, the composition results appear to be unrealistic, similar
to a simple cut-and-paste (the first column of Figure 8). While adding shadows improves the visual quality,
the lack of indirect lighting leads to hard shadows in the first example, which degrades the photorealism (the
second column of Figure 8). In comparison, our full model incorporates both shadow and indirect lighting
(visualization of indirect lighting effects is shown in the third column of Figure 8), leading to visually plausible
scene compositions.

4.4 Evaluation on KiloOSF

We introduce KiloOSF for accelerating OSF rendering. Thus, in this section, we evaluate KiloOSF in terms of
rendering speed and relighting performance. To this end, we test KiloOSF on all synthetic translucent objects.
We show the rendering speed (frames per second) and the rendering quality in Table 5. KiloOSF achieves
60× (16.13 vs. 0.27 FPS) speed up while maintaining comparable relighting performances, suggesting the
benefits brought by the KiloOSF design.

5 Conclusion

We presented a novel, learning-based object representation—Object-Centric Neural Scattering Functions
(OSFs). An OSF models a cumulative radiance transfer function rather than a radiance field modeled by
NeRF, allowing both free-viewpoint relighting and scene composition. Moreover, OSFs can model objects
of complex shape and materials, and can relight both opaque and translucent objects. Our work offers a
new promising graphics pipeline for modeling real-world scenes that combines the flexibility of object-centric
neural modeling with the photorealism of graphics rendering algorithms.
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