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Abstract
Inferring reward functions from demonstrations
is a key challenge in reinforcement learning (RL),
particularly in multi-agent RL (MARL), where
large joint state-action spaces and complex inter-
agent interactions complicate the task. While
prior single-agent studies have explored recov-
ering reward functions and policies from human
preferences, similar work in MARL is limited. Ex-
isting methods often involve separate stages of su-
pervised reward learning and MARL algorithms,
leading to unstable training. In this work, we intro-
duce a novel end-to-end preference-based learn-
ing framework for cooperative MARL, leveraging
the underlying connection between reward func-
tions and soft Q-functions. Our approach uses a
carefully-designed multi-agent value decomposi-
tion strategy to improve training efficiency. Ex-
tensive experiments on SMAC and MAMuJoCo
benchmarks show that our algorithm outperforms
existing methods across various tasks.

1. Introduction
Reinforcement learning (RL) has been instrumental in a
wide range of decision making tasks, where agents gradu-
ally learn to operate effectively through interactions with
their environment (Levine et al., 2016; Silver et al., 2017;
Kalashnikov et al., 2018; Haydari & Yılmaz, 2020). Typ-
ically, when an agent takes an action, it receives feedback
in the form of reward signals, enabling it to adjust or revise
its action plan (i.e., policy). However, designing an appro-
priate reward function is a significant challenge in many
real-world domains. While essential for training successful
RL agents, reward design often requires extensive instru-
mentation or engineering (Yahya et al., 2017; Schenck &
Fox, 2017; Peng et al., 2020; Yu et al., 2020; Zhu et al.,
2020). Moreover, such reward functions can be exploited
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by RL algorithms, which might find ways to achieve high
expected returns by inducing unexpected or undesirable be-
haviors (Hadfield-Menell et al., 2017; Turner et al., 2020).

To address these challenges, many RL studies have relaxed
the reward structure by using sparse rewards, where agents
receive feedback periodically (Arjona-Medina et al., 2019;
Ren et al., 2021; Zhang et al., 2024b). While this reduces
the need for dense reward signals, it is often insufficient to
train effective agents in complex domains. Alternatively, im-
itation learning (IL) has been explored, where agents learn
to mimic an expert’s policy from demonstrations, without
explicit reward signals (Ho & Ermon, 2016; Fu et al., 2017;
Garg et al., 2021; Mai et al., 2024). However, achieving
expert-level performance with IL requires a large amount of
expert data, which can be costly and difficult to obtain.

A recent promising approach is to train agents using human
preference data, a more resource-efficient form of feed-
back called Reinforcement Learning from Human Feedback
(RLHF). This allows agents to learn behaviors aligned with
human intentions. RLHF has proven effective in both single-
agent control (Christiano et al., 2017; Mukherjee et al., 2024;
Lee et al., 2021; Shin et al., 2023; Hejna & Sadigh, 2024)
and natural language tasks (Stiennon et al., 2020; Ouyang
et al., 2022; Rafailov et al., 2024). However, RLHF in
multi-agent environments is still underexplored, as simply
extending single-agent methods is insufficient due to the
complex interdependencies between agents’ policies.

Only a few recent studies have developed preference-based
RL algorithms for multi-agent settings (Kang et al., 2024;
Zhang et al., 2024a), typically using a two-phase learning
framework: first, preference data trains a reward model, and
then the policy is optimized. However, this approach has
two main drawbacks: (i) it requires large preference datasets
to cover the state and action spaces, and (ii) misalignment
between the two phases can degrade policy quality.

In this work, we investigate multi-agent preference-based
RL (PbRL), focusing on the offline learning setting where
agents do not interact with the environment but instead have
access to an offline dataset of pairwise trajectory preferences.
Unlike previous studies in multi-agent PbRL, we propose
an end-to-end learning approach that directly trains agents’
policies from preference data, without relying on an explicit
reward model. Our main contributions are as follows:
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First, we introduce a new algorithm, O-MAPL (Offline
Multi-Agent Preference Learning) for multi-agent PbRL. O-
MAPL exploits the inherent relationship between the reward
and the soft-Q functions in MaxEnt RL (Garg et al., 2021;
2023) to directly learn the soft Q-function from preference
data, rather than recovering the reward function explicitly.
Once the Q-function is learned, the optimal policy can be
derived. This one-phase learning process is carried out un-
der the centralized training with decentralized execution
(CTDE) paradigm (Oliehoek et al., 2008; Kraemer & Baner-
jee, 2016), allowing effective training of local policies.

Implementing this end-to-end process within the CTDE
framework is far from being trivial. It requires appropri-
ate mixing networks for value factorization to preserve the
convexity of the preference-based learning objective and
ensure local-global consistency in policy optimality. As a
second contribution, we introduce a simple yet effective
value factorization method and provide a comprehensive
theoretical analysis of the convexity and local-global con-
sistency requirements. This approach enables stable and
efficient policy training.

Finally, we conduct extensive experiments on two bench-
marks, SMAC and MAMuJoCo, using preference data gen-
erated by both rule-based and large language model ap-
proaches. The results show that our O-MAPL consistently
outperforms existing methods across various tasks.

2. Related Work
Offline multi-agent reinforcement learning (MARL).
Our work is related to offline MARL, relying solely on of-
fline data to learn policies without direct interaction with the
environment. Unlike standard offline MARL, we consider
data only showing pairwise trajectory preferences (without
rewards). Like offline MARL, it faces challenges such as
distributional shift and complex interactions in large joint
state and action spaces. Many existing MARL methods use
the CTDE framework (Oliehoek et al., 2008; Kraemer &
Banerjee, 2016), enabling efficient learning while allowing
independent operation of agents. Regularization techniques
are also applied to mitigate distributional shift (Yang et al.,
2021; Pan et al., 2022; Shao et al., 2024; Wang et al., 2022).

For example, some works extend CQL (Kumar et al., 2020),
a well-known single-agent offline RL algorithm, to multi-
agent settings (Pan et al., 2022; Shao et al., 2024). Others
adopt the popular DICE framework, which regulates policies
in the occupancy space to address out-of-distribution (OOD)
issues in both competitive and cooperative settings (Mat-
sunaga et al., 2023; Bui et al., 2025). Additionally, (Wang
et al., 2022) explore a policy constraint framework to tackle
OOD problems. Some studies apply sequence modeling
techniques to solve offline MARL using supervised learning

approaches (Meng et al., 2023; Tseng et al., 2022).

Preference-based reinforcement learning (PbRL).
Early works developed general frameworks using linear
approximations or Bayesian models to incorporate human
feedback on policies, trajectories, and state/action pairwise
comparisons into policy learning (Fürnkranz et al., 2012;
Akrour et al., 2012; 2011; Wilson et al., 2012). Recent
studies have shown the effectiveness of training deep neural
networks in complex domains with thousands of preference
queries, typically following a two-phase approach: first,
supervised learning to train a reward model, then RL to
optimize the policy. For example, (Christiano et al., 2017)
uses the Bradley-Terry model for pairwise preferences
and methods like A2C (Mnih, 2016) to refine the policy.
Subsequent studies have expanded this framework to
scenarios like preference elicitation (Mukherjee et al., 2024;
Lee et al., 2021), few-shot learning (Hejna III & Sadigh,
2023), data and preference augmentation (Ibarz et al.,
2018; Zhang et al., 2023), list-wise learning (Choi et al.,
2024), hindsight preference learning (Gao et al., 2024), and
Transformer-based learning (Kim et al., 2023).

Training reward models aligned with human preferences
can be costly, requiring large volumes of preference data,
especially in complex domains. This has led to a shift
towards end-to-end frameworks that directly learn optimal
policies from preference data, bypassing explicit reward
models. For example, (Hejna et al., 2023) and (An et al.,
2023) use contrastive learning to eliminate reward modeling,
while (Kang et al., 2023) employs information matching
to learn optimal policies in one step. In (Hejna & Sadigh,
2024), the IPL algorithm learns a Q-function directly from
expert preferences, instead of modeling the reward function.

While preference-based RL is well-explored in single-agent
settings, research in multi-agent settings remains limited
due to the complexity of agent interactions and large joint
state-action spaces. Only a few studies have extended the
two-phase preference-based framework to multi-agent set-
tings (Kang et al., 2024; Zhang et al., 2024a). Building
on IPL’s success in single-agent settings (Hejna & Sadigh,
2024), we leverage the reward-Q-function relationship to
avoid explicit reward modeling. Adapting this to multi-
agent environments is challenging, requiring careful design
of mixing networks within the CTDE framework and a thor-
ough theoretical analysis of the preference-based learning
objective’s convexity and global-local policy consistency.

3. Background
Multi-agent Reinforcement Learning. We focus on co-
operative MARL, modeled as a multi-agent Partially Ob-
servable Markov Decision Process (POMDP) defined by
M = ⟨S,A, P, r,Z,O, n,N , γ⟩ where n is the number of
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agents, and N = {1, . . . , n} is the set of agents. The true
state of the environment is denoted by s ∈ S, and the joint
action space is given by A =

∏
i∈N Ai, where Ai is the set

of actions for agent i ∈ N . At each time step, every agent
i ∈ N selects an action ai ∈ Ai, resulting in a joint action
a = (a1, a2, . . . , an) ∈ A. The transition dynamics are
described by P (s′|s,a) : S ×A× S → [0, 1], which is the
probability of moving to the next state s′ given the current
state s and joint action a. The discount factor γ ∈ [0, 1)
determines the relative importance of future rewards.

In partial observability settings, each agent receives a local
observation oi ∈ Oi based on the function Zi(s) : S → Oi,
and the joint observation is denoted by o = (o1, o2, . . . , on).
In cooperative MARL, agents share a global reward func-
tion r(s,a) : S ×A → R. The objective is to learn a joint
policy πtot = {π1, . . . , πn} that maximizes the expected dis-
counted cumulative rewards E(o,a)∼πtot [

∑∞
t=0 γ

tr(st,at)].
In offline settings, a dataset D is pre-collected by sampling
from a behavior policy µtot = {µ1, . . . , µn}. Policy learn-
ing is then carried out using this dataset D only.

MaxEnt Reinforcement Learning. Standard RL opti-
mizes a policy that maximizes the expected discounted cu-
mulative rewards Eπtot [

∑∞
t=0 γ

tr(st, at)]1, where (st, at)
are sampled at each time step t from the trajectory distri-
bution induced by the joint policy πtot. In a generalized
MaxEnt RL, the standard reward objective is augmented
with a KL-divergence term between the joint policy and a
behavior µtot that generates the offline dataset, as follows:

Eπtot

[∑∞

t=0
γt
(
r(st, at)− β log

πtot(at|st)
µtot(at|st)

)]
,

where β is the regularization parameter. Setting µtot to the
uniform distribution reduces this to the standard MaxEnt RL
objective. The regularization term enforces a conservative
KL constraint, keeping the learned policy close to the be-
havior policy and addressing offline RL’s out-of-distribution
challenges (Haarnoja et al., 2018; Neu et al., 2017).

In the above MaxEnt framework, the soft-Bellman opera-
tor B∗ : RS×A → RS×A is defined as (B∗

rQtot)(s, a) =
r(s, a)+γEs′∼P (·|s,a)Vtot(s′), whereQtot is the soft-global-
Q function and Vtot is the optimal soft-global-value function
computed as a log-sum-exp of Qtot, as follows:

Vtot(s) = β log
[∑

a∼µtot(·|s)
µtot(a|s) exp

(Qtot(s, a)
β

)]
The Bellman equation (B∗

rQtot) = Qtot will yield a unique
optimal global Q-function Q∗

tot and the corresponding opti-
mal policy is given by (Haarnoja et al., 2018):

π∗
tot(a|s) = µtot(a|s) exp

(Q∗
tot(s, a)− V ∗

tot(s)
β

)
. (1)

1We adapt the formulas from single-agent MaxEnt RL to the
multi-agent setting, ensuring consistency in notation.

where V ∗
tot is the log-sum-exp of Q∗

tot. Moreover, by rear-
ranging the Bellman equation, we get the so-called inverse
soft Bellman-operator, formulated as follows:

(T ∗Qtot)(s, a) = Qtot(s, a)− γEs′∼P (·|s,a)Vtot(s′)

An important observation here is the one-to-one mapping
between anyQtot and r(s, a), i.e., r(s, a) = (T ∗Qtot)(s, a).
This property has been extensively utilized in inverse
RL (Garg et al., 2021; Hejna & Sadigh, 2024; Bui et al.,
2024). The key idea is that, rather than explicitly recov-
ering a reward function, the unique mapping enables the
reformulation of reward learning as a Q-learning problem.
This approach improves stability and can directly recover
the optimal policy from the learned Q-function using (1).

Note that, in POMDP scenarios, the global state s is not
directly accessible during training and is instead represented
by the joint observations o from the agents. For notational
convenience, we use the global state s in our formulation;
however, in practice, it corresponds to the joint observa-
tion Z(s). Specifically, terms like πtot(s, a) and Qtot(s, a)
actually refer to µtot(o, a) and Qtot(o, a), where o = Z(s).

4. Multi-agent Preference-based RL (PbRL)
4.1. Preference-based Inverse Q-learning

Following prior works (Christiano et al., 2017; Lee et al.,
2021; Kang et al., 2024), we assume access to pairwise
preference data. The data, collected from humans (or ex-
perts), consists of pairs of trajectories (σ1, σ2), where σ1 is
preferred over σ2. Each trajectory σ is a sequence of joint
(state, action) pairs: σ = {(s1,a1), . . . , (sK ,aK)}. Let P
denote the preference dataset, comprising several pairwise
comparisons (σ1, σ2). The goal of PbRL is to recover the
underlying reward function and expert policies from P .

A common approach in PbRL is to model the expert’s pref-
erences using the simple and intuitive Bradley-Terry model
(Bradley & Terry, 1952), which computes the probability of
the expert preferring σ1 over σ2 (denoted as σ1 ≻ σ2) as:

P (σ1 ≻ σ2) =
e
∑

(s,a)∈σ1
rE(s,a)

e
∑

(s,a)∈σ1
rE(s,a) + e

∑
(s,a)∈σ2

rE(s,a)

where rE(s, a) is the reward function of the expert. Using
this model, a direct approach to recovering the expert re-
ward function rE involves maximizing the likelihood of the
preference data P , which can be formulated as follows:

maxrE L(rE |P) = maxrE
∑

(σ1,σ2)∈P
lnP (σ1 ≻ σ2)

Once the expert rewards rE are recovered, a policy can
be learned by training a MARL algorithm. This method
is referred to as a two-phase approach, where the reward
learning and policy optimization are performed separately.
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The MaxEnt RL framework discussed above provides an
alternative approach to integrate reward and policy recovery
into a single learning process. This is achieved by leveraging
the unique mapping between a reward function and a Q-
function. Multi-agent PbRL is thereby transformed into the
Q-space, where the preference probability over a trajectory
pair (σ1, σ2) can be computed as follows:

P (σ1 ≻ σ2|Qtot) =
e
∑
σ1

(T ∗Qtot)(s,a)

e
∑
σ1

(T ∗Qtot)(s,a) + e
∑
σ2

(T ∗Qtot)(s,a)

After solving the maximum likelihood problem, the derived
Qtot and Vtot can be used directly to recover a policy via
the soft policy formula (1), eliminating the need for an
additional MARL algorithm. This unified, single-phase
approach integrates reward and policy learning, streamlining
the process. It enhances training stability and consistency
by reducing discrepancies that arise from separate reward
and policy learning. This approach also mitigates issues
like error propagation and misalignment between the reward
function and policy optimization. Training in the Q-space
has been shown to outperform training in the reward space.

4.2. Value Factorization

The training objective in the Q-space can be formulated as:

max
Qtot

L(Qtot|P) = max
Qtot

∑
(σ1,σ2)∈P

lnP (σ1 ≻ σ2|Qtot)

While this objective works in single-agent settings, applying
it to multi-agent scenarios is challenging due to the large
state and action spaces. To address this, we apply value
factorization in the CTDE framework. However, solving
PbRL under CTDE is complex, as the objective involves
several components tied to Qtot and Vtot. Thus, a carefully
designed value factorization method is needed to ensure
consistency between global and local policies.

To address these challenges, we propose a value factoriza-
tion method, specifically designed to ensure scalability in
multi-agent environments while preserving the alignment
between global and local objectives, thereby enabling sta-
ble and effective learning. Our approach involves factoriz-
ing the global value functions Qtot and Vtot into local func-
tions using a mixing network architecture. Specifically, let
q(s,a) = {q1(s1, a1), . . . , qn(sn, an)} be a set of local Q-
functions, and v(s) = {v1(s1), . . . , vn(sn)} represent a set
of local V-functions. To enable centralized learning, we in-
troduce a mixing network Mw, parameterized by learnable
weights w, which combines the local functions q and v to
construct the global value functions Qtot and Vtot as follows:

Qtot(s,a) = Mw[q(s,a)]; Vtot(s) = Mw[v(s)].

For notational simplicity, let us define:

Rw[q, v](s, a) = Qtot(s, a)− γEs′∼P (·|s,a)Vtot(s′)
= Mw[q(s, a)]− γEs′∼P (·|s,a)Mw[v(s′)]

The mixing function Mw can be either a linear combination
(single-layer) or a nonlinear combination (e.g., a two-layer
network with ReLU activation). Our work uses the simple
linear structure, which has two key advantages over the non-
linear approach. First, a two-layer structure often causes
over-fitting and poor performance, especially in offline set-
tings with limited data (Bui et al., 2025). Second, the linear
structure ensures convexity in the learning objectives within
the Q-space, leading to stable optimization and consistent
training—benefits not present under a two-layer mixing
network structure.

Overall, the training objective function, under the described
mixing architecture, can be now expressed as follows:

L(q, v, w) =
∑

(σ1,σ2)∈P

∑
(s,a)∈σ1

Rw[q, v](s, a)

− log
(
e
∑
σ1

Rw[q,v](s,a) + e
∑
σ2

Rw[q,v](s,a))
+ ϕ(Rw[q, v](s, a))

where ϕ(·) is a concave regularization function used to pre-
vent unbounded reward functions. In our experiments we
choose a χ2regularizer of the form ϕ(x) = − 1

2x
2 + x,

which is also a commonly used regularizer in prior works.

It is important to note that Qtot and Vtot must satisfy the
Bellman operator, meaning that Vtot needs to be the log-sum-
exp of Qtot. To achieve this, we train Mw[v(s)] (or Vtot) to
approximate the log-sum-exp formulation:

Vtot(s) = β log
(∑

a∈A
µtot(a|s)eQtot(s,a)/β

)
,

However, this can become computationally impractical in
certain scenarios, such as environments with continuous
action spaces. To address this, Extreme Q-Learning (XQL)
(Garg et al., 2023) provides an efficient method to update
the V -function. Specifically, we define the extreme-V loss
objective under our mixing framework as follows:

J (v) = E(s,a)∼µtot

[
e

Mw [q(s,a)]−Mw [v(s)]
β

]
− E(s,a)∼µtot

[Mw[q(s,a)]−Mw[v(s)]

β

]
− 1.

Minimizing J (v) over v ensures that Mw[v(s)] converges
to the log-sum-exp value (Garg et al., 2023):

Mw[v(s)] = β log
(∑

a∈A
µtot(a|s)eMw[q(s,a)]/β

)
.

Following this approach, training the local functions q and
v can proceed through the following alternating updates:

• Update q, w: Maximize L(q,v, w), the likelihood
objective for preference learning.

• Update v: Minimize the extreme-V loss J (v) to en-
force consistency with the log-sum-exp equation.
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The following proposition shows that the learning objective
functions under our mixing architectures possess appealing
properties, which contribute to stable and robust training.

Proposition 4.1 (Convexity). The loss L(q,v, w) is con-
cave in q and w (the parameters of the mixing networks),
while the extreme-V loss function J (v) is convex in v.

Given that the objective is to maximize the likelihood func-
tion L(q,v, w) and minimize the extreme-V function J (v),
the concavity of L in q and w, and the convexity of J in v,
guarantees unique convergence (theoretically) within the q
and v spaces, ensures a stable training process in practice.

It is important to note that convexity is guaranteed only
under single-layer mixing structures, where Mw[·] is linear
in its inputs. This result is formalized below:

Proposition 4.2 (Non-convexity under two-layer mixing net-
works). If the mixing networks Mw[q] and Mw[v] are two-
layer (or multi-layer) feed-forward networks, the preference-
based loss function L(q,v, w) is no longer concave in q or
w, and the extreme-V loss function J (v) is not convex in v.

While two-layer feed-forward mixing networks have been
employed in several prior online MARL works, single-layer
mixing networks (i.e., linear combinations) have been fa-
vored in recent offline MARL works (Wang et al., 2022;
Bui et al., 2025). It was demonstrated that using a two-
layer network can lead to over-fitting issues, resulting in
worse performance compared to their single-layer counter-
parts (Bui et al., 2025). The results in Prop. 4.2 further
suggest that, in offline preference-based learning, a single-
layer setup is more efficient and better suited to achieve
robust and stable performance.

4.3. Local Policy Extraction

Simple local-value-based extraction approach. Glob-
ally optimal policies can be extracted from Qtot and Vtot
based on (1). For decentralized execution, local policies can
be derived from local values similarly (Wang et al., 2022):

π∗
i (ai|si) = µi(ai|si) exp

(wq
i qi(si, ai)− wv

i vi(si)

β

)
, (2)

where wq
i and wv

i are the weights of the mixing function
Mw[q] and Mw[v], and µi(·) are the local behavior poli-
cies. Assuming the behavior policy is decomposable into
local components, i.e., µtot(a|s) =

∏
i µi(ai|si), this pol-

icy extraction method guarantees global-local consistency
(GLC) — ensuring alignment between the optimal global
and local policies — such that π∗

tot(a|s) =
∏

i π
∗
i (ai|si).

This approach has been used in prior work but has notable
limitations. First, GLC holds only with a linear mixing struc-
ture; a two-layer feed-forward network breaks this property.
Second, policies recovered from (2) may not be feasible, as

the sum of π∗
i (ai|si) over all ai might not equal one. To

ensure feasibility, normalization is required, but it disrupts
the GLC principle, breaking consistency between global and
local policies. Also, the local functions vi and qi may not
satisfy the local Bellman equality (i.e., vi is not guaranteed
to be the log-sum-exp of qi), causing the soft policy formula
to misalign with MaxEnt RL principles at the local level.

Our weighted behavior cloning approach. We propose
an alternative approach that offers several advantages over
the previous method. Our policy extraction is based on BC,
a technique commonly used in offline RL algorithms (Garg
et al., 2023; Bui et al., 2025). This approach preserves the
GLC property and ensures that the extracted local policies
are valid, even with nonlinear mixing structures.

In general, the global policy can be extracted by solving the
following weighted behavior cloning (WBC) problem:

max
πtot∈Πtot

{
Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log πtot(a|s)
]}

, (3)

where Πtot represents the feasible set of global poli-
cies. Here, we assume that Πtot contains decompos-
able global policies, i.e., Πtot = {πtot | ∃πi,∀i ∈
N , such that πtot(a|s) =

∏
i∈N πi(ai|si)}. In other words,

Πtot consists of global policies that can be expressed as a
product of local policies. This decomposability is highly use-
ful for decentralized learning and has been widely adopted
in multi-agent reinforcement learning (MARL) (Wang et al.,
2022; Bui et al., 2024; Zhang et al., 2021).

While solving (3) can explicitly recover an optimal global
policy and is practical via sampling (s,a) from the data,
it does not support the learning of local policies, which is
essential under the CTDE principle. To address this, we
propose solving the following local WBC problem:

max
πi

{
Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log πi(ai|si)
]}

(4)

The local WBC approach has several key advantages. First,
the weighting term e

Qtot(s,a)−Vtot(s)
β directly influences local

policy optimization and is computed from global observa-
tions and actions. This ensures local policies are optimized
with global information, maintaining consistency in cooper-
ative multi-agent systems. Furthermore, as shown in Theo-
rem 4.3, optimizing local policies via WBC always results in
valid policies that align with the global WBC objective, pre-
serving global-local consistency (GLC). Importantly, these
benefits hold regardless of the mixing structure (e.g., 1-layer
or 2-layer networks), offering significant advantages over
the local-value-extraction method.

Theorem 4.3 (Global-Local Consistency (GLC)). Let π∗
i be

the optimal solution to the local WBC problem in (4). Then,
the global policy π∗

tot, defined as π∗
tot(s,a) =

∏
i π

∗
i (ai|si),

is also optimal for the global WBC problem in (3).
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We next formally express the relationship between recovered
local policies and value functions. We assume that the behav-
ior policy is decomposable, i.e., µtot(a|a) =

∏
i µi(ai|si),

and the mixing structures are defined as Mw[q(s, a)] =∑
i w

q
i qi(si, ai) + bq and Mw[v(s)] =

∑
i w

v
i vi(si) + bv.

This relationship is formalized in the following theorem:
Theorem 4.4. Let π∗

i be optimal to the local WBC, then the
following equality holds for all si ∈ Si, ai ∈ Ai:

π∗
i (ai|si) =

η(si)

∆(si)
µi(ai|si)e

w
q
i
qi(si,ai)−w

v
i vi(si)

β (5)

where η(si)/∆(si) are correction terms.2

Theorem 4.4 highlights key aspects of our approach. First,
as seen in (2), directly computing local policies from the lo-
cal value functions qi and vi alone may yield invalid policies
that don’t form proper probability distributions. The term
η(si)/∆(si) in (9) acts as a correction factor, normalizing
the policies to ensure

∑
ai
π∗
i (ai|si) = 1. Furthermore, the

proof of Theorem 4.4 shows that both η(si)/∆(si) and the
local policy π∗

i (ai|si) depend on the value functions of other
agents. This dependency supports the principle of credit
assignment in cooperative MARL, ensuring each agent’s
policy accounts for the actions and rewards of others.

Additionally, while Vtot is the log-sum-exp of Qtot, this
might not be the case for the local vi and qi functions. The
following proposition demonstrates that vi can indeed be
expressed as a log-sum-exp of qi, along with an additional
term that depends on the local functions of other agents.
Proposition 4.5. Each local value vi can be expressed as a
(modified) log-sum-exp of the local Q-function qi:

vi(si) =
β

wv
i

log
∑

ai∼µi(·|si)

e
w
q
i
β qi(si,ai)+

β

wv
i

log
( η(si)
∆(si)

)

Prop. 4.5 indicates that vi(si) is also determined by a log-
sum-exp of qi(si, ai) with an additional term log

( η(si)
∆(si)

)
.

5. Practical Algorithm
In the context of POMDPs, we do not have direct access
to the global states. To better reflect the practical aspects,
we change the notation of global states used previously to
global observations. For example, the local value function
is now defined as a function of local observations, vi(oi).

We construct a local Q-value network qi(oi, ai|ψq) and a
local value network vi(oi|ψv), where ψq and ψv are learn-
able parameters. The global Q and V functions are then
aggregated using two mixing networks with a shared set of
learnable parameters θ, formulated as follows:

Vtot(o) = Mθ[v(o|ψv)]; Qtot(o, a) = Mθ[q(o, a|ψq)],

2Detailed formulations of these terms are in Appendix A.4.

Algorithm 1 O-MAPL
1: Input: Parameters θ, ψq, ψv, ωi. Offline data P .
2: Output: Local optimized polices πi.
3: for a certain number of training steps do
4: Update ψq and θ to maximize L(ψq, ψv, θ)
5: Update ψv to minimize the Extreme-V J(ψv)
6: Update ωi to maximize the local WBC loss Ψ(ωi)
7: end for
8: Return πi(ai|oi;ωi), i = 1, ..., n

where Mθ[·] is a linear combination (or a one-layer mixing
network) of its inputs with non-negative weights:

Mθ[v(o|ψv)] = v(o|ψv)
⊤W o

θ + bo
θ (6)

Mθ[q(o, a|ψq)] = q(o, a|ψq)
⊤W o,a

θ + bo,a
θ , (7)

Here, W o
θ , b

o
θ,W

o,a
θ , bo,a

θ are the weights of the mixing net-
works, modeled as hyper-networks that take the global ob-
servation o, joint action a, and the learnable parameters θ as
inputs. In this setup, we employ the same mixing network
Mθ to combine both the local V and Q functions, ensuring
consistency and scalability in the aggregation process.

The practical training objective function for the local Q
functions can be calculated as:

L(ψq, ψv, θ) =
∑

(σ1,σ2)∈P

∑
(o,a,o′)∈σ1

R(o, a, o′)

− log
(
e
∑
σ1

R(o,a,o′)+ e
∑
σ2

R(o,a,o′))+∑
P
ϕ(R(o, a, o′))

where R(o, a) = Mθ[q(o, a|ψq)]− γMθ[v(o′|ψv)]. More-
over, the extreme-V can be practically estimated as:

J (ψv) = E(o,a)∼P

[
e

Mθ [q(o,a|ψq)]−Mθ [v(o|ψv)]

β

]
− E(o,a)∼P

[Mθ[q(o, a|ψq)]−Mθ[v(o|ψv)]

β

]
− 1

For the policy extraction, let πi(ai|oi;ωi) be a local policy
network for each agent i, where ω are learnable parameters.
We update the local policies using the following local WBC:

Ψ(ωi)=
∑

o,a∼P

[
e

Mθ [q(o,a|ψq)]−Mθ [v(o|ψv)]

β log πi(oi|si;ωi)
]

The outline of our O-MAPL is shown in Algorithm 1.

6. Experiments
We evaluate the performance of our O-MAPL in dif-
ferent complex MARL environments, including: multi-
agent StarCraft II (i.e., SMACv1 (Samvelyan et al.,
2019), SMACv2 (Ellis et al., 2022)) and multi-agent Mu-
joco (de Witt et al., 2020a) benchmarks. Detailed descrip-
tions of these benchmarks are in the appendix.
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Tasks
Rule-based LLM-based

BC IIPL IPL-VDN SL-MARL O-MAPL BC IIPL IPL-VDN SL-MARL O-MAPL
(ours) (ours)

2c vs 64zg 59.6±25.0 60.4±24.7 71.1±22.0 63.5±24.0 74.4±24.7 65.6±24.6 60.2±25.9 77.0±21.3 65.2±21.2 79.5±19.6
5m vs 6m 16.8±18.0 14.3±17.0 16.8±18.0 16.0±18.9 19.3±19.6 18.2±18.4 15.0±17.5 18.0±19.2 17.4±19.4 20.7±20.5
6h vs 8z 0.6±3.8 0.2±2.2 2.5±7.6 1.6±6.8 4.5±11.0 0.8±4.3 0.4±3.1 3.5±9.2 3.7±8.9 6.1±11.2
corridor 89.3±15.5 89.8±15.4 93.9±11.6 49.0±22.8 93.2±13.5 89.6±15.5 90.6±13.6 94.5±12.5 57.6±22.2 94.5±11.2

Pr
ot

os
s

5 vs 5 38.1±24.2 31.4±25.2 54.5±25.9 49.0±28.2 54.3±24.2 48.4±25.9 41.0±24.2 58.8±24.5 54.3±24.0 61.5±24.8
10 vs 10 38.7±24.2 28.5±21.8 47.9±27.2 40.6±23.2 53.7±23.6 46.3±24.0 41.0±24.4 57.0±23.4 52.5±22.1 61.1±24.8
10 vs 11 12.7±17.4 12.5±16.5 22.3±21.0 18.6±18.8 30.7±19.8 22.7±22.2 15.6±15.9 27.3±24.7 20.9±20.9 34.4±24.8
20 vs 20 39.8±24.9 35.4±21.5 57.0±24.8 38.7±23.1 59.8±23.2 48.4±25.3 43.6±23.6 61.5±22.1 51.8±25.0 64.5±23.5
20 vs 23 15.2±18.5 9.0±14.2 22.7±21.7 11.1±14.6 23.4±19.2 18.0±17.4 9.4±14.7 23.4±21.4 12.1±15.9 26.4±20.8

Te
rr

an

5 vs 5 27.5±24.0 26.2±19.5 36.3±24.8 34.2±23.4 39.5±24.7 31.1±22.9 34.8±23.0 41.0±23.7 36.7±24.8 43.0±23.0
10 vs 10 23.8±20.5 21.1±20.8 25.8±19.7 23.2±19.6 28.3±20.6 25.8±20.9 24.2±21.6 32.0±24.4 28.9±24.7 33.2±23.4
10 vs 11 10.2±15.4 7.2±13.3 18.2±19.4 11.3±15.3 18.2±18.7 11.7±17.4 10.4±15.2 17.8±17.7 16.4±17.8 21.3±20.3
20 vs 20 13.1±17.1 11.9±18.2 21.5±20.4 8.8±13.5 23.0±22.4 14.5±17.3 13.7±17.4 21.1±20.4 17.2±16.8 24.4±23.1
20 vs 23 3.9±10.6 4.1±10.3 5.7±11.4 2.3±7.3 7.2±12.9 6.4±12.2 3.5±9.2 7.2±12.6 4.7±10.2 8.6±14.8

Z
er

g

5 vs 5 23.4±21.1 23.6±21.0 31.1±20.4 33.0±22.5 35.2±25.7 31.1±22.3 26.0±22.2 34.8±23.6 35.0±23.2 40.8±21.6
10 vs 10 25.8±21.6 25.8±22.5 32.2±24.6 30.7±24.0 34.8±22.1 31.4±21.9 31.1±24.8 35.5±23.9 33.0±25.0 37.9±24.0
10 vs 11 19.3±20.1 12.9±17.4 22.5±20.5 19.3±18.0 23.4±21.1 20.1±18.2 18.6±20.6 22.7±18.3 23.0±21.1 26.0±23.0
20 vs 20 19.9±21.0 11.1±16.2 22.5±21.4 5.7±10.9 24.8±20.8 22.9±21.7 16.0±17.3 27.3±22.0 16.4±18.1 31.1±24.6
20 vs 23 13.1±17.7 7.8±12.8 12.5±15.3 7.6±13.1 18.8±18.5 15.8±18.5 10.4±15.2 16.4±19.9 13.7±17.4 16.0±19.4

Table 1: Win rate comparison (in percentage) for SMACv1 (first 4 tasks) & SMACv2.

Methods Hopper-v2 Ant-v2 HalfCheetah-v2

BC 808.1 ± 39.1 1303.9 ± 122.0 4119.9 ± 350.7
IIPL 782.0 ± 81.5 1312.0 ± 155.6 4028.8 ± 430.0

IPL-VDN 846.6 ± 65.4 1376.1 ± 142.0 4287.5 ± 273.1
SL-MARL 890.0 ± 88.7 1334.1 ± 150.9 4233.9 ± 303.1
O-MAPL 1114.4 ± 154.1 1406.4 ± 163.7 4382.0 ± 189.7

Table 2: Return comparisons on MaMujoco tasks
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Figure 2: Evaluation curves (in returns) on MaMujoco tasks

Dataset. There are no human-labeled preference datasets
for MARL, so we create datasets for each task using two
methods: (i) Rule-based method – followed by IPL (Hejna
& Sadigh, 2024), we sample trajectory pairs from offline
datasets of varying quality (e.g., poor, medium, expert) and
assign binary preference labels based on dataset quality; and
(ii) LLM-based method – followed by DPM (Kang et al.,
2024), we sample pairs from offline datasets and use GPT-
4o to annotate labels with prompts constructed from the
global state of each trajectory (details in the appendix).

Specifically, we used offline datasets of varying quality from
OMIGA (Wang et al., 2022) and ComaDICE (Bui et al.,
2025), sampling one thousand pairs for MaMujoco tasks and
two thousand pairs for SMAC tasks. For MaMujoco, we se-
lected “medium-replay”, “medium”, and “expert” instances,
while for SMACv1, we chose “poor”, “medium”, and “good”
instances. Note that ComaDICE only provides a “medium”
dataset for SMACv2, therefore, we generated new “poor”
and “expert” datasets for SMACv2. Additionally, LLM-
based prompts require detailed information from trajectory
states (e.g., SMAC: remaining health points, shields, relative
positions, cooldown time, agent types, action meanings),
which we cannot extract from MaMujoco states. Therefore,
we have no LLM-based dataset for MaMujoco tasks.

Baselines. We consider the following baselines for our
evaluations: (i) Behavioral Cloning (BC) trains a policy by
directly imitating all prefered trajectories in the dataset P;
(ii) Independent IPL (IIPL) is a straightforward extension
of the IPL approach (Hejna & Sadigh, 2024) to multi-agent
learning, where the single-agent IPL algorithm is applied
independently to each agent; (iii) Supervised Learning
MARL (SL-MARL) is a two-phase approach where we
first learn the reward function and then use it to train a policy
with OMIGA (Wang et al., 2022), a state-of-the-art MARL
algorithm, serving as the offline counterpart of the two-
phase approach in (Kang et al., 2024); and (iv) IPL-VDN,
which is similar to our algorithm but without the mixing
networks, instead employing the standard VDN approach
(Sunehag et al., 2017) to aggregate local Q and V functions
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Figure 1: Evaluation curves (in win rates) of our O-MAPL for SMACv2 with rule-based preference data.

via a simple linear combination with unit weights.

Results. Overall, our experimental results demonstrate the
effectiveness of O-MAPL in both continuous and discrete
multi-agent reinforcement learning environments. In the
following, we highlight some of our main results. Due to
limited space, all remaining results are in our appendix.

Table 1 and 2 provide a detailed comparison of win rates for
SMACv1 and SMACv2 tasks and of returns for MaMujoco.
O-MAPL achieves the highest win rates/returns across most
tasks, outperforming all baseline methods. For example,
in the 2c vs 64zg task, O-MAPL achieves a win rate of
74.4%, significantly surpassing other methods. In corridor,
O-MAPL achieves a win rate of 93.2%, showcasing its
ability to handle structured navigation tasks effectively.

Furthermore, Table 1 demonstrates that our algorithm, O-
MAPL, achieves higher win rates in most SMAC tasks when
using LLM-generated data than when using the ruled-based
generated data. This finding highlights the potential of
leveraging LLMs for rich and cost-effective data genera-
tion, substantially improving environment understanding
and policy learning in complex multi-agent tasks.

Finally, we present evaluation curves for both SMACv2 (Fig-
ure 1) and MaMujoco tasks (Figure 2). The results show that
O-MAPL consistently and significantly outperforms other
baselines throughout the training process. Our algorithm
converges faster, achieving high win rates and returns at
earlier training stages across most tasks. This demonstrates
the effectiveness of our multi-agent end-to-end preference
learning approach, supported by a systematic and carefully
designed value decomposition.

Additional details on dataset generation, hype-parameters,

and detailed returns and win rates for all tasks can be found
in the appendix.

7. Conclusion
Summary. We explored preference-based learning in
multi-agent environments, proposing a novel end-to-end
method based on the MaxEnt RL framework that elimi-
nates the need for explicit reward modeling. To facilitate
efficient training, we developed a new value factorization ap-
proach that learns the global preference-based loss function
by updating local value functions. Key properties, includ-
ing global-local consistency and convexity, were thoroughly
examined. Extensive experiments on both rule-based and
LLM-based datasets show that our algorithm outperforms
existing methods across multiple benchmark tasks in the
MAMuJoCo and SMAC environments.

Limitations and Future Work. The strong performance
of LLM-based preference data suggests that leveraging
LLMs, coupled with a systematic value factorization ap-
proach, can be highly effective for training policies in com-
plex multi-agent environments. This opens promising av-
enues for using LLMs to enhance both environment under-
standing and policy learning. However, our work has some
limitations that need further exploration. For example, we
primarily focus on cooperative learning, while more chal-
lenging mixed cooperative-competitive environments would
require different methodologies. Additionally, our method
still depends on a large number of preference-based demon-
strations for optimal policy learning. Although LLMs can
quickly generate extensive demonstrations, improving sam-
ple efficiency remains a key challenge, particularly when
data must be collected from real human feedback.
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W., and Whiteson, S. Deep multi-agent reinforcement
learning for decentralized continuous cooperative control.
arXiv preprint arXiv:2003.06709, 2020b. URL https:
//arxiv.org/abs/2003.06709.

Ellis, B., Moalla, S., Samvelyan, M., Sun, M., Mahajan,
A., Foerster, J. N., and Whiteson, S. Smacv2: An im-
proved benchmark for cooperative multi-agent reinforce-
ment learning. arXiv preprint arXiv:2212.07489, 2022.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248, 2017.
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A. Missing Proofs
We provide proofs that are omitted in the main paper.

A.1. Proof of Proposition 4.1

Proposition 4.1: The preference-based loss function L(q,v, w) is concave in q and w (the parameters of the mixing
networks), while the extreme-V loss function J (v) is convex in v.

Proof. We first recall that the preference-based loss function has the following form:

L(q, v, w) =
∑

(σ1,σ2)∈P

∑
(s,a)∈σ1

Rw[q, v](s, a)− log
(
e
∑
σ1

Rw[q,v](s,a) + e
∑
σ2

Rw[q,v](s,a)
)
+ ϕ(Rw[q, v](s, a)).

We observe that under the assumption that the mixing networks are linear in their inputs, the function Rw[q, v](s, a) is linear
in q(s, a) and θ. This implies that for any α ∈ [0, 1] and for any two vectors of local Q values q1,q2, we have:

αRw[q1, v](s, a) + (1− α)Rw[q2, v](s, a) = Rw[αq1 + (1− α)q2, v](s, a).

Now consider the term ϕ(Rw[q, v](s, a)). Since ϕ is concave, we have the following inequality for any α ∈ (0, 1) and two
vectors q1,q2:

αϕ(Rw[q1, v](s, a)) + (1− α)ϕ(Rw[q2, v](s, a)) ≤ ϕ
(
αRw[q1, v](s, a) + (1− α)Rw[q2, v](s, a)

)
≤ ϕ

(
Rw[αq1 + (1− α)q2, v](s, a)

)
, (8)

which implies the concavity of ϕ(Rw[q, v](s, a)) in q.

For the term log
(
e
∑
σ1

Rw[q,v](s,a) + e
∑
σ2

Rw[q,v](s,a)
)

, we note the following. First:

α
∑
σ

Rw[q1, v](s, a) + (1− α)
∑
σ

Rw[q2, v](s, a) =
∑
σ

Rw[αq1 + (1− α)q2, v](s, a),

for any trajectory σ. Moreover, since the log-sum-exp function log(et1 + et2) is convex in (t1, t2), we also have the
following inequalities for any α ∈ (0, 1) and two vectors q1,q2:

α log
(
e
∑
σ1

Rw[q1,v](s,a) + e
∑
σ2

Rw[q1,v](s,a)
)
+ (1− α) log

(
e
∑
σ1

Rw[q2,v](s,a) + e
∑
σ2

Rw[q2,v](s,a)
)

≤ log
(
eα

∑
σ1

Rw[q1,v](s,a)+(1−α)
∑
σ1

Rw[q2,v](s,a) + eα
∑
σ2

Rw[q1,v](s,a)+(1−α)
∑
σ2

Rw[q2,v](s,a)
)

= log
(
eRw[αq1+(1−α)q2,v](s,a) + eRw[αq1+(1−α)q2,v](s,a)

)
,

which implies that log
(
e
∑
σ1

Rw[q,v](s,a) + e
∑
σ2

Rw[q,v](s,a)
)

is convex in q.

Putting all the above together, we see that L(q, v, w) is concave in q.

Finally, since the mixing networks are linear in q and w, a similar argument shows that L(q, v, w) is also concave in w.

For the convexity of the extreme-V function J (v), we rewrite the function as:

J (v) = E(s,a)∼µtot

[
e

Mw [q(s,a)]−Mw [v(s)]
β

]
− E(s,a)∼µtot

[
Mw[q(s,a)]−Mw[v(s)]

β

]
− 1.

Since the mixing network Mw[v] is linear in v, we can see that the term

E(s,a)∼µtot

[
Mw[q(s,a)]−Mw[v(s)]

β

]
is also linear in v.

Moreover, the exponential function ex is always convex in x. Thus, in a similar way as shown above, we can prove that

e
Mw [q(s,a)]−Mw [v(s)]

β is convex in v. All these observations imply that J (v) is convex in v, as desired.
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A.2. Proof of Proposition 4.2

Proposition 4.1: If the mixing networks Mw[q] and Mw[v] are two-layer (or multi-layer) feed-forward networks, the
preference-based loss function L(q,v, w) is no longer concave in q or w, and the extreme-V loss function J (v) is not
convex in v.

Proof. Following standard settings in value factorization, a 2-layer mixing network is typically constructed with non-
negative weights and convex activations (e.g., ReLU). Under this setting, according to (Bui et al., 2024), Mw[q] and Mw[v]
are convex in q and v, respectively.

From this observation, we first recall the preference-based loss function:

L(q,v, w) =
∑

(σ1,σ2)∈P

∑
(s,a)∈σ1

Rw[q,v](s,a)− log
(
e
∑
σ1

Rw[q,v](s,a) + e
∑
σ2

Rw[q,v](s,a)
)
+ ϕ(Rw[q,v](s,a)).

It can be seen that the first term of L(q,v, w) involves Rw[q,v](s,a), which can be written as:

Rw[q,v](s,a) = Mw[q(s,a)]− γEs′ [Mw[v(s
′)]] .

Since Mw[q(s,a)] is convex in q, the first term of L(q,v, w) is convex in q, which generally implies that this function is
not concave in q.

In a similar way, since the the mixing function Mw[q(s,a)] is also convex in w, implying that L(q,v, w) is also not
concave in w.

To prove the non-convexity of the Extreme-V function J(v), we recall that:

J (v) = E(s,a)∼µtot

[
e

Mw [q(s,a)]−Mw [v(s)]
β

]
− E(s,a)∼µtot

[
Mw[q(s,a)]−Mw[v(s)]

β

]
− 1.

We will find a counterexample to show that J(v) is not convex under a 2-layer mixing network. For simplicity, since
Mw[q] is fixed in J(v), we select Mw[q](s,a) = 0. We then create a simple example where there is only one agent (i.e.,
v(s) = {v1(s1)}), and the mixing network Mw[v] takes a one-dimensional input with a ReLU activation (a commonly
used activation function in the context). Specifically, we can write Mw[v] as:

Mw[v(s)] =

{
v1(s1) if v1(s1) > 0,

ev1(s1) − 1 if v1(s1) ≤ 0.

Then, for a given pair (s,a), the corresponding term in J(v) associated with (s,a) can be written as:

e1−ev1 + (ev1 − 1).

Here, for simplicity, we select β = 1, omit the notation s1 in the function v1(s1), and only consider the case where v1 ≤ 0.
We see that the function f(t) = e1−et + (et − 1) is not convex for t ≤ 0 (see the plot of this function in Figure 3).

A.3. Proof of Theorem 4.3

Theorem 4.3: Let π∗
i be the optimal solution to the local WBC problem in (4). Then, the global policy π∗

tot, defined as
π∗

tot(s,a) =
∏

i π
∗
i (ai|si), is also optimal for the global WBC problem in (3). In other words, the local WBC approach

yields local policies that are consistent with the desired globally optimal policy.

Proof. For notational simplicity, let G(πtot) be the objective function of the global WBC problem:

G(πtot) = Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log πtot(a|s)
]
.
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Figure 3: Plot of the function f(t) = e1−et + et − 1.

Since we are seeking a decomposable policy πtot(a|s) =
∏

i∈N πi(ai|si), we have, for any πtot ∈ Πtot such that πtot =
∏

i πi:

G(πtot) = Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log
∏
i

πi(ai|si)

]
=
∑
i∈N

{
Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log πi(ai|si)
]}

(a)

≤
∑
i∈N

{
Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log π∗
i (ai|si)

]}
= Es,a∼µtot

[
e
Qtot(s,a)−Vtot(s)

β log π∗
tot(a|s)

]
,

where (a) holds because each π∗
i is optimal for the corresponding local WBC problem. Thus, we have G(πtot) ≤ G(π∗

tot)
for any πtot ∈ Πtot, implying that π∗

tot is also optimal for the global WBC. This establishes the GLC, as desired.

A.4. Proof of Theorem 4.4

Theorem 4.4: Let π∗
i be optimal to the local WBC, then the following equality holds for all si ∈ Si, ai ∈ Ai:

π∗
i (ai|si) =

η(si)

∆(si)
µi(ai|si)e

w
q
i
qi(si,ai)−w

v
i vi(si)

β (9)

where wq
i and wv

i are parameters of the mixing networks Mw[q], Mw[v], respectively. In addition, η(si)/∆(si) is a
correction term defined as follows:

η(si) =
∑

s′,a′|s′i=si

e
bq−bv
β

∏
j∈N ,j ̸=i

µ(a′j |s′j)e
w
q
j
qj(s

′
j ,a

′
j)−w

v
j vj(s

′
j)

β

∆(si) =
∑

ai∈Ai

η(si)µi(ai|si)e
w
q
i
qi(si,ai)−w

v
i vi(si)

β . (10)

Proof. We first note that each mixing network Mw[q] or Mw[v] can be expressed as a linear function of its inputs:

Qtot(s,a) = Mw[q](s,a) =
∑
i∈N

wq
i qi(si, ai) + bq,

Vtot(s) = Mw[v](s) =
∑
i∈N

wv
i vi(si) + bv.

14
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Thus,

e
Qtot(s,a)−Vtot(s)

β = e
bq−bv
β

∏
i∈N

e
w
q
i
qi(si,ai)−w

v
i vi(si)

β .

Now, let us consider the objective function of the local WBC and write:

g(πi) =
∑

s∈S,a∈A
µtot(a|s)e

Qtot(s,a)−Vtot(s)
β log πi(ai|si)

=
∑

s∈S,a∈A
e
bq−bv
β

∏
i∈N

µ(ai|si)e
w
q
i
qi(si,ai)−w

v
i vi(si)

β log πi(ai|si).

Thus, for each agent i ∈ N and local state si ∈ Si, we extract all the components of g(πi) that involve πi(ai|si) as:

gsi(πi) =
∑

s′,a′|s′i=si

e
bq−bv
β

∏
j∈N ,j ̸=i

µ(a′j |s′j)e
w
q
j
qj(s

′
j ,a

′
j)−w

v
j vj(s

′
j)

β

×
(
µi(a

′
i|si)e

w
q
i
qi(si,a

′
i)−w

v
i vi(si)

β log πi(a
′
i|si)

)
=
∑

a′
i∈Ai

η(si)

(
µi(a

′
i|si)e

w
q
i
qi(si,a

′
i)−w

v
i vi(si)

β log πi(a
′
i|si)

)
,

where

η(si) =
∑

s′,a′|s′i=si

e
bq−bv
β

∏
j∈N ,j ̸=i

µ(a′j |s′j)e
w
q
j
qj(s

′
j ,a

′
j)−w

v
j vj(s

′
j)

β ,

which is independent of any local actions a′i.

The local WBC problem thus becomes the problem of finding local policies πi(·|si) that maximize gsi(πi) for any local
state si. For notational simplicity, let

δ(a′i, si) = η(si)µi(a
′
i|si)e

w
q
i
qi(si,a

′
i)−w

v
i vi(si)

β .

We then write the local objective function gsi(πi) as:

gsi(πi) =
∑

ai∈Ai

δ(ai, si) log πi(ai|si).

To solve the problem maxπi g
si(πi), let us consider a general version (with simplified notation):

max
t

{
g(t) =

∑
i∈N

αi log ti

∣∣∣ t ∈ [0, 1]n,
∑
i

ti = 1

}
,

where αi ≥ 0 and g(t) : [0, 1]n → R. By considering the Lagrangian dual of this problem, we can see that an optimal
solution t∗ must satisfy the following KKT conditions:

t∗ ∈ (0, 1)n,∑
i t

∗
i = 1,

αi
t∗i

=
αj
t∗j
, ∀i, j ∈ N .

These conditions directly imply that:
t∗i =

αi∑
j∈N αj

.
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We return to the maximization of gsi(πi), which yields an optimal solution:

π∗
i (ai|si) =

δ(ai, si)∑
a′
i∈Ai δ(a

′
i, si)

, ∀ai ∈ Ai.

Putting everything together, we see that the following solution π∗
i is optimal for the local WBC:

πi(ai|si) =
η(si)µi(ai|si)e

w
q
i
qi(si,ai)−w

v
i vi(si)

β

∆(si)
,

where

∆(si) =
∑

ai∈Ai

η(si)µi(ai|si)e
w
q
i
qi(si,ai)−w

v
i vi(si)

β .

A.5. Proof of Proposition 4.5

Proposition 4.5: Each local value vi can be expressed as a (modified) log-sum-exp of the local Q-function qi:

vi(si) =
β

wv
i

log
∑

ai∼µi(·|si)

e
w
q
i
β qi(si,ai) +

β

wv
i

log

(
η(si)

∆(si)

)
. (11)

Proof. Since π∗
i is a valid probability distribution, we have

∑
ai
π∗
i (ai|si) = 1. Substituting the closed-form formula of π∗

i

stated in Theorem 4.4, we have: ∑
ai

η(si)

∆(si)
µi(ai|si)e

w
q
i
qi(si,ai)−w

v
i vi(si)

β = 1.

Taking ew
v
i vi(si)/β outside the summation, we get:∑

ai

η(si)

∆(si)
µi(ai|si)e

w
q
i
qi(si,ai)

β = ew
v
i vi(si)/β .

This directly leads to the log-sum-exp formula:

vi(si) =
β

wv
i

log

(∑
ai

η(si)

∆(si)
µi(ai|si)e

w
q
i
qi(si,ai)

β

)
=

β

wv
i

log
∑

ai∼µi(·|si)

e
w
q
i
β qi(si,ai) +

β

wv
i

log

(
η(si)

∆(si)

)
.,

as desired.

B. Additional Details
B.1. Offline Preference Multi-Agent Datasets

In this section, we provide a detailed description of how we constructed the dataset for preference learning tasks. Our
datasets span both discrete and continuous domains, covering the environments SMACv1, SMACv2, and MaMujoco. The
datasets are designed to include varying qualities of data, sampled trajectory pairs, and their preference labels to facilitate
preference learning. To create datasets suitable for preference learning, we sampled trajectory pairs from varying quality
offline datasets and generated preference labels. The labeling process was performed using two approaches:

• Rule-based Methods: Following IPL (Hejna & Sadigh, 2024), we sampled trajectory pairs and assigned binary
preference labels based on dataset quality (e.g., poor, medium, expert).

• LLM-based Methods: Following DPM (Kang et al., 2024), we sampled trajectory pairs and annotated them using
preference policies from large language models (e.g., Llama 3, GPT-4o).
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For MaMujoco tasks, 1k trajectory pairs were sampled, while for SMAC tasks, 2k trajectory pairs were sampled. Table 3
summarizes the dataset details, including state dimensions, action dimensions, sample sizes, and average returns.

The datasets constructed for this study span a diverse range of environments and tasks, ensuring comprehensive evaluation
of preference learning algorithms. The inclusion of varying quality levels and both rule-based and LLM-based labeling
methods provides a robust foundation for preference-based multi-agent reinforcement learning research.

Tasks State dim Obs. dim Act. dim Samples Max len. Avg. returns File size

M
a-

M
uj

oc
o Hopper-v2 42 14 1 1000 1000 1354.0±1121.6 255 MB

Ant-v2 226 113 4 1000 1000 1514.9±435.8 1003 MB
HalfCheetah-v2 138 23 1 1000 1000 1640.5±1175.7 1802 MB

SM
A

C
v1 2c vs 64zg 1350 478 70 2000 280 13.99±4.75 401 MB

5m vs 6m 780 124 12 2000 36 13.26±5.02 72 MB
6h vs 8z 1278 172 14 2000 48 13.01±3.95 182 MB
corridor 2610 346 30 2000 394 12.69±6.30 979 MB

SM
A

C
v2

protoss 5 vs 5 130 92 11 2000 142 16.07±4.94 56 MB
protoss 10 vs 10 310 182 16 2000 178 15.72±4.28 209 MB
protoss 10 vs 11 327 191 17 2000 146 15.45±4.85 218 MB
protoss 20 vs 20 820 362 26 2000 200 15.63±4.76 726 MB
protoss 20 vs 23 901 389 29 2000 200 14.44±4.73 799 MB

terran 5 vs 5 120 82 11 2000 200 16.20±6.37 44 MB
terran 10 vs 10 290 162 16 2000 200 14.86±5.78 151 MB
terran 10 vs 11 306 170 17 2000 200 13.52±5.44 165 MB
terran 20 vs 20 780 322 26 2000 200 13.52±5.76 530 MB
terran 20 vs 23 858 346 29 2000 200 10.67±5.11 563 MB

zerg 5 vs 5 120 82 11 2000 57 14.79±7.70 31 MB
zerg 10 vs 10 290 162 16 2000 70 14.61±5.63 99 MB
zerg 10 vs 11 306 170 17 2000 104 13.67±5.71 101 MB
zerg 20 vs 20 780 322 26 2000 134 12.14±3.95 303 MB
zerg 20 vs 23 858 346 29 2000 99 10.88±4.36 313 MB

Table 3: Datasets

B.1.1. SMAC DATASET

SMACv1 (Samvelyan et al., 2019) is a benchmark environment for cooperative multi-agent reinforcement learning (MARL),
built on Blizzard’s StarCraft II RTS game. It leverages the StarCraft II Machine Learning API and DeepMind’s PySC2 to
enable autonomous agent interaction with StarCraft II. Unlike PySC2, SMACv1 focuses on decentralized micromanagement
scenarios, where each unit is controlled by an individual RL agent.

We evaluate on the following tasks: 2c vs 64zg, 5m vs 6m, 6h vs 8z, and corridor. Among these, 2c vs 64zg
and 5m vs 6m are categorized as hard tasks, while 6h vs 8z and corridor are considered super hard. The offline
dataset for SMACv1 was sourced from the work of Meng et al., where MAPPO was used to train agents. These agents were
then used to generate offline datasets for the community. The dataset quality varies across poor, medium, and good levels,
ensuring comprehensive coverage of different learning stages.

SMACv2 (Ellis et al., 2022) builds upon SMACv1, introducing enhancements to challenge contemporary MARL algorithms.
It incorporates randomized start positions, randomized unit types, and adjustments to unit sight and attack ranges. These
changes increase the diversity of agent interactions and align the sight range with the true values in StarCraft II. Tasks in
SMACv2 are grouped by factions (protoss, terran, zerg) and instances (5 vs 5, 10 vs 10, 10 vs 11, 20 vs 20,
20 vs 23). The difficulty increases progressively from 5 vs 5 to 20 vs 23.

The offline dataset for SMACv2 was derived from the ComaDICE paper (Bui et al., 2025), where MAPPO (Yu et al., 2022)
was used to train agents over 10e6 steps, followed by random sampling of 1k trajectories. This dataset primarily represents
medium-quality data. To ensure varying quality levels, we created additional datasets for poor and expert levels.
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B.1.2. MAMUJOCO DATASET

MaMujoco (de Witt et al., 2020b) is a benchmark for continuous cooperative multi-agent robotic control. Derived from
OpenAI Gym’s MuJoCo suite, MaMujoco introduces scenarios where multiple agents within a single robot must solve
tasks cooperatively. We evaluate on the tasks Hopper-v2, Ant-v2, and HalfCheetah-v2. The offline dataset for
MaMujoco was sourced from the work of Xiangsen et al., who used the HAPPO method to train agents. Each task includes
datasets with varying quality levels: medium-replay, medium, and expert.

B.2. LLM-based Preference Annotations

To generate preference annotations for trajectory pairs, we utilized GPT-4o (OpenAI, 2024). This model was prompted with
detailed trajectory state information, including key metrics such as health points, shields, relative positions, cooldown times,
agent types, and action meanings. The inclusion of such detailed state information significantly improves the ability of the
LLM to evaluate trajectory pairs effectively. Following the methodology of DPM (Kang et al., 2024), we extracted critical
state details such as the health points of allied and enemy agents, the number of agent deaths (both allied and enemy), and
the total remaining health at the final state of each trajectory. These extracted metrics were then used to construct prompts
for the LLM, as shown in Table 5.

The OpenAI Batch API (OpenAI, 2025) was employed to submit these prompts to GPT-4o, and the associated token usage
and costs are summarized in Table 4. The total cost for generating LLM-based annotations across all tasks was approximately
$42, with each dataset containing 2,000 trajectory pairs. While this approach is effective, it becomes costly when scaling to
larger datasets or additional tasks.

It is important to note that this method is particularly suited for environments like SMACv1 and SMACv2, where trajectory
states provide meaningful and interpretable information. However, the approach has limitations in environments such
as MaMujoco, which lack detailed trajectory state information. In MaMujoco tasks, the trajectory states do not include
interpretable metrics like health points or agent-specific details, making it infeasible to construct meaningful prompts for
LLMs. As a result, only rule-based methods were used to generate preference labels for MaMujoco datasets.

This limitation highlights a broader challenge of the DPM approach (Kang et al., 2024): it relies on the availability
of meaningful final state information, which restricts its applicability to specific environments. It is less suitable for
long-horizon transitions or environments with image-based observations, where extracting detailed and interpretable state
information is either infeasible or computationally expensive.

B.3. Implementation Details

All experiments were implemented using PyTorch and executed in parallel on a single NVIDIA® H100 NVL Tensor Core
GPU to ensure computational efficiency. We developed two versions of our proposed method, O-MAPL, tailored to the
specific characteristics of continuous and discrete action domains:

Continuous Domain (MaMujoco): For continuous environments, we utilized a Gaussian distribution
(torch.distributions.Normal) to model the policy. Each agent’s action is sampled from this distribution, which
is parameterized by the mean and standard deviation outputted by the policy network.

Discrete Domains (SMACv1 & SMACv2): For discrete environments, we employed a Categorical distribution
(torch.distributions.Categorical) to model the policy. The probability of each action for an agent is computed
using the softmax operation over only the available actions for that agent. Actions that are not available are assigned a
probability of zero. This ensures that the log-likelihood calculation is accurate and avoids penalizing the agent for infeasible
actions.

B.4. Hyperparameters

Table 6 reports hyperparameters used consistently across all experiments:

B.5. Baseline Comparisons

We compared O-MAPL against four baseline methods to evaluate its performance:
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Tasks Completion Tokens Prompt Tokens Estimated API Cost

2c vs 64zg 5,920 2,498,000 $3.13
5m vs 6m 5,913 1,386,000 $1.74
6h vs 8z 5,941 1,462,000 $1.83
corridor 5,926 1,772,000 $2.22

protoss 5 vs 5 5,920 1,460,000 $1.83
protoss 10 vs 10 5,918 1,660,000 $2.08
protoss 10 vs 11 5,940 1,680,000 $2.11
protoss 20 vs 20 5,901 2,060,000 $2.58
protoss 20 vs 23 5,990 2,122,000 $2.66

terran 5 vs 5 5,990 1,442,000 $1.81
terran 10 vs 10 5,925 1,642,000 $2.06
terran 10 vs 11 5,930 1,662,000 $2.08
terran 20 vs 20 5,944 2,042,000 $2.56
terran 20 vs 23 5,977 2,104,000 $2.64

zerg 5 vs 5 5,940 1,448,000 $1.82
zerg 10 vs 10 5,914 1,648,000 $2.07
zerg 10 vs 11 5,912 1,668,000 $2.09
zerg 20 vs 20 5,942 2,048,000 $2.57
zerg 20 vs 23 5,913 2,110,000 $2.64

Total 112,756 33,914,000 $42.53

Table 4: GPT-4o API costs

• BC (Behavior Cloning): A simple BC supervised learning approach based on preferred trajectories in the dataset.

• IIPL (Independent Inverse Preference Learning): Implements IPL (Hejna & Sadigh, 2024) independently for each
agent without considering inter-agent coordination.

• IPL-VDN (Inverse Preference Learning with VDN): Similar to our O-MAPL algorithm, except that the global Q
and V functions are aggregated by summing the local Q-values of individual agents, instead of using a mixing network
(Sunehag et al., 2017).

• SL-MARL (Supervised Learning for MARL): A two-step approach where the reward function is first learned via
supervised learning, followed by policy training through a MARL algorithm (i.e. OMIGA (Wang et al., 2022)), using
the learned reward function.

B.6. Evaluation Metrics

We report two key metrics to assess agent performance:

• Mean/Standard Deviation of Returns: Measures the average cumulative rewards achieved by the agents across
episodes (applicable to all the environments).

• Mean/Standard Deviation of Win Rates: Applicable only to competitive environments (only applicable to SMACv1
and SMACv2). This metric evaluates the percentage of episodes where agents achieve victory.

Each metric is computed as the average and standard deviation of the final results across all four random seeds. Additionally,
we present evaluation curves for each method, depicting performance trends during the agent training process using offline
datasets.
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Prompt

You are a helpful and honest judge of good game playing and progress in the
StarCraft Multi-Agent Challenge game. Always answer as helpfully as possible, while
being truthful.
If you don't know the answer to a question, please don't share false information.
I'm looking to have you evaluate a scenario in the StarCraft Multi-Agent Challenge.
Your role will be to assess how much the actions taken by multiple agents in a given
situation have contributed to achieving victory.

The basic information for the evaluation is as follows.

- Scenario : 5m_vs_6m
- Allied Team Agent Configuration : five Marines(Marines are ranged units in
StarCraft 2).
- Enemy Team Agent Configuration : six Marines(Marines are ranged units in StarCraft
2).
- Situation Description : The situation involves the allied team and the enemy team
engaging in combat, where victory is achieved by defeating all the enemies.
- Objective : Defeat all enemy agents while ensuring as many allied agents as
possible survive.
* Important Notice : You should prefer the trajectory where our allies' health is
preserved while significantly reducing the enemy's health. In similar situations,
you should prefer shorter trajectory lengths.

I will provide you with two trajectories, and you should select the better
trajectory based on the outcomes of these trajectories. Regarding the trajectory, it
will inform you about the final states, and you should select the better case based
on these two trajectories.

[Trajectory 1]
1. Final State Information

1) Allied Agents Health : 0.000, 0.000, 0.067, 0.067, 0.000
2) Enemy Agents Health : 0.000, 0.000, 0.000, 0.000, 0.000, 0.040
3) Number of Allied Deaths : 3
4) Number of Enemy Deaths : 5
5) Total Remaining Health of Allies : 0.133
6) Total Remaining Health of Enemies : 0.040

2. Total Number of Steps : 28

[Trajectory 2]
1. Final State Information

1) Allied Agents Health : 0.000, 0.000, 0.000, 0.000, 0.000
2) Enemy Agents Health : 0.120, 0.000, 0.000, 0.000, 0.000, 0.200
3) Number of Allied Deaths : 5
4) Number of Enemy Deaths : 4
5) Total Remaining Health of Allies : 0.000
6) Total Remaining Health of Enemies : 0.320

2. Total Number of Steps : 23

Your task is to inform which one is better between [Trajectory1] and [Trajectory2]
based on the information mentioned above. For example, if [Trajectory 1] seems
better, output #1, and if [Trajectory 2] seems better, output #2. If it's difficult
to judge or they seem similar, please output #0.
* Important : Generally, it is considered better when fewer allied agents are killed
or injured while inflicting more damage on the enemy.

Omit detailed explanations and just provide the answer.

Table 5: Sample prompt to generate preference data in SMAC environments.
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Hyperparameter Value

Optimizer Adam
Learning rate (Q-value and policy networks) 1e-4
Tau (soft update target rate) 0.005
Gamma (discount factor) 0.99
Batch size 32
Agent hidden dimension 256
Mixer hidden dimension 64
Number of seeds 4
Number of episodes per evaluation step 32
Number of evaluation steps 100

Table 6: Hyperparameters used in all experiments.

Notes on Evaluation: For MaMujoco, win rates are not applicable as it is not a competitive environment. Evaluation
scores are averaged over the results of all four seeds to ensure statistical robustness. The performance trends and comparisons
are visualized in detailed figures to provide insights into the training dynamics of each method.

This setup ensures a fair and comprehensive comparison between O-MAPL and the baseline methods in both continuous
and discrete multi-agent reinforcement learning tasks.

B.7. Recovered Rewards

Tasks Rule-based LLM-based
Lower Higher Lower Higher

2c vs 64zg -8.36±0.26 9.25±0.67 -12.87±0.73 14.14±0.80
5m vs 6m -4.49±0.12 4.80±0.15 -4.02±0.20 4.51±0.18
6h vs 8z -4.72±0.28 5.15±0.22 -5.11±0.32 5.28±0.16
corridor -12.59±0.31 11.23±1.06 -12.97±0.33 10.93±0.45

protoss 5 vs 5 -6.31±0.22 6.54±0.51 -8.06±0.64 7.46±0.77
protoss 10 vs 10 -7.73±0.18 7.92±0.32 -10.65±1.15 9.32±0.91
protoss 10 vs 11 -7.95±0.69 8.31±0.91 -11.01±0.93 10.43±1.57
protoss 20 vs 20 -8.31±0.35 8.19±0.16 -10.57±0.86 9.54±0.74
protoss 20 vs 23 -8.01±0.22 9.10±0.14 -12.17±0.72 12.09±0.80

terran 5 vs 5 -6.85±0.30 6.93±0.56 -7.85±0.27 7.82±0.57
terran 10 vs 10 -8.25±0.82 7.35±0.61 -10.73±1.49 8.16±0.56
terran 10 vs 11 -8.53±0.67 9.62±0.54 -9.18±0.23 10.97±1.38
terran 20 vs 20 -8.59±0.36 8.44±0.22 -10.44±0.96 10.79±1.00
terran 20 vs 23 -8.49±0.65 8.91±0.27 -14.90±2.06 17.95±2.91

zerg 5 vs 5 -3.74±0.14 3.64±0.14 -5.09±0.19 3.51±0.06
zerg 10 vs 10 -4.16±0.16 4.27±0.16 -5.93±0.43 6.14±0.64
zerg 10 vs 11 -4.54±0.06 4.60±0.14 -7.28±0.50 6.20±0.50
zerg 20 vs 20 -5.31±0.08 5.25±0.20 -7.71±0.54 7.24±0.23
zerg 20 vs 23 -4.78±0.12 5.08±0.15 -8.26±1.13 8.00±0.43

Table 7: Mean/std recovered rewards of the higher and lower preferred trajectories

Using recovered reward function R(o, a, o′) = Mθ[q(o, a)]− γMθ[v(o′)], we report the mean/std returns of the higher
and lower preferred trajectories in Table 7. Across all tasks, the higher preferred trajectories consistently achieve positive
rewards, while the lower preferred trajectories exhibit negative rewards. This indicates that the preference-based
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learning framework effectively captures and differentiates between preferred and less-preferred trajectories. The consistent
separation in rewards suggests that the model successfully aligns policy learning with preference signals, reinforcing
high-reward behaviors while penalizing undesirable ones. Moreover, the absolute values of both higher and lower preferred
rewards tend to be more extreme in the LLM-based approach, compared to the Rule-based approach. This suggests that
LLM-based learning amplifies both positive and negative behaviors, potentially leading to more decisive policy updates,
which can be beneficial for clear preference-driven learning.

There are noticeable variations in how different task domains respond to preference-based learning. The Protoss and
Terran tasks exhibit larger reward variations, suggesting that these environments benefit more from preference learning.
In contrast, Zerg tasks show more moderate reward differences, indicating that either the task dynamics are inherently more
balanced or that preference signals have a weaker impact in these settings. Additionally, the corridor task, a structured
navigation environment, shows similar performance across rule-based and LLM-based approaches.

B.8. Additional Experimental Details

B.8.1. RULE-BASED - RETURNS

We present experimental details, in terms of returns, for all tasks (MAMuJoCo, SMACv1, and SMACv2) using rule-based
preference datasets.

Table 8 reports the returns and Figure 4 plots the evaluation curves for MaMujoco tasks with Rule-based preference data
and Figure The results demonstrate that O-MAPL consistently outperforms all baselines across Hopper-v2, Ant-v2, and
HalfCheetah-v2, highlighting its effectiveness in rule-based preference learning. Notably, in Hopper-v2, O-MAPL achieves
a 25.2% higher return than the next-best method, SL-MARL, suggesting superior preference alignment. While SL-MARL
performs well in simpler environments, its advantage diminishes in Ant-v2 and HalfCheetah-v2, where IPL-VDN shows
stronger results. BC significantly underperforms, reinforcing the need for preference-based learning over naive imitation.

Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

Hopper-v2 808.1 ± 39.1 782.0 ± 81.5 846.6 ± 65.4 890.0 ± 88.7 1114.4 ± 154.1
Ant-v2 1303.9 ± 122.0 1312.0 ± 155.6 1376.1 ± 142.0 1334.1 ± 150.9 1406.4 ± 163.7

HalfCheetah-v2 4119.9 ± 350.7 4028.8 ± 430.0 4287.5 ± 273.1 4233.9 ± 303.1 4382.0 ± 189.7

Table 8: Returns for MAMujoco tasks with Rule-based preference data.
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Figure 4: Evaluation curves (returns) for MAMujoco tasks with Rule-based preference data.

Table 9 report the returns and Figure 5 plots the evaluation curves for SMACv1 tasks. The results show that O-MAPL
consistently achieves the highest returns across most SMACv1 tasks. While the performance differences are relatively small
in simpler tasks like 2c vs 64zg and 5m vs 6m, O-MAPL outperforms all baselines in more complex scenarios such as
6h vs 8z, where it achieves 12.1, compared to the next-best method (SL-MARL, 11.8). Notably, SL-MARL struggles in the
corridor task, achieving a significantly lower return (14.3) than other methods, suggesting that its reliance on a separate
reward modeling phase may be less effective in environments requiring strong coordinated behaviors.
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Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

2c vs 64zg 19.0 ± 1.1 19.3 ± 0.8 19.3 ± 1.1 19.2 ± 0.8 19.3 ± 1.4
5m vs 6m 11.1 ± 2.1 10.8 ± 2.0 11.2 ± 2.0 11.1 ± 2.1 11.5 ± 2.1
6h vs 8z 11.0 ± 0.8 10.8 ± 0.7 11.7 ± 1.0 11.8 ± 1.0 12.1 ± 1.3
corridor 19.4 ± 1.0 19.4 ± 1.0 19.6 ± 1.0 14.3 ± 2.8 19.6 ± 0.9

Table 9: Returns for SMACv1 tasks with Rule-based preference data.

0 50 100

0

500

1k

0 50 100

1k

1.2k

1.4k

0 50 100

3k

3.5k

4k

4.5k

BC IIPL IPL-VDN SL-MARL O-MAPL (ours)

Hopper-v2 Ant-v2 HalfCheetah-v2

0 50 100

16

18

20

0 50 100

8

12

0 50 100

10

12

0 50 100

15

20

BC IIPL IPL-VDN SL-MARL O-MAPL (ours)

2c_vs_64zg 5m_vs_6m 6h_vs_8z corridor

Figure 5: Evaluation curves (returns) for SMACv1 tasks with Rule-based preference data.

Table 10 shows the returns and Figure 6 plots the evaluation curves for SMACv2 tasks (the most complicated ones). The
results show that O-MAPL consistently achieves competitive performance across all SMACv2 tasks, often outperforming
other baselines. In Protoss tasks, O-MAPL achieves the highest returns in most cases, particularly in protoss 10 vs 10 and
protoss 10 vs 11, suggesting its effectiveness in complex team-based coordination. Similarly, in Terran tasks, O-MAPL
consistently outperforms SL-MARL and IPL-VDN, with a noticeable advantage in terran 20 vs 20 and terran 20 vs 23. In
Zerg environments, O-MAPL continues to show strong results, outperforming all baselines in zerg 5 vs 5, zerg 10 vs 11,
and zerg 20 vs 20.

Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

protoss 5 vs 5 15.4 ± 2.4 14.3 ± 2.5 17.1 ± 2.7 15.8 ± 2.7 16.8 ± 2.4
protoss 10 vs 10 16.0 ± 2.0 15.4 ± 2.1 17.8 ± 2.3 16.4 ± 2.4 17.9 ± 1.9
protoss 10 vs 11 12.5 ± 2.3 12.7 ± 2.4 14.7 ± 2.3 14.2 ± 2.2 14.9 ± 2.0
protoss 20 vs 20 16.7 ± 1.8 16.9 ± 1.6 18.0 ± 1.5 17.3 ± 1.6 18.0 ± 1.5
protoss 20 vs 23 13.3 ± 2.1 13.1 ± 1.8 14.9 ± 1.9 13.6 ± 1.9 14.9 ± 2.0

terran 5 vs 5 10.2 ± 2.9 11.2 ± 3.1 11.9 ± 3.1 13.0 ± 3.1 12.8 ± 3.5
terran 10 vs 10 10.9 ± 2.9 10.6 ± 3.0 11.6 ± 2.8 11.4 ± 2.9 11.8 ± 2.6
terran 10 vs 11 8.3 ± 2.6 8.1 ± 2.3 10.1 ± 3.0 9.6 ± 2.6 11.0 ± 2.8
terran 20 vs 20 10.1 ± 2.4 10.2 ± 2.5 10.7 ± 2.6 10.9 ± 2.2 11.8 ± 2.4
terran 20 vs 23 7.6 ± 2.1 7.0 ± 2.1 8.7 ± 2.1 7.7 ± 2.0 9.4 ± 2.0

zerg 5 vs 5 11.2 ± 2.8 10.5 ± 2.8 12.1 ± 2.7 12.7 ± 3.1 13.1 ± 3.5
zerg 10 vs 10 12.9 ± 2.4 12.4 ± 2.7 13.0 ± 2.6 13.2 ± 2.7 14.0 ± 2.6
zerg 10 vs 11 11.1 ± 2.7 10.7 ± 2.7 12.1 ± 2.5 11.8 ± 2.1 12.8 ± 2.7
zerg 20 vs 20 13.0 ± 2.2 12.2 ± 1.9 13.8 ± 2.1 12.2 ± 1.6 13.9 ± 1.8
zerg 20 vs 23 12.1 ± 2.3 11.3 ± 1.7 12.1 ± 1.8 12.2 ± 1.6 12.7 ± 2.0

Table 10: Returns for SMACv2 tasks with Rule-based preference data.
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Figure 6: Evaluation curves (returns) for SMACv2 tasks with Rule-based preference data.

B.8.2. RULE-BASED - WINRATES

For SMACv1 and SMACv2, win rates provide a more meaningful comparison of algorithm performance. The following
tables and figures present win rates for SMAC tasks using rule-based preference data.

Table 11 shows the winrates and Figure 7 plots the evaluation curves (in terms of winrates) for SMACv1 tasks. The results
indicate that O-MAPL consistently achieves the highest winrates across most tasks. In 2c vs 64zg, O-MAPL outperforms all
baselines, achieving a win rate of 74.4, surpassing IPL-VDN and SL-MARL. Similarly, in 5m vs 6m and 6h vs 8z, O-MAPL
achieves the highest winrates, though the performance gap is less pronounced. Notably, in the corridor task, IPL-VDN
slightly outperforms O-MAPL, while SL-MARL struggles significantly, indicating that its two-phase approach may be less
effective in highly structured navigation tasks. These results suggest that O-MAPL is well-suited for complex coordination
tasks, offering robust winrates across diverse SMACv1 environments.

Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

2c vs 64zg 59.6 ± 25.0 60.4 ± 24.7 71.1 ± 22.0 63.5 ± 24.0 74.4 ± 24.7
5m vs 6m 16.8 ± 18.0 14.3 ± 17.0 16.8 ± 18.0 16.0 ± 18.9 19.3 ± 19.6
6h vs 8z 0.6 ± 3.8 0.2 ± 2.2 2.5 ± 7.6 1.6 ± 6.8 4.5 ± 11.0
corridor 89.3 ± 15.5 89.8 ± 15.4 93.9 ± 11.6 49.0 ± 22.8 93.2 ± 13.5

Table 11: Winrates for SMACv1 tasks with Rule-based preference data.
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Figure 7: Evaluation curves (in winrates) for SMACv1 tasks with Rule-based preference data.

Table 12 shows the winrates and Figure 8 plots the evaluation curves (in terms of winrates) for SMACv2 tasks. The results,
again, show that O-MAPL consistently achieves the highest winrates across most SMACv2 tasks. In the Protoss tasks,
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O-MAPL outperforms all baselines, particularly in protoss 10 vs 11 and protoss 20 vs 20, where it shows a significant
improvement over the other methods. In Terran tasks, O-MAPL also achieves the best performance, with notable advantages
in terran 20 vs 20 and terran 20 vs 23, where other methods struggle to achieve high winrates. Similarly, in Zerg tasks,
O-MAPL consistently achieves the best results, particularly in zerg 20 vs 20 and zerg 20 vs 23.

Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

protoss 5 vs 5 38.1 ± 24.2 31.4 ± 25.2 54.5 ± 25.9 49.0 ± 28.2 54.3 ± 24.2
protoss 10 vs 10 38.7 ± 24.2 28.5 ± 21.8 47.9 ± 27.2 40.6 ± 23.2 53.7 ± 23.6
protoss 10 vs 11 12.7 ± 17.4 12.5 ± 16.5 22.3 ± 21.0 18.6 ± 18.8 30.7 ± 19.8
protoss 20 vs 20 39.8 ± 24.9 35.4 ± 21.5 57.0 ± 24.8 38.7 ± 23.1 59.8 ± 23.2
protoss 20 vs 23 15.2 ± 18.5 9.0 ± 14.2 22.7 ± 21.7 11.1 ± 14.6 23.4 ± 19.2

terran 5 vs 5 27.5 ± 24.0 26.2 ± 19.5 36.3 ± 24.8 34.2 ± 23.4 39.5 ± 24.7
terran 10 vs 10 23.8 ± 20.5 21.1 ± 20.8 25.8 ± 19.7 23.2 ± 19.6 28.3 ± 20.6
terran 10 vs 11 10.2 ± 15.4 7.2 ± 13.3 18.2 ± 19.4 11.3 ± 15.3 18.2 ± 18.7
terran 20 vs 20 13.1 ± 17.1 11.9 ± 18.2 21.5 ± 20.4 8.8 ± 13.5 23.0 ± 22.4
terran 20 vs 23 3.9 ± 10.6 4.1 ± 10.3 5.7 ± 11.4 2.3 ± 7.3 7.2 ± 12.9

zerg 5 vs 5 23.4 ± 21.1 23.6 ± 21.0 31.1 ± 20.4 33.0 ± 22.5 35.2 ± 25.7
zerg 10 vs 10 25.8 ± 21.6 25.8 ± 22.5 32.2 ± 24.6 30.7 ± 24.0 34.8 ± 22.1
zerg 10 vs 11 19.3 ± 20.1 12.9 ± 17.4 22.5 ± 20.5 19.3 ± 18.0 23.4 ± 21.1
zerg 20 vs 20 19.9 ± 21.0 11.1 ± 16.2 22.5 ± 21.4 5.7 ± 10.9 24.8 ± 20.8
zerg 20 vs 23 13.1 ± 17.7 7.8 ± 12.8 12.5 ± 15.3 7.6 ± 13.1 18.8 ± 18.5

Table 12: Winrates for SMACv2 tasks with Rule-based preference data.
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Figure 8: Evaluation curves (in winrates) for SMACv2 tasks with Rule-based preference data.

B.8.3. LLM-BASED - RETURNS

We present comparisons in terms of returns using LLM-based preference datasets. As noted earlier, only SMACv1 and
SMACv2 are suitable for obtaining meaningful preference-based data from LLMs. Therefore, we report comparisons
exclusively for SMAC tasks.

Table 13 shows the returns and Figure 9 plots the evaluation curves (in terms of returns) for SMACv1 tasks. The results in
Table 13 indicate that O-MAPL consistently achieves the highest or near-highest returns across all SMACv1 tasks using
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LLM-based preference data. In 6h vs 8z, O-MAPL shows a clear advantage, reaching 12.2, outperforming all baselines.
Similarly, in corridor, it achieves the highest return (19.7), alongside IPL-VDN, while SL-MARL struggles significantly
in this task. Across 2c vs 64zg and 5m vs 6m, performance differences are minimal, but O-MAPL remains competitive.
These results highlight the effectiveness of O-MAPL in leveraging LLM-based preferences, particularly in more complex
multi-agent coordination scenarios.

Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

2c vs 64zg 19.4 ± 0.9 19.3 ± 0.9 19.6 ± 1.0 19.5 ± 0.7 19.6 ± 1.1
5m vs 6m 11.3 ± 2.1 10.8 ± 2.0 11.4 ± 2.2 11.2 ± 2.1 11.5 ± 2.3
6h vs 8z 11.1 ± 0.8 10.9 ± 0.7 11.9 ± 1.1 11.8 ± 1.2 12.2 ± 1.3
corridor 19.4 ± 1.0 19.4 ± 1.0 19.7 ± 0.9 15.1 ± 2.4 19.7 ± 0.8

Table 13: Return comparison for SMACv1 tasks with LLM-based preference data.
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Figure 9: Evaluation curves (in returns) for SMACv1 tasks with LLM-based preference data.

Table 14 shows the returns and Figure 10 plots the evaluation curves (in terms of returns) for SMACv1 tasks. The results
demonstrate that O-MAPL consistently achieves the highest returns across most SMACv2 tasks. In Protoss tasks, O-
MAPL outperforms other methods, particularly in protoss 10 vs 11 and protoss 20 vs 20, indicating its effectiveness
in learning structured team-based strategies. In Terran tasks, O-MAPL generally achieves the best performance, with
notable improvements in terran 20 vs 20, suggesting its strength in complex coordination settings. In Zerg tasks, O-MAPL
maintains strong performance, particularly in zerg 20 vs 20, where it achieves the highest return.
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Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

protoss 5 vs 5 16.7 ± 2.7 15.9 ± 2.5 17.6 ± 2.5 16.9 ± 2.4 17.9 ± 2.5
protoss 10 vs 10 16.5 ± 2.0 16.6 ± 2.2 17.9 ± 1.8 17.5 ± 1.8 18.0 ± 2.1
protoss 10 vs 11 14.7 ± 2.3 14.5 ± 2.0 15.4 ± 2.4 14.0 ± 2.4 16.5 ± 2.2
protoss 20 vs 20 17.2 ± 1.7 17.6 ± 1.7 18.5 ± 1.3 18.2 ± 1.9 18.9 ± 1.5
protoss 20 vs 23 14.3 ± 2.0 13.4 ± 1.8 15.1 ± 1.8 14.3 ± 1.8 15.8 ± 1.9

terran 5 vs 5 11.8 ± 3.3 12.5 ± 3.1 13.4 ± 2.9 12.6 ± 3.1 12.6 ± 2.6
terran 10 vs 10 11.3 ± 2.6 11.7 ± 3.0 11.6 ± 2.7 12.1 ± 2.8 12.5 ± 2.7
terran 10 vs 11 9.2 ± 2.8 9.3 ± 2.7 10.1 ± 2.6 9.9 ± 2.6 10.7 ± 2.5
terran 20 vs 20 11.2 ± 2.3 10.8 ± 2.5 11.4 ± 2.4 11.6 ± 2.2 13.0 ± 2.8
terran 20 vs 23 8.5 ± 2.4 7.7 ± 2.2 8.9 ± 2.1 8.7 ± 1.9 9.1 ± 2.3

zerg 5 vs 5 11.4 ± 2.7 11.6 ± 3.0 12.8 ± 3.3 11.8 ± 2.9 12.9 ± 2.6
zerg 10 vs 10 13.5 ± 2.6 13.4 ± 2.7 13.7 ± 2.5 13.7 ± 3.0 14.5 ± 2.6
zerg 10 vs 11 12.0 ± 2.3 11.9 ± 2.7 11.7 ± 2.0 12.8 ± 2.4 12.6 ± 2.5
zerg 20 vs 20 13.9 ± 2.3 13.4 ± 1.9 14.6 ± 2.0 13.8 ± 2.0 15.2 ± 2.4
zerg 20 vs 23 12.6 ± 2.0 12.1 ± 1.9 12.4 ± 2.3 12.6 ± 1.9 12.4 ± 2.2

Table 14: Return comparison for SMACv2 tasks with LLM-based preference data.
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Figure 10: Evaluation curves (in returns) for SMACv2 tasks with LLM-based preference data.

B.8.4. LLM-BASED - WINRATES

We present a comparison of winrates for SMAC tasks using LLM-based preference datasets.

Table 15 shows the returns and Figure 11 plots the evaluation curves (in terms of winrates) for SMACv1 tasks. The results
in Table 15 indicate that O-MAPL achieves the highest win rates across most SMACv1 tasks when using LLM-based
preference data. In 2c vs 64zg, O-MAPL outperforms all other methods, achieving a win rate of 79.5, slightly higher than
IPL-VDN (77.0) and significantly surpassing BC and IIPL. Similarly, in 5m vs 6m and 6h vs 8z, O-MAPL achieves the best
performance, though the overall win rates in these tasks remain low, indicating the increased difficulty of these environments.
In the corridor task, both O-MAPL and IPL-VDN achieve the highest win rate (94.5), demonstrating their effectiveness in
structured navigation tasks, while SL-MARL struggles significantly with a win rate of only 57.6.
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Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

2c vs 64zg 65.6 ± 24.6 60.2 ± 25.9 77.0 ± 21.3 65.2 ± 21.2 79.5 ± 19.6
5m vs 6m 18.2 ± 18.4 15.0 ± 17.5 18.0 ± 19.2 17.4 ± 19.4 20.7 ± 20.5
6h vs 8z 0.8 ± 4.3 0.4 ± 3.1 3.5 ± 9.2 3.7 ± 8.9 6.1 ± 11.2
corridor 89.6 ± 15.5 90.6 ± 13.6 94.5 ± 12.5 57.6 ± 22.2 94.5 ± 11.2

Table 15: Winrate comparison for SMACv1 tasks with LLM-based preference data.
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Figure 11: Evaluation curves (in winrates) for SMACv1 tasks with LLM-based preference data.

The results reported in Table 16 and Figure 12 demonstrate that O-MAPL consistently achieves the highest win rates across
most SMACv2 tasks using LLM-based preference data. In the Protoss tasks, O-MAPL outperforms all baselines, particularly
in protoss 10 vs 11 and protoss 20 vs 20, where it achieves substantial improvements over other methods. In Terran
tasks, O-MAPL also shows strong performance, especially in terran 20 vs 20 and terran 20 vs 23, where other baselines
struggle to achieve competitive win rates. In Zerg tasks, O-MAPL maintains an advantage, particularly in zerg 5 vs 5 and
zerg 20 vs 20, suggesting that its approach generalizes well across different strategic settings. Overall, these results indicate
that O-MAPL effectively integrates LLM-based preference data to improve decision-making and coordination in complex
multi-agent environments.

Tasks BC IIPL IPL-VDN SL-MARL O-MAPL
(ours)

protoss 5 vs 5 48.4 ± 25.9 41.0 ± 24.2 58.8 ± 24.5 54.3 ± 24.0 61.5 ± 24.8
protoss 10 vs 10 46.3 ± 24.0 41.0 ± 24.4 57.0 ± 23.4 52.5 ± 22.1 61.1 ± 24.8
protoss 10 vs 11 22.7 ± 22.2 15.6 ± 15.9 27.3 ± 24.7 20.9 ± 20.9 34.4 ± 24.8
protoss 20 vs 20 48.4 ± 25.3 43.6 ± 23.6 61.5 ± 22.1 51.8 ± 25.0 64.5 ± 23.5
protoss 20 vs 23 18.0 ± 17.4 9.4 ± 14.7 23.4 ± 21.4 12.1 ± 15.9 26.4 ± 20.8

terran 5 vs 5 31.1 ± 22.9 34.8 ± 23.0 41.0 ± 23.7 36.7 ± 24.8 43.0 ± 23.0
terran 10 vs 10 25.8 ± 20.9 24.2 ± 21.6 32.0 ± 24.4 28.9 ± 24.7 33.2 ± 23.4
terran 10 vs 11 11.7 ± 17.4 10.4 ± 15.2 17.8 ± 17.7 16.4 ± 17.8 21.3 ± 20.3
terran 20 vs 20 14.5 ± 17.3 13.7 ± 17.4 21.1 ± 20.4 17.2 ± 16.8 24.4 ± 23.1
terran 20 vs 23 6.4 ± 12.2 3.5 ± 9.2 7.2 ± 12.6 4.7 ± 10.2 8.6 ± 14.8

zerg 5 vs 5 31.1 ± 22.3 26.0 ± 22.2 34.8 ± 23.6 35.0 ± 23.2 40.8 ± 21.6
zerg 10 vs 10 31.4 ± 21.9 31.1 ± 24.8 35.5 ± 23.9 33.0 ± 25.0 37.9 ± 24.0
zerg 10 vs 11 20.1 ± 18.2 18.6 ± 20.6 22.7 ± 18.3 23.0 ± 21.1 26.0 ± 23.0
zerg 20 vs 20 22.9 ± 21.7 16.0 ± 17.3 27.3 ± 22.0 16.4 ± 18.1 31.1 ± 24.6
zerg 20 vs 23 15.8 ± 18.5 10.4 ± 15.2 16.4 ± 19.9 13.7 ± 17.4 16.0 ± 19.4

Table 16: Winrate comparison for SMACv2 tasks with LLM-based preference data.
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Figure 12: Evaluation curves (in winrates) for SMACv2 tasks with LLM-based preference data.

B.8.5. IMPACT OF DATA RETENTION

To analyze the effect of reducing the amount of preference data, experiments were conducted by retaining 25%, 50%, 75%,
and 100% of the dataset. Both returns and winning rates were evaluated to assess the performance degradation or robustness
under reduced data availability. This experiment highlights the sample efficiency of O-MAPL and its ability to generalize
with limited data.

IPL-VDN SL-MARL O-MAPL (ours)

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

MaMujoco
Hopper-v2 349.4±14.4 603.6±74.3 706.2±94.0 846.6±65.4 617.2±53.9 701.9±53.3 746.0±57.2 890.0±88.7 628.6±34.8 734.5±36.7 953.1±75.7 1114.4±154.1

Ant-v2 896.3±33.8 1141.5±73.1 1238.8±135.6 1376.1±142.0 953.0±32.3 1175.2±77.6 1281.3±108.0 1334.1±150.9 1189.3±14.0 1282.7±155.6 1294.7±167.1 1406.4±163.7
HalfCheetah-v2 2676.4±615.4 3501.2±336.7 3830.0±165.9 4287.5±273.1 3291.6±402.1 3817.0±244.4 4022.2±263.1 4233.9±303.1 3548.3±459.1 3943.0±271.3 4164.4±277.0 4382.0±189.7

SMACv1

2c vs 64zg 13.4±0.8 15.3±1.1 16.6±1.0 19.3±1.1 14.7±1.4 16.5±1.1 17.4±0.9 19.2±0.8 16.5±0.9 17.3±1.2 18.4±1.0 19.3±1.4
5m vs 6m 7.8±2.7 9.1±2.2 9.9±2.4 11.2±2.0 8.4±2.3 9.6±2.1 10.3±1.9 11.1±2.1 9.5±2.2 10.6±2.3 11.4±2.0 11.5±2.1
6h vs 8z 7.3±0.7 9.0±0.9 9.8±0.9 11.7±1.0 8.3±0.4 9.5±0.8 10.2±0.9 11.8±1.0 9.4±0.7 10.5±0.9 11.0±1.1 12.1±1.3
corridor 13.2±1.4 15.6±0.9 16.7±0.8 19.6±1.0 11.5±1.2 12.5±0.6 13.6±1.2 14.3±2.8 16.6±1.0 17.6±1.4 18.8±0.6 19.6±0.9

SMACv2

protoss

5 vs 5 10.9±2.3 14.2±2.4 14.3±2.3 17.1±2.7 12.5±2.6 12.4±2.0 14.6±1.9 15.8±2.7 13.8±2.2 14.1±2.0 16.4±2.1 16.8±2.4
10 vs 10 11.5±2.2 13.9±1.9 15.3±1.3 17.8±2.3 13.3±2.2 15.0±2.0 15.1±2.5 16.4±2.4 14.4±1.7 14.8±1.8 16.5±1.5 17.9±1.9
10 vs 11 10.6±2.2 11.8±1.5 13.5±2.0 14.7±2.3 10.6±1.8 10.7±1.7 11.6±2.0 14.2±2.2 12.4±2.2 14.5±2.1 14.8±2.2 14.9±2.0
20 vs 20 12.6±1.2 14.4±1.5 16.3±1.6 18.0±1.5 12.2±1.6 15.1±1.8 14.5±1.7 17.3±1.6 15.5±1.5 16.7±1.5 17.5±1.0 18.0±1.5
20 vs 23 9.6±1.6 11.8±1.9 12.6±1.5 14.9±1.9 10.4±2.0 11.2±1.8 12.5±1.7 13.6±1.9 12.2±1.6 13.4±1.7 14.0±1.6 14.9±2.0

terran

5 vs 5 8.6±3.1 10.1±3.4 11.0±3.2 11.9±3.1 10.6±3.4 10.0±2.9 10.3±2.8 13.0±3.1 9.3±2.3 11.8±3.6 12.5±2.9 12.8±3.5
10 vs 10 8.2±3.5 8.7±1.9 11.7±3.0 11.6±2.8 8.0±2.5 9.1±2.1 10.2±2.7 11.4±2.9 9.5±2.4 10.7±2.9 11.4±2.2 11.8±2.6
10 vs 11 7.4±1.9 7.6±2.7 9.1±2.6 10.1±3.0 6.7±2.2 7.0±1.9 7.4±2.2 9.6±2.6 8.3±2.4 9.2±3.0 8.7±2.4 11.0±2.8
20 vs 20 7.2±2.1 10.3±3.0 11.2±2.7 10.7±2.6 9.3±1.8 8.7±2.3 10.6±1.8 10.9±2.2 8.2±2.4 9.5±1.7 11.2±2.0 11.8±2.4
20 vs 23 5.5±1.7 7.0±1.7 8.2±2.6 8.7±2.1 6.4±1.8 6.5±2.1 7.2±1.8 7.7±2.0 7.4±1.6 8.0±2.2 8.3±2.5 9.4±2.0

zerg

5 vs 5 7.3±2.5 9.4±2.7 11.9±3.1 12.1±2.7 10.0±3.3 10.8±2.8 12.1±3.2 12.7±3.1 10.6±3.1 12.0±3.2 12.4±3.7 13.1±3.5
10 vs 10 9.4±2.9 9.4±2.5 12.9±2.7 13.0±2.6 10.6±2.1 11.0±2.2 12.9±2.3 13.2±2.7 9.5±2.5 11.5±2.2 13.5±2.7 14.0±2.6
10 vs 11 8.0±2.4 8.9±2.3 10.2±2.7 12.1±2.5 7.9±1.5 9.2±2.0 11.6±2.2 11.8±2.1 9.5±2.3 10.7±2.3 12.4±2.4 12.8±2.7
20 vs 20 9.0±1.9 12.9±1.8 13.1±2.0 13.8±2.1 9.0±0.8 10.5±1.4 11.5±1.8 12.2±1.6 11.9±1.7 13.0±1.6 12.0±2.0 13.9±1.8
20 vs 23 9.2±2.1 9.8±1.6 11.0±1.7 12.1±1.8 8.9±1.5 9.5±1.5 9.9±1.7 12.2±1.6 10.4±1.9 10.2±2.2 12.5±2.0 12.7±2.0

Table 17: Returns Comparison with Reduced Preference Rule-based Data
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IPL-VDN SL-MARL O-MAPL (ours)

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

SMACv1

2c vs 64zg 14.4±0.8 16.5±0.9 17.4±1.0 19.6±1.0 15.9±1.1 17.6±0.5 18.5±0.7 19.5±0.7 17.5±0.8 18.0±1.2 19.0±1.3 19.6±1.1
5m vs 6m 8.2±2.1 9.4±1.8 10.0±2.0 11.4±2.2 8.8±1.9 10.2±2.4 11.0±2.2 11.2±2.1 9.4±1.6 11.4±2.0 11.8±2.6 11.5±2.3
6h vs 8z 7.8±0.7 9.4±1.0 10.3±0.9 11.9±1.1 8.7±0.6 10.1±0.9 10.8±0.7 11.8±1.2 10.0±0.9 11.1±1.3 12.1±1.4 12.2±1.3
corridor 14.3±1.1 16.4±1.2 17.5±1.0 19.7±0.9 12.8±1.0 13.6±1.2 14.6±1.3 15.1±2.4 17.1±0.9 18.6±0.6 19.3±1.1 19.7±0.8

SMACv2

protoss

5 vs 5 11.6±2.2 14.8±2.7 15.9±2.3 17.6±2.5 13.8±2.1 12.8±1.7 17.0±2.1 16.9±2.4 14.9±2.3 16.3±1.9 17.8±2.0 17.9±2.5
10 vs 10 12.5±1.7 15.2±2.0 15.1±1.6 17.9±1.8 13.4±1.8 14.7±2.1 16.0±2.0 17.5±1.8 14.8±1.8 16.9±1.9 16.9±1.5 18.0±2.1
10 vs 11 10.5±1.6 13.8±2.5 14.5±2.1 15.4±2.4 11.9±1.8 14.0±2.3 13.8±1.9 14.0±2.4 13.6±2.5 14.5±1.8 15.9±2.0 16.5±2.2
20 vs 20 12.8±1.4 14.2±1.3 17.8±1.4 18.5±1.3 14.1±1.2 16.2±1.4 15.8±1.8 18.2±1.9 16.7±1.7 17.5±1.5 18.2±1.3 18.9±1.5
20 vs 23 10.9±2.1 12.9±2.6 14.5±1.8 15.1±1.8 10.8±1.6 12.7±1.8 14.1±1.8 14.3±1.8 13.0±2.1 14.5±2.2 15.5±1.9 15.8±1.9

terran

5 vs 5 11.8±3.3 12.6±3.9 12.4±3.0 13.4±2.9 10.5±2.8 12.1±3.2 13.3±3.0 12.6±3.1 10.5±2.4 12.0±2.9 12.3±2.9 12.6±2.6
10 vs 10 8.4±2.6 10.2±2.8 10.7±3.2 11.6±2.7 10.2±2.6 9.9±2.3 11.0±2.5 12.1±2.8 9.7±3.0 11.2±2.6 11.4±2.6 12.5±2.7
10 vs 11 7.5±3.2 8.5±2.9 8.4±2.3 10.1±2.6 8.0±2.3 8.0±2.6 8.5±1.7 9.9±2.6 8.2±2.0 9.6±2.9 10.5±2.4 10.7±2.5
20 vs 20 8.7±2.0 10.2±2.2 11.0±2.5 11.4±2.4 8.6±1.7 9.8±2.1 9.6±1.8 11.6±2.2 9.1±1.6 10.4±2.0 12.8±2.6 13.0±2.8
20 vs 23 5.8±2.2 7.3±2.4 8.2±2.1 8.9±2.1 6.8±1.7 7.6±2.2 7.6±2.4 8.7±1.9 8.1±2.1 8.7±1.5 9.0±2.1 9.1±2.3

zerg

5 vs 5 7.6±2.4 10.4±2.3 10.6±2.3 12.8±3.3 10.2±2.9 11.6±2.5 11.0±2.1 11.8±2.9 11.7±2.8 11.5±3.4 11.8±2.0 12.9±2.6
10 vs 10 9.5±2.7 12.1±2.3 12.0±2.0 13.7±2.5 11.1±1.9 12.0±2.6 12.3±2.4 13.7±3.0 12.9±1.8 13.4±2.9 13.2±2.3 14.5±2.6
10 vs 11 8.5±2.0 10.2±2.2 10.3±1.9 11.7±2.0 10.4±2.1 10.2±2.5 12.0±2.3 12.8±2.4 11.2±2.5 11.0±1.8 11.0±2.0 12.6±2.5
20 vs 20 9.6±2.3 13.3±2.2 13.5±1.9 14.6±2.0 10.4±1.8 11.1±1.4 11.8±1.5 13.8±2.0 12.4±1.8 12.8±1.4 15.0±1.8 15.2±2.4
20 vs 23 9.5±1.8 10.4±2.2 11.4±1.9 12.4±2.3 9.5±1.7 11.2±1.8 11.4±1.6 12.6±1.9 10.3±1.6 11.7±1.7 11.7±2.0 12.4±2.2

Table 18: Returns Comparison with Reduced Preference LLM-based Data

B.8.6. COMPARISON OF 1-LAYER VS. 2-LAYER MIXERS

This experiment evaluates the impact of using 1-layer linear mixers versus 2-layer non-linear mixers in the value decomposi-
tion process. The comparison is carried out on both returns and winning rates for SMACv1 and SMACv2 tasks, using both
rule-based and LLM-based datasets. The goal is to validate the theoretical claim that 1-layer mixers provide better convexity
and stability, while examining whether 2-layer mixers offer any practical advantage.

Returns Winning Rates

Rule-based LLM-based Rule-based LLM-based
1-layer 2-layer 1-layer 2-layer 1-layer 2-layer 1-layer 2-layer

SMACv1

2c vs 64zg 19.3±1.4 12.9±1.4 19.6±1.1 13.7±1.6 74.4±24.7 2.3±7.3 79.5±19.6 3.9±11.0
5m vs 6m 11.5±2.1 7.1±0.8 11.5±2.3 7.5±0.5 19.3±19.6 0.8±4.3 20.7±20.5 0.0±0.0
6h vs 8z 12.1±1.3 9.5±0.4 12.2±1.3 9.9±0.6 4.5±11.0 0.0±0.0 6.1±11.2 0.0±0.0
corridor 19.6±0.9 4.4±1.4 19.7±0.8 2.7±0.7 93.2±13.5 0.0±0.0 94.5±11.2 0.0±0.0

SMACv2

protoss

5 vs 5 16.8±2.4 13.8±2.7 17.9±2.5 16.3±2.9 54.3±24.2 36.7±25.8 61.5±24.8 48.4±29.3
10 vs 10 17.9±1.9 15.5±1.7 18.0±2.1 16.7±1.9 53.7±23.6 42.9±20.1 61.1±24.8 29.7±19.2
10 vs 11 14.9±2.0 13.7±2.1 16.5±2.2 13.3±2.1 30.7±19.8 14.1±16.2 34.4±24.8 21.1±17.8
20 vs 20 18.0±1.5 15.3±1.7 18.9±1.5 15.6±1.6 59.8±23.2 23.4±18.7 64.5±23.5 29.7±24.6
20 vs 23 14.9±2.0 12.5±1.6 15.8±1.9 13.5±1.6 23.4±19.2 9.8±16.5 26.4±20.8 11.7±16.5

terran

5 vs 5 12.8±3.5 10.2±2.9 12.6±2.6 11.2±2.7 39.5±24.7 26.0±20.8 43.0±23.0 22.7±20.1
10 vs 10 11.8±2.6 9.0±2.6 12.5±2.7 10.0±2.4 28.3±20.6 19.4±23.0 33.2±23.4 26.7±22.0
10 vs 11 11.0±2.8 8.1±2.4 10.7±2.5 9.0±3.1 18.2±18.7 7.0±14.3 21.3±20.3 13.3±20.7
20 vs 20 11.8±2.4 9.4±2.0 13.0±2.8 11.9±2.4 23.0±22.4 12.0±16.5 24.4±23.1 10.9±15.2
20 vs 23 9.4±2.0 8.0±2.0 9.1±2.3 7.3±1.4 7.2±12.9 5.5±10.3 8.6±14.8 1.6±6.1

zerg

5 vs 5 13.1±3.5 10.1±3.7 12.9±2.6 9.4±3.0 35.2±25.7 30.6±30.6 40.8±21.6 25.6±24.4
10 vs 10 14.0±2.6 10.5±3.0 14.5±2.6 11.2±2.8 34.8±22.1 24.6±28.5 37.9±24.0 27.5±27.1
10 vs 11 12.8±2.7 11.9±1.9 12.6±2.5 11.7±1.8 23.4±21.1 15.6±16.2 26.0±23.0 10.9±13.9
20 vs 20 13.9±1.8 11.0±1.4 15.2±2.4 12.2±1.7 24.8±20.8 12.0±15.3 31.1±24.6 12.5±14.0
20 vs 23 12.7±2.0 10.8±1.4 12.4±2.2 9.9±1.5 18.8±18.5 3.1±8.3 16.0±19.4 3.9±9.1

Table 19: Comparison of our O-MAPL with 1-layer vs. 2-layer Mixers: Returns and Winning Rates (in percentage)

B.8.7. COMPARISON OF GPT-4O VS. GPT-4O-MINI

To evaluate the effect of preference data quality, the performance of O-MAPL is compared when using high-quality
LLM-generated preferences (GPT-4o) versus lower-quality preferences (GPT-4o-mini). Both returns and winning rates are
analyzed to understand the sensitivity of O-MAPL to the quality of preference annotations.
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O-MAPL: Offline Multi-agent Preference Learning

Returns Winning Rates

4o 4o-mini 4o 4o-mini

SMACv1

2c vs 64zg 19.6±1.1 17.0±1.4 79.5±19.6 62.8±17.4
5m vs 6m 11.5±2.3 9.6±2.2 20.7±20.5 19.4±20.2
6h vs 8z 12.2±1.3 10.8±1.2 6.1±11.2 2.8±8.3
corridor 19.7±0.8 17.9±0.5 94.5±11.2 88.1±8.1

SMACv2

protoss

5 vs 5 17.9±2.5 15.6±2.4 61.5±24.8 58.1±28.8
10 vs 10 18.0±2.1 17.5±2.4 61.1±24.8 54.4±28.2
10 vs 11 16.5±2.2 14.2±2.5 34.4±24.8 29.1±22.8
20 vs 20 18.9±1.5 17.0±1.8 64.5±23.5 60.0±27.6
20 vs 23 15.8±1.9 15.2±2.6 26.4±20.8 26.2±30.9

terran

5 vs 5 12.6±2.6 14.3±3.8 43.0±23.0 45.9±28.8
10 vs 10 12.5±2.7 9.6±3.3 33.2±23.4 30.0±30.9
10 vs 11 10.7±2.5 9.8±2.9 21.3±20.3 13.1±18.5
20 vs 20 13.0±2.8 11.7±2.5 24.4±23.1 20.6±26.9
20 vs 23 9.1±2.3 7.7±1.9 8.6±14.8 1.9±11.6

zerg

5 vs 5 12.9±2.6 11.2±3.4 40.8±21.6 38.3±28.8
10 vs 10 14.5±2.6 12.7±2.4 37.9±24.0 34.7±25.2
10 vs 11 12.6±2.5 11.0±2.8 26.0±23.0 22.5±23.6
20 vs 20 15.2±2.4 12.9±2.2 31.1±24.6 25.3±25.2
20 vs 23 12.4±2.2 10.2±2.2 16.0±19.4 14.2±16.6

Table 20: Comparison of our O-MAPL with GPT-4o vs. GPT-4o-mini: Returns and Winning Rates (in percentage)
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