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Abstract
We consider stochastic unconstrained bilevel opti-
mization problems when only the first-order gra-
dient oracles are available. While numerous opti-
mization methods have been proposed for tackling
bilevel problems, existing methods either tend to
require possibly expensive calculations regarding
Hessians of lower-level objectives, or lack rigor-
ous finite-time performance guarantees. In this
work, we propose a Fully First-order Stochastic
Approximation (F2SA) method, and study its non-
asymptotic convergence properties. Specifically,
we show that F2SA converges to an ϵ-stationary
solution of the bilevel problem after ϵ−7/2, ϵ−5/2,
and ϵ−3/2 iterations (each iteration using O(1)
samples) when stochastic noises are in both level
objectives, only in the upper-level objective, and
not present (deterministic settings), respectively.
We further show that if we employ momentum-
assisted gradient estimators, the iteration com-
plexities can be improved to ϵ−5/2, ϵ−4/2, and
ϵ−3/2, respectively. We demonstrate even supe-
rior practical performance of the proposed method
over existing second-order based approaches on
MNIST data-hypercleaning experiments.

1. Introduction
Bilevel optimization (Colson et al., 2007) arises in many
important applications that have two-level hierarchical struc-
tures, including meta-learning (Rajeswaran et al., 2019),
hyper-parameter optimization (Franceschi et al., 2018; Bao
et al., 2021), model selection (Kunapuli et al., 2008; Giovan-
nelli et al., 2021), adversarial networks (Goodfellow et al.,
2020; Gidel et al., 2018), game theory (Stackelberg et al.,
1952) and reinforcement learning (Konda & Tsitsiklis, 1999;
Sutton & Barto, 2018). Bilevel optimization can be gener-
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ally formulated as the following minimization problem:

min
x∈X

F (x) := f(x, y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x, y), (P)

where f and g are continuously differentiable functions and
X ⊆ Rdx is a convex set. The outer objective F depends
on x both directly and also indirectly via y∗(x), which is a
solution of the lower-level problem of minimizing another
function g, which is parametrized by x. Throughout the
paper, we assume that X = Rdx (that is, there are no explicit
constraints on x) and that g(x, y) is strongly convex in y, so
that y∗(x) is uniquely well-defined for all x ∈ X .

Among various approaches to (P), iterative procedures have
been predominant due to their simplicity and potential scal-
ability in large-scale applications. Initiated by (Ghadimi &
Wang, 2018), a flurry of recent works study efficient itera-
tive procedures and their finite-time performance for solving
(P), see e.g., (Chen et al., 2021; Hong et al., 2020; Khanduri
et al., 2021; Chen et al., 2022; Dagréou et al., 2022; Guo
et al., 2021; Sow et al., 2022; Ji et al., 2021; Yang et al.,
2021). The underlying idea is based on an algorithm of
(stochastic) gradient descent type, applied to F , that is,

xk+1 = xk − αk∇F (xk),

with some appropriate step-sizes {αk}. Direct application
of this approach requires us to compute or estimate the
so-called hyper-gradient of F at x, which is

∇F (x) =∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))×

∇2
yyg(x, y

∗(x))−1∇yf(x, y
∗(x)). (1)

There are two major obstacles in computing (1). The first
obstacle is that for every given x, we need to search for
the optimal solution y∗(x) of the lower problem, which re-
sults in updating the lower variable y multiple times before
updating x. To tackle this issue, several ideas have been
proposed in (Ghadimi & Wang, 2018; Hong et al., 2020;
Chen et al., 2021) to effectively track y∗(x) without waiting
for too many inner iterations before updating x (we discuss
this further in Section 1.2). Following in the spirit of this ap-
proach, we show that a single-loop style algorithm can still
be implemented using only first-order gradient estimators.
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The second obstacle, which is the main focus of this work,
centers around the presence of second-order derivatives of g
in (1). Existing approaches mostly require an explicit extrac-
tion of second-order information from g with a major focus
on estimating the Jacobian and inverse Hessian efficiently
with stochastic noises (Ji et al., 2021; Chen et al., 2022; Da-
gréou et al., 2022). We are particularly interested in regimes
in which such operations are costly and prohibitive (Mehra
& Hamm, 2021; Giovannelli et al., 2021). Some existing
works avoid the second-order computation and only use the
first-order information of both upper and lower objectives;
see (Giovannelli et al., 2021; Sow et al., 2022; Liu et al.,
2021b; Ye et al., 2022). These works either lack a com-
plete finite-time analysis (Giovannelli et al., 2021; Liu et al.,
2021b) or are applicable only to deterministic functions (Ye
et al., 2022; Sow et al., 2022).

Our goal in this paper is to study a fully first-order approach
for stochastic bilevel optimization. We propose a gradient-
based approach that avoids the estimation of Jacobian and
Hessian of g, and finds an ϵ-stationary solution of F using
only first-order gradients of f and g. Further, the number
of inner iterations remains constant throughout all outer
iterations of our algorithm. We provide a finite-time analysis
of our method with explicit convergence rates. To our best
knowledge, this work is the first to establish non-asymptotic
convergence guarantees for stochastic bilevel optimization
using only first-order gradient oracles.

1.1. Overview of Main Results

The starting point of our approach is to convert (P) to an
equivalent constrained single-level version:

min
x∈X, y∈Rdy

f(x, y) s.t. g(x, y)− g∗(x) ≤ 0, (P’)

where g∗(x) := g(x, y∗(x)). The Lagrangian Lλ for (P’)
with multiplier λ > 0 is

Lλ(x, y) := f(x, y) + λ(g(x, y)− g∗(x)).

We can minimize Lλ for a given λ by, for example, running
(stochastic) gradient descent. As noted in (Ye et al., 2022),
the gradient of Lλ can be computed only with gradients of
f and g, and thus the entire procedure can be implemented
using only with first-order derivatives. In fact, such a refor-
mulation has been attempted in several recent works (e.g.,
(Liu et al., 2021a; Sow et al., 2022; Ye et al., 2022)). How-
ever, the challenge in handling the constrained version (P’)
is to find an appropriate value of the multiplier λ. Unfortu-
nately, the desired solution x∗ = argminx F (x) can only
be obtained at λ =∞ (this is a consequence of the fact that
the so-called constraint qualifications (Wright et al., 1999)
are not satisfied for (P’)). However, with λ =∞, Lλ(x, y)
has unbounded smoothness which prevents us from employ-
ing gradient-descent style approaches. For these reasons,

none of the previously proposed algorithms can obtain a
consistent estimator for the original problem minx F (x)
without access to second derivatives of g.

Nonetheless, we find that (P’) is the key to deriving a con-
sistent estimator that converges to an ϵ-stationary point of
F in finite time without access to second derivatives. The
main idea is to start with an initial value λ = λ0 > 0 and
gradually increase it on subsequent iterations: At iteration
k, λk = O(kb) for some b ∈ (0, 1]. The success of this
approach depends crucially on the growth rate captured by
the parameter b. On one hand, fast growth of λk removes
the bias quickly. On the other hand, fast growth of λk forces
a fast decay of step-sizes due to the growing nonsmoothness
of Lλk

, which slows down the overall convergence.

Our main technical contribution is to characterize an explicit
growth rate of λk that optimizes the trade-off between bias
and step-sizes, and to provide a non-asymptotic convergence
guarantee with explicit rates for the proposed algorithm.

• We propose a fully first-order method, F2SA, for
stochastic bilevel optimization. F2SA is a single-loop
style algorithm: For every outer variable update we
only update inner variables a constant number of times.

• We characterize explicit convergence rates of F2SA in
different stochastic regimes. It converges to an ϵ-
stationary-point of (P) after Õ(ϵ−3.5), Õ(ϵ−2.5), or
Õ(ϵ−1.5) iterations if both∇f and∇g contain stochas-
tic noise, if only access to∇f is noisy, or if we are in
deterministic settings, respectively. These complexities
can be improved to Õ(ϵ−2.5), Õ(ϵ−2), or Õ(ϵ−1.5), re-
spectively, if momentum or variance-reduction tech-
niques are employed. The crux of the analysis is to
understand the effect of the value of multipliers λk on
step-sizes, noise variances, and bias.

• We demonstrate the proposed algorithm on a data
hyper-cleaning task for MNIST. Even though our theo-
retical guarantees are not better than existing methods
that use second-order information, we illustrate that
F2SA can even outperform such methods in practice.

1.2. Related Work

Bilevel optimization has a long and rich history since its
first introduction in (Bracken & McGill, 1973). A num-
ber of algorithms have been proposed for bilevel optimiza-
tion. Classical results include approximation descent (Vi-
cente et al., 1994) and penalty function method (Ishizuka
& Aiyoshi, 1992; Anandalingam & White, 1990; White &
Anandalingam, 1993) for instance; see (Colson et al., 2007)
for a comprehensive overview. These results often deal
with several special cases of bilevel-optimization and only
provide asymptotic guarantees. Note that the penalty func-
tion methods in (Ishizuka & Aiyoshi, 1992; Anandalingam
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& White, 1990; White & Anandalingam, 1993) discuss
the landscape within the infinitesimal neighborhood of lo-
cal minimizers, and their results cannot imply practical
approaches to find a stationary point non-convex objectives
F .

Recently, several papers study gradient-based optimization
methods for bilevel optimization and its non-asymptotic
analysis. The first non-asymptotic analysis of a double-loop
algorithm was given in (Ghadimi & Wang, 2018), where an
inner problem finds an approximate solution of y∗(x) given
x, which is used to evaluate an approximation of ∇F (x).
Furthermore, (Ghadimi & Wang, 2018) uses the Neuman
series approximation to estimate the Hessian inverse when
we only have access to the stochastic oracles of second-order
derivatives.

The paper (Ghadimi & Wang, 2018) was followed by a flurry
of work that improved their result in numerous ways. For
instance, (Hong et al., 2020; Chen et al., 2021; 2022; Ji et al.,
2021) develop a single-loop style update by properly choos-
ing two step-sizes for the inner and outer iterations, along
with the improved sample complexity, i.e., the total num-
ber of accesses to first and second-order stochastic oracles.
The overall convergence rate is further optimized by using
variance-reduction and momentum techniques (Khanduri
et al., 2021; Dagréou et al., 2022; Guo et al., 2021; Yang
et al., 2021; Huang & Huang, 2021). We do not aim to com-
pete with the convergence rates obtained from this line of
work, since all of these method have access to second-order
derivatives, even though some computational cost might
be saved if good automatic differentiation packages (Mar-
gossian, 2019) are available. Rather, we avoid the needs
for second-order information altogether, allowing a simple
algorithm with low per-iteration complexity for large scale
applications.

The results most closely related to ours can be found in (Ye
et al., 2022; Sow et al., 2022). (Sow et al., 2022) considers
a primal-dual approach for (P’), but their main focus is to
get a biased solution when g is only convex (not strongly
convex), so the lower-level problem may have multiple so-
lutions. Their analysis is restricted to the case in which the
overall Lagrangian is strongly-convex in x (which is not
usually guaranteed) and they do not provide any guarantees
in terms of the true objective F . More recent work in (Ye
et al., 2022) is the closest to ours, but they only consider
deterministic gradient oracles, and do not provide conver-
gence guarantees in terms of F . Moreover, they prove a
convergence guarantee of O(k−1/4), whereas we show an
improved guarantee of Õ(k−2/3) in the deterministic case.

There are also other lines of work that study a simpler ver-
sion of the bilevel problem which has no coupling between
two variables x and y (e.g., see (Ferris & Mangasarian, 1991;
Solodov, 2007; Jiang et al., 2022)). In (Amini & Youse-

fian, 2019a;b), the Lagrangian formulation is exploited with
iteratively increasing multiplier. Note that the nature of
single-variable bilevel formulation is different from (P) as
the former is only interesting when the lower-level prob-
lem allows a multiple (convex) solution set. To our best
knowledge, the idea of iteratively increasing λk with its
non-asymptotic guarantee is new in the context of solv-
ing (P), and has the merit of avoiding (possibly) expensive
second-order computation.

2. Preliminaries
We state several assumptions on (P) to specify the prob-
lem class of interest. We consider (P) with the following
assumptions on objective functions:

Assumption 1. The functions f and g satisfy the following
conditions.

1. f is continuously differentiable and lf,1-smooth .

2. g is continuously differentiable and lg,1-smooth.

3. For every x̄ ∈ X , ∥∇yf(x̄, y)∥ ≤ lf,0 for all y.

We focus on well-conditioned bilevel optimization prob-
lems, i.e., when F (x) is well-defined, continuous and
smooth. The following assumption has been standard
for well-conditioned bilevel problems (Ghadimi & Wang,
2018):

Assumption 2. The following holds for g:

1. There exists an µg > 0 such that for all x̄ ∈ X , g(x̄, y)
is µg strongly-convex in y.

2. g is two-times continuously differentiable, and ∇2g is
lg,2-Lipschitz jointly in (x, y).

We assume that we can access first-order information of
objective functions only through stochastic gradient oracles:

Assumption 3. We access the gradients of objective
functions via unbiased estimators∇f(x, y; ζ),∇g(x, y;ϕ)
depending on random variables ζ and ϕ, respectively,
where E[∇f(x, y; ζ)] = ∇f(x, y) and E[∇g(x, y;ϕ)] =
∇g(x, y). The variances of stochastic gradient estimators
are bounded:

E[∥∇f(x, y; ζ)−∇f(x, y)∥2] ≤ σ2
f ,

E[∥∇g(x, y;ϕ)−∇g(x, y)∥2] ≤ σ2
g .

Throughout the paper, we assume that Assumptions 1-3 hold
unless specified otherwise. We use the following definition
as the optimality criteria for solving (P).

Definition 2.1 (ϵ-stationary point). A point x is called ϵ-
stationary if ∥∇F (x)∥2 ≤ ϵ, where ∇F is defined in (1).
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Notation. We say ak ≍ bk if ak and bk decreases (or in-
creases) in the same rate as k →∞, i.e., limk→∞ ak/bk =
Θ(1). Throughout the paper, ∥ · ∥ denotes the Euclidean
norm on finite dimensional space.

3. Algorithm
In this section, we develop an algorithm that converges to
a stationary point of the bilevel problem (i.e., a stationary
point of F (x) = f(x, y∗(x))) and makes use only of gradi-
ents of f and g. Recall the equivalent formulation (P’). To
see how we can avoid second-order derivatives, we observe
the gradient of∇Lλ:

∇xLλ(x, y) = ∇xf(x, y) + λ(∇xg(x, y)−∇g∗(x)),
∇yLλ(x, y) = ∇yf(x, y) + λ∇yg(x, y).

Note that

∇g∗(x) = ∇xg(x, y
∗(x)) +∇xy

∗(x)∇yg(x, y
∗(x))

= ∇xg(x, y
∗(x)),

due to the optimality condition for g at y∗(x). Thus, we
could consider optimizing Lλ(x, y) by introducing an aux-
iliary variable z that chases y∗(x), and setting up an al-
ternative bilevel formulation (P) with outer-level objective
Lλ(x

′, z), outer variable x′ = (x, y), and inner variable
z. However, such an approach settles in a different land-
scape from that of F (x), resulting in a bias. The question is
how tightly we can control this bias without compromising
too much smoothness of the alternative function Lλ, which
affects the overall step-size design and noise variance.

To control the bias, we need a better understanding of how
the functions Lλ and F (x) are related. Let us introduce an
auxiliary function L∗

λ defined as:

L∗
λ(x) := min

y
Lλ(x, y).

Note that if λ > 2lf,1/µg, then for every x̄ ∈ X , Lλ(x̄, y)
is at least (λµg/2) strongly-convex in y, and therefore its
minimizer y∗λ(x) is uniquely well-defined:

y∗λ(x) := argmin
y
Lλ(x, y). (2)

Since F (x) = limλ→∞ L∗
λ(x) for every x ∈ X , we could

expect that L∗
λ(x) is a well-defined proxy of F (x) for suf-

ficiently large λ > 0. The following lemma confirms this
intuition.

Lemma 3.1. For any x ∈ X and λ ≥ 2lf,1/µg ,∇L∗
λ(x) is

given by

∇xLλ(x, y
∗
λ(x)) = ∇xf(x, y

∗
λ(x))

+ λ(∇xg(x, y
∗
λ(x))−∇xg(x, y

∗(x))).

Algorithm 1 F2SA

Input: step sizes: {αk, γk}, multiplier difference sequence:
{δk}, inner-loop iteration count: T , step-size ratio: ξ, ini-
tializations: λ0, x0, y0, z0

1: for k = 0...K − 1 do
2: zk,0 ← zk, yk,0 ← yk
3: for t = 0...T − 1 do
4: zk,t+1 ← zk,t − γkh

k,t
gz

5: yk,t+1 ← yk,t − αk(h
k,t
fy + λkh

k,t
gy )

6: end for
7: zk+1 ← zk,T , yk+1 ← yk,T
8: xk+1 ← xk − ξαk(h

k
fx + λk(h

k
gxy − hk

gxz))
9: λk+1 ← λk + δk

10: end for

Furthermore, we have

∥∇F (x)−∇L∗
λ(x)∥ ≤ Cλ/λ,

where Cλ :=
4lf,0lg,1

µ2
g

(
lf,1 +

2lf,0lg,2
µg

)
.

Importantly,∇L∗
λ(x) can be computed only with first-order

derivatives of both f and g. Thus any first-order method
that finds a stationary point of L∗

λ(x) approximately follows
the trajectory of x updated with the exact ∇F (x), with a
bias of O(1/λ).

Our strategy is to use ∇L∗
λ(x) as a proxy to ∇F (x) for

generating a sequence of iterates {xk}. Accordingly, we in-
troduce sequences {yk} and {zk} that approximate y∗λk

(xk)
and y∗(xk), respectively. We gradually increase λk with k,
so that the bias in the sequence {xk} converges to 0.

Our Fully First-order Stochastic Approximation (F2SA)
method is shown in Algorithm 1. We emphasize that the
method works with stochastic gradients that are independent
unbiased estimators of gradients, i.e.,

hk,t
gz := ∇yg(xk, zk,t;ϕ

k,t
z ), hk,t

fy := ∇yf(xk, yk,t; ζ
k,t
y ),

hk,t
gy := ∇yg(xk, yk,t;ϕ

k,t
y ), hk

gxy := ∇xg(xk, yk+1;ϕ
k
xy),

hk
fx := ∇xf(xk, yk+1; ζ

k
x), h

k
gxz := ∇xg(xk, zk+1;ϕ

k
xz).

The algorithm can set T = 1 in conjunction with an appro-
priate choice of ξ, allowing a fully single-loop update for
all variables.

3.1. Step-Size Design Principle

We describe how we design the step-sizes for Algorithm 1
to achieve convergence to a ϵ-stationary point of F . Sev-
eral conditions must be satisfied. As will be shown in the
analysis, with (λkµg/2)-strong convexity of Lλk

in y, one-
step inner iteration of yk,t is a contraction mapping toward
y∗λ,k with rate 1−O(µgβk). Henceforth, we often use the
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Figure 1: yk should move faster than y∗λk
(xk) moves, and

stay within O(1/λk)-ball around y∗λk
(xk).

notation βk := αkλk, which is the effective step-size for
updating yk. For simplicity, we denote y∗λ,k := y∗λk

(xk) and
y∗k := y∗(xk).

We now describe the specific rules. Since the step size for
xk is essentially ξαk, and since we may need to traverse an
arbitrary distance from the initial point x0 to the optimal
value of x, we need αk = Ω(1/k). On the other hand, since
βk = αkλk is the effective step size for updating yk, we
need βk < O(1/lg,1) = O(1). Together, these observations
imply that the maximum rate of growth for λk cannot exceed
O(k).

Second, note that ∥xk+1 − xk∥ is (roughly) proportional to

∥∇F (xk)∥+ Cλ/λk + λk∥yk − y∗λ,k∥+ λk∥zk − y∗k∥.

This rate is optimized when ∥yk−y∗λ,k∥ ≍ ∥zk−y∗k∥ ≍ λ−2
k .

Thus, the ideal growth rate for λk is ∥yk − y∗λ,k∥1/2 or
∥zk − y∗k∥1/2. We will design the rate of convergence of yk
and zk to be the same, i.e., βk ≍ γk. For instance, when
we have stochastic noises in the gradient estimate of g, i.e.,
σ2
g > 0, the expected convergence rate of ∥yk − y∗λk

∥2 is
O(βk), since the sequence is optimized for strongly convex
functions. This suggests λk ≍ β

−1/4
k as the ideal rate of

growth for λk.

The crux of Algorithm 1 is how well yk (and zk) can chase
y∗λk

(xk) (resp. y∗(xk)) when xk and λk are changing at
every iteration. We characterize first how fast y∗λ(x) moves
in relation to the movements of λ and x.

Lemma 3.2. For any λ2 ≥ λ1 ≥ 2lf,1/µg and x1, x2 ∈ X ,
we have

∥y∗λ1
(x1)− y∗λ2

(x2)∥ ≤
2(λ2 − λ1)

λ1λ2

lf,0
µg

+ lλ,0∥x2 − x1∥,

for some lλ,0 ≤ 3lg,1/µg .

For Algorithm 1 to converge to a desired point, yk should
move sufficiently fast toward the current target y∗λ,k every it-
eration, dominating the movement of target y∗λ,k that results

Algorithm 2 F3SA

Input: step sizes: {αk, γk}, multiplier difference sequence:
{δk}, momentum-weight sequence {ηk}, step-size ratio: ξ,
initialization: λ0, x0, y0, z0

1: for k = 0...K − 1 do
2: zk+1 ← zk − γkh̃

k
gz

3: yk+1 ← yk − αk(h̃
k
fy + λkh̃

k
gy)

4: xk+1 ← xk − ξαk(h̃
k
fx + λk(h̃

k
gxy − h̃k

gxz))
5: λk+1 ← λk + δk
6: end for

from updates to xk and λk (see Figure 1). At a minimum,
the following condition should hold (in expectation):

∥yk+1 − y∗λ,k∥ < ∥yk − y∗λ,k−1∥.

Since ∥yk+1 − y∗λ,k∥2 can be bounded with T -steps of 1−
O(µgβk) contractions, starting from yk, we require

(1−O(Tµgβk)) ∥yk − y∗λ,k∥2 < ∥yk − y∗λ,k−1∥2.

Now, applying the bound in Lemma 3.2, the minimal condi-
tion is given by:

∥y∗λ,k−1 − y∗λ,k∥ ≤ (lf,0/µg) · (δk/λ2
k) + lλ,0∥xk − xk−1∥

≤ Tµgβk∥yk − y∗λ,k−1∥.

Note that ∥yk+1 − y∗λ,k∥ should decay faster than λ−1
k . Oth-

erwise, the bias in updating xk using yk (to estimate∇L∗
λk

)
is larger than λk∥yk+1 − y∗λ,k∥, and this amount might
blow up. Also, it can be easily seen that ∥xk − xk−1∥ =
Ω(ξβk∥yk − y∗λ,k−1∥). We can thus derive two simple con-
ditions:

δk
λk
≤ OP(1) · βk,

ξ

T
< OP(1),

where OP(1) are instance-dependent constants. If λk grows
in some polynomial rate, then δk/λk = O(1/k) and the
first condition is satisfied provided that βk = Ω(1/k). The
second condition indicates the number of inner iterations T
required for each outer iteration. We can set T = 1 (thus
making the algorithm single-loop) by setting ξ sufficiently
small. Alternatively, we can set ξ = 1 choose T > 1 to
depend on some instance-specific parameters.

3.2. Extension: Integrating Momentum

Given the simple structure of Algorithm 1, we can inte-
grate variance-reduction techniques to improve the overall
convergence rates. One relevant technique is the momentum-
assisting technique of (Khanduri et al., 2021) for stochastic
bilevel optimization. To simplify the presentation, we con-
sider a fully single-loop variant by setting T = 1.
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To apply the momentum technique, we only need to replace
the simple unbiased gradient estimators h with momentum-
assisted gradient estimators h̃. For instance, h̃k

z can be
defined with a proper momentum weight sequence ηk ∈
(0, 1] as follows:

h̃k
z :=∇yg(xk, zk;ϕ

k
z)

+ (1− ηk)
(
h̃k−1
z −∇yg(xk−1, zk−1;ϕ

k
z)
)
.

Other quantities h̃fy , h̃gy , h̃fx, h̃gxy , h̃gxz are defined simi-
larly, with the same momentum-weight sequence. We defer
the full description of those quantities to Appendix C. The
version of our algorithm that incorporates momentum is
called Faster Fully First-order Stochastic Approximation
(F3SA); it is described in Algorithm 2, where we simply
replace h with h̃. Note that we have additional moment-
weight parameters {ηk}.

4. Main Results
In this section we provide non-asymptotic convergence guar-
antees of the proposed algorithms. For Algorithm 1, we
prove in Theorem 4.1 that the weighted sum of ∥∇F (xk)∥2
in expectation is bounded from above. By choosing suitable
step sizes, the estimate yields a convergence rate. Depen-
dence on stochastic noises is explicated in Corollaries 4.2.
Similar results with better convergence rates and weaker
assumptions are proved for Algorithm 2; see Theorem 4.3
and Corollary 4.4.

4.1. Main Result for Algorithm 1

Two mild assumptions are required for exploiting the
smoothness of y∗λ(x).

Assumption 4. The gradient with respect to x is bounded
for functions f and g:

1. For every ȳ, ∥∇xf(x, ȳ)∥ ≤ lf,0 for all x ∈ X .

2. For every ȳ, ∥∇xg(x, ȳ)∥ ≤ lg,0 for all x ∈ X .

Assumption 5. f is two-times continuously differentiable,
and ∇2f is lf,2-Lipschitz in (x, y).

The smoothness of y∗λ(x) is used to keep the number
of effective inner iterations constant throughout all outer-
iterations, as in (Chen et al., 2021).

Before we state our convergence result, let us define some
additional notation. We denote the second-moment bound of
the x update, xk+1−xk, as M := max(l2f,0+σ2

f , l
2
g,0+σ2

g).
We also denote l∗,0 = max(1, lλ0,0) and l∗,1 = lλ0,1 where
λ0 is the starting value of Lagrange multiplier.

We are now ready to state our main results for Algorithm 1.

Theorem 4.1. Suppose that Assumptions 1 - 5 hold, and pa-
rameters and step-sizes are chosen such that λ0 ≥ 2lf,1/µg

and

βk ≤ γk ≤ min

(
1

4lg,1
,

1

4Tµg

)
, αk ≤

1

2ξlF,1
, (3a)

ξ

T
< cξµg ·max

(
lg,1l

2
∗,0, l∗,1

√
M
)−1

,
δk
λk
≤ Tµgβk

16
(3b)

for all k ≥ 0 with a proper absolute constant cξ > 0. Then
for any K ≥ 1, the iterates generated by Algorithm 1 satisfy

K−1∑
k=0

ξαkE[∥∇F (xk)∥2] ≤ OP(1) ·
∑
k

ξαkλ
−2
k

+OP(σ
2
f ) ·

∑
k

α2
kλk +OP(σ

2
g) ·

∑
k

γ2
kλk +OP(1),

where OP(1) are instance-dependent constants.

The proof of Theorem 4.1 is given in Appendix B. At a high
level, our analysis investigates the decrease in expectation
(with k) of the potential function Vk defined by

Vk :=(F (xk)− F ∗) + lg,1λk∥yk − y∗λk
(xk)∥2

+
λklg,1
2
∥zk − y∗(xk)∥2, (4)

where F ∗ is the minimum value of F and y∗λ and y∗ are
given in (2) and (P), respectively. That is, in addition to
the decrease in values of F and zk − y∗k which have been
standardized in literature, we track the error between yk and
y∗λk

(xk) since y∗λ,k is the key to compute true∇F (xk) only
with gradients. It is also shown in the proof that the right
scaling factor for the tracking errors is OP(λk).

We now describe how we design step sizes. Note that the
conditions (3a) are standard conditions on the step sizes
for gradient-based methods with smooth functions. The
conditions (3b) arise from the double-loop nature of the
problem, as discussed in Section 3.1. In accordance with
the step-size design rule (3), we propose the following:

T = max
(
32, (cξµg)

−1 max
(
lg,1l

2
∗,0,
√
Ml∗,1

))
,

ξ = 1, αk =
cα

(k + k0)a
, γk =

cγ
(k + k0)c

, (5)

and for the multiplier increase sequence {δk},

δk = min

(
Tµg

16
αkλ

2
k,

γk
2αk
− λk

)
, (6)

with some rate constants a, c ∈ [0, 1] and a ≥ c. We design
the starting value λ0 of the Lagrange multiplier and the
constants as

k0 ≥
4

µg
max

(
ξlF,1

2
, T lg,1, lf,1

)
, λ0 ≥

2lf,1
µg

,

6
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cγ =
1

µgk
1−c
0

, cα =
1

2λ0µgk
1−a
0

. (7)

These choices simplify the convergence rate analysis, but
any set of choices can be used as long as it satisfies (3). With
the choices above, we can specify the rate of convergence
in three different regimes of stochastic noises.

Corollary 4.2. Suppose that the conditions of Theorem 4.1
hold, with step-sizes designed as in (5), (6), and (7). Let
R be a random variable drawn from a uniform distribution
over {0, ...,K− 1}. Then the following convergence results
hold after K iterations of Algorithm 1.

(a) If stochastic noises are present in both upper-level
objective f and lower-level objective g (i.e., σ2

f , σ
2
g >

0), then by setting a = 5/7 and c = 4/7 in (5) and (7),
we obtain E[∥∇F (xR)∥2] ≍ logK

K2/7 ,

(b) If stochastic noises are present only in f (i.e., σ2
f > 0),

σ2
g = 0), then by setting a = 3/5 and c = 2/5 in (5)

and (7), we obtain E[∥∇F (xR)∥2] ≍ logK
K2/5 ,

(c) If we have access to exact information about f and g
(i.e., σ2

f = σ2
g = 0), then by setting a = 1/3 and c = 0

in (5) and (7), we obtain ∥∇F (xK)∥2 ≍ logK
K2/3 ,

As these results show, stronger convergence results can be
proved when noise is present in fewer places in the problem.
If stochastic noise is present only in the upper-level rather
than in both levels, the rate can be improved from O(k−2/7)
to O(k−2/5). In deterministic settings (no noise), we get a
rate of O(k−2/3). This rate compares to the O(k−1) rate
that can be obtained with second-order based methods.

4.2. Main Result for Algorithm 2

When we use the momentum-assisting technique, we require
the stochastic functions to be well-behaved as well.

Assumption 6. Assumption 1 holds for f(x, y; ζ) and
g(x, y;ϕ) with probability 1.

One technical benefit of the momentum technique is that
now we no longer require the bounded-gradient assumption
w.r.t. x (Assumption 4) or the smoothness of Hessian of f
(Assumption 5) for the analysis, as we no longer make use of
the smoothness of y∗λ. We show the following convergence
result for Algorithm 2.

Theorem 4.3. Suppose Assumptions 1-3 and 6 hold. If
step-size parameters are chosen such that λ0 ≥ 2lf,1/µg

and

βk ≤ γk ≤
1

16lg,1
, ξαk ≤

1

lF,1
,

ξ ≤ cξ
µg

lg,1l2∗,0
,
δk
λk
≤ µgβk

8
, (8a)

max

(
2
γk−1 − γk

γk−1
, cη

l3g,1
µg

γ2
k

)
≤ ηk+1 ≤ 1,

η0 = η1 = 1, δk/γk = o(1), (8b)

with proper absolute constants cξ, cη > 0, then for any
K ≥ 1, the iterates generated by Algorithm 2 satisfy

K−1∑
k=0

ξαkE[∥∇F (xk)∥2] ≤ OP(1) ·
∑
k

ξαkλ
−2
k

+OP(σ
2
f ) ·

∑
k

η2k+1

γkλk
+OP(σ

2
g) ·

∑
k

η2k+1λk

γk
+OP(1),

where OP(1) are instance-dependent constants.

The proof of Theorem 4.3 appears in Appendix C. We in-
troduce the following step-size design, consistent with (8).

αk =
cα

(k + k0)a
, γk =

cγ
(k + k0)c

, ηk = (k + 1)−2c

(9a)

ξ ≤ cξ
µg

lg,1l2∗,0
, δk =

γk
αk
− λk, λ0 ≥

2lf,1
µg

, (9b)

k0 ≥
128

µg
max

(
ξlF,1, lg,1

√
cηlg,1
µg

)
,

cγ =
8

µgk
1−c
0

, cα =
8

µgλ0k
1−a
0

, (9c)

with some rate constants a, c ∈ [0, 1] and a ≥ c. As a corol-
lary, we can obtain faster convergence rates for Algorithm 2
than Algorithm 1.

Corollary 4.4. Suppose the conditions of Theorem 4.3 hold.
Suppose that Algorithm 2 is run with step-sizes are designed
as in (9). Let R be a random variable drawn from a uni-
form distribution over {0, ...,K − 1}. Then the following
convergence results hold after K iterations of Algorithm 2.

(a) If stochastic noises are present in both upper-level
objective f and lower-level objective g (i.e., σ2

f , σ
2
g >

0), then by setting a = 3/5 and c = 2/5 in (9), we
obtain E[∥∇F (xR)∥2] ≍ logK

K2/5 .

(b) If stochastic noises are present only in f (i.e., σ2
f > 0),

σ2
g = 0), then by setting a = 1/2 and c = 1/4 in (9),

we obtain E[∥∇F (xR)∥2] ≍ logK
K1/2 .

(c) If we have access to exact information about f and g
(i.e., σ2

f = σ2
g = 0), then by setting a = 1/3 and c = 0

in (9), we obtain ∥∇F (xK)∥2 ≍ logK
K2/3 .

The improvements in rates are different in different stochas-
ticity regimes. For instance, the sample complexity required

7
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(a) (b)

Figure 2: Outer objective (validation) loss with label corruption rate: (a) p = 0.1, (b) p = 0.3.

to achieve ϵ-stationary point is ÕP(ϵ
−7/2) without momen-

tum and ÕP(ϵ
−5/2) with momentum — a factor of O(ϵ)

improvement — when stochastic noises are present in both
levels. In contrast, when stochastic noises are only in the
upper-level objective, then the overall sample complexity
is tightened from ÕP(ϵ

−5/2) to ÕP(ϵ
−2), an O(ϵ−0.5) im-

provement. Whether Algorithm 2 achieves the optimal sam-
ple complexity for fully first-order methods is an interesting
topic for future work.

4.3. Discussion

Because our algorithms do not access second-order deriva-
tives of g, their iteration convergence rate is slower, decreas-
ing from O(k−1/2) (e.g., (Chen et al., 2021)) to O(k−2/7)
for algorithms without momentum and from O(k−2/3) (e.g.,
(Khanduri et al., 2021)) to O(k−2/5) for algorithms with
momentum. This is not unexpected since we use less infor-
mation. Our experiments, perhaps surprisingly, do not show
a slowdown in the convergence speed. In fact, first-order
methods even outperform existing methods that use second-
order information of g, as we show in Section 5. We add
that in practice, if a bias of O(1/λ2)-bias in the solution
is not critical to the overall performance, then we can set
λk := λ constant at all iterations and choose more aggres-
sive step-sizes, e.g, αk ≍ k−1/2, γk ≍ k−1/2 as in (Chen
et al., 2021). Such a strategy yields faster convergence to a
certain biased point.

When deterministic gradient oracles are available, the au-
thors in (Ye et al., 2022) employed the so called dynamic-
barrier method (Gong et al., 2021) to decide the value
of λk at every iteration, based on ∥∇yg(xk, zk+1) −
∇yg(xk, yk+1)∥. Such an approach requires precise knowl-
edge of the latter quantity, which is not available in stochas-
tic settings. Our result shows that a simple design of

polynomial-rate growth of λk is sufficient; an adaptive
choice is not needed for good practical performance. Fur-
ther, the convergence rate reported in (Ye et al., 2022) is
k−1/4, while our result guarantees k−2/3 convergence rate
in deterministic settings.

5. Numerical Experiment
We demonstrate the proposed algorithms on a data hyper-
cleaning task involving MNIST (Deng, 2012). We are
given a noisy training set Dtrain := {(x̃i, ỹi)}ni=1 with
the label ỹi being randomly corrupted with probability
p < 1. We are also given a small but clean validation
set Dval := {(xi, yi)}mi=1. The goal is to assign weights to
each training data point so that the model trained on the
weighted training set yields good performance on the valida-
tion set. This task can be formulated as bilevel opimization
problem, as follows:

min
λ

∑m
i=1 l(xi, yi;w

∗)

s.t. w∗ ∈ argmin
w

∑n
i=1 σ(λi)l(x̃i, ỹi;w) + c∥w∥2.

where σ(·) is a sigmoid function, l(x, y;w) is a logistic
loss function with parameter w and c is a regularization
constant. We use n = 19000 training samples and m =
1000 clean validation samples with regularization parameter
c = 0.01. We do not include momentum-assisted methods
in our discussion, since we do not observe a significant
improvement over the F2SA approach of Algorithm 1 .

We demonstrate the performance of Algorithm 1 (F2SA)
and the second-order based method (SOBO) with batch
sizes 50 and 500. We note that several existing second-
order methods are in principle the same when momentum
or variance-reduction techniques are omitted (Ghadimi &
Wang, 2018; Hong et al., 2020; Chen et al., 2021), so we use

8
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the implementation of stocBiO (Ji et al., 2021) as a represen-
tative of the other second-order methods. As a baseline, we
also add a result from training without bilevel formulation
(Without BO), i.e., train on all samples as usual, ignoring
the label corruption. Results are shown in Figure 2.1

Although iteration complexity is worse for first-order meth-
ods than SOBO, we observe that F2SA is at least on par
with SOBO in this example. It can even give superior per-
formance when the batch size is small. We conjecture that
stochastic noises in Hessian become significantly larger than
those in gradients, degrading the performance of SOBO. In
our experiment, we also observe that the use of a truncated
Neumann approximation (Ghadimi & Wang, 2018) for esti-
mating the Hessian-inverse may induce non-negligible bias.
In contrast, our fully first-order method F2SA is much less
sensitive to small batch sizes and free of bias.

6. Conclusion
In this work, we study a fully first-order method for stochas-
tic bilevel optimization and its non-asymptotic convergence
behavior. While we focus on well-conditioned bilevel prob-
lems, there are already several recent work that considers
a more challenging case when the lower-level optimization
problem can be non-strongly-convex and non-smooth Liu
et al. (2021b;a); Arbel & Mairal (2022). The potential ben-
efit of the first-order method over existing second-order
based methods is that it can still be considered to tackle
such scenarios, whereas the formula (1) is only available for
well-conditioned lower-level problems. We believe it is an
important future direction to study a more general class of
(P) beyond strongly-convex lower-level problems with fully
first-order methods. Adding variable-dependent constraints
to the lower-level problem would also lead to an interesting
extension of fully first-order approaches.
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A. Auxiliary Lemmas
All deferred proofs in the main text and appendix are directed to Appendix D.

A.1. Additional Notation

Symbol Meaning Less than
lf,0 Bound of ∥∇xf∥, ∥∇yf∥ ·
lf,1 Smoothness of f ·
lg,0 Bound of ∥∇xg∥ ·
lg,1 Smoothness of g ·
µg Strong-convexity of g ·
lg,2 Hessian-continuity of g ·
Mf Second-order moment of∇f(x, y; ζ) l2f,0 + σ2

f

Mg Second-order moment of∇g(x, y;ϕ) l2g,0 + σ2
g

lf,2 Hessian-continuity of f (with Assumption 5) ·
lF,1 Smoothness of F (x) l∗,0

(
lf,1 +

l2g,1
µg

+
2lf,0lg,1lg,2

µ2
g

)
lλ,0 Lipschitzness of y∗λ(x) (for all λ ≥ 2lf,1/µg) 3lg,1

µg

lλ,1 Smoothness of y∗λ(x) (for λ ≥ 2lf,1/µg with Assumption 5) 32(lg,2 + λ−1 · lf,2)
l2g,1
µ3
g

l∗,0 = 1 +maxλ≥2lf,1/µg
lλ,0 ·

l∗,1 = maxλ≥2lf,1/µg
lλ,1 ·

Table 1: Meaning of Constants

To simplify the representation for the movement of variables, we often use qxk , qyk and qzk defined as

qxk := ∇xf(xk, yk+1) + λk(∇xg(xk, yk+1)−∇xg(xk, zk+1)),

qyk,t := ∇yf(xk, yk,t) + λk∇yg(xk, yk,t),

qzk,t := ∇yg(xk, zk,t). (10)

The above quantities are the expected movements of xk, y
(t)
k , z

(t)
k respectively if there are no stochastic noises in gradient

oracles. We also summarize symbols and their meanings for instance-specific constants in Table 1.

A.2. Auxiliary Lemmas

We first state a few lemmas that will be useful in our main proofs.

Lemma A.1. F (x) = f(x, y∗(x)) is lF,1-smooth where

lF,1 ≤ l∗,0

(
lf,1 +

l2g,1
µg

+
2lf,0lg,1lg,2

µ2
g

)
.

Lemma A.2. For any x, y, λ > 0, the following holds:

∥∇F (x)−∇xLλ(x, y) +∇2
xyg(x, y

∗(x))⊤∇2
yyg(x, y

∗(x))−1∇yLλ(x, y)∥
≤ 2(lg,1/µg)∥y − y∗(x)∥ (lf,1 + λ ·min(2lg,1, lg,2∥y − y∗(x)∥)) .

Lemma A.3. Under Assumptions 1, 2 and 5, and λ > 2lf,1/µg, a function y∗λ(x) is lλ,1-smooth: for any x1, x2 ∈ X , we
have

∥∇y∗λ(x1)−∇y∗λ(x2)∥ ≤ lλ,1∥x1 − x2∥

where lλ,1 ≤ 32(lg,2 + λ−1lf,2)l
2
g,1/µ

3
g .
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Lemma A.4. For any fixed λ > 2lf,1/µg , at every k iteration conditioned on Fk, we have

E[∥y∗(xk+1)− y∗(xk)∥2|Fk] ≤ ξ2l2∗,0
(
α2
kE[∥qxk∥2|Fk] + α2

kσ
2
f + β2

kσ
2
g

)
.

Lemma A.5. At every kth iteration, conditioned on Fk, let vk be a random vector decided before updating xk. Then for
any ηk > 0, we have

E[⟨vk, y∗(xk+1)− y∗(xk)⟩|Fk] ≤ (ξαkηk +Mξ2l2∗,1β
2
k)E[∥vk∥2|Fk]

+

(
ξαkl

2
∗,0

4ηk
+

ξ2α2
k

4

)
E[∥qxk∥2|Fk] +

ξ2

4
(α2

kσ
2
f + β2

kσ
2
g),

where M := max
(
l2f,0 + σ2

f , l
2
g,0 + σ2

g

)
.

Lemma A.6. Under Assumptions 1-5, at every kth iteration, conditioned on Fk, let vk be a random vector decided before
updating xk. Then for any ηk > 0, we have

E[⟨vk, y∗λk+1
(xk+1)− y∗λk

(xk)⟩|Fk] ≤ (δk/λk + ξαkηk +Mξ2l2λk,1
β2
k)E[∥vk∥2|Fk]

+

(
ξαkl

2
∗,0

4ηk
+

ξ2α2
k

4

)
E[∥qxk∥2|Fk] +

ξ2

4
(α2

kσ
2
f + β2

kσ
2
g) +

δkl
2
f,0

λ3
kµ

2
g

,

where M := max
(
l2f,0 + σ2

f , l
2
g,0 + σ2

g

)
.

B. Main Results for Algorithm 1
In this section, we prove our key estimate, Theorem 4.1. Our aim is to find the upper bound of Vk+1 − Vk for the potential
function Vk given in (4). For xk and yk given in Algorithm 1, the following notations will be used:

Ik := ∥yk − y∗λ,k∥2 and Jk := ∥zk − y∗k∥2 (11)

where y∗λ,k := y∗λk
(xk), y∗k := y∗(xk), and x∗ = argminx F (x). Recall that y∗λ and y∗ are given in (2) and (P), respectively.

Using the above notation, the potential function given in (4) can be rewritten as

Vk := (F (xk)− F (x∗)) + λklg,1Ik +
λklg,1
2
Jk (12)

for each k ∈ N. In the following three subsections, we find the upper bound of Vk+1 − Vk in terms of Ik and Jk. The
proof of Theorem 4.1 is given in Section B.4.

B.1. Estimation of F (xk+1)− F (xk)

The step size αk is designed to satisfy

(step-size rule): αk ≤
1

2ξlF,1
, (13)

which is essential to obtain the negative term − ξαk

4 ∥q
x
k∥2 on the right hand side of (15). This negativity plays an important

role in the proof of Theorem 4.1 in Section B.4.

On the other hand, we also impose

(step-size rule):
ξ

T
≤ µg

96lg,1
. (14)

The terms, ∥yk+1 − y∗λ,k∥2 and ∥zk+1 − y∗k∥2, in the upper bound (15) will be estimated in Lemma B.3 and Lemma B.5,
respectively.

12
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Proposition B.1. Under the step-size rules given in (13), and (14) and λk ≥ 2lf,1/µg , it holds that for each k ∈ N

E[F (xk+1)− F (xk)|Fk] ≤ −
ξαk

4

(
2∥∇F (xk)∥2 + ∥qxk∥2

)
+

Tµgαkλ
2
k

32

(
2∥yk+1 − y∗λ,k∥2 + ∥zk+1 − y∗k∥2

)
+

ξ2lF,1

2
(α2

kσ
2
f + β2

kσ
2
g) +

ξαk

2
· 3C2

λλ
−2
k , (15)

where qxk is given in (10), and Cλ :=
4lf,0lg,1

µ2
g

(
lf,1 +

2lf,0lg,2
µg

)
.

Proof. From the smoothness of F ,

E[F (xk+1)− F (xk)|Fk] ≤ E[⟨∇F (xk), xk+1 − xk⟩+
lF,1

2
∥xk+1 − xk∥2|Fk].

As qxk satisfies E[xk+1 − xk|Fk] = αkq
x
k ,

E[F (xk+1)− F (xk)|Fk] = −ξαk⟨∇xF (xk), q
x
k⟩+

lF,1

2
E[∥xk+1 − xk∥2|Fk]

= −ξαk

2
(∥∇F (xk)∥2 + ∥qxk∥2 − ∥∇F (xk)− qxk∥2) +

lF,1

2
E[∥xk+1 − xk∥2|Fk].

Note that

E[∥xk+1 − xk∥2] ≤ ξ2α2
kE[∥qxk∥2 + ξ2(α2

kσ
2
f + β2

kσ
2
g),

and thus with (13) we have

E[F (xk+1)− F (xk)|Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 −

ξαk

4
∥qxk∥2

+
ξαk

2
∥∇F (xk)− qxk∥2 +

ξ2lF,1

2
(α2

kσ
2
f + β2

kσ
2
g).

Next, we bound ∥∇F (xk)− qxk∥ using the triangle inequality:

∥qxk −∇F (xk)∥ = ∥qxk −∇L∗
λk
(xk) +∇L∗

λk
(xk)−∇F (xk)∥

≤ ∥∇xf(xk, yk+1)−∇xf(xk, y
∗
λ,k)∥+ λk∥∇xg(xk, yk+1)−∇xg(xk, y

∗
λ,k)∥

+ λk∥∇xg(xk, zk+1)−∇xg(xk, y
∗
k)∥+ ∥∇L∗

λk
(xk)−∇F (xk)∥.

From Lemma 3.1, the term ∥∇L∗
λk
(xk)−∇F (xk)∥ is bounded by Cλ/λk. Combining with the regularity of f and g yields

the following:

∥qxk −∇F (xk)∥ ≤ 2lg,1λk∥yk+1 − y∗λ,k∥+ lg,1λk∥zk+1 − y∗k∥+ Cλ/λk. (16)

Note that λk ≥ 2lf,1/µg , and thus lf,1 < lg,1λk.

Finally, from Cauchy-Schwartz inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we get

E[F (xk+1)− F (xk)|Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 −

ξαk

4
∥qxk∥2 (17)

+
ξαk

2
· 3C2

λλ
−2
k + 3ξαklg,1λ

2
k∥zk+1 − y∗k∥2 + 6ξαklg,1λ

2
k∥yk+1 − y∗λ,k∥2 +

ξ2lF,1

2
(α2

kσ
2
f + β2

kσ
2
g).

The step-size condition (14) concludes our claim.

13
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B.2. Descent Lemma for yk towards y∗λ,k
In this section, the upper bounds of Ik+1 and ∥yk+1 − y∗λ,k∥ are provided, respectively, in Lemma B.2 and Lemma B.3. The
following rule is required to ensure that ∥yk+1 − yλ,k+1∥2 contracts:

(step-size rule):
δk
λk
≤ Tβkµg

32
, and 2ξ2Ml2∗,1β

2
k < Tβkµg/16. (18)

The first condition holds directly from (3b), and the second condition holds since βk ≤ 1
4Tµg

and also

ξ2

T 2
≤

µ2
g

8
(Ml2∗,l)

−1,

which also holds by (3b) with sufficiently small cξ.

Lemma B.2. Under the step-size rule (18), it holds that for each k ∈ N

E[Ik+1|Fk] ≤ (1 + Tβkµg/4)E[∥yk+1 − y∗λ,k∥2|Fk]

+O

(
ξ2l2∗,0α

2
k

µgTβk

)
E[∥qxk∥2|Fk] +O

(
δk
λ3
k

l2f,0
µ2
g

)
+O(ξ2l2∗,0) · (α2

kσ
2
f + β2

kσ
2
g). (19)

where Ik and qxk are given in (11) and (10), respectively.

Proof. We can start from

∥yk+1 − y∗λ,k+1∥2 = ∥yk+1 − y∗λ,k∥2︸ ︷︷ ︸
(i)

+ ∥y∗λ,k+1 − y∗λ,k∥2︸ ︷︷ ︸
(ii)

− 2⟨yk+1 − y∗λ,k, y
∗
λ,k+1 − y∗λ,k⟩︸ ︷︷ ︸

(iii)

.

The upper bound of (i) is given in Lemma B.3 below. To bound (ii), we invoke Lemma 3.2 to get

(ii) : E[∥y∗λ,k+1 − y∗λ,k∥2|Fk] ≤
4δ2k

λ2
kλ

2
k+1

l2f,0
µ2
g

+ l2∗,0E[∥xk+1 − xk∥2|Fk]

≤ 4δ2k
λ4
k

l2f,0
µ2
g

+ ξ2l2∗,0(α
2
kE[∥qxk∥2] + α2

kσ
2
f + β2

kσ
2
f ).

For (iii), recall the smoothness of y∗λ(x) in Lemma A.3, and thus Lemma A.6. By setting v = yk+1 − y∗λ,k and
ηk = Tµgλk/(16ξ), and get

(iii) ≤ (2δk/λk + Tβkµg/8 + 2Mξ2l2∗,1β
2
k)E[∥yk+1 − y∗λ,k∥2|Fk]

+ ξ2

(
α2
k

2
+

8α2
kl

2
∗,0

µgTβk

)
∥qxk∥2 +

ξ2

2
(α2

kσ
2
f + β2

kσ
2
g) +

2δk
λ3
k

l2f,0
µ3
g

.

We sum up the (i), (ii), (iii) to conclude

E[Ik+1|Fk] ≤
(
1 + 2δk/λk + Tβkµg/8 + 2Mξ2l2∗,1β

2
k

)
E[∥yk+1 − y∗λ,k∥2]

+O

(
ξ2l2∗,0α

2
k

µgTβk

)
∥qxk∥2 +O

(
δk
λ3
k

l2f,0
µ2
g

)
+O(ξ2l2∗,0) · (α2

kσ
2
f + β2

kσ
2
g). (20)

Lastly, the step-size rule (18) yields our conclusion.

Next, we note that αk and βk are chosen to satisfy

(step size rules): αk ≤
1

8lf,1
and βk ≤

1

8lg,1
, (21)

Note that βk ≤ 1
8lg,1

is given from the step-size condition (3a), and αk ≤ 1
8lg,1λk

≤ 1
8lf,1

since λk ≥ lf,1/µg .

14
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Lemma B.3. Under the step-size rule given in (21), it holds that for each k ∈ N

E[∥yk+1 − y∗λ,k∥2|Fk] ≤ (1− 3Tµgβk/4)Ik + T (α2
kσ

2
f + β2

kσ
2
g). (22)

Proof. Since E[y(t+1)
k − y

(t)
k |Fk] = −αk∇yq

(t)
k = −αk∇yLλk

(xk, y
(t)
k ), we have

E[∥y(t+1)
k − y∗λ,k∥2|Fk] = ∥y(t)k − y∗λ,k∥2 − 2αk⟨∇yq

(t)
k , y

(t)
k − y∗λ,k⟩+ E[∥y(t+1)

k − y
(t)
k ∥

2|Fk].

As we start from λ0 ≥ 2µf/µg , all Lk is (λkµg/2)-strongly convex in y, and we have

max

(
λkµg

2
∥y(t)k − y∗λ,k∥2,

1

lf,1 + λklg,1
∥∇yq

(t)
k ∥

2

)
≤ ⟨∇yq

(t)
k , y

(t)
k − y∗λ,k⟩.

Using E[∥y(t+1)
k − y

(t)
k ∥2|Fk] ≤ α2

k∥∇yq
(t)
k ∥2 + α2

kσ
2
f + β2

kσ
2
g , have

(i) : E[∥y(t+1)
k − y∗λ,k∥2|Fk] ≤ (1− 3µgβk/4)∥y(t)k − y∗λ,k∥2 + (α2

kσ
2
f + β2

kσ
2
g),

where we use αk(lf,1 + λklg,1) = αklf,1 + βklg,1 ≤ 1/4 if we have (21). Repeating this T times, we get (22). Note that
yk+1 = y

(T )
k and yk = y

(0)
k .

B.3. Descent Lemma for zk towards y∗k
Similar to the previous section, we provide the upper bound of Jk+1 first and then estimate ∥zk+1 − y∗k∥ that appears in the
upper bound. We work with the following step-size condition:

(step-size rule): 2Ml2∗,1ξ
2β2

k ≤ Tµgγk/16, (23)

This condition holds since βk ≤ γk, and βk ≤ 1
4Tµg

and ξ2

T 2 ≤
µ2
g

8 (Ml2∗,1)
−1.

Lemma B.4. Under the step-size rule (23), at each kth iteration, the following holds:

E[Jk+1|Fk] ≤
(
1 +

3Tγkµg

8

)
· E[∥zk+1 − y∗k∥2|Fk]

+O

(
ξ2α2

kl
2
∗,0

Tµgγk

)
∥qxk∥2 +O

(
ξ2l2∗,0

)
(α2

kσ
2
f + β2

kσ
2
g). (24)

Proof. We estimate each term in the following simple decomposition.

∥zk+1 − y∗k+1∥2 = ∥zk+1 − y∗k∥2︸ ︷︷ ︸
(i)

+ ∥y∗k+1 − y∗k∥2︸ ︷︷ ︸
(ii)

−2 ⟨zk+1 − y∗k, y
∗
k+1 − y∗k⟩︸ ︷︷ ︸

(iii)

.

Lemma 3.2 implies that

(ii) : E[∥y∗k+1 − y∗k∥2|Fk] ≤ l2∗,0ξ
2(α2

k∥∇xqk∥2 + α2
kσ

2
f + β2

kσ
2
g).

For (iii), we recall Lemma A.5 with vk = zk+1 − y∗k and ηk = Tµgγk/(8ξαk), we have

(iii) : ⟨zk+1 − y∗k, y
∗
k+1 − y∗k⟩ ≤ (Tγkµg/8 +Mξ2l2∗,1β

2
k)E[∥zk+1 − y∗k∥2|Fk]

+

(
ξ2α2

k

4
+

2ξ2α2
kl

2
∗,0

Tµgγk

)
∥qxk∥2 +

ξ2

4
(α2

kσ
2
f + β2

kσ
2
g).

The above bounds and Lemma B.5 imply that

E[Jk+1|Fk] ≤
(
1 +

Tγkµg

4
+ 2Mξ2l2∗,1β

2
k

)
· E[∥zk+1 − y∗k∥2|Fk]

+ ξ2α2
k ·

(
l2∗,0 +

4l2∗,0
Tµgγk

+
1

2

)
∥qxk∥2 + ξ2 ·

(
1

2
+ l2∗,0

)
(α2

kσ
2
f + β2

kσ
2
g). (25)

Using (23), we conclude.
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Next, γk is chosen to satisfy the following step-size rules:

(step-size rule): lg,1γk ≤ 1/4, Tµgγk ≤ 1/4, (26)

which directly comes from (3a).

Lemma B.5. If (26) holds, then for each k ∈ N, the following holds:

E[∥zk+1 − y∗k∥2|Fk] ≤ (1− 3Tµgγk/4)Jk + Tγ2
kσ

2
g . (27)

Proof. We analyze one step iteration of the inner loop: for each t = 0, · · · , T − 1,

∥z(t+1)
k − y∗k∥2 = ∥z(t)k − y∗k∥2 + ∥z

(t+1)
k − z

(t)
k ∥

2 + 2⟨z(t+1)
k − z

(t)
k , z

(t)
k − y∗k⟩

= ∥z(t)k − y∗k∥2 + γ2
k∥hk,t

gz ∥2 − 2γk⟨hk,t
gz , zk − y∗k⟩.

Here, zk+1 = z
(T )
k and zk = z

(0)
k . Note that E[hk,t

gz ] = ∇yg(xk, z
(t)
k ) = ∇ygk(z

(t)
k ) where gk(z

(t)
k ) := g(xk, z

(t)
k ). Taking

expectation,

E[∥z(t+1)
k − y∗k∥2|Fk] ≤ ∥z(t)k − y∗k∥2 + γ2

k∥∇gk(z
(t)
k )∥2 + γ2

kσ
2
g − 2γk⟨∇gk(z(t)k ), z

(t)
k − y∗k⟩.

The strong convexity and smoothness of gk imply the coercivity and co-coercivity (Nesterov et al., 2018), that is,

max

(
µg∥z(t)k − y∗k∥2,

1

lg,1
∥∇gk(z(t)k )−∇gk(y∗k)∥2

)
≤ ⟨∇gk(z(t)k )−∇gk(y∗k), z

(t)
k − y∗k⟩.

Note that y∗k minimizes gk(y). Use this to cancel out γ2
k∥∇gk(z

(t)
k )∥2, yielding

E[∥z(t+1)
k − y∗k∥2|Fk] ≤ ∥z(t)k − y∗k∥2 + γ2

kσ
2
g − γk(1− lg,1γk)⟨∇gk(z(t)k ), z

(t)
k − y∗k⟩

≤ (1− 3µgγk/4)∥z(t)k − y∗k∥2 + γ2
kσ

2
g .

For this to hold, we need a step-size condition (26). We can repeat this relation for T times, and we get (27).

B.4. Proof of Theorem 4.1

Recall Vk given in (4). In what follows, we examine

Vk+1 − Vk = F (xk+1)− F (xk) + λk+1lg,1Ik+1 − λklg,1Ik

+
λk+1lg,1

2
Jk+1 −

λklg,1
2
Jk.

Using the estimate of F (xk+1)− F (xk) given in Proposition B.1 and rearranging the terms, we have

E[Vk+1 − Vk|Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 −

ξαk

4
E[∥qxk∥2|Fk] +

ξαk

2
· 3C2

λλ
−2
k +

ξ2lF,1

2
(α2

kσ
2
f + β2

kσ
2
g)

+ lg,1 E[λk+1Ik+1 +
λkTβkµg

16
∥yk+1 − y∗λ,k∥2 − λkIk|Fk]︸ ︷︷ ︸
(i)

+
lg,1
2

E[λk+1Jk+1 +
λkTγkµg

32
∥zk+1 − y∗k∥2 − λkJk|Fk]︸ ︷︷ ︸

(ii)

Estimation of (i): From Lemma B.2, and λk+1 = λk + δk yield that

(i) ≤ λk

(
1 +

5Tβkµg

16
+

δk
λk

)
E[∥yk+1 − y∗λ,k∥2|Fk]− λkIk

16
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+O(ξ2l2λ,0)
λkα

2
k

µgTβk
∥qxk∥2 +O(ξ2l2∗,0)λk(α

2
kσ

2
f + β2

kσ
2
g) +O

(
l2f,0
µ3
g

)
· δk
λ2
k︸ ︷︷ ︸

(iii)

.

Given the step-size rules (18), we obtain

(i) ≤ λk

(
1 +

Tβkµg

2

)
E[∥yk+1 − y∗λ,k∥2|Fk]− λkIk + (iii).

The estimation of ∥yk+1 − y∗λ,k∥2 from Lemma B.3 yields that

(i) ≤ −λkTµgβk

4
Ik +O(ξ2l2∗,0)

αk

µgT
∥qxk∥2 + (iii),

= −λkTµgβk

4
Ik +O(ξ2l2∗,0)

αk

µgT
∥qxk∥2 +O(T + ξ2l2∗,0)λk(α

2
kσ

2
f + β2

kσ
2
g) +O

(
l2f,0
µ3
g

)
· δk
λ2
k

.

Here, we use (1 + a/2)(1− 3a/4) ≤ 1− a/4 for a > 0.

Estimation of (ii): Lemma B.4 yields that

(ii) ≤ λk

(
1 +

δk
λk

+
3Tγkµg

8
+

λkTβkµg

32

)
E[∥zk+1 − y∗k∥2|Fk]− λkJk

+O(ξ2l2∗,0)
λk+1α

2
k

Tµgγk
∥qxk∥2 +O(ξ2λk+1l

2
∗,0)(α

2
kσ

2
f + β2

kσ
2
g)︸ ︷︷ ︸

(iv)

.

With βk ≤ γk, and thus δk/λk < Tµgγk/32, we have that

(ii) ≤ λk

(
1 +

Tγkµg

2

)
E[∥zk+1 − y∗k∥2|Fk]− λkJk + (iv)

Similar to the argument for (i) above, Lemma B.5 yields

(ii) ≤ −λkTµgγk
4

Jk +O(ξ2l2∗,0)
αkβk

Tµgγk
∥qxk∥2 +O(ξ2λkl

2
∗,0)(α

2
kσ

2
f + β2

kσ
2
g) +O(λk)Tγ

2
kσ

2
g .

Plug the bound for (i) and (ii), after rearranging terms, we get

E[Vk+1 − Vk|Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 +

ξαk

2
· 3C2

λλ
−2
k +

ξ2lF,1

2
(α2

kσ
2
f + β2

kσ
2
g)

− ξαk

4

(
1−O

(
ξlg,1l

2
∗,0βk

µgTγk

)
−O

(
ξlg,1l

2
∗,0

µgT

))
E[∥qxk∥2|Fk]

− λklg,1Tµgβk

4
Ik −

λklg,1Tµgγk
4

Jk

+O(T + ξ2l2∗,0) · lg,1λk(α
2
kσ

2
f + (β2

k + γ2
k)σ

2
g) +O

(
lg,1l

2
f,0

µ3
g

)
δk
λ2
k

,

A crucial step here is to ensure that terms driven by E[∥qxk∥2] is negative. To ensure this, we require

(step-size rules): ξlg,1l
2
∗,0βk ≤ c1µgTγk,

ξlg,1l
2
∗,0 ≤ c2µgT,

17
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for some absolute constants c1, c2 > 0, which holds by βk ≤ γk and (3b) with sufficiently small cξ > 0. Once this holds,
we can conclude that

E[Vk+1 − Vk|Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 −

λkTµgγk
4

∥zk − y∗k∥2 −
λkTµgβk

4
∥yk − y∗λ,k∥2

+O(ξC2
λ)

αk

λ2
k

+O

(
lg,1l

2
f,0

µ3
g

)
δk
λ2
k

+O(ξ2lF,1)(α
2
kσ

2
f + β2

kσ
2
g)

+O(T + ξ2l2∗,0) · lg,1λk(α
2
kσ

2
f + (β2

k + γ2
k)σ

2
g).

We can sum over k = 0 to K − 1, and leaving only dominating terms, since
∑

k δk/λ
2
k = O(1) (because δk/λk = O(1/k)

and λk = poly(k)), we have the theorem.

B.5. Proof of Corollary 4.2

We first show that with the step-size design in theorem, λk = γk/(2αk) for all k. To check this, by design, λ0 = γ0/(2α0)
and by mathematical induction,

Tµg

16
αkλ

2
k =

T

32

cγ
2cα

(k + k0)
−2c+a,

and
cγ
2cα

((k + k0 + 1)a−c − (k + k0)
a−c) ≤ (a− c)cγ

2cα
(k + k0)

−1−c+a.

As long as −2c+ a ≥ −1− c+ a, or equivalently, c ≤ 1 and T ≥ 32, it always holds that

λk+1 =
cγ
2cα

(k + k0 + 1)a−c =
γk+1

2αk+1
. (28)

Now applying the step-size designs, we obtain the following:

K−1∑
k=0

E[∥∇F (xk)∥2]
(k + k0)a

≤ OP(1) ·
∑
k

1

(k + k0)3a−2c
+OP(σ

2
f ) ·

∑
k

1

(k + k0)a+c

+OP(σ
2
g) ·

∑
k

1

(k + k0)3c−a
+OP(1). (29)

We decide the rates a, c ∈ [0, 1] will be decided differently for different stochasticity. Let b = a− c. Note that with the step
size deisng, we have λk = γk/(2αk) =

2λ0

ka−c
0

(k + k0)
a−c = O(kb). Let R be a random variable uniformly distributed over

{0, 1, ...,K}. Note that the left hand side is larger than

K

(K + k0)a

K−1∑
k=1

1

K
E[∥∇F (xk)∥2] ≥ K1−a · E[∥∇F (xR)∥2].

We consider three regimes:

Stochasticity in both upper-level and lower-level objectives: σ2
f , σ

2
g > 0. In this case, we set a = 5/7, c = 4/7, and

thus λk = k1/7. The dominating term is σ2
g ·
∑

k(γ
2
kλk) =

∑
k O(k−1) = O(logK) and C2

λ ·
∑

k(αkλ
−2
k ) = O(logK).

From the left-hand side, we have K1−a = K2/7. Therefore,

E[∥∇F (xR)∥2] = O

(
logK

K2/7

)
.

Stochasticity only in the upper-level: σ2
f > 0, σ2

g = 0. In this case, we can take a = 3/5, c = 2/5. When σ2
g = 0, the

dominating term is σf ·
∑

k(α
2
kλk) =

∑
k O(k−1) = O(logK) and O(C2

λ) ·
∑

k(αkλ
−2
k ) =

∑
k O(k−1) = O(logK).

Since K1−a = O(K2/5), yielding

E[∥∇F (xR)∥2] = O

(
logK

K2/5

)
.
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Deterministic case: σ2
f = 0, σ2

g = 0. Here, we can take a = 1/3, c = 0 with a dominating term
∑

k(αkλ
−2
k ) = O(logK).

Since there is no stochasticity in the algorithm, we have

∥∇F (xK)∥2 = O

(
logK

K2/3

)
.

C. Main Results for Algorithm 2
We start with a few definitions and additional auxiliary lemmas. We first define the momentum-assisted moving direction of
variables. They can be recursively defined as

h̃k
z := ∇yg(xk, zk;ϕ

k
z) + (1− ηk)

(
h̃k−1
z −∇yg(xk−1, zk−1;ϕ

k
z)
)
,

h̃k
fy := ∇yf(xk, yk; ζ

k
y ) + (1− ηk)

(
h̃k−1
fy −∇yf(xk−1, yk−1; ζ

k
y )
)
,

h̃k
gy := ∇yg(xk, yk;ϕ

k
y) + (1− ηk)

(
h̃k−1
gy −∇yg(xk−1, yk−1;ϕ

k
y)
)
,

for the inner variable updates, and

h̃k
fx := ∇xf(xk, yk+1; ζ

k
x) + (1− ηk)

(
h̃k−1
fx −∇xf(xk−1, yk; ζ

k
x)
)
,

h̃k
gxy := ∇xg(xk, yk+1;ϕ

k
x) + (1− ηk)

(
h̃k−1
gxy −∇xg(xk−1, yk;ϕ

k
x)
)
,

h̃k
gxz := ∇xg(xk, zk+1;ϕ

k
x) + (1− ηk)

(
h̃k−1
gxz −∇xg(xk−1, zk;ϕ

k
x)
)
.

for the outer variable update with some proper choice of ηk. We also define stochastic error terms incurred by random
sampling:

ẽxk := h̃k
fx + λk(h̃

k
gxy − h̃k

gxz)− qxk ,

ẽyk := (h̃k
fy + λkh̃

k
gy)− qyk ,

ẽzk := h̃k
z − qzk, (30)

where qxk , q
y
k , q

z
k are defined in (10) (we dropped t from subscript since here we consider T = 1).

C.1. Additional Auxiliary Lemmas

The following lemmas are analogous of Lemma A.4.

Lemma C.1. At every k iteration conditioned on Fk, we have

E[∥y∗(xk+1)− y∗(xk)∥2|Fk] ≤ 2ξ2l2∗,0α
2
k

(
E[∥qxk∥2|Fk] + E[∥ẽxk∥2]

)
.

Lemma C.2. At every k iteration conditioned on Fk, we have

E[∥y∗λk+1
(xk+1)− y∗λk

(xk)∥2|Fk] ≤ 4ξ2l2∗,0α
2
k

(
E[∥qxk∥2|Fk] + E[∥ẽxk∥2]

)
+

8δ2kl
2
f,0

λ4
kµ

2
g

.

C.2. Descent Lemma for Noise Variances

A major change in the proof is that now we also track the decrease in stochastic error terms. Specifically, we show the
following lemmas.

Lemma C.3.

E[∥ẽzk+1∥2] ≤ (1− ηk+1)
2(1 + 8l2g,1γ

2
k)E[∥ẽzk∥2] + 2η2k+1σ

2
g

+ 8l2g,1(1− ηk+1)
2
(
ξ2α2

kE[∥qxk∥2] + ξ2α2
kE[∥ẽxk∥2] + γ2

kE[∥qzk∥2]
)
,

E[∥ẽyk+1∥
2] ≤ (1− ηk+1)

2(1 + 96l2g,1β
2
k)E[∥ẽ

y
k∥

2] + 2η2k+1(σ
2
f + λ2

k+1σ
2
g) + 12δ2kσ

2
g

+ 96l2g,1(1− ηk+1)
2β2

k(ξ
2∥qxk∥2 + ξ2∥ẽxk∥2 + ∥q

y
k∥

2).
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Lemma C.4.

E[∥ẽxk+1∥2] ≤ (1− ηk+1)
2(1 + 240l2g,1ξ

2β2
k)E[∥ẽxk∥2] + 6η2k+1(σ

2
f + λ2

k+1σ
2
g) + 80δ2kσ

2
g

+ 240l2g,1(1− ηk+1)
2λ2

k

(
ξ2α2

k∥qxk∥2 + α2
k(∥q

y
k∥

2 + ∥ẽyk∥
2) + γ2

k(∥qzk∥2 + ∥ẽzk∥2)
)
.

Equipped with these lemmas, we can now proceed as previously in the main proof for Algorithm 1.

C.3. Descent Lemma for zk towards y∗k
Lemma C.5. If γkµg < 1/8, then

E[∥zk+1 − y∗k+1∥2|Fk] ≤ (1 + γkµg/4)E[∥zk+1 − y∗k∥2|Fk]

+O

(
ξ2α2

kl
2
∗,0

γkµg

)
· (E[∥qxk∥2|Fk] + E[∥ẽxk∥2|Fk]).

Proof. As before, we can decompose ∥zk+1 − y∗k+1∥2 as

∥zk+1 − y∗k+1∥2 = ∥zk+1 − y∗k∥2 + ∥y∗k+1 − y∗k∥2 − 2⟨zk+1 − y∗k, y
∗
k+1 − y∗k⟩

≤ ∥zk+1 − y∗k∥2 +
(
1 +

1

8γkµg

)
∥y∗k+1 − y∗k∥2 + 4γkµg∥zk+1 − y∗k∥2,

where we used a general inequality |⟨a, b⟩| ≤ c∥a∥2 + 1
4c∥b∥

2. We can apply Lemma C.1 for ∥y∗k+1 − y∗k∥2, yielding the
lemma.

Lemma C.6. If γk ≤ 1/(16lg,1), then

E[∥zk+1 − y∗k∥2|Fk] ≤ (1− γkµg/2)E[∥zk − y∗k∥2|Fk]−
γk
lg,1
∥qzk∥2 +O

(
γk
µg

)
E[∥ẽzk∥2|Fk]).

Proof. Note that

∥zk+1 − y∗k∥2 = ∥zk − y∗k∥2 + γ2
k∥h̃k

z∥2 − 2γk⟨h̃k
z , zk − y∗k⟩

≤ ∥zk − y∗k∥2 + 2γ2
k(∥qzk∥2 + ∥ẽzk∥2)− 2γk⟨qzk, zk − y∗k⟩ − 2γk⟨ẽzk, zk − y∗k⟩.

Since qzk = ∇yg(xk, zk) by definition, by coercivity and co-coercivity of strongly-convex functions, we have(
µg∥zk − y∗k∥2,

1

lg,1
∥qzk∥2

)
≤ ⟨qzk, zk − y∗k⟩,

and thus, given γk ≤ 1/(16lg,1), we have

E[∥zk+1 − y∗k∥2|Fk] ≤ (1− 3γkµg/4)E[∥zk − y∗k∥2|Fk]−
γk
lg,1
∥qzk∥2 + 2γ2

kE[∥ẽzk∥2|Fk]− 2γk⟨ẽzk, zk − y∗k⟩.

Finally, we can use general inequality |⟨a, b⟩| ≤ c∥a∥2 + 1
4c∥b∥

2 to get

−2γk⟨ẽzk, zk − y∗k⟩ ≤
γkµg

4
∥zk − y∗k∥2 +

4γk
µg
∥ẽzk∥2.

Plugging this back, with γ2
k ≪

γk

µg
, we get the lemma.
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C.4. Descent Lemma for yk towards y∗λ,k
Lemma C.7. If βkµg < 1/8, then

E[∥yk+1 − y∗λ,k+1∥2|Fk] ≤ (1 + βkµg/4)E[∥yk+1 − y∗λ,k∥2|Fk]

+O

(
ξ2α2

kl
2
∗,0

βkµg

)
· (E[∥qxk∥2|Fk] + E[∥ẽxk∥2|Fk]) +O

(
δ2kl

2
f,0

λ4
kµ

2
g

)
.

Proof. As before, we can decompose ∥yk+1 − y∗λ,k+1∥2 as

∥yk+1 − y∗λ,k+1∥2 = ∥yk+1 − y∗λ,k∥2 + ∥y∗k+1 − y∗λ,k∥2 − 2⟨yk+1 − y∗λ,k, y
∗
λ,k+1 − y∗λ,k⟩

≤ ∥yk+1 − y∗λ,k∥2 +
(
1 +

1

8βkµg

)
∥y∗λ,k+1 − y∗λ,k∥2 + 4βkµg∥yk+1 − y∗λ,k∥2,

where we used a general inequality |⟨a, b⟩| ≤ c∥a∥2 + 1
4c∥b∥

2. We can apply Lemma C.2 for ∥y∗λ,k+1 − y∗λ,k∥2, since
βkµg ≤ 1/16, we get the lemma.

Lemma C.8. If βk ≤ 1/(16lg,1), then

E[∥yk+1 − y∗λ,k∥2|Fk] ≤ (1− βkµg/2)E[∥yk − y∗λ,k∥2|Fk]−
αk

λklg,1
∥qyk∥

2 +O

(
α2
k

µgβk

)
E[∥ẽyk∥

2|Fk]).

Proof. Note that

∥yk+1 − y∗λ,k∥2 = ∥yk − y∗λ,k∥2 + 2α2
k(∥q

y
k∥

2 + ∥ẽyk∥
2)− 2αk⟨qyk , yk − y∗λ,k⟩ − 2αk⟨ẽyk, yk − y∗λ,k⟩,

where we used yk+1 − yk = qyk + ẽyk. Since qyk = ∇yLλk
by definition, again by coercivity and co-coercivity of

strongly-convex Lλk
(xk, ·), we have

max

(
λkµg

2
∥yk − y∗λ,k∥2,

1

lf,1 + λklg,1
∥qyk∥

2

)
≤ ⟨qyk , yk − y∗λ,k⟩,

and thus, given αkλk ≤ 1/(16lg,1) and lf,1 ≤ λklg,1, we have

E[∥yk+1 − y∗λ,k∥2|Fk] ≤ (1− 3βkµg/4)E[∥zk − y∗k∥2|Fk]−
αk

λklg,1
∥qyk∥

2

+ 2α2
kE[∥ẽ

y
k∥

2|Fk]− 2αkE[⟨ẽyk, yk − y∗λ,k⟩|Fk].

Finally, we can use general inequality |⟨a, b⟩| ≤ c∥a∥2 + 1
4c∥b∥

2 to get

−2αk⟨ẽyk, yk − y∗λ,k⟩ ≤
βkµg

4
∥yk − y∗λ,k∥2 +

4α2
k

βkµg
∥ẽyk∥

2.

Plugging this back, with βkµg ≪ 1, we get the lemma.

C.5. Descent Lemma for F (xk)

Lemma C.9. If ξαklF,1 < 1, then

E[F (xk+1)− F (xk)|Fk] ≤ −
ξαk

4
∥∇F (xk)∥2 −

ξαk

4
E[∥qxk∥2|Fk] + 2ξαk · E[∥ẽxk∥2|Fk]

+
3ξαk

2

(
4l2g,1λ

2
k∥yk+1 − y∗λ,k∥2 + l2g,1λ

2
k∥zk+1 − y∗k∥2 + C2

λ/λ
2
k

)
.
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Proof. Using the smoothness of F ,

F (xk+1)− F (xk) ≤ ⟨∇F (xk), xk+1 − xk⟩+
lF,1

2
∥xk+1 − xk∥2.

Note that xk+1 − xk = ξαk(q
x
k + ẽxk), and thus

F (xk+1)− F (xk) ≤ −ξαk⟨∇xF (xk), q
x
k⟩ − ξαk⟨∇xF (xk), ẽ

x
k⟩+

lF,1

2
∥xk+1 − xk∥2

≤ −ξαk

2
(∥∇F (xk)∥2 + ∥qxk∥2 − ∥∇F (xk)− qxk∥2)− ξαk⟨∇xF (xk), ẽ

x
k⟩+ ξ2α2

klF,1(∥qxk∥2 + ∥ẽxk∥2).

Using |⟨a, b⟩| ≤ c∥a∥2 + 1
4c∥b∥

2, we have

−ξαk⟨∇F (xk), ẽ
x
k⟩ ≤

ξαk

4
∥∇xF (xk)∥2 + ξαk∥ẽxk∥2.

Finally, recall (16). Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

∥∇F (xk)− qxk∥2 ≤ 3(4l2g,1λ
2
k∥yk+1 − y∗λ,k∥2 + l2g,1λ

2
k∥zk+1 − y∗k∥2 + C2

λ/λ
2
k).

Combining all, with ξαklF,1 < 1, we get the lemma.

C.6. Decrease in Potential Function

Define the potential function Vk as the following:

Vk := F (xk) + lg,1λk∥yk − y∗λ,k∥2 +
lg,1λk

2
∥zk − y∗k∥2 +

1

cηl2g,1γk−1

(
∥ẽxk∥2

λk
+
∥ẽyk∥2

λk
+ λk∥ẽzk∥2

)
,

with some absolute constant cη > 0. We bound the difference in potential function:

E[Vk+1 − Vk|Fk] ≤ −
ξαk

4
∥∇F (xk)∥2 −

ξαk

4
E[∥qxk∥2|Fk] +

ξαk

2

3C2
λ

λ2
k

+ lg,1λk

((
1 +

δk
λk

)
∥yk+1 − y∗λ,k+1∥2 + 6ξαkλklg,1∥yk+1 − y∗λ,k∥2 − ∥yk − y∗λ,k∥2

)
︸ ︷︷ ︸

(i)

+
lg,1λk

2

((
1 +

δk
λk

)
∥zk+1 − y∗k+1∥2 + 3ξαkλklg,1∥zk+1 − z∗k∥2 − ∥zk − y∗k∥2

)
︸ ︷︷ ︸

(ii)

+
1

cηl2g,1

(E[∥ẽxk+1∥2|Fk]

γkλk
− E[∥ẽxk∥2|Fk]

γk−1λk

)
︸ ︷︷ ︸

(iii)

+2ξαkE[∥ẽxk∥2|Fk]

+
1

cηl2g,1

(
E[∥ẽyk+1∥2|Fk]

γkλk
−

E[∥ẽyk∥2|Fk]

γk−1λk

)
︸ ︷︷ ︸

(iv)

+
λk

cηl2g,1

(E[∥ẽzk+1∥2|Fk]

γk
− E[∥ẽzk∥2|Fk]

γk−1

)
︸ ︷︷ ︸

(v)

.

Using Lemmas C.7, C.8, C.5 and C.6, given that δk/λk < µgβk/8, (i) and (ii) are bounded by

(i) ≤ −µgβk

8
∥yk − y∗λ,k∥2 −

αk

λklg,1
∥qyk∥

2 +O

(
ξ2α2

kl
2
∗,0

βkµg
E[∥qxk∥2 + ∥ẽxk∥2|Fk] +

δ2kl
2
f,0

λ4
kµ

3
g

+
α2
k

βkµg
E[∥ẽyk∥

2|Fk]

)
,

(ii) ≤ −µgγk
8
∥zk − y∗k∥2 −

γk
lg,1
∥qzk∥2 +O

(
ξ2α2

kl
2
∗,0

γkµg
E[∥qxk∥2 + ∥ẽxk∥2|Fk] +

γk
µg

E[∥ẽzk∥2|Fk]

)
,
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We can use Lemma C.4 to bound (iii), (iv) and (v). Using the step-size condition given in (8b), we have

(1− ηk+1)

γk
− 1

γk−1
=

γk−1−γk

γk−1
− ηk+1

γk
≤ −ηk+1

2γk
.

Note that by the same step-size condition, ηk+1 ≫ O(l2g,1γ
2
k), and thus,

(iii) ≤ − ηk+1

2γkλk
E[∥ẽxk∥2|Fk] +O(σ2

f ) ·
η2k+1

λkγk
+O(σ2

g) ·
(
η2k+1λk

γk
+

δ2k
γkλk

)
+O(l2g,1) ·

(
ξ2αk∥qxk∥2 + αk(∥qyk∥

2 + ∥ẽyk∥
2) + γkλk(∥qzk∥2 + ∥ẽzk∥2)

)
.

Similarly, we can use Lemma C.3 and show that

(iv) ≤ − ηk+1

2γkλk
E[∥ẽyk∥

2|Fk] +O(σ2
f ) ·

η2k+1

λkγk
+O(σ2

g) ·
(
η2k+1λk

γk
+

δ2k
γkλk

)
+O(l2g,1)αk ·

(
ξ2∥qxk∥2 + ξ2∥ẽxk∥2 + ∥q

y
k∥

2
)
,

(v) ≤ −ηk+1

2γk
E[∥ẽzk∥2|Fk] +O(σ2

g) ·
η2k+1

γk
+O(l2g,1) ·

(
ξ2α2

k

γk
∥qxk∥2 +

ξ2α2
k

γk
∥ẽxk∥2 + γk∥qzk∥2

)
.

Plugging inequalities for (i)− (v) back and arranging terms, we get

E[Vk+1 − Vk|Fk] ≤ −
ξαk

4
∥∇F (xk)∥2 −

ξαk

4
E[∥qxk∥2|Fk] +

3C2
λ

2

ξαk

λ2
k

− lg,1λk(i) +
lg,1λk

2
(ii)

+
1

cηl2g,1
(iii) + 2ξαkE[∥ẽxk∥2|Fk] +

1

cηl2g,1
(iv) +

λk

cηl2g,1
(v)

≤ −ξαk

4
∥∇F (xk)∥2 −

λklg,1µgβk

4
∥yk − y∗λ,k∥2 −

λklg,1µgγk
4

∥zk − y∗k∥2

− ξαk

4
E[∥qxk∥2|Fk]

(
1−O(ξlg,1l

2
∗,0/µg)−O(ξc−1

η )
)

− αkE[∥qyk∥
2|Fk]

(
1−O(c−1

η )
)
− γkλk

2
E[∥qzk∥2|Fk]

(
1−O(c−1

η )
)

+O

(
C2

λξαk

λ2
k

+
l2f,0lg,1δ

2
k

µ3
gλ

3
k

)
+ noise variance terms,

where noise variance terms are

noise terms = −E[∥ẽxk∥2|Fk]

cηl2g,1

(
ηk+1

2γkλk
−O

(
l2g,1ξ

2αk

)
− (cηξαkl

2
g,1)

)
−

E[∥ẽyk∥2|Fk]

l2g,1cη

(
ηk+1

2γkλk
−O(l2g,1)αk −O(cηl

3
g,1/µg)αk

)
− λkE[∥ẽzk∥2|Fk]

l2g,1cη

(
ηk+1

2γk
−O(l2g,1)γk −O(cηl

3
g,1/µg)γk

)
+

1

cηl2g,1

(
O(σ2

f ) ·
η2k+1

λkγk
+O(σ2

g) ·
(
η2k+1λk

γk
+

δ2k
γkλk

))
.

For the all squared terms, with careful design of step-sizes, we can make the coefficient negative. Specifically, we need

ξlg,1l
2
∗,0/µg ≪ 1, cη ≫ 1,

to negate q
(·)
k terms, and

1 > ηk+1 ≫ cηγ
2
k(l

3
g,1/µg),
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to suppress noise variance terms, as required in our step-size rules (8). Then, we can simplify the bound for the potential
function difference:

E[Vk+1 − Vk|Fk] ≤ −
ξαk

4
∥∇F (xk)∥2 +O(ξC2

λ) ·
αk

λ2
k

+O(l2f,0lg,1/µ
3
g) ·

δ2k
λ3
k

+
1

cηl2g,1

(
O(σ2

f ) ·
η2k+1

λkγk
+O(σ2

g) ·
(
η2k+1λk

γk
+

δ2k
γkλk

))
.

Proof of Theorem 4.3 Summing the above over all k = 0 to K − 1, using δk/λk = O(1/k) and 1/λk, δk/γk = o(1), we
obtain Theorem 4.3.

C.7. Proof of Corollary 4.4

Using the step-sizes specified in (9), since λk = γk/2αk ≍ ka−c, δk ≍ ka−c−1. As long as a − c − 1 < −c, which is
satisfied if a < 1, we have δk/γk = o(1). We can also check that

δk
λk
≤ (k + k0 + 1)−1 <

µgβk

8
=

(k + k0)
−c

k1−c
0

,

as long as and c < 1. Given the above, we have

K−1∑
k=0

E[∥∇F (xk)∥2]
(k + k0)a

≤ OP(1) ·
∑
k

1

(k + k0)3a−2c
+OP(σ

2
f ) ·

∑
k

1

(k + k0)−2c−a

+OP(σ
2
g) ·

∑
k

1

(k + k0)−4c+a
+OP(1).

Again, we consider three regimes:

Stochasticity in both upper-level and lower-level objectives: σ2
f , σ

2
g > 0. In this case, we set a = 3/5, c = 2/5, and

thus λk ≍ k1/5, which yields

E[∥∇F (xR)∥2] ≍
logK

K2/5
.

Stochasticity only in the upper-level: σ2
f > 0, σ2

g = 0. In this case, we can take a = 2/4, c = 1/4, and thus λk ≍ k1/4,
which yields

E[∥∇F (xR)∥2] ≍
logK

K2/4
.

Deterministic case: σ2
f = 0, σ2

g = 0. Here, we can take a = 1/3, c = 0 and since there is no stochasticity in the algorithm,
we have

∥∇F (xK)∥2 ≍ logK

K2/3
.

D. Deferred Proofs for Lemmas
D.1. Proofs for Main Lemmas

D.1.1. PROOF OF LEMMA 3.1

Proof. Let y∗λ(x) := argminy Lλ(x, y). Note that∇yLλ(x, y
∗
λ(x)) = 0, and thus

∇L∗
λ(x) = ∇xLλ(x, y

∗
λ(x)) +∇xy

∗
λ(x)

⊤∇yLλ(x, y
∗
λ(x)) = ∇xLλ(x, y

∗
λ(x)).

24



Fully First-Order Stochastic Bilevel Optimization

To compare this to∇F (x), we can invoke Lemma A.2 which gives

∥∇F (x)−∇xLλ(x, y
∗
λ(x))∥

≤ 2(lg,1/µg)∥y∗λ(x)− y∗(x)∥ (lf,1 + λ ·min(2lg,1, lg,2∥y∗(x)− y∗λ(x)∥)) .

From Lemma 3.2, we use ∥y∗λ(x)− y∗(x)∥ ≤ 2lf,0
λµg

, and get

∥∇F (x)−∇xLλ(x, y
∗
λ(x))∥ ≤

1

λ
· 4lf,0lg,1

µ2
g

(
lf,1 +

2lf,0lg,2
µg

)
.

D.1.2. PROOF OF LEMMA 3.2

Proof. Note that Lλ(x, y) is at least λµg

2 strongly-convex in y once λ ≥ 2lf,1µg . To see this,

Lλ(x, y) = f(x, y) + λ(g(x, y)− g∗(x)),

which is at least−lf,1+λµg-strongly convex in y. If λ > 2lf,1/µg , this implies at least λµg/2 strong-convexity of Lλ(x, y)
in y.

By the optimality condition at y∗λ1
(x1) with x1, λ1, we have

∇yf(x1, y
∗
λ1
(x1)) + λ1∇yg(x1, y

∗
λ1
(x1)) = 0,

which also implies that ∥g(x1, y
∗
λ1
(x1))∥ ≤ lf,0/λ1. Observe that

∇yf(x2, y
∗
λ1
(x1)) + λ2∇yg(x2, y

∗
λ1
(x1))

= (∇yf(x2, y
∗
λ1
(x1))−∇yf(x1, y

∗
λ1
(x1))) +∇yf(x1, y

∗
λ1
(x1))

+ λ2(∇yg(x2, y
∗
λ1
(x1))−∇yg(x1, y

∗
λ1
(x1))) + λ2∇yg(x1, y

∗
λ1
(x1))

= (∇yf(x2, y
∗
λ1
(x1))−∇yf(x1, y

∗
λ1
(x1))) + λ2(∇yg(x2, y

∗
λ1
(x1))−∇yg(x1, y

∗
λ1
(x1)))

+ (λ2 − λ1)∇yg(x1, y
∗
λ1
(x1)),

where in the last equality, we applied the optimality condition for y∗λ1
(x1). Then applying the Lipschitzness of ∇yf and

∇yg in x, we have

∥∇yf(x2, y
∗
λ1
(x1)) + λ2∇yg(x2, y

∗
λ1
(x1))∥ ≤ lf,1∥x1 − x2∥+ lg,1λ2∥x2 − x1∥+ (λ2 − λ1)

lf,0
λ1

.

Since Lλ2
(x2, y) is λ2µg/2-strongly convex in y, from the coercivity property of strongly-convex functions, along with the

optimality condition with y∗λ2
(x2), we have

λ2µg

2
∥y∗λ1

(x1)− y∗λ2
(x2)∥ ≤ ∥∇yLλ2(x2, y

∗
λ1
(x1))∥ ≤ (lf,1 + λ2lg,1)∥x1 − x2∥+

λ2 − λ1

λ1
lf,0.

Dividing both sides by (λ2µg/2) concludes the first part of the proof. Note that y∗(x) = limλ→∞ y∗λ(x). Thus, for any x
and finite λ ≥ 2lf,1/µg ,

∥y∗λ(x)− y∗(x)∥ ≤ 2lf,0
λµg

.
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D.2. Proofs for Auxiliary Lemmas

D.2.1. PROOF OF LEMMA A.1

Proof. The proof can be also found in Lemma 2.2 in (Ghadimi & Wang, 2018). We provide the proof for the completeness.
Recall that∇F (x) is given by

∇F (x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))∇2

yyg(x, y
∗(x))−1∇yf(x, y

∗(x)).

Using the smoothness of functions and Hessian-continuity of g in assumptions, for any x1, x2 ∈ X , we get

∥∇F (x1)−∇F (x2)∥ ≤
(
lf,1 +

lf,0
µg

lg,2 +
lg,1
µg

lg,1

)
(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥)

+ lg,1lf,0∥∇2
yyg(x1, y

∗(x1))
−1 −∇2

yyg(x2, y
∗(x2))

−1∥

≤
(
lf,1 +

lf,0
µg

lg,2 +
lg,1
µg

)
l∗,0∥x1 − x2∥+

lg,1lf,0
µ2
g

lg,2l∗,0∥x1 − x2∥.

Thus,

lF,1 ≤ l∗,0

(
lf,1 +

lf,0lg,2 + l2g,1
µg

+
lf,0lg,1lg,2

µ2
g

)

≤ l∗,0

(
lf,1 +

l2g,1
µg

+
2lf,0lg,1lg,2

µ2
g

)
,

where in the last inequality we used lg,1/µg ≥ 1.

D.2.2. PROOF OF LEMMA A.2

We use a short-hand y∗ = y∗(x).

∇xLλ(x, y) = ∇xf(x, y) + λ(∇xg(x, y)−∇xg(x, y
∗))

∇yLλ(x, y) = ∇yf(x, y) + λ∇yg(x, y).

Check that

∇F (x)−∇xLλ(x, y) = ∇xf(x, y
∗)−∇xf(x, y)

−∇2
xyg(x, y

∗)∇2
yyg(x, y

∗)−1∇yf(x, y
∗)− λ(∇xg(x, y)−∇xg(x, y

∗)). (31)

We can rearrange terms for (∇xg(x, y)−∇xg(x, y
∗)) as the following:

∇xg(x, y)−∇xg(x, y
∗) = ∇xg(x, y)−∇xg(x, y

∗)−∇xyg(x, y
∗)⊤(y − y∗)

+∇xyg(x, y
∗)⊤(y − y∗). (32)

Note that from the optimality condition for y∗, ∇yg(x, y
∗) = 0 and from∇xf(x, y) + λ∇yg(x, y) = ∇yL(x, y), we can

express y − y∗ as

y − y∗ = −∇yyg(x, y
∗)−1(∇yg(x, y)−∇yg(x, y

∗)−∇yyg(x, y
∗)(y − y∗))

+
1

λ
∇yyg(x, y

∗)−1 (∇yL(x, y)−∇yf(x, y)) . (33)

Plugging (32) and (33) back to (31), we have

∇F (x)−∇xLλ(x, y) = (∇xf(x, y
∗)−∇xf(x, y))−∇2

xyg(x, y
∗)∇2

yyg(x, y
∗)−1(∇yf(x, y

∗)−∇yf(x, y))

−∇2
xyg(x, y

∗)∇2
yyg(x, y

∗)−1∇yL(x, y)
− λ(∇xg(x, y)−∇xg(x, y

∗)−∇2
xyg(x, y

∗)⊤(y − y∗))
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+ λ∇2
xyg(x, y

∗)∇2
yyg(x, y

∗)−1(∇yg(x, y)−∇yg(x, y
∗)−∇2

yyg(x, y
∗)(y − y∗)).

By the smootheness of ∇g from Assumption 1, we have

∥∇yg(x, y)−∇yg(x, y
∗)−∇2

yyg(x, y
∗)(y − y∗)∥ ≤ lg,2∥y − y∗∥2.

When ∥y − y∗∥ is too large, the smoothness of g can be more useful:

∥∇yg(x, y)−∇yg(x, y
∗)−∇2

yyg(x, y
∗)(y − y∗)∥ ≤ 2lg,1∥y − y∗∥.

Similarly, we have

∥∇xg(x, y)−∇xg(x, y
∗)−∇2

xyg(x, y
∗)⊤(y − y∗)∥ ≤ min

(
lg,2∥y − y∗∥2, 2lg,1∥y − y∗∥

)
.

On the other hand, by smootheness of f , we also have

∥∇xf(x, y
∗)−∇xf(x, y)∥ ≤ lf,1∥y − y∗∥, ∥∇yf(x, y

∗)−∇yf(x, y)∥ ≤ lf,1∥y − y∗∥.

We can conclude that

∥∇F (x)−∇xLλ(x, y) +∇2
xyg(x, y

∗)∇2
yyg(x, y

∗)−1∇yL(x, y)∥
≤ lf,1(1 + lg,1/µg)∥y − y∗∥+ λ(1 + lg,1/µg)∥y − y∗∥min(lg,2∥y − y∗∥, 2lg,1).

We know that lg,1/µg ≥ 1 and thus, we have

∥∇F (x)−∇xLλ(x, y) +∇2
xyg(x, y

∗)∇2
yyg(x, y

∗)−1∇yL(x, y)∥
≤ 2(lg,1/µg)∥y − y∗∥ (lf,1 + λ ·min(2lg,1, lg,2∥y − y∗∥)) ,

yielding the lemma.

D.2.3. PROOF OF LEMMA A.3

Proof. Lipschitzness of y∗λ(x) is immediate from Lemma 3.2. By the optimality condition for∇y∗λ(x), we have

∇yLλ(x, y
∗
λ(x)) = ∇yf(x, y

∗
λ(x)) + λ∇yg(x, y

∗
λ(x)) = 0.

Taking derivative with respect to x, we get

(∇2
yyf(x, y

∗
λ(x)) + λ∇2

yyg(x, y
∗
λ(x)))∇y∗λ(x) = −(∇2

xyf(x, y
∗
λ(x)) + λ∇2

xyg(x, y
∗
λ(x))).

As λ > 2lf,1/µg , the left-hand side is positive definite with mininum eigenvalue larger than λµg/2, and we have

∇y∗λ(x) = −
(
1

λ
∇2

yyf(x, y
∗
λ(x)) +∇2

yyg(x, y
∗
λ(x))

)−1(
1

λ
∇2

xyf(x, y
∗
λ(x)) +∇2

xyg(x, y
∗
λ(x))

)
.

To get the smoothness result, we compare this at x1 and x2, yielding

λµg

2
∥∇y∗λ(x1)−∇y∗λ(x2)∥ ≤ (lf,2 + λlg,2)(∥x1 − x2∥+ ∥y∗λ(x1)− y∗λ(x2)∥)max

x∈X
∥∇y∗λ(x)∥

+ (lf,2 + λlg,2)(∥x1 − x2∥+ ∥y∗λ(x1)− y∗λ(x2)∥)
≤ (lf,2 + λlg,2)(1 + lλ,0)

2∥x1 − x2∥.

Arranging this, we get

∥∇y∗λ(x1)−∇y∗λ(x2)∥ ≤ 32

(
lf,2
λ

+ lg,2

)
l2g,1
µ3
g

∥x1 − x2∥.
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D.2.4. PROOF OF LEMMA A.4

Proof. This is immediate from Lipschitz continuity in Lemma 3.2 with sending λ1 = λ2 to infinity.

E[∥y∗(xk+1)− y∗(xk)∥2|Fk] ≤ l2∗,0E[∥xk+1 − xk∥2|Fk]

≤ l2∗,0ξ
2(α2

kE[∥qxk∥2|Fk] + α2
kσ

2
f + β2

kσ
2
g).

D.2.5. PROOF OF LEMMA A.5

Proof. We can use the smoothness property of y∗(x) as in (Chen et al., 2021), which is crucial to control the noise variance
induced from updating x. We can start with the following:

⟨vk, y∗k+1 − y∗k⟩ = ⟨vk,∇y∗(xk)(xk+1 − xk)⟩
+ ⟨vk, y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)⟩.

On the first term, taking expectation and using ⟨a, b⟩ ≤ c∥a∥2 + 1
4c∥b∥

2,

E[⟨vk,∇y∗(xk)(xk+1 − xk)⟩|Fk] = −ξαkE[⟨vk,∇y∗(xk)q
x
k⟩|Fk]

≤ ξαkηkE[∥vk∥2|Fk] +
ξαk

4ηk
E[∥∇y∗(xk)q

x
k∥2|Fk]

≤ ξαkηkE[∥vk∥2|Fk] +
ξαkl

2
∗,0

4ηk
E[∥qxk∥2|Fk],

where we used the Lipschitz continuity of y∗(x). For the second term, using smoothness of y∗(x),

E[⟨vk, y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)⟩|Fk]

≤ l∗,1
2

E[∥vk∥∥xk+1 − xk∥2|Fk]

≤ l∗,1
4

E
[(

l∗,1∥vk∥2 +
1

l∗,1

)
· ∥xk+1 − xk∥2|Fk

]
≤

l2∗,1
4

E[∥vk∥2 · E
[
∥xk − xk+1∥2|F ′

k

]
|Fk]

+
ξ2

4

(
α2
kE[∥qxk∥2] + α2

kσ
2
f + β2

kσ
2
g

)
,

where F ′
k is a sigma-algebra generated by stochastic noises up to kth iteration and vk. Note that

E
[
∥xk − xk+1∥2|F ′

k

]
≤ ξ2α2

kE
[
∥qxk∥2|Fk

]
+ ξ2(α2

kσ
2
f + β2

kσ
2
g),

and from boundedness of ∇xf and ∇xg in Assumption 4, we have αk∥qxk∥ ≤ αklf,0 + 2βklg,0. With Mf = l2f,0 + σ2
f ,

Mg = l2g,0 + σ2
g , and M = max(Mf ,Mg), we get

E
[
∥xk − xk+1∥2|F ′

k

]
≤ 2ξ2(Mfα

2
k + 2Mgβ

2
k) ≤ 4Mξ2l2∗,1β

2
k,

which yields

E[⟨vk, y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)⟩|Fk]

≤Mξ2l2∗,1β
2
kE[∥vk∥2|Fk] +

ξ2

4

(
α2
kE[∥qxk∥2|Fk] + α2

kσ
2
f + β2

kσ
2
g

)
.

Combining all, we obtain the desired result.
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D.2.6. PROOF OF LEMMA A.6

Proof. We can start with the following decomposition:

⟨vk, y∗λk+1
(xk+1)− y∗λk

(xk)⟩ = ⟨vk, y∗λk+1
(xk+1)− y∗λk

(xk+1)⟩
+ ⟨vk,∇y∗λk

(xk)(xk+1 − xk)⟩
+ ⟨vk, y∗λk

(xk)− y∗λk
(xk)−∇y∗λk

(xk)(xk+1 − xk)⟩.

For the second and third terms, we can apply the smoothness of yλ(x) similarly in the proof in D.2.5.

On the first term, taking expectation and using ⟨a, b⟩ ≤ c∥a∥2 + 1
4c∥b∥

2,

E[⟨vk, y∗λk+1
(xk+1)− y∗λk

(xk+1)⟩|Fk] ≤ cE[∥vk∥2] +
1

4c
E[∥y∗λk+1

(xk+1)− y∗λk
(xk+1)∥2]

≤ cE[∥vk∥2] +
1

c

δ2k
λ2
kλ

2
k+1

l2f,0
µ2
g

,

where we applied Lemma 3.2. Take c = δk
λk

, getting

E[⟨vk, y∗λk+1
(xk+1)− y∗λk

(xk+1)⟩|Fk] ≤
δk
λk

E[∥vk∥2] +
l2f,0δk

µ2
gλ

3
k

.

Adding this with bounds on other two terms, we get the lemma.

D.3. Proofs for Auxiliary Lemmas with Momentum

D.3.1. PROOF OF LEMMA C.1

Due to Lipschitz continuity of y∗(x), we have

E[∥y∗(xk+1)− y∗(xk)∥2] ≤ l2∗,0E[∥xk+1 − xk∥2]
≤ ξ2α2

kl
2
∗,0E[∥qxk + ẽxk∥2] ≤ 2ξ2α2

kl
2
∗,0(E[∥qxk∥2] + E[∥ẽxk∥2]).

D.3.2. PROOF OF LEMMA C.2

Using Lemma 3.2, we have

E[∥y∗λk+1
(xk+1)− y∗λk

(xk)∥2] ≤
8δ2k

λ2
kλ

2
k+1

+ 2l2λ,0E[∥xk+1 − xk∥2]

≤ 4ξ2α2
kl

2
∗,0(E[∥qxk∥2] + E[∥ẽxk∥2]) +

8δ2k
λ4
k

.

D.3.3. PROOF OF LEMMA C.3

We can start with unfolding the expression for E[∥ẽzk+1∥2].

E[∥ẽzk+1∥2] = E[∥h̃k+1
z − qzk+1∥2]

= E[∥∇yg(xk+1, zk+1;ϕ
k+1
z ) + (1− ηk+1)(h̃

k
z −∇yg(xk, zk;ϕ

k+1
z ))− qzk+1∥2]

= E[∥(1− ηk+1)ẽ
z
k +∇yg(xk+1, zk+1;ϕ

k+1
z )

+ (1− ηk+1)(q
z
k −∇yg(xk, zk;ϕ

k+1
z ))− qzk+1∥2]

= (1− ηk+1)
2E[∥ẽzk∥2] + E[∥ηk(∇yg(xk+1, zk+1;ϕ

k+1
z )− qzk+1)

+ (1− ηk+1)(∇yg(xk+1, zk+1;ϕ
k+1
z )−∇yg(xk, zk;ϕ

k+1
z ) + qzk − qzk+1)∥2].

In the last equality, we used

E[E[⟨ẽzk,∇yg(xk+1, zk+1;ϕ
k+1
z )− qzk+1⟩|Fk+1]] = 0,
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E[E[⟨ẽzk,∇yg(xk, zk;ϕ
k+1
z )− qzk⟩|Fk+1]] = 0.

Also note that

E[∥∇yg(xk+1, zk+1;ϕ
k+1
z )− qzk+1∥2] ≤ σ2

g ,

from the variance boundedness (Assumption 3). We also observe that

E[∥∇yg(xk+1, zk+1;ϕ
k+1
z )−∇yg(xk, zk;ϕ

k+1
z )∥2] ≤ l2g,1(∥xk+1 − xk∥2 + ∥zk+1 − zk∥2)

= l2g,1(ξ
2α2

k∥qxk + ẽxk∥2 + γ2
k∥qzk + ẽzk∥2),

due to Assumption 6. The same inequality holds for qzk+1 − qzk:

E[∥qzk+1 − qzk∥2] ≤ l2g,1(ξ
2α2

k∥qxk + ẽxk∥2 + γ2
k∥qzk + ẽzk∥2).

Now we plug these inequalities and using ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2) multiple times, we have

E[∥ẽzk+1∥2] ≤ (1− ηk+1)
2(1 + 8l2g,1γ

2
k)E[∥ẽzk∥2] + 2η2k+1σ

2
g

+ 8l2g,1(1− ηk+1)
2
(
ξ2α2

kE[∥qxk∥2] + ξ2α2
kE[∥ẽxk∥2] + γ2

kE[∥qzk∥2]
)
.

Similarly, we can repeat similar steps for ẽyk+1. To simplify the notation, with slight abuse in notation, we let qyk(ζ, ϕ) :=
∇yf(xk, yk; ζ) + λk∇yg(xk, yk;ϕ). Note that qyk = E[qyk(ζ, ϕ)]. Then we can get a similar bound for E[∥ẽyk+1∥2]:

E[∥ẽyk+1∥
2] ≤ (1− ηk+1)

2E[∥ẽyk∥
2] + 2η2k+1E[∥q

y
k+1(ζ

k+1
y , ϕk+1

y )− qyk+1∥
2]

+ 2(1− ηk+1)
2E[∥(qyk+1(ζ

k+1
y , ϕk+1

y )− qyk(ζ
k+1
y , ϕk+1

y )) + (qyk − qyk+1)∥
2].

Using the variance bound similarly, we have

E[∥qyk+1(ζ
k+1
y , ϕk+1

y )− qyk+1∥
2] ≤ σ2

f + λ2
k+1σ

2
g .

Then, we unfold the last term such that

E[∥(qyk+1(ζ
k+1
y , ϕk+1

y )− qyk(ζ
k+1
y , ϕk+1

y )) + (qyk − qyk+1)∥
2]

= E[∥(∇yf(xk+1, yk+1; ζ
k+1
y )−∇yf(xk, yk; ζ

k+1
y ) +∇yf(xk, yk)−∇yf(xk+1, yk+1))

+ λk(∇yg(xk+1, yk+1;ϕ
k+1
y )−∇yg(xk, yk;ϕ

k+1
y ) +∇yg(xk, yk)−∇yg(xk+1, yk+1))

+ δk(∇yg(xk+1, yk+1;ϕ
k+1
y )−∇yg(xk+1, yk+1) +∇yg(xk, yk)−∇yg(xk, yk;ϕ

k+1
y ))∥2]

≤ 12(l2f,1 + l2g,1λ
2
k)(∥xk+1 − xk∥2 + ∥yk+1 − yk∥2) + 12δ2kσ

2
g

≤ 24(l2f,1α
2
k + l2g,1β

2
k)(ξ

2∥qxk∥2 + ξ2∥ẽxk∥2 + ∥q
y
k∥

2 + ∥ẽyk∥
2) + 12δ2kσ

2
g .

We note that we set λk ≥ 2lf,1/µg , and thus lf,1 ≤ λklg,1. In total, we get

E[∥ẽyk+1∥
2] ≤ (1− ηk+1)

2(1 + 96l2g,1β
2
k)E[∥ẽ

y
k∥

2] + 2η2k+1(σ
2
f + λ2

k+1σ
2
g) + 24δ2kσ

2
g

+ 96(1− ηk+1)
2l2g,1β

2
k(ξ

2∥qxk∥2 + ξ2∥ẽxk∥2 + ∥q
y
k∥

2).

D.3.4. PROOF OF LEMMA C.4

Similarly to the case for ∥ẽyk+1∥2, let us define qxk(ζ, ϕ) := ∇xf(xk, yk+1; ζ)+λk(∇xg(xk, yk+1;ϕ)−∇xg(xk, zk+1;ϕ)).
We note that ζkx , ϕ

k
x are sampled after yk+1, zk+1 is updated but before xk is updated. Hence,

E[E[⟨ẽxk, qxk+1(ζ
k+1
x , ϕk+1

x )− qxk+1⟩|F ′
k+1]] = 0,

E[E[⟨ẽxk, qxk(ζk+1
x , ϕk+1

x )− qxk⟩|F ′
k+1]] = 0.

Thus, following similar procedure, we have

E[∥ẽxk+1∥2] = E[∥qxk+1(ζ
k+1
x , ϕk+1

x ) + (1− ηk+1)(q
x
k + ẽxk − qxk(ζ

k+1
x , ϕk+1

x ))− qxk+1∥2]
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≤ (1− ηk+1)
2E[∥ẽxk∥2] + 2η2kE[∥qxk+1(ζ

k+1
x , ϕk+1

x )− qxk+1∥2]
+ 2(1− ηk+1)

2E[∥(qxk+1(ζ
k+1
x , ϕk+1

x )− qxk(ζ
k+1
x , ϕk+1

x )) + (qxk − qxk+1)∥2].

Note that

E[∥qxk+1(ζ
k+1
x , ϕk+1

x )− qxk+1∥2]
= E[∥(∇xf(xk+1, yk+2; ζ

k+1
x )−∇xf(xk+1, yk+2))

+ λk(∇xg(xk+1, yk+2;ϕ
k+1
x )−∇xg(xk+1, yk+2)) + λk(∇xg(xk+1, zk+2;ϕ

k+1
x )−∇xg(xk+1, zk+2))∥2]

≤ 3(σ2
f + λ2

kσ
2
g).

Finally, we have

E[∥(qxk+1(ζ
k+1
x , ϕk+1

x )− qxk(ζ
k+1
x , ϕk+1

x )) + (qxk − qxk+1)∥2]
= E[∥(∇xf(xk+1, yk+2; ζ

k+1
x )−∇xf(xk, yk+1; ζ

k+1
x ) +∇yf(xk, yk+1)−∇yf(xk+1, yk+2))

+ λk(∇xg(xk+1, yk+2;ϕ
k+1
x )−∇xg(xk, yk+1;ϕ

k+1
x ) +∇xg(xk, yk+1)−∇xg(xk+1, yk+2))

+ λk(∇xg(xk+1, zk+2;ϕ
k+1
x )−∇xg(xk, zk+1;ϕ

k+1
x ) +∇xg(xk, zk+1)−∇xg(xk+1, zk+2))

+ δk(∇yg(xk+1, yk+2;ϕ
k+1
x )−∇yg(xk+1, yk+2) +∇xg(xk, yk+1)−∇xg(xk, yk+1;ϕ

k+1
x ))

+ δk(∇xg(xk+1, zk+2;ϕ
k+1
x )−∇xg(xk+1, zk+2) +∇xg(xk, zk+1)−∇xg(xk, zk+1;ϕ

k+1
x ))∥2].

Using Cauchy-Schwartz inequality, we get

E[∥(qxk+1(ζ
k+1
x , ϕk+1

x )− qxk(ζ
k+1
x , ϕk+1

x )) + (qxk − qxk+1)∥2]
≤ 30(l2f,1 + l2g,1λ

2
k)(∥xk+1 − xk∥2 + ∥yk+2 − yk+1∥2 + ∥zk+2 − zk+1∥2) + 40δ2kσ

2
g

≤ 120l2g,1λ
2
k(ξ

2α2
k(∥qxk∥2 + ∥ẽxk∥2) + α2

k+1(∥q
y
k∥

2 + ∥ẽyk∥
2) + γ2

k+1(∥qzk∥2 + ∥ẽzk∥2)) + 40δ2kσ
2
g .

Combining all, we obtain the result.

31


