

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFYING PERSPECTIVES: PLAUSIBLE COUNTERFAC- TUAL EXPLANATIONS ON GLOBAL, GROUP-WISE, AND LOCAL LEVELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The growing complexity of AI systems has intensified the need for transparency through Explainable AI (XAI). Counterfactual explanations (CFs) offer actionable "what-if" scenarios on three levels: Local CFs providing instance-specific insights, Global CFs addressing broader trends, and Group-wise CFs (GWCFs) striking a balance and revealing patterns within cohesive groups. Despite the availability of methods for each granularity level, the field lacks a unified method that integrates these complementary approaches. We address this limitation by proposing a gradient-based optimization method for differentiable models that generates Local, Global, and Group-wise Counterfactual Explanations in a unified manner. We especially enhance GWCF generation by combining instance grouping and counterfactual generation into a single efficient process, replacing traditional two-step methods. Moreover, to ensure trustworthiness, we innovatively introduce the integration of plausibility criteria into the GWCF domain, making explanations both valid and realistic. Our results demonstrate the method's effectiveness in balancing validity, proximity, and plausibility while optimizing group granularity, with practical utility validated through practical use cases.

1 INTRODUCTION

The increasing complexity of AI systems has fueled regulatory and societal demands for transparency, a need addressed by Explainable AI (XAI) (Goodman & Flaxman, 2017; Wachter et al., 2017; Adadi & Berrada, 2018; Samek & Müller, 2019). Among XAI techniques, counterfactual explanations (CFs) are particularly valuable for providing actionable "what-if" scenarios that specify how input feature changes can alter model predictions (Wachter et al., 2017). For example, a CF could show a loan applicant the precise changes needed for loan approval, offering actionable feedback crucial in many fields (Guidotti, 2022).

Counterfactual explanations can be generated at three distinct levels of granularity. The most popular **Local** CFs offer tailored guidance for individual instances but miss broader patterns (Fragkathoulas et al., 2024; Carrizosa et al., 2024). **Global** CFs provide high-level summaries for entire datasets but lack individual specificity (Ramamurthy et al., 2020; Plumb et al., 2020). Bridging this gap, **group-wise** counterfactual explanations (GWCFs) explain cohesive data subsets, revealing shared patterns while maintaining actionable insights, which is crucial for fairness and policy-making in sensitive domains (Carrizosa et al., 2024; Kanamori et al., 2022; Warren et al., 2024). A detailed comparison of these approaches is illustrated in Figure 1 and discussed in Appendix A.

Despite their promise, existing GWCF methods face significant challenges. Most rely on a two-step process of first clustering data and then generating CFs (or vice versa), which is inefficient and dependent on clustering parameterization (Kavouras et al., 2024; Artelt & Gregoriades, 2024). Furthermore, ensuring the *plausibility* of CFs—that is, their alignment with the data distribution and real-world constraints—remains a key challenge, as unrealistic explanations undermine trust and actionability (Artelt & Hammer, 2020).

To address these challenges, we propose a unified framework for generating local, group-wise, and global counterfactuals, as illustrated in Figure 1. Our end-to-end, gradient-based method simultaneously optimizes instance grouping and counterfactual generation, eliminating the inefficient two-step

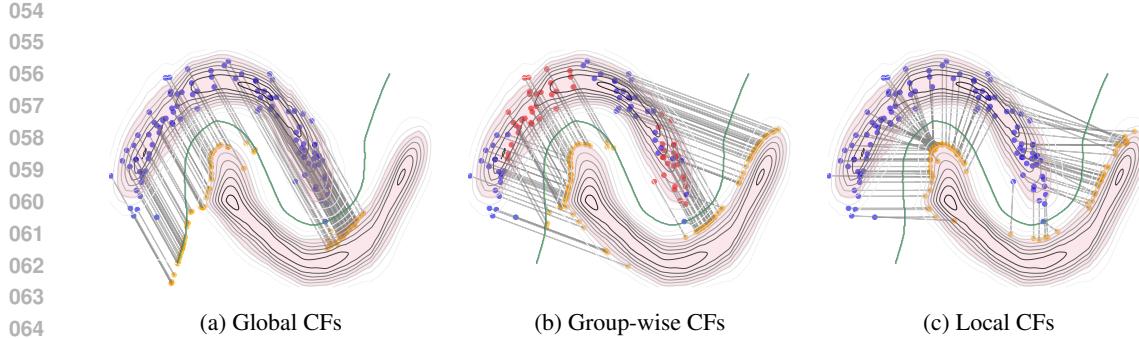


Figure 1: The figure illustrates three types of explanations generated by our approach: (a) *global CFs*, identifying a single direction of change applicable to the entire dataset; (b) *group-wise CFs*, providing vectors of change for specific groups, distinguished by colors (red, blue); and (c) *local counterfactual explanations*, offering instance-specific shift vectors, minimal changes required to modify individual predictions. Decision boundary (green line) and density threshold contours.

process common in prior work. It can dynamically generate explanations for a varying number of groups, automatically balancing a number through regularization. By formulating this as a single optimization problem, our method efficiently produces CFs at any desired granularity. Crucially, we introduce a probabilistic plausibility criterion, using normalizing flows for density estimation (Rezende & Mohamed, 2015), to ensure that explanations are not only valid but also realistic and actionable.

In summary, our key contributions are:

- A novel unified approach for generating CFs at local, group-wise, and global levels, dynamically adapting to user needs and automatically balancing groups diversity and granularity, leveraging gradient-based optimization.
- A significant advancement in GWCFs generation through end-to-end optimization that unifies group discovery and counterfactual generation while introducing probabilistic plausibility constraints in this domain.
- An experimental evaluation and real-world use case analysis demonstrating our approach’s performance, providing the effective balance between validity, proximity, plausibility, and the number of shifting vectors.

2 RELATED WORKS

Local Counterfactual Explanations Local CFs identify minimal feature changes to alter a model’s prediction for a single instance (Wachter et al., 2017). While early methods were often heuristic-based, subsequent work has introduced more sophisticated techniques, including gradient-based optimization, generative models, and contrastive explanations, to improve CF quality and diversity (Dhurandhar et al., 2018; Russell, 2019; Kanamori et al., 2020; Mothilal et al., 2020; Guidotti, 2022). However, ensuring the plausibility and actionability of these explanations remains an ongoing challenge (Keane et al., 2021).

Global and Group-wise Counterfactual Explanations Global and group-wise CFs extend explanations beyond single instances to entire datasets or cohesive subgroups. Global approaches seek a single or a few explanations for all instances, using techniques like feature space translations (Plumb et al., 2020), actionable rule sets (Rawal & Lakkaraju, 2020; Ley et al., 2022), or scalable vector-based methods (Ley et al., 2023). Group-wise methods provide more granular insights. Some approaches partition the input space using tree structures to assign collective actions (Ramamurthy et al., 2020; Kanamori et al., 2022; Bewley et al., 2024). Others follow a two-step process, first generating local CFs and then clustering them to find group-level explanations (Kavouras et al., 2024; Artelt & Gregoriades, 2024). These two-step methods, however, can be inefficient and sensitive to clustering parameters.

108 **Plausible Counterfactual Explanations** Plausibility ensures that a CF resides in a high-density
 109 region of the data manifold, making it realistic and trustworthy. Various techniques have been pro-
 110 posed to enforce this, such as imposing density constraints using Gaussian Mixture Models (Artelt &
 111 Hammer, 2020) or normalizing flows (Wielopolski et al., 2024). Other approaches leverage causal
 112 constraints (Mahajan et al., 2019) or generative models like VAEs to learn the data manifold and
 113 generate plausible CFs from it (Pawelczyk et al., 2020). A comprehensive survey by Karimi et al.
 114 (2022) details the challenges and opportunities in this area.

116 3 BACKGROUND

118 **Counterfactual Explanations** Following Wachter et al. (2017), a local counterfactual explanation
 119 finds a new instance $\mathbf{x}' \in \mathbb{R}^D$ for an original instance $\mathbf{x}_0 \in \mathbb{R}^D$ such that the prediction of a model
 120 h changes to a desired class y' , i.e., $h(\mathbf{x}') = y'$. The instance \mathbf{x}' is typically found by solving the
 121 optimization problem:

$$122 \quad \arg \min_{\mathbf{x}' \in \mathbb{R}^D} d(\mathbf{x}_0, \mathbf{x}') + \lambda \cdot \ell(h(\mathbf{x}'), y'). \quad (1)$$

123 The function $\ell(\cdot, \cdot)$ refers to a loss function tailored for classification tasks such as the 0-1 loss
 124 or cross-entropy. On the other hand, $d(\cdot, \cdot)$ quantifies the distance between the original input \mathbf{x}_0
 125 and its counterfactual counterpart \mathbf{x}' , employing metrics like the L1 (Manhattan) or L2 (Euclidean)
 126 distances to evaluate the deviation. The parameter $\lambda \geq 0$ plays a pivotal role in regulating the trade-
 127 off, ensuring that the counterfactual explanation remains sufficiently close to the original instance
 128 while altering the prediction outcome as intended.

130 **Plausible Counterfactual Explanations** To ensure realism, Artelt & Hammer (2020) introduced
 131 a plausibility constraint, requiring the counterfactual \mathbf{x}' to lie in a high-density region of the data
 132 distribution $p(\mathbf{x}|y')$ for the target class. The optimization problem becomes:

$$133 \quad \arg \min_{\mathbf{x}' \in \mathbb{R}^D} d(\mathbf{x}_0, \mathbf{x}') + \lambda \cdot \ell(h(\mathbf{x}'), y') \quad (2a)$$

$$135 \quad \text{s.t. } \delta \leq p(\mathbf{x}'|y'), \quad (2b)$$

137 where $p(\mathbf{x}'|y')$ denotes conditional probability of the counterfactual explanation \mathbf{x}' under desired
 138 target class value y' and δ represents the density threshold.

139 **Global and Group-wise Counterfactual Explanations** Global and group-wise explanations ex-
 140 tend the local concept by applying a shared change vector \mathbf{d} to a set of instances. For a global
 141 explanation, a single vector \mathbf{d} is applied to all instances. For group-wise explanations, different
 142 vectors are found for different subgroups of the data. The counterfactual for an instance \mathbf{x}_0 is then
 143 generated by a simple update:

$$144 \quad \mathbf{x}' = \mathbf{x}_0 + \mathbf{d}, \quad (3)$$

145 where \mathbf{d} is the shift vector of size D , which remains invariant across all observations within the
 146 same class or group.

148 In contrast to the standard formulation, GLOBE-CE (Ley et al., 2023) introduces a scaling factor, k ,
 149 specific to each observation, allowing for individual adjustments to the magnitude of the shift:

$$150 \quad \mathbf{x}' = \mathbf{x}_0 + k \cdot \mathbf{d}. \quad (4)$$

152 4 METHOD

154 4.1 GLOBAL COUNTERFACTUAL EXPLANATIONS

156 The base problem of global counterfactual explanation assumes finding the global shifting vector \mathbf{d}
 157 of size D . In order to solve that problem using optimization techniques, we can define the problem
 158 in the following way:

$$159 \quad \arg \min_{\mathbf{d}} d^G(\mathbf{X}_0, \mathbf{X}') + \lambda \cdot \ell^G(h(\mathbf{X}'), y'), \quad (5)$$

160 where $\mathbf{X}_0 = [\mathbf{x}_{1,0}, \dots, \mathbf{x}_{1,N}]^T$ represents the matrix storing the initial input N examples, $\mathbf{X}' =$
 161 $[\mathbf{x}_{1,0} + \mathbf{d}, \dots, \mathbf{x}_{1,N} + \mathbf{d}]^T$ represent the extracted counterfactuals, after shifting the input examples

162 with vector \mathbf{d} . Formally, $\mathbf{X}' = \mathbf{X}_0 + \mathbf{D}$, where $\mathbf{D} = \mathbf{1}_N \cdot \mathbf{d}^T$ and $\mathbf{1}_N$ represents N -dimesional
 163 vector containing ones. We define a global distance as $d^G(\mathbf{X}_0, \mathbf{X}') = \sum_{n=1}^N d(\mathbf{x}_{n,0}, \mathbf{x}'_n)$, and global
 164 classification loss as an aggregation of the components: $\ell^G(h(\mathbf{X}'), y') = \sum_{n=1}^N \ell(h(\mathbf{x}'_n), y')$.
 165

166 Extracting a single direction vector \mathbf{d} can be inefficient due to the dispersed initial positions \mathbf{X}_0 and,
 167 as discussed by Kanamori et al. (2022), it strictly depends on the farthest observation. Therefore,
 168 following the GLOBE-CE (Ley et al., 2023), we incorporate additional magnitude components and
 169 represent the counterfactuals as:
 170

$$\mathbf{X}'_K = \mathbf{X}_0 + \mathbf{K}\mathbf{D}, \quad (6)$$

171 where \mathbf{K} is the diagonal matrix of magnitudes on the diagonal, i.e., $\mathbf{K} = \text{diag}(k_1, \dots, k_N)$. In order
 172 to ensure non-negative values of magnitudes, we represent them as $k_i = \exp(h_i)$. This formulation
 173 extends the classical vector-based update rule given by eq. equation 4 to the matrix notation. In order
 174 to extract the counterfactuals, we simply include \mathbf{X}_0 in eq. equation 5 and optimize \mathbf{K} together with
 175 \mathbf{d} .
 176

4.2 GROUP-WISE COUNTERFACTUAL EXPLANATIONS

177 Incorporating magnitude components into the global counterfactual problem enhances the shifting
 178 options during counterfactual calculation, yet the direction remains uniform across all observations.
 179 To address this, we propose a novel method that automatically identifies groups represented by local
 180 shifting vectors with varying magnitudes. This approach restricts the number of desired shifting
 181 components to these identified groups. The formula for extracting group-wise counterfactuals is
 182 defined as:
 183

$$\mathbf{X}'_{GW} = \mathbf{X}_0 + \mathbf{K}\mathbf{S}\mathbf{D}_{GW}, \quad (7)$$

184 where \mathbf{D}_{GW} is a matrix of size $K \times D$, K is the number of base shifting vectors and D is the
 185 dimesionality of the data. \mathbf{S} is a sparse selection matrix of size $N \times K$, where $s_{n,k} \in \{0, 1\}$
 186 and $\sum_{k=1}^K s_{n,k} = 1$ for each of the considered rows. Practically, the operation selects one of
 187 the base shifting vectors \mathbf{d}_k , where $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_K]^T$, scaled by components k_n located on
 188 diagonal of matrix \mathbf{K} . We aim to optimize the selection matrix \mathbf{S} together with base vectors \mathbf{D}_{GW}
 189 and magnitude components \mathbf{K} using the gradient-based approach. Optimizing binary \mathbf{S} directly is
 190 challenging due to the type of data and the given constraints. Therefore, we replace the \mathbf{S} with the
 191 probability matrix \mathbf{P} , where the rows $\mathbf{p}_{n,\bullet}$ represent the values of Sparsemax (Martins & Astudillo,
 192 2016) activation function:
 193

$$\mathbf{p}_{n,\bullet} = \arg \min_{\mathbf{p} \in \Delta} \|\mathbf{p} - \mathbf{b}_{n,\bullet}\|^2, \quad (8)$$

194 where $\Delta = \{\mathbf{p} \in \mathbb{R}^K : \mathbf{1}_K^T \mathbf{p} = 1, \mathbf{p} \geq \mathbf{0}_K\}$ and $\mathbf{b}_{n,\bullet}$ is n -th row of \mathbf{B} , which is the real-valued
 195 auxiliary matrix that is used to model rows of \mathbf{S} as one-hot binary vectors. Practically, each row of
 196 the matrix \mathbf{P} represents a multinomial distribution, and matrix \mathbf{B} is optimized in the gradient-based
 197 framework.
 198

199 The objective for extracting group-wise counterfactuals is as follows:
 200

$$\begin{aligned} \arg \min_{\mathbf{K}, \mathbf{B}, \mathbf{D}_{GW}} \quad & d^G(\mathbf{X}_0, \mathbf{X}'_{GW}) + \lambda \cdot \ell^G(h(\mathbf{X}'_{GW}), y') + \\ & + \lambda_s \cdot \ell_s(\mathbf{B}) + \lambda_k \cdot \ell_k(\mathbf{B}), \end{aligned} \quad (9)$$

201 where $\ell_s(\mathbf{B})$ and $\ell_k(\mathbf{B})$ are entropy-based regularisers applied to preserve sparsity of matrix \mathbf{P} , and
 202 λ_s and λ_k are regularisation hyperparameters. The regularizer $\ell_s(\mathbf{B})$ is encouraging assignment to
 203 one group for each of the raw vectors $\mathbf{p}_{n,\bullet}$:
 204

$$\ell_s(\mathbf{B}) = - \sum_{n=1}^N \sum_{k=1}^K p_{n,k} \cdot \log p_{n,k}. \quad (10)$$

205 The second regularisation component is responsible for reducing the number of groups extracted
 206 during counterfactual optimization:
 207

$$\ell_k(\mathbf{B}) = - \sum_{k=1}^K p_k \cdot \log p_k, \quad (11)$$

216 where $p_k = \frac{\sum_{n=1}^N p_{k,n}}{\sum_{k=1}^K \sum_{n=1}^N p_{k,n}}$.
 217

218 The problem formulation provided by eq. equation 7 and equation 9 represents the unified frame-
 219 work for counterfactual explanations. If the number of base shifting vectors in matrix \mathbf{D}_{GW} is equal
 220 to the number of examples ($K = N$), $\mathbf{S} = \mathbf{K} = \mathbb{I}$, and $\lambda_k = \lambda_s = 0$, the problem statements
 221 refer to standard formulation of local explanations. In the case where $\mathbf{D}_{GW} = \mathbf{D}$, $\mathbf{S} = \mathbf{K} = \mathbb{I}$,
 222 and $\lambda_s = \lambda_k = 0$, the statement pertains to standard global counterfactual explanations. When
 223 $\mathbf{K} \neq \mathbb{I}$, it is equivalent to the formulation given in Eq. 6, i.e., GCFs with magnitude. In other
 224 cases ($1 < K < N$), the problem is formulated as a group-wise explanation case. In this setting,
 225 we can disable automatic group detection ($\lambda_k = 0$) and instead prioritize manual control over the
 226 automatic number of group formations ($\lambda_k > 0$). This latter configuration will be our primary focus
 227 for GWCFs.
 228

229 4.3 PLAUSIBLE COUNTERFACTUAL EXPLANATIONS AT ALL LEVELS

230 The plausibility is an important aspect of generating relevant counterfactuals. In this paper, we focus
 231 on density-based problem formulation, where the extracted example should satisfy the condition
 232 of preserving the density function value on a given threshold level (see eq. equation 2b): $\delta \leq$
 233 $p(\mathbf{x}'|y')$. Moreover, we utilize a specific form of classification loss that enables a balance between
 234 the plausibility and validity of the extracted examples.

235 The general criterion for extracting plausible group-wise counterfactuals can be formulated as fol-
 236 lows:

$$237 \arg \min_{\mathbf{K}, \mathbf{B}, \mathbf{D}_{GW}} d^G(\mathbf{X}_0, \mathbf{X}'_{GW}) + \lambda \cdot \ell^G(h(\mathbf{X}'_{GW}), y') + \\ 238 + \lambda_p \cdot \ell_p(\mathbf{X}'_{GW}, y') + \lambda_s \cdot \ell_s(\mathbf{B}) + \lambda_k \cdot \ell_k(\mathbf{B}), \quad (12)$$

240 where the loss component $\ell_p(\mathbf{X}'_{GW}, y')$ controls probabilistic plausibility constraint ($\delta \leq p(\mathbf{x}'|y')$)
 241 and is defined as:

$$242 \ell_p(\mathbf{X}'_{GW}, y') = \sum_{n=1}^N \max\left(\delta - p(\mathbf{x}'_{GW,n}|y'), 0\right), \quad (13)$$

243 where $\mathbf{x}'_{GW,n}$ is n -th counterfactual example stored in rows of $\mathbf{X}'_{GW} = [\mathbf{x}'_{GW,1}, \dots, \mathbf{x}'_{GW,N}]^T$ and
 244 δ is the density threshold defined by the user depending on the desired level of plausibility.
 245

246 Various approaches, like Kernel Density Estimation (KDE) or Gaussian Mixture Model (GMM)
 247 can be used to model conditional density function $p(\mathbf{x}'_{GW,n}|y')$. In this work, we follow Wielopols-
 248 ski et al. (2024) and use a conditional normalizing flow model (Rezende & Mohamed, 2015) to
 249 estimate the density. Compared to standard methods, like KDE or GMM, normalizing flows do
 250 not assume a particular parametrized form of density function and can be successively applied for
 251 high-dimensional data. Compared to other generative models, normalizing flows enables the calcu-
 252 lation of density function directly using the change of variable formula and can be trained via direct
 253 negative log-likelihood (NLL) optimization. A detailed description of how to model and train nor-
 254 malizing flows is provided in Appendix B. Having the trained discriminative model $p_d(y'|\mathbf{x}'_{GW,n})$
 255 and generative normalizing flow $p(\mathbf{x}'_{GW,n}|y')$ the set of counterfactuals \mathbf{X}'_{GW} is estimated using a
 256 standard gradient-based approach.
 257

258 4.4 VALIDITY LOSS COMPONENT

259 The application of the cross-entropy classification loss $\ell^G(h(\mathbf{X}'_{GW}), y')$ in eq. equation 12 con-
 260 stantly encourages 100% confidence of the discriminative model, which may have some negative
 261 impact on balancing other components in aggregated loss. In order to eliminate this limitation, we
 262 replace $\ell^G(h(\mathbf{X}'_{GW}), y')$ with validity loss based on Wielopolski et al. (2024):
 263

$$264 \ell_v(h(\mathbf{X}'_{GW}), y') = \\ 265 \sum_{n=1}^N \max\left(\max_{y \neq y'} p_d(y|\mathbf{x}'_{GW,n}) + \epsilon - p_d(y'|\mathbf{x}'_{GW,n}), 0\right). \quad (14)$$

266 This enforces that $p_d(y'|\mathbf{x}'_{GW,n})$ will be higher than the most probable class among the remaining
 267 classes by the ϵ margin. Using our criterion, the model can focus more on producing closer and
 268 more plausible counterfactuals.
 269

270 4.5 GROUP DIVERSITY REGULARIZATION
271272 During optimization, the algorithm may converge towards proposing similar groups, overly cap-
273 turing fine details. To ensure diversity among the base shifting vectors in \mathbf{D}_{GW} , we introduce a
274 determinant-based regularization term that encourages linear independence and broad representa-
275 tion. The penalty is defined as:

276
$$\ell_d(\mathbf{D}_{GW}) = -\log \det(\mathbf{D}_{GW} \mathbf{D}_{GW}^T + \epsilon \mathbf{I}), \quad (15)$$

277

278 where ϵ is a small positive constant that ensures numerical stability by preventing the determinant
279 from becoming zero.

280 The optimization objective from Eq. equation 12 is updated to include the diversity term:

281
$$\begin{aligned} \arg \min_{\mathbf{K}, \mathbf{B}, \mathbf{D}_{GW}} \quad & d^G(\mathbf{X}_0, \mathbf{X}'_{GW}) + \lambda \cdot \ell_v(h(\mathbf{X}'_{GW}), y') + \\ 282 & + \lambda_p \cdot \ell_p(\mathbf{X}'_{GW}, y') + \lambda_s \cdot \ell_s(\mathbf{B}) + \\ 283 & + \lambda_k \cdot \ell_k(\mathbf{B}) + \lambda_d \cdot \ell_d(\mathbf{D}_{GW}), \end{aligned} \quad (16)$$

284
285

286 This term maximizes the volume spanned by the group shifting vectors, promoting distinct and
287 diverse groups of counterfactual explanations.288 Based on this, we conducted an ablation study on each component and their combinations (see
289 Appendix I) and selected hyperparameters based on our findings to ensure optimal performance. We
290 initialize with $K = N$ base shifting vectors and assign the highest weight, $\lambda = 10^5$, to emphasize
291 validity. For plausibility, group sparsity, and number-of-groups regularization, we use equal weights
292 $\lambda_p = \lambda_s = \lambda_k = 10^4$, reflecting their comparable importance in balancing realistic counterfactuals
293 with group number. Finally, to ensure diversity among the group shifting vectors while allowing
294 other constraints to dominate, we set $\lambda_d = 10^1$. Furthermore, we used the first quartile of the
295 probabilities of the observed train set as the probability threshold δ .296 5 EXPERIMENTS
297298 In this section, we evaluate the performance of our method in global, group-wise, and local con-
299 figurations using various datasets and metrics. The experiments benchmark our approach against
300 state-of-the-art methods, highlighting its strengths and providing insights into its unified capabili-
301 ties. To further illustrate the practical value of our method, we analyze the created groups in two
302 use cases, demonstrating its ability to generate actionable and interpretable insights. The code for
303 these experiments is publicly available on GitHub¹. Detailed results and additional evaluations are
304 provided in Appendix J.305 5.1 COMPARATIVE EXPERIMENTS
306308 **Datasets** We conducted experiments on six datasets that cover diverse domains and challenges and
309 are frequently used as benchmarks in the counterfactual explanation literature. The datasets include:
310 three for tabular data binary classification (*Law*, *HELOC*, *Moons*); two for tabular data multiclass
311 classification (*Blobs*, *Wine*); and one image dataset with multiple classes (*Digits*). The sizes of these
312 datasets range from 178 samples (*Wine*) to 10,459 samples (*HELOC*), while feature dimensionality
313 spans from 2 features (*Moons*, *Blobs*) to 64 features (*Digits*), ensuring robustness across different
314 scales and complexities. Detailed descriptions of these datasets are available in Appendix E.1.315 **Classification Models** For classification models, we trained a 2-layer *Multilayer Perceptron*
316 (MLP) to test non-linear deep neural network configurations. For completeness, we provide ad-
317 ditional comparative results using the LR model in Appendix J.4. Detailed descriptions of both
318 model architectures are provided in Appendix E.2.320 **Metrics** We evaluated counterfactual explanations using three key metrics: *Validity*, which mea-
321 sures the success of CFs in altering the model’s predictions; *Proximity*, calculated as the *L2* distance
322 between the original instance and the CFs; *Plausibility*, assessed through the Isolation Forest metric323 ¹Will be added in camera-ready version.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 1: Comparative analysis: Global Methods.

DATASET	METHOD	COVERAGE↑	VALID.↑	L2↓	IsoFOREST↑	TIME(s)↓
BLOBS	GLOBE-CE	1.00 ± 0.00	0.99 ± 0.01	0.25 ± 0.04	-0.06 ± 0.03	0.66 ± 0.03
	GLANCE	1.00 ± 0.00	1.00 ± 0.00	0.42 ± 0.01	0.01 ± 0.00	43.30 ± 9.72
	OUR _{global}	1.00 ± 0.00	1.00 ± 0.00	0.48 ± 0.01	0.03 ± 0.00	7.89 ± 0.86
DIGITS	GLOBE-CE	1.00 ± 0.00	0.00 ± 0.00	-	-	0.95 ± 0.08
	GLANCE	1.00 ± 0.00	0.30 ± 0.07	11.24 ± 0.70	0.09 ± 0.01	678.36 ± 29.07
	OUR _{global}	1.00 ± 0.00	1.00 ± 0.00	17.08 ± 0.54	0.10 ± 0.00	31.48 ± 5.28
HELOC	GLOBE-CE	1.00 ± 0.00	1.00 ± 0.00	0.52 ± 0.03	0.03 ± 0.01	2.02 ± 0.18
	GLANCE	1.00 ± 0.00	0.97 ± 0.01	0.68 ± 0.07	-0.01 ± 0.02	99.89 ± 44.14
	OUR _{global}	1.00 ± 0.00	1.00 ± 0.00	0.36 ± 0.02	0.06 ± 0.00	32.47 ± 10.01
LAW	GLOBE-CE	1.00 ± 0.00	1.00 ± 0.00	0.22 ± 0.02	0.01 ± 0.01	0.81 ± 0.02
	GLANCE	1.00 ± 0.00	0.97 ± 0.00	0.45 ± 0.02	-0.04 ± 0.01	90.81 ± 9.03
	OUR _{global}	1.00 ± 0.00	1.00 ± 0.00	0.38 ± 0.01	0.01 ± 0.00	13.44 ± 3.11
MOONS	GLOBE-CE	1.00 ± 0.00	1.00 ± 0.00	0.30 ± 0.03	-0.06 ± 0.01	0.65 ± 0.01
	GLANCE	1.00 ± 0.00	0.68 ± 0.05	0.39 ± 0.02	-0.02 ± 0.01	77.97 ± 9.11
	OUR _{global}	1.00 ± 0.00	0.91 ± 0.12	0.45 ± 0.04	-0.01 ± 0.01	9.55 ± 1.37
WINE	GLOBE-CE	1.00 ± 0.00	1.00 ± 0.00	0.73 ± 0.20	0.04 ± 0.02	0.39 ± 0.01
	GLANCE	1.00 ± 0.00	0.57 ± 0.17	0.46 ± 0.07	0.06 ± 0.01	5.82 ± 3.10
	OUR _{global}	1.00 ± 0.00	1.00 ± 0.00	0.73 ± 0.07	0.06 ± 0.01	5.73 ± 0.89

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 2: Comparative analysis: Group-Wise Methods.

DATASET	METHOD	GROUPS	COVERAGE↑	VALID.↑	L2↓	IsoFOREST↑	TIME(s)↓
BLOBS	EA	3.60 ± 1.67	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	-0.16 ± 0.00	95.38 ± 40.81
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.96 ± 0.03	0.56 ± 0.02	-0.10 ± 0.01	49.07 ± 3.9
	TCREX	2.40 ± 0.55	1.00 ± 0.00	1.00 ± 0.00	0.00 ± 0.00	0.02 ± 0.00	0.00 ± 0.00
	OUR _{group}	1.60 ± 0.49	1.00 ± 0.00	1.00 ± 0.00	0.46 ± 0.01	0.03 ± 0.00	14.55 ± 2.51
DIGITS	EA	4.00 ± 0.00	0.00 ± 0.00	-	-	-	972.35 ± 62.15
	GLANCE	4.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	2.01 ± 0.18	-0.08 ± 0.01	761.25 ± 75.97
	TCREX	91.00 ± 50.76	1.00 ± 0.00	1.00 ± 0.00	0.15 ± 0.06	0.09 ± 0.00	13.37 ± 5.26
	OUR _{group}	2.80 ± 1.83	1.00 ± 0.00	1.00 ± 0.00	16.35 ± 1.25	0.10 ± 0.00	102.23 ± 13.14
HELOC	EA	4.60 ± 1.14	1.00 ± 0.00	1.00 ± 0.00	1.90 ± 0.09	-0.02 ± 0.03	338.84 ± 43.44
	GLANCE	10.00 ± 0.00	1.00 ± 0.00	0.95 ± 0.01	1.00 ± 0.07	-0.01 ± 0.01	116.31 ± 16.93
	TCREX	26.80 ± 21.02	1.00 ± 0.00	0.94 ± 0.07	0.07 ± 0.05	0.05 ± 0.00	0.13 ± 0.07
	OUR _{group}	16.80 ± 2.56	1.00 ± 0.00	1.00 ± 0.00	0.48 ± 0.06	0.02 ± 0.01	169.58 ± 24.21
LAW	EA	4.40 ± 1.95	1.00 ± 0.00	1.00 ± 0.00	1.13 ± 0.07	-0.12 ± 0.01	121.26 ± 44.08
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.95 ± 0.03	0.53 ± 0.05	-0.05 ± 0.02	96.32 ± 15.61
	TCREX	5.00 ± 2.00	1.00 ± 0.00	0.79 ± 0.29	0.11 ± 0.09	0.03 ± 0.00	0.00 ± 0.00
	OUR _{group}	4.40 ± 1.36	1.00 ± 0.00	1.00 ± 0.00	0.36 ± 0.02	0.04 ± 0.01	77.31 ± 60.42
MOONS	EA	5.20 ± 2.05	1.00 ± 0.00	1.00 ± 0.00	1.03 ± 0.00	-0.14 ± 0.01	131.36 ± 50.25
	GLANCE	3.00 ± 0.00	1.00 ± 0.00	0.84 ± 0.14	0.53 ± 0.03	-0.02 ± 0.02	91.44 ± 6.34
	TCREX	6.00 ± 0.00	1.00 ± 0.00	0.83 ± 0.15	0.10 ± 0.05	0.00 ± 0.01	0.00 ± 0.00
	OUR _{group}	10.80 ± 0.98	1.00 ± 0.00	1.00 ± 0.00	0.46 ± 0.04	0.02 ± 0.00	42.47 ± 25.88
WINE	EA	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.39 ± 0.26	-0.03 ± 0.03	16.66 ± 0.50
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.84 ± 0.10	0.70 ± 0.09	0.05 ± 0.01	7.2 ± 3.48
	TCREX	15.40 ± 11.28	1.00 ± 0.00	1.00 ± 0.00	0.09 ± 0.15	0.05 ± 0.01	0.00 ± 0.00
	OUR _{group}	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	0.81 ± 0.07	0.07 ± 0.01	32.41 ± 23.19

(Liu et al., 2012) to evaluate whether the CFs are realistic with respect to the target class distribution. The extended evaluation within more metrics is available in Appendix J.4. For methods that produce CFs via tree structures, we calculate these metrics by first applying each instance leaf-specific action to generate its counterfactual, then evaluating the metrics individually before aggregating across the dataset.

Baselines We benchmarked our method against various approaches across local, global, and group-wise configurations to ensure a comprehensive comparison of effectiveness and applicability at different levels of explanation. **For the global configuration**, we compared against GLOBE-CE (Ley et al., 2023) and GLANCE (Kavouras et al., 2024) in its global option (with only one group), as these represent state-of-the-art global CF methods, providing robust baselines for evaluating global coherence and plausibility. **For group-wise counterfactual explanations**, we evaluated our method against GLANCE, EA (Artelt & Gregoriades, 2024), and T-CREx (Bewley et al., 2024), which are designed to produce coherent and interpretable group-wise CFs. **For the local configuration**, we compared against several methods: the foundational gradient-based CF method by Wachter et al.

378
379
380
381 Table 3: Comparative analysis: Local Methods.
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

380 DATASET	381 METHOD	382 COVERAGE↑	383 VALID.↑	384 L2↓	385 ISOFOREST↑	386 TIME(S)↓
382 BLOBS	DICE	1.00 ± 0.00	1.00 ± 0.00	0.51 ± 0.03	-0.1 ± 0.00	8.15 ± 5.24
	WACH	0.99 ± 0.03	1.00 ± 0.00	0.23 ± 0.01	-0.04 ± 0.00	0.22 ± 0.05
	CCHVAE	1.00 ± 0.00	1.00 ± 0.00	0.37 ± 0.05	-0.06 ± 0.01	2.15 ± 0.62
	PPCEF	1.00 ± 0.00	1.00 ± 0.00	0.47 ± 0.01	0.04 ± 0.00	19.55 ± 0.30
	OUR _{local}	1.00 ± 0.00	1.00 ± 0.00	0.39 ± 0.01	0.03 ± 0.00	6.20 ± 0.20
385 DIGITS	DICE	1.00 ± 0.00	1.00 ± 0.00	23.77 ± 0.99	0.03 ± 0.01	162.88 ± 15.52
	WACH	1.00 ± 0.00	1.00 ± 0.00	2.10 ± 0.44	0.09 ± 0.00	16.41 ± 0.62
	CCHVAE	1.00 ± 0.00	1.00 ± 0.00	2.19 ± 0.24	0.04 ± 0.01	3.38 ± 0.52
	PPCEF	1.00 ± 0.00	1.00 ± 0.00	11.42 ± 0.05	0.10 ± 0.01	25.09 ± 0.40
	OUR _{local}	1.00 ± 0.00	1.00 ± 0.00	11.41 ± 0.51	0.11 ± 0.00	18.58 ± 0.68
389 HELOC	DICE	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.06	-0.01 ± 0.00	230.85 ± 26.00
	WACH	1.00 ± 0.00	1.00 ± 0.00	0.16 ± 0.02	0.06 ± 0.00	33.88 ± 4.98
	CCHVAE	1.00 ± 0.00	1.00 ± 0.00	0.59 ± 0.02	0.11 ± 0.00	14.60 ± 3.83
	PPCEF	1.00 ± 0.00	0.98 ± 0.02	0.42 ± 0.02	0.07 ± 0.00	24.31 ± 4.52
	OUR _{local}	1.00 ± 0.00	1.00 ± 0.00	0.47 ± 0.01	0.08 ± 0.00	20.21 ± 2.02
392 LAW	DICE	1.00 ± 0.00	1.00 ± 0.00	0.52 ± 0.01	-0.05 ± 0.00	43.82 ± 9.62
	WACH	0.97 ± 0.05	1.00 ± 0.01	0.16 ± 0.01	0.05 ± 0.00	21.66 ± 3.91
	CCHVAE	1.00 ± 0.00	1.00 ± 0.00	0.31 ± 0.01	0.09 ± 0.01	0.28 ± 0.17
	PPCEF	1.00 ± 0.00	0.95 ± 0.01	0.32 ± 0.02	0.06 ± 0.00	20.63 ± 1.08
	OUR _{local}	1.00 ± 0.00	1.00 ± 0.00	0.32 ± 0.00	0.05 ± 0.00	7.80 ± 0.29
396 MOONS	DICE	1.00 ± 0.00	1.00 ± 0.00	0.55 ± 0.01	-0.04 ± 0.01	17.85 ± 6.64
	WACH	0.97 ± 0.06	1.00 ± 0.00	0.16 ± 0.01	-0.00 ± 0.00	0.23 ± 0.05
	CCHVAE	1.00 ± 0.00	1.00 ± 0.00	0.28 ± 0.01	0.02 ± 0.01	0.10 ± 0.04
	PPCEF	1.00 ± 0.00	0.98 ± 0.01	0.34 ± 0.04	0.03 ± 0.01	20.44 ± 1.75
	OUR _{local}	1.00 ± 0.00	1.00 ± 0.00	0.30 ± 0.01	0.03 ± 0.00	7.32 ± 0.22
399 WINE	DICE	1.00 ± 0.00	1.00 ± 0.00	0.72 ± 0.08	0.03 ± 0.01	0.70 ± 0.05
	WACH	1.00 ± 0.00	1.00 ± 0.00	0.43 ± 0.08	0.03 ± 0.02	0.10 ± 0.02
	CCHVAE	1.00 ± 0.00	1.00 ± 0.00	0.79 ± 0.05	0.09 ± 0.00	0.02 ± 0.00
	PPCEF	1.00 ± 0.00	1.00 ± 0.00	0.66 ± 0.05	0.07 ± 0.01	12.41 ± 0.52
	OUR _{local}	1.00 ± 0.00	1.00 ± 0.00	0.69 ± 0.07	0.05 ± 0.01	5.49 ± 0.32

(2017) (Wach), which serves as a widely recognized baseline; PPCEF (Wielopolski et al., 2024), which employs a similar approach using normalizing flow models for plausibility and is particularly relevant as our local configuration mathematically reduces to PPCEF’s formulation when setting specific parameters ($K = N$, $\mathbf{S} = \mathbf{K} = \mathbb{I}$, $\lambda_s = \lambda_k = \lambda_d = 0$), as detailed in Appendix I.3; CCHVAE (Pawelczyk et al., 2020), which also focuses on plausibility through generative modeling; and DiCE (Mothilal et al., 2020), which is used by both GLANCE and EA for prior clustering, making it a relevant comparison for local CFs.

Experiment Results The results are reported in Tables 1, 2, and 3, presenting comparative performance across six datasets with mean values and standard deviations over multiple runs. To validate the robustness of observed differences, we conducted Friedman tests across all configurations, which revealed statistically significant differences among methods for all evaluated metrics ($p < 0.05$); detailed statistical analysis is provided in Appendix J.5. Our proposed method consistently outperformed baseline approaches across all granularity levels: global, group-wise, and local.

In the global configuration (Table 1), our framework achieved perfect or near-perfect validity across all datasets except Moons, substantially outperforming GLOBE-CE, which achieved 0.00 validity on Digits. GLANCE showed lower validity on multiple datasets. For plausibility, OUR_{global} consistently achieved the highest scores, demonstrating superior data manifold alignment compared to baselines, which often produced negative scores. Post-hoc pairwise comparisons confirmed these improvements are statistically significant (OUR vs. GLANCE: $p < 0.001$ for both validity and plausibility). Regarding proximity, our method achieved the best performance on Heloc and competitive results elsewhere, balancing minimal feature changes with plausibility. Notably, OUR_{global} was significantly faster than GLANCE while maintaining superior quality metrics.

For group-wise counterfactuals (Table 2), our approach identified compact, interpretable group structures while maintaining high validity and plausibility. On all datasets, OUR_{group} achieved perfect validity scores (1.00), matching or exceeding all baselines. For plausibility, OUR_{group} consistently achieved positive IsoForest scores, statistically significantly outperforming EA and GLANCE ($p < 0.001$), while matching the performance of TCREx, yet identifying substantially fewer groups. For instance, on Digits, OUR_{group} identified 2.80 ± 1.83 groups versus TCREx’s 91.00 ± 50.76 . The proximity scores demonstrate that our counterfactuals required reasonable feature changes while en-

432 suring realistic outcomes. An ablation study on the number of groups (see Appendix G) confirms
 433 that while increasing groups improves plausibility, the benefits plateau, validating our regularization
 434 approach.

435 **At the local level** (Table 3), all methods achieved perfect or near-perfect coverage and validity,
 436 making plausibility the key differentiator. OUR_{local} significantly surpassed DiCE and Wach in
 437 plausibility across all datasets ($p < 0.001$). When compared to PPCEF and CCHVAE, our approach
 438 achieved statistically comparable performance (no significant differences, $p > 0.05$), demon-
 439 strating that our unified framework matches specialized plausibility-focused methods. While CCHVAE
 440 demonstrated strong plausibility and often the fastest execution time, and PPCEF showed compa-
 441 rable plausibility on several datasets, OUR_{local} maintained consistently high plausibility across all
 442 datasets with reasonable computational efficiency. Our method generates CFs balancing validity,
 443 proximity, and plausibility. Proximity alone is insufficient as CFs must also be realistic (plausible).
 444 Methods achieving the lowest proximity often generate unrealistic examples that cross the decision
 445 boundary minimally but lie in low-density regions.

446 Overall, the evaluation demonstrates that our method excels in validity and plausibility across all
 447 granularities, with statistically significant improvements confirmed through rigorous testing. It
 448 maintains competitive proximity scores, effectively balancing plausibility and actionability. Further-
 449 more, our group-wise approach, integrating probabilistic plausibility criteria, enhances performance
 450 by consistently achieving plausible results while maintaining reasonable proximity. This highlights
 451 an effective trade-off between plausibility and distance, showcasing the practical utility and effec-
 452 tiveness of our unified framework.

453

454 5.2 CASE STUDY 1: CREDIT SCORING WITH HELOC DATASET

455

456 The dataset comprises HELOC credit line applications aimed at predicting whether applicants will
 457 repay their credit lines within two years. We selected five financial indicators (*Number of Satis-
 458 factory Trades*, *Net Fraction of Revolving Burden*, *Net Fraction of Installment Burden*, *Number of
 459 Revolving Trades with Balance*, *Number of Installment Trades with Balance*) for their potential to
 460 enable rapid behavioral adjustments. By allowing the selection of only a subset of variables, enforc-
 461 ing monotonicity constraints where features can change in only one direction, and specifying feature
 462 ranges, our method ensures actionability by focusing on financially adjustable features within realis-
 463 tic limits. Implementation details are provided in Appendix C. Specifically, we applied the following
 464 constraints: Number of Satisfactory Trades can only increase (reflecting improved credit standing),
 465 Net Fraction of Revolving Burden and Net Fraction of Installment Burden can only decrease (in-
 466 dicating reduced debt utilization), Number of Revolving Trades with Balance can only decrease
 467 (showing debt consolidation), while Number of Installment Trades with Balance can both increase
 468 or decrease (allowing flexibility in loan management strategies). These indicators facilitate imme-
 469 diate changes, such as simulating the effects of a rejected credit scenario. Our method generated
 470 CFs, optimizing them into six groups. The proposed actions are illustrated in Figure 4. The results
 471 reveal diverse group-specific recommendations. Although some groups prioritize increasing satis-
 472 factory trades, others focus on reducing revolving burdens or trades. In addition, the groups differ
 473 significantly in size, which highlights potential for subgroup analysis. A detailed interpretation is
 474 provided in Appendix J.2.

475

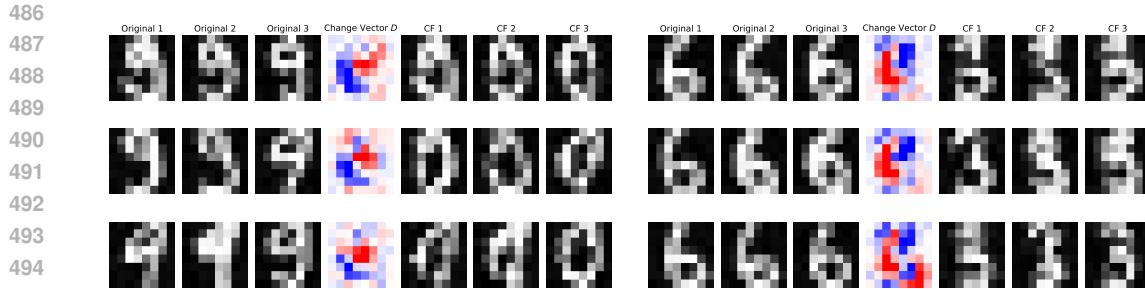
476 5.3 CASE STUDY 2: HANDWRITTEN DIGIT TRANSFORMATIONS WITH DIGITS DATASET

477

478 Figure 2 demonstrates our method’s application to the Digits dataset, presenting group-wise coun-
 479 terfactual explanations for two cases. In Figure 2a, the origin class is 9, transitioning to the desired
 480 class 0. In Figure 2b, the origin class is 6, transitioning to the desired class 3. Our method clusters
 481 instances into three groups, ensuring that instances within the same group require similar modifica-
 482 tions to achieve their counterfactuals.

483

484 In Figure 2a, the first group demands substantial changes, as shown by prominent shifts in the
 485 change vector, while the third group requires fewer adjustments, indicating an easier path to the
 486 desired class. This variation underscores our method’s ability to differentiate the effort required
 487 for different groups to reach the target class. Figure 2b highlights that the third group uniquely
 488 requires a subtraction in the lower-right corner, while the first and second groups do not exhibit



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(a) Counterfactual explanations for class 9 with the desired class 0.
(b) Counterfactual explanation for class 6 with desired class 3.

Figure 2: CFs for different digit pairs, showing the transformation process between different digit classes. Each row represents a distinct group. Original images are on the left, shifting vectors are in the middle column, and CFs are on the right. Red pixels in the shifting vector indicate subtracted values, while blue pixels indicate added values.

significant changes in this region. This distinction demonstrates how our method tailors group-specific counterfactuals based on structural and feature differences.

These findings confirm our method’s capability to produce interpretable and group-specific counterfactual explanations for image data, offering insights into the transformations needed to achieve GWCFs for diverse instance groups.

6 CONCLUSIONS

In this work, we introduced a unified method for generating counterfactual explanations at the local, group-wise, and global levels. Our approach dynamically adapts to different levels of granularity, eliminating the need for separate clustering and counterfactual generation steps. By formulating a counterfactual search as a single optimization task, we efficiently generate explanations that balance validity, proximity, and plausibility while optimizing group granularity. Additionally, we integrate probabilistic plausibility constraints within global and group-wise counterfactual explanations, ensuring that generated recourse suggestions remain realistic and actionable. The experimental results demonstrate the effectiveness of our approach across multiple datasets and classification models. In particular, we showed that our group-wise method produces a relatively small number of meaningful and interpretable groups, capturing distinct patterns within the data. Compared to state-of-the-art methods, our framework achieves superior validity while maintaining competitive plausibility and proximity. This method provides a valuable tool for enhancing transparency, accountability, and trust in machine learning by offering a comprehensive understanding of model behavior. It supports informed decision-making and advances research in model debugging and decision support systems.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and experimental configurations throughout this work. The complete source code for our unified counterfactual explanation framework will be made publicly available on GitHub upon acceptance. Our mathematical formulation is fully specified in Section 4.2, including all loss components, regularization terms, and optimization objectives. Detailed experimental protocols are described in Section 5, with comprehensive hyperparameter settings, baseline comparisons, and evaluation metrics. Complete dataset descriptions, model architectures, and training procedures are provided in Appendix E.1 and E.2. The computational environment and resource requirements are documented in Appendix E.3. All experimental results include mean values and standard deviations across five-fold cross-validation, with detailed numerical results presented in Appendix J. Our ablation studies (Appendix I) provide thorough analysis of individual components, enabling researchers to understand the contribution of each element. The normalizing flow implementation for plausibility estimation is detailed in Appendix B, and actionability constraints are fully specified in Appendix C.

540 ETHICS STATEMENT
541

542 We acknowledge and adhere to the ICLR Code of Ethics in all aspects of this research, which aims
543 to contribute positively to society by advancing AI transparency and interpretability through im-
544 proved counterfactual explanations. Our method is designed to make AI systems more accountable
545 and trustworthy, supporting fairer decision-making across local, group-wise, and global explanation
546 levels. We use only publicly available datasets following established privacy-preserving practices,
547 with no collection of new personal data or re-identification attempts. We acknowledge potential
548 dual-use concerns where explanation techniques could be misused to game AI systems, emphasizing
549 the need for responsible deployment with appropriate governance frameworks, particularly in
550 high-stakes domains. We provide comprehensive disclosure of our method capabilities and limita-
551 tions and we remain committed to the responsible development of explainable AI techniques.

552
553 REFERENCES
554

555 Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
556 artificial intelligence (XAI). *IEEE Access*, 6:52138–52160, 2018. doi: 10.1109/ACCESS.2018.
557 2870052.

558 Stefan Aeberhard and M. Forina. Wine. UCI Machine Learning Repository, 1992. DOI:
559 <https://doi.org/10.24432/C5PC7J>.

560

561 E. Alpaydin and C. Kaynak. Optical Recognition of Handwritten Digits. UCI Machine Learning
562 Repository, 1998. DOI: <https://doi.org/10.24432/C50P49>.

563

564 André Artelt and Andreas Gregoriades. A two-stage algorithm for cost-efficient multi-instance
565 counterfactual explanations. In Luca Longo, Weiru Liu, and Grégoire Montavon (eds.), *Joint
566 Proceedings of the xAI 2024 Late-breaking Work, Demos and Doctoral Consortium co-located
567 with the 2nd World Conference on eXplainable Artificial Intelligence (xAI-2024), Valletta, Malta,
568 July 17-19, 2024*, volume 3793 of *CEUR Workshop Proceedings*, pp. 233–240, 2024.

569

570 André Artelt and Barbara Hammer. Convex density constraints for computing plausible counter-
571 factual explanations. In *Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th
572 International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18,
573 2020, Proceedings, Part I*, volume 12396 of *Lecture Notes in Computer Science*, pp. 353–365.
574 Springer, 2020.

575

576 Tom Bewley, Salim I. Amoukou, Saumitra Mishra, Daniele Magazzeni, and Manuela Veloso. Counter-
577 factual metarules for local and global recourse. In *Forty-first International Conference on Ma-
578 chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL
<https://openreview.net/forum?id=Ad9msn1SKC>.

579

580 Emilio Carrizosa, Jasone Ramírez-Ayerbe, and Dolores Romero Morales. Mathematical optimiza-
581 tion modelling for group counterfactual explanations. *European Journal of Operational Research*,
582 319(2):399–412, 2024.

583

584 Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Pai-Shun Ting, Karthikeyan Shan-
585 mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
586 with pertinent negatives. In *Advances in Neural Information Processing Systems 31: Annual
587 Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada*, pp. 590–601, 2018.

588

589 Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components es-
590 timation. In *3rd International Conference on Learning Representations, ICLR 2015, San Diego,
591 CA, USA, May 7-9, 2015, Workshop Track Proceedings*, 2015.

592

593 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In *5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings*, 2017.

594 FICO. FICO (HELOC) Dataset, 2018. URL <https://community.fico.com/s/explainable-machine-learning-challenge?tabset3158a=2>. Explainable Machine Learning Challenge.

595

596

597 Christos Fragkathoulas, Vasiliki Papanikou, Evangelia Pitoura, and Evimaria Terzi. Fgce: Feasible group counterfactual explanations for auditing fairness, 2024. URL <https://arxiv.org/abs/2410.22591>.

598

599

600 Bryce Goodman and Seth R. Flaxman. European union regulations on algorithmic decision-making and a "right to explanation". *AI Mag.*, 38(3):50–57, 2017. doi: 10.1609/AIMAG.V38I3.2741.

601

602

603 Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and benchmarking. *Data Mining and Knowledge Discovery*, pp. 1–55, 04 2022.

604

605

606 Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. DACE: distribution-aware 607 counterfactual explanation by mixed-integer linear optimization. In *Proceedings of the Twenty- 608 Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020*, pp. 2855–2862. ij- 609 cai.org, 2020.

610 Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike. Counterfactual explanation 611 trees: Transparent and consistent actionable recourse with decision trees. In *International Con- 612 ference on Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event*, 613 volume 151 of *Proceedings of Machine Learning Research*, pp. 1846–1870. PMLR, 2022.

614

615 Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algo- 616 rithmic recourse: Contrastive explanations and consequential recommendations. *ACM Com- 617 put. Surv.*, 55(5), December 2022. ISSN 0360-0300. doi: 10.1145/3527848. URL <https://doi.org/10.1145/3527848>.

618

619 Loukas Kavouras, Eleni Psaroudaki, Konstantinos Tsopelas, Dimitrios Rontogiannis, Nikolaos The- 620 ologitis, Dimitris Sacharidis, Giorgos Giannopoulos, Dimitrios Tomaras, Kleopatra Markou, 621 Dimitrios Gunopoulos, Dimitris Fotakis, and Ioannis Emiris. Glance: Global actions in a nutshell 622 for counterfactual explainability. *arXiv preprint arXiv:2405.18921*, 2024.

623

624 Mark T. Keane, Eoin M. Kenny, Eoin Delaney, and Barry Smyth. If only we had better counterfactual 625 explanations: Five key deficits to rectify in the evaluation of counterfactual XAI techniques. In 626 *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, 627 Virtual Event / Montreal, Canada, 19-27 August 2021*, 2021.

628

629 Dan Ley, Saumitra Mishra, and Daniele Magazzeni. Global counterfactual explanations: Investiga- 630 tions, implementations and improvements. *CoRR*, abs/2204.06917, 2022. doi: 10.48550/ARXIV. 631 2204.06917. URL <https://doi.org/10.48550/arXiv.2204.06917>.

632

633 Dan Ley, Saumitra Mishra, and Daniele Magazzeni. GLOBE-CE: A translation based approach for 634 global counterfactual explanations. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar- 635 bara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine 636 Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of 637 Machine Learning Research*, pp. 19315–19342. PMLR, 2023.

638

639 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. *ACM Trans- 640 actions on Knowledge Discovery from Data (TKDD)*, 6(1):1–39, 2012.

641

642 Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual 643 explanations for machine learning classifiers. *CoRR*, abs/1912.03277, 2019.

644

645 André F. T. Martins and Ramón Fernandez Astudillo. From softmax to sparsemax: A sparse model 646 of attention and multi-label classification. In *Proceedings of the 33nd International Conference 647 on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR 648 Workshop and Conference Proceedings*, pp. 1614–1623. JMLR.org, 2016.

649

650 Ramaravind Kommiya Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning 651 classifiers through diverse counterfactual explanations. In *FAT* '20: Conference on Fairness, 652 Accountability, and Transparency, Barcelona, Spain, January 27-30, 2020*, pp. 607–617. ACM, 653 2020.

648 George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
 649 estimation. In *Advances in Neural Information Processing Systems 30: Annual Conference on*
 650 *Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 651 2338–2347, 2017.

652 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 653 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 654 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 655 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 656 deep learning library. In *Advances in Neural Information Processing Systems 32*, pp. 8024–8035.
 657 Curran Associates, Inc., 2019.

658 Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic counterfactual
 659 explanations for tabular data. In *Proceedings of the web conference 2020*, pp. 3126–3132, 2020.

660 Gregory Plumb, Jonathan Terhorst, Sriram Sankararaman, and Ameet Talwalkar. Explaining groups
 661 of points in low-dimensional representations. In *Proceedings of the 37th International Conference*
 662 *on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings*
 663 *of Machine Learning Research*, pp. 7762–7771. PMLR, 2020.

664 Karthikeyan Natesan Ramamurthy, Bhanukiran Vinzamuri, Yunfeng Zhang, and Amit Dhurandhar.
 665 Model agnostic multilevel explanations. In *Advances in Neural Information Processing Systems*
 666 *33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-*
 667 *ber 6-12, 2020, virtual*, 2020.

668 Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and inter-
 669 active summaries of actionable recourses. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Had-
 670 sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Process-*
 671 *ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS*
 672 *2020, December 6-12, 2020, virtual*, 2020.

673 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Inter-
 674 national Conference on Machine Learning*, pp. 1530–1538. PMLR, 2015.

675 Chris Russell. Efficient search for diverse coherent explanations. In *Proceedings of the Conference*
 676 *on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31,*
 677 *2019*, pp. 20–28. ACM, 2019.

678 Wojciech Samek and Klaus-Robert Müller. Towards explainable artificial intelligence. In *Explain-
 679 able AI: Interpreting, Explaining and Visualizing Deep Learning*, volume 11700 of *Lecture Notes*
 680 *in Computer Science*, pp. 5–22. Springer, 2019. doi: 10.1007/978-3-030-28954-6_-1.

681 Guido Van Rossum and Fred L Drake Jr. *Python reference manual*. Centrum voor Wiskunde en
 682 Informatica Amsterdam, 1995.

683 Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. Counterfactual explanations without open-
 684 ing the black box: Automated decisions and the GDPR. *CoRR*, abs/1711.00399, 2017.

685 Greta Warren, Eoin Delaney, Christophe Guéret, and Mark T. Keane. Explaining multiple instances
 686 counterfactually: User tests of group-counterfactuals for xai. In *Case-Based Reasoning Research*
 687 *and Development: 32nd International Conference, ICCBR 2024, Merida, Mexico, July 1-4, 2024,*
 688 *Proceedings*, pp. 206–222. Springer-Verlag, 2024. ISBN 978-3-031-63645-5.

689 Patryk Wielopolski, Oleksii Furman, Jerzy Stefanowski, and Maciej Zieba. Probabilistically plausi-
 690 ble counterfactual explanations with normalizing flows. In *ECAI 2024*. IOS Press, 2024.

691 Linda F. Wightman. Lsac national longitudinal bar passage study. lsac research report series. Tech-
 692 nical report, Law School Admission Council, Newtown, PA., 1998.

693

694

695

696

697

698

699

700

701

A COMPARISON OF COUNTERFACTUAL EXPLANATION TYPES

Aspect	Local	Global	Group-Wise
Specificity	High	Low	Moderate
Scalability	Low (instance-specific)	High	Moderate-high
Fairness Analysis	Limited	Weak	Strong
Actionability	High (per instance)	Low	High (per group)
Interpretability	Complex for stakeholders	Abstract	Balanced
Privacy Concerns	Higher risk (individuals)	Minimal	Minimal

Table 4: Comparison of Local, Global, and Group-Wise Counterfactual Explanations

Table 4 provides a detailed comparison of the three primary types of counterfactual explanations: Local, Global, and Group-Wise. It highlights their respective strengths, limitations, and potential use cases. This comparison builds on the frameworks and analyses presented in related works (Wachter et al., 2017; Artelt & Hammer, 2020; Karimi et al., 2022; Guidotti, 2022; Ley et al., 2022; Kavouras et al., 2024; Artelt & Gregoriades, 2024)

B DENSITY ESTIMATIONS USING NORMALIZING FLOWS

Normalizing Flows have gained significant traction in generative modeling due to their flexibility and the straightforward training process through direct negative log-likelihood (NLL) optimization. This flexibility is rooted in the change-of-variable technique, which maps a latent variable \mathbf{z} with a known prior distribution $p(\mathbf{z})$ to an observed variable \mathbf{x} with an unknown distribution. This mapping is achieved through a series of invertible (parametric) functions: $\mathbf{x} = \mathbf{f}_K \circ \dots \circ \mathbf{f}_1(\mathbf{z}, y)$. Given a known prior $p(\mathbf{z})$ for \mathbf{z} , the conditional log-likelihood for \mathbf{x} is formulated as:

$$\log \hat{p}_F(\mathbf{x}|y) = \log p(\mathbf{z}) - \sum_{k=1}^K \log \left| \det \frac{\partial \mathbf{f}_k}{\partial \mathbf{z}_{k-1}} \right|, \quad (17)$$

where $\mathbf{z} = \mathbf{f}_1^{-1} \circ \dots \circ \mathbf{f}_K^{-1}(\mathbf{x}, y)$ is a result of the invertible mapping. A key challenge in normalizing flows is the choice of the invertible functions $\mathbf{f}_K, \dots, \mathbf{f}_1$. Several solutions have been proposed in the literature to address this issue with notable approaches, including NICE (Dinh et al., 2015), RealNVP (Dinh et al., 2017), and MAF (Papamakarios et al., 2017).

For a given training set $\mathcal{D} = \{(\mathbf{x}_n, h(\mathbf{x}_n))\}_{n=1}^N$ we simply train the conditional normalizing flow by minimizing negative log-likelihood:

$$Q = - \sum_{n=1}^N \log \hat{p}_F(\mathbf{x}_n|y_n), \quad (18)$$

where $\log \hat{p}_F(\mathbf{x}_n|y_n)$ is defined by eq. equation 17. The model is trained using a gradient-based approach applied to the flow parameters stored in \mathbf{f}_k functions.

C SATISFYING ACTIONABILITY CONSTRAINT

In our work we enforce actionability constraint by controlling the direction of the gradient. Specifically, before applying each gradient step, the sign of the gradient is checked to determine whether it is positive or negative. For features such as age, where changes are only allowed in one direction (e.g., increasing but not decreasing), the gradient is modified accordingly. Additionally, certain features may be completely non-actionable, such as demographic characteristics (e.g., race, gender) or historical records, which cannot be modified under any circumstances and must remain fixed during counterfactual generation. The new gradient value is computed as:

756

$$\frac{\partial \mathcal{L}}{\partial x_i}^{constrained} = \begin{cases} 0, & \text{if } x_i \in \mathcal{F}_{\text{non-decrease}} \text{ and } \frac{\partial \mathcal{L}}{\partial x_i} < 0, \\ 0, & \text{if } x_i \in \mathcal{F}_{\text{non-increase}} \text{ and } \frac{\partial \mathcal{L}}{\partial x_i} > 0, \\ 0, & \text{if } x_i \in \mathcal{F}_{\text{immutable}}, \\ \frac{\partial \mathcal{L}}{\partial x_i}, & \text{otherwise,} \end{cases} \quad (19)$$

762

763 where $\frac{\partial \mathcal{L}}{\partial x_i}$ represents the gradient value with respect to the i -th variable, $\mathcal{F}_{\text{non-decrease}}$ denotes the
 764 set of features subject to non-decreasing monotonicity constraints, indicating that these variables
 765 can only exhibit increases (e.g., age). $\mathcal{F}_{\text{non-increase}}$ is the set of features governed by non-increasing
 766 monotonicity constraints, signifying that these variables may only be decreased. $\mathcal{F}_{\text{immutable}}$ is the set
 767 of features that must remain invariant.

768

769 D LIMITATIONS

770

771 An inherent limitation in our methodology arises from the reliance on gradient-based optimization
 772 techniques within the data space. This approach requires the use of differentiable discriminative
 773 models and, consequently, does not support categorical variables. Nonetheless, the landscape of
 774 contemporary modeling techniques largely mitigates this constraint, as many modern models are
 775 differentiable or can be adapted to include differentiable components. This integration capacity
 776 ensures that our method remains applicable across various settings. While our method generates
 777 plausible counterfactuals that lie in dense regions of the data manifold, which may naturally exhibit
 778 greater stability under perturbations, we do not provide formal robustness guarantees.

779

780

E EXPERIMENT DETAILS

781

782

E.1 DATASETS

783

784 Table 5: Dataset Characteristics and Model Performances. This table provides an overview of the
 785 datasets used in our experiments, including the number of samples (N), number of features (D),
 786 number of classes (C), accuracy of Logistic Regression (LR Acc.), Multi-Layer Perceptron (MLP
 787 Acc.), and the log density of the Masked Autoregressive Flow (MAF Log Dens.).

788

789 DATASET	790 N	791 D	792 C	793 LR ACC.	794 MLP ACC.	795 MAF LOG DENS.
796 MOONS	1,024	2	2	0.90	0.99	1.44
797 LAW	2,220	3	2	0.75	0.79	1.54
798 HELOC	10,459	23	2	0.74	0.75	32.72
799 WINE	178	13	3	0.97	0.98	9.25
800 BLOBS	1,500	2	3	1.00	1.00	2.59
801 DIGITS	5,620	64	10	0.96	0.98	-93.32

802

803 In Table 5, we provide detailed descriptions of the datasets utilized in our study: Moons², Law³,
 804 Heloc⁴, Wine⁵, Blobs⁶ and Digits⁷. The **Moons** dataset is an artificially generated set comprising
 805 two interleaving half-circles. It includes a standard deviation of Gaussian noise set at 0.01. The
 806 **Law** dataset (Wightman, 1998) originates from the Law School Admissions Council (LSAC) and is

807 ²https://scikit-learn.org/1.6/modules/generated/sklearn.datasets.make_moons.html

808 ³<https://www.kaggle.com/danofer/law-school-admissions-bar-passage>

809 ⁴<https://community.fico.com/s/explainable-machine-learning-challenge>

810 ⁵<https://archive.ics.uci.edu/dataset/109/wine>

811 ⁶https://scikit-learn.org/1.6/modules/generated/sklearn.datasets.make_blobs.html

812 ⁷<https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits>

referred to in the literature as the Law School Admissions dataset. For our analysis, we selected the three features most correlated with the target variable: entrance exam scores (LSAT), grade-point average (GPA), and first-year average grade (FYA). The **Heloc** dataset (FICO, 2018), initially utilized in the 'FICO xML Challenge', consists of Home Equity Line of Credit (HELOC) applications submitted by real homeowners. This dataset contains numeric features summarizing information from applicants' credit reports. The primary objective is to predict whether the applicant will repay their HELOC account within a two-year period. This prediction is instrumental in determining the applicant's qualification for a line of credit. The **Wine** dataset (Aeberhard & Forina, 1992) comprises chemical analysis results for wines originating from the same region in Italy, produced from three distinct cultivars. This analysis quantified 13 different constituents present in each of the three wine varieties. The **Blobs** dataset is an artificially generated isotropic Gaussian blobs, characterized by equal variance. The **Digits** dataset (Alpaydin & Kaynak, 1998) is utilized for the optical recognition of handwritten digits. It consists of 32x32 bitmap images that are segmented into non-overlapping 4x4 blocks. Within each block, the count of 'on' pixels is recorded, resulting in an 8x8 input matrix. Each element of this matrix is an integer between 0 and 16.

E.2 CLASSIFICATION MODELS

We used Logistic Regression (LR) and a Multilayer Perceptron (MLP) with two dense layers of 256 neurons each and ReLU activation. Both models utilized a softmax activation function in the output layer and were trained to minimize the cross-entropy loss function for up to 1000 epochs with an early stopping. These configurations ensured efficient training and robust evaluation across linear and non-linear settings.

E.3 COMPUTATIONAL RESOURCES

In experiments, we used Python as the main programming language (Van Rossum & Drake Jr, 1995). Python with an open-source machine learning library PyTorch (Paszke et al., 2019) forms the backbone of our computational environment. We employed a batch-based gradient optimization method, which proved highly efficient by enabling the processing of complete test sets in a single batch. The experiments were executed on an M1 Apple Silicon CPU with 16GB of RAM, a configuration that provided enough computational power and speed to meet the demands of our algorithm.

F GROUP DIVERSITY REGULARIZATION ABLATION STUDY

We conducted an ablation study to evaluate the effect of the group diversity regularization term by varying the weight parameter λ_d . All other parameters were fixed according to our base settings: $\lambda = 10^5$, $\lambda_p = 10^4$, $\lambda_s = 10^4$, and $\lambda_k = 10^3$. The evaluation was based on four key metrics. Validity was assessed by measuring the success rate of generating CFs that led to the desired class. Proximity was quantified using the L_2 distance between the original instances and their CFs. Plausibility was determined through the log density of the normalizing flow model, which evaluates the alignment of CFs with the data distribution. Diversity was analyzed using two metrics: the minimum pairwise cosine similarity among group shifting vectors and the mean distance of these vectors to their centroid.

The results presented in Table 6 demonstrated that setting λ_d to lower or zero values led to highly similar group shifting vectors, as indicated by near-zero cosine similarity and smaller centroid distances. Increasing λ_d enhanced diversity by producing less similar and more dispersed group shifting vectors, while maintaining plausibility and proximity.

Table 6: Impact of Group Diversity Regularization (λ_d) on our method performance.

λ_d	VALIDITY	PROXIMITY	PLAUSIBILITY	MIN PAIRWISE COSINE SIM.	MEAN CENTROID DISTANCE
0.00	1.00 ± 0.00	0.49 ± 0.04	1.71 ± 0.06	0.00 ± 0.00	0.38 ± 0.23
10^{-1}	1.00 ± 0.00	0.49 ± 0.04	1.70 ± 0.06	0.00 ± 0.00	0.36 ± 0.23
10^2	1.00 ± 0.00	0.50 ± 0.04	1.72 ± 0.06	0.28 ± 0.18	4.31 ± 0.35
10^3	1.00 ± 0.00	0.50 ± 0.03	1.70 ± 0.04	0.55 ± 0.22	4.73 ± 0.56

864 **G NUMBER OF GROUPS ABLATION STUDY**
865

866 We conducted an ablation study to investigate the impact of the number of groups on our method’s
867 performance across various metrics. The ablation study was performed using Logistic Regression
868 (LR) and the HELOC dataset. By varying the number of groups from 2 to 10 while keeping all other
869 hyperparameters fixed (using our base configuration: $\lambda = 10^5$, $\lambda_p = 10^4$, $\lambda_s = 10^4$, $\lambda_k = 10^4$,
870 $\lambda_d = 10^1$), we analyzed the trade-offs between model complexity and performance.
871

872 Table 7: Impact of the Number of Groups on Method Performance. The table shows how varying
873 the number of groups affects validity, proximity, plausibility metrics, and group diversity.
874

875 GROUPS	VALIDITY↑	L2↓	ISOFOREST↑	LOG DENSITY↑	PROB. PLAUSIBILITY↑	MIN PAIRWISE COSINE SIM.
877 2	0.98	0.37	0.06	30.15	0.51	7.72
878 3	0.99	0.39	0.06	30.41	0.54	2.04
879 4	0.98	0.38	0.07	31.06	0.58	0.54
880 5	0.99	0.38	0.07	31.27	0.59	0.26
881 6	0.99	0.39	0.07	31.08	0.60	0.20
882 7	0.99	0.39	0.07	31.80	0.62	0.17
883 8	0.99	0.40	0.07	31.47	0.63	0.14
884 9	0.99	0.38	0.07	31.85	0.64	0.17
885 10	0.99	0.38	0.07	32.07	0.65	0.14

886 The results presented in Table 7 demonstrate several key insights about the relationship between the
887 number of groups and performance metrics:

888 **Validity** remains consistently high regardless of the number of groups, indicating that our method
889 reliably generates valid counterfactuals across different group configurations.

890 **Probabilistic Plausibility** shows a clear positive correlation with the number of groups, increasing
891 monotonically from 0.51 with 2 groups to 0.65 with 10 groups. This improvement suggests that
892 more groups allow for better local approximations of the target distribution, enabling the generation
893 of more plausible counterfactual explanations that better align with the data distribution.

894 **Group Diversity**, measured by the minimum pairwise cosine similarity, exhibits the biggest change.
895 The similarity drops sharply from 7.72 (2 groups) to 2.04 (3 groups), then continues decreasing to
896 stabilize around 0.14-0.17 for 7-10 groups. This pattern indicates that the largest gains in group
897 diversity occur when moving from 2 to 7 groups, with minimal improvements beyond that point.

898 **Proximity** remains relatively stable across all configurations, suggesting that the number of groups
899 does not significantly impact the distance between original instances and their counterfactuals.

900 These findings confirm that, while more groups can improve certain metrics, particularly probabilis-
901 tic plausibility and group diversity, the benefits plateau after approximately 7 groups. This insight
902 supports our adaptive approach that automatically determines the appropriate number of groups
903 based on the specific dataset characteristics, balancing group diversity with performance.

904
905 **H GPU ACCELERATION ABLATION STUDY**
906

907 We conducted an ablation study comparing execution times between CPU and GPU implemen-
908 tations for our gradient-based optimization framework. While our main experiments used CPU for
909 consistency with baselines, our approach is naturally compatible with GPU acceleration due to its
910 gradient-based nature. All experiments were performed using 5-fold cross-validation to ensure ro-
911 bustness of timing measurements.

912 Tables 8 and 9 present execution times (in seconds) for our method on the HELOC dataset under
913 global and group-wise configurations.
914

915 The results demonstrate that GPU acceleration provides significant performance improvements, par-
916 ticularly for group-wise configurations. While global settings (Table 8) show modest speedups (ap-
917 proximately 1.5x for LR), group-wise settings (Table 9) achieved dramatic improvements with 12.4x
918 speedup for LR (from 230.07s to 18.48s) and 7.6x for MLP (from 237.69s to 31.43s). The standard

918
919
920
921 Table 8: Comparison of CPU vs. GPU Execution Times (seconds) for Global Settings on HELOC
922 Dataset
923
924
925

Model	CPU	GPU
LR	27.45 ± 3.58	18.60 ± 1.25
MLP	32.47 ± 4.01	31.69 ± 2.74

926
927
928
929
930
931
932
933
934 Table 9: Comparison of CPU vs. GPU Execution Times (seconds) for Group-wise Settings on
935 HELOC Dataset
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

deviations across the 5-fold cross-validation indicate that these performance improvements are consistent and reliable.

This ablation study further validates our choice of a gradient-based optimization framework, as it not only provides effective solutions for generating valid, plausible, and proximate counterfactual explanations but also leverages modern computational architectures to deliver substantial efficiency gains.

I HYPERPARAMETER VALUES ABLATION STUDY

To systematically evaluate the role of each loss term, we designed a series of experiments summarized in Table 10. The table combines three categories of settings: (i) **Individual Component Analysis** (E1–E5), where each term is activated independently to isolate its contribution, (ii) **Incremental Component Addition** (E6–E9), where loss terms are introduced step by step to observe cumulative effects, and (iii) **Alternative Configurations** (E10–E14), which test different weighting strategies. The corresponding quantitative results are presented separately in Table 11.

I.1 KEY FINDINGS

Individual Components (E1–E5). Validity-only (E1) reaches full validity but produces distant, implausible counterfactuals. Plausibility-only (E2) pulls counterfactuals closest to the source ($L_2 \approx 0.18$) with much higher plausibility, but validity collapses. Regularizers applied in isolation (E3–E5) fail to produce meaningful counterfactuals without the validity term, confirming their auxiliary nature.

Incremental Additions (E6–E9). Starting from validity+plausibility (E6) sharply improves plausibility and proximity over E1 while keeping validity at 1.00. Turning on the group-count regularizer (E7) and then adding sparsity (E8–E9) keeps validity high and nudges proximity slightly down (to ≈ 0.47 – 0.48) at the expense of a modest plausibility drop.

Alternative Configurations (E10–E14). All-nonzero weights with large magnitudes (E10) stay in the same proximity band as E8–E9 (≈ 0.47 – 0.48) with plausibility around 0.07. Mid-scale weights (E11–E13) show a gradual proximity/plausibility trade-off: as sparsity increases from E11 to E13, proximity slightly worsens (L_2 rising from 0.49 to 0.50) while plausibility decreases modestly (from 0.07 to 0.06), with validity remaining perfect across all configurations. The lowest all-nonzero setting (E14) remains valid but is farthest from the source points and least plausible among the non-degenerate settings.

I.2 CRITICAL TRADE-OFFS

Two central trade-offs emerge. First, **proximity vs. plausibility**: optimizing purely for plausibility (E2) yields the closest counterfactuals but breaks validity, while balancing both terms (E6, E9)

achieves practical usability. Second, **group constraints vs. proximity**: introducing group-based regularization (E7–E8) systematically increases the L2 distance, as counterfactuals must satisfy additional structural requirements.

Table 10: Experimental design for the ablation study. The table summarizes all configurations E1–E14, grouped into three categories: Individual Component Analysis (E1–E5), Incremental Component Addition (E6–E9), and Alternative Configurations (E10–E14). Each row specifies the weighting of the loss components: validity (λ), plausibility (λ_p), group sparsity (λ_s), number-of-groups regularization (λ_k), and diversity (λ_d). The rationale column provides the motivation for each setup.

EXP. ID	λ	λ_p	λ_s	λ_k	(λ_d)	RATIONALE
E1	10^5	0	0	0	0	VALIDITY IMPACT ALONE
E2	0	10^5	0	0	0	PLAUSIBILITY IMPACT ALONE
E3	0	0	10^5	0	0	GROUP SPARSITY IMPACT ALONE
E4	0	0	0	10^5	0	NUMBER-OF-GROUPS REGULARIZATION ALONE
E5	0	0	0	0	10^5	DIVERSITY REGULARIZATION ALONE
E6	10^5	10^4	0	0	0	VALIDITY + PLAUSIBILITY
E7	10^5	10^4	0	10^4	0	ADD GROUP-COUNT REGULARIZATION TO E6
E8	10^5	10^4	10^2	10^4	10^1	TURN ON SPARSITY WITH SMALL WEIGHT
E9	10^5	10^4	10^3	10^4	10^1	INCREASE SPARSITY WHILE KEEPING VALIDITY/PLAUSIBILITY HIGH
E10	10^5	10^4	10^4	10^4	10^1	ALL ACTIVE WITH LARGEST SHARED WEIGHTS
E11	10^5	10^3	10^2	10^3	10^1	MID-SCALE WEIGHTS, LOWER SPARSITY
E12	10^5	10^3	10^3	10^3	10^1	MID-SCALE BALANCED WEIGHTS
E13	10^5	10^3	10^4	10^3	10^1	MID-SCALE PLAUSIBILITY/GROUP, STRONGER SPARSITY
E14	10^5	10^2	10^2	10^2	10^1	LOWEST ALL-ON CONFIGURATION (CLOSEST TO “LIGHT” REGULARIZATION)

Table 11: Complete Ablation Study Results across configurations E1–E14.

EXP. ID	VALIDITY↑	PROXIMITY (L2)↓	IsoForest↑	LOG DENSITY↑	PROB. PLAUSIBILITY↑	GROUP NUM.↓
E1	1.00 ± 0.00	1.01 ± 0.07	-0.04 ± 0.00	-76.44 ± 21.71	0.01 ± 0.01	510.20 ± 48.30
E2	0.05 ± 0.00	0.18 ± 0.02	0.07 ± 0.00	32.10 ± 0.59	0.29 ± 0.07	1022.00 ± 35.38
E3	—	—	—	—	—	—
E4	—	—	—	—	—	—
E5	—	—	—	—	—	—
E6	1.00 ± 0.00	0.50 ± 0.06	0.02 ± 0.01	14.60 ± 2.24	0.09 ± 0.01	327.40 ± 47.62
E7	1.00 ± 0.00	0.47 ± 0.06	0.02 ± 0.01	11.18 ± 2.73	0.07 ± 0.01	16.80 ± 2.79
E8	1.00 ± 0.00	0.48 ± 0.06	0.02 ± 0.01	11.12 ± 2.75	0.07 ± 0.01	16.60 ± 2.87
E9	1.00 ± 0.00	0.48 ± 0.06	0.02 ± 0.01	11.67 ± 2.75	0.07 ± 0.01	16.80 ± 2.71
E10	1.00 ± 0.00	0.48 ± 0.06	0.02 ± 0.01	11.69 ± 3.01	0.07 ± 0.01	16.80 ± 2.56
E11	1.00 ± 0.00	0.49 ± 0.06	0.02 ± 0.01	10.62 ± 2.88	0.07 ± 0.01	87.40 ± 6.65
E12	1.00 ± 0.00	0.50 ± 0.06	0.02 ± 0.01	10.03 ± 3.09	0.06 ± 0.01	37.80 ± 6.01
E13	1.00 ± 0.00	0.50 ± 0.06	0.02 ± 0.01	9.96 ± 3.28	0.06 ± 0.01	41.80 ± 4.62
E14	1.00 ± 0.00	0.54 ± 0.05	0.01 ± 0.01	5.99 ± 2.40	0.04 ± 0.01	52.00 ± 5.90

I.3 LOCAL CONFIGURATION SPECIAL CASE

We provide explicit clarification on how our framework relates to PPCEF in the local setting. With specific parameter configuration ($K = N$, $\mathbf{S} = \mathbf{K} = \mathbb{I}$, $\lambda_s = \lambda_k = \lambda_d = 0$), our unified framework mathematically reduces to N independent PPCEF Wielopolski et al. (2024) optimizations:

- When $K = N$: each instance has its own dedicated shifting vector in $\mathbf{D}_{GW} \in \mathbb{R}^{N \times D}$
- When $\mathbf{S} = \mathbb{I}_{N \times N}$: each instance selects only its own corresponding vector (no grouping)
- When $\mathbf{K} = \mathbb{I}_{N \times N}$: all magnitude scalers equal 1 (no scaling)

Under these conditions, our general group-wise formulation (Eq. 7) simplifies to:

$$\mathbf{X}'_{GW} = \mathbf{X}_0 + \mathbb{I} \cdot \mathbb{I} \cdot \mathbf{D}_{GW} = \mathbf{X}_0 + \mathbf{D}_{GW}$$

For each instance n : $\mathbf{x}'_n = \mathbf{x}_{n,0} + \mathbf{d}_n$, where \mathbf{d}_n is the n -th row of \mathbf{D}_{GW} (an independent, instance-specific shift vector).

1026 The optimization objective decouples into N independent problems:
 1027

$$1028 \arg \min_{\mathbf{d}_n} d(\mathbf{x}_{n,0}, \mathbf{x}'_n) + \lambda \cdot \ell_v(h(\mathbf{x}'_n), y'_n) + \lambda_p \cdot \ell_p(\mathbf{x}'_n, y'_n)$$

1030
 1031 This is precisely PPCEF’s formulation (Eq. 6 from Wielopolski et al. (2024)). Thus, our local
 1032 configuration essentially generalizes PPCEF approach within our broader unified architecture.
 1033

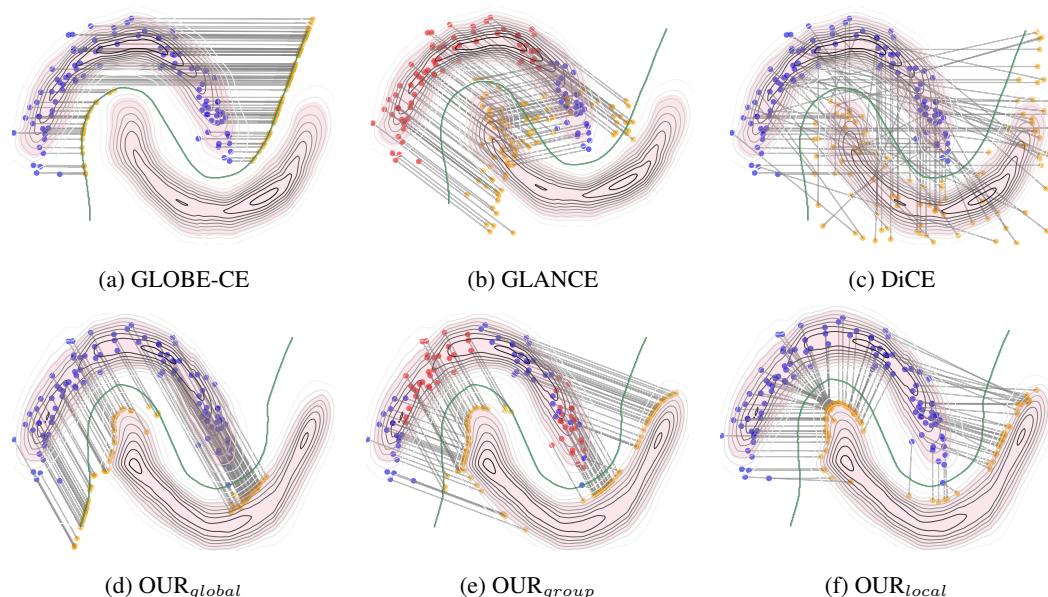
1034 J ADDITIONAL RESULTS

1035 J.1 METHODS VISUALIZATION

1039 This section provides an in-depth analysis of the methods, focusing on two main aspects: the variation
 1040 in resulting explanations across global, group-wise, and local contexts, and the visual assess-
 1041 ment of plausibility for our method compared to reference methods, as illustrated in Figure 3. Initial
 1042 observations (blue and red dots) and final counterfactual explanations (orange dots) transition across
 1043 the Multilayer Perceptron decision boundary (green line) into a probabilistically plausible region
 1044 (red area), where the density satisfies plausibility thresholds.

1045 For the reference methods, all produce valid counterfactuals, but with varying degrees of plausibil-
 1046 ity. The **GLOBE-CE** method generates counterfactual explanations just over the decision boundary,
 1047 resulting in highly implausible outcomes. The **GLANCE** method achieves some plausible counter-
 1048 factuals but struggles to balance group granularity with plausibility effectively. The **DiCE** method
 1049 produces counterfactuals that are often significantly distant from the initial observations, reducing
 1050 their practical relevance.

1051 Our method, when configured globally, also struggles to produce fully plausible results but tends to
 1052 prioritize a global shifting vector that maximizes plausibility for as many instances as possible. In the
 1053 group configuration, our method successfully clusters distant instances into the same group, gener-
 1054 ating valid and plausible counterfactuals. Both the group-wise and local configurations demonstrate
 1055 the ability to produce counterfactuals that are both valid and plausible, offering a balanced approach
 1056 to explanation generation.



1078 Figure 3: Visual comparison of the efficacy of various baseline counterfactual explanation methods
 1079 with our method in traversing the decision boundary of a MLP model.

Figure 4: The figure illustrates group-wise counterfactual explanations generated using our method on the HELOC dataset with an MLP model. Each subplot highlights group-specific recommendations for financial adjustments, showing the mean change for selected financial indicators normalized over the average magnitude of changes. For each group, the number of instances is also provided.

J.2 CASE STUDY 1: CREDIT SCORING WITH HELOC DATASET

This subsection presents a detailed interpretation of the practical use case illustrated in Figure 4. We carefully selected features based on their varying degrees of actionability and impact on credit assessment, prioritizing those that individuals could realistically modify through specific financial behaviors. The selected actionable features include:

- **Number of Satisfactory Trades** – Represents successfully completed credit engagements with good standing. This feature can only increase through maintaining existing accounts and establishing new ones over time.
- **Net Fraction of Revolving Burden** – The ratio of revolving credit utilized to the total credit limit. This highly actionable feature can be changed quickly and should decrease to improve outcomes, as lower utilization is generally preferred by lenders.
- **Net Fraction of Installment Burden** – The proportion of the installment debt relative to the original loan amount. This feature requires additional payments to decrease the burden through accelerated repayment.
- **Number of Revolving Trades with Balance** – Tracks ongoing revolving credit accounts with outstanding balances. This highly actionable feature can be decreased by completely paying off certain revolving accounts.
- **Number of Installment Trades with Balance** – Tracks ongoing installment credit accounts with outstanding balances. This feature can either increase (by taking on new loans) or decrease (by paying off existing loans).

This selection of features is particularly effective for counterfactual explanations because it provides a balanced approach to credit improvement. It combines both adjusting revolving burden and credit-building strategies (increasing satisfactory trades). Additionally, it addresses multiple dimensions that influence credit decisions by incorporating credit history depth, utilization rates, and account management practices across both revolving and installment credit types. For each group shown in Figure 4, we propose interpretations from the perspective of a user applying our method.

Group 0 For individuals in this category, it is advisable to significantly decrease the **Net Fraction of Revolving Burden** while moderately increasing the **Number of Satisfactory Trades**. Minor adjustments include increasing the **Number of Installment Trades with Balance** and reducing the **Number of Revolving Trades with Balance**. This group likely has established credit but is overextended on revolving credit, necessitating debt reduction to enhance their creditworthiness.

1134 **Group 1** For this group, the primary strategy involves substantially increasing the **Number of**
 1135 **Satisfactory Trades** while moderately reducing the **Net Fraction of Revolving Burden**. These in-
 1136 dividuals should make minor improvements by slightly decreasing the **Net Fraction of Installment**
 1137 **Burden** and the **Number of Revolving Trades with Balance**, with a small increase in the **Number**
 1138 **of Installment Trades with Balance**. This suggests consumers with thin credit profiles who need
 1139 both credit-building and utilization management.

1140

1141 **Group 2** Members of this group should focus on decreasing both the **Net Fraction of Revolving**
 1142 **Burden** and the **Net Fraction of Installment Burden** substantially. They should moderately in-
 1143 crease the **Number of Satisfactory Trades** while slightly increasing the **Number of Installment**
 1144 **Trades with Balance** and reducing the **Number of Revolving Trades with Balance**. This indicates
 1145 consumers who are overextended across multiple credit products and need comprehensive debt re-
 1146 duction.

1147

1148 **Group 3** Representing the smallest segment, these individuals require the most extensive changes:
 1149 significant decreases in both the **Net Fraction of Revolving Burden** and the **Net Fraction of In-**
 1150 **stallment Burden**, coupled with a substantial increase in the **Number of Satisfactory Trades**. Mi-
 1151 nor adjustments include slightly increasing the **Number of Installment Trades with Balance** and
 1152 reducing the **Number of Revolving Trades with Balance**. This suggests severely overleveraged
 1153 borrowers requiring comprehensive credit rehabilitation.

1154

1155 **Group 4** As the largest group, explanations include moderately decreasing the **Net Fraction of**
 1156 **Revolving Burden** while making minor improvements to other factors: slight increases in both
 1157 the **Number of Satisfactory Trades** and the **Number of Installment Trades with Balance**, with
 1158 a small reduction in the **Number of Revolving Trades with Balance**. This represents "typical"
 1159 consumers who primarily need to address revolving debt utilization with minimal other adjustments.

1160

1161 **Group 5** In this group, the explanation suggests substantial increases in the **Number of Satisfac-**
 1162 **tory Trades** and moderate increases in the **Number of Installment Trades with Balance**. Signif-
 1163 icant decreases are needed in both the **Net Fraction of Revolving Burden** and the **Net Fraction**
 1164 **of Installment Burden**, with minor reductions in the **Number of Revolving Trades with Balance**.
 1165 This approach requires comprehensive credit improvement across all dimensions.

1166

1167 Across nearly all groups, enhancing the **Number of Satisfactory Trades** emerges as a critical fac-
 1168 tor in credit approval decisions. Reducing the **Net Fraction of Revolving Burden** is consistently
 1169 beneficial across all groups, while the importance of managing the **Net Fraction of Installment**
 1170 **Burden** varies significantly between segments. Most groups benefit from minor adjustments to
 1171 account composition, with careful balance between revolving and installment credit products.

1172

J.3 CASE STUDY 2: HANDWRITTEN DIGIT TRANSFORMATIONS WITH DIGITS DATASET

1173 Figure 5 illustrates these findings in the context of digit transformations. The rows compare coun-
 1174 terfactual explanations with and without plausibility optimization for three digit instance pairs (9 to
 1175 0, 6 to 3, and 7 to 1). Without plausibility, our group-wise method partitions the data into two coarse
 1176 groups, while incorporating plausibility refines the explanations into three distinct and interpretable
 1177 clusters. This added granularity demonstrates the advantage of plausibility optimization in creating
 1178 realistic and practical CFs.

1179

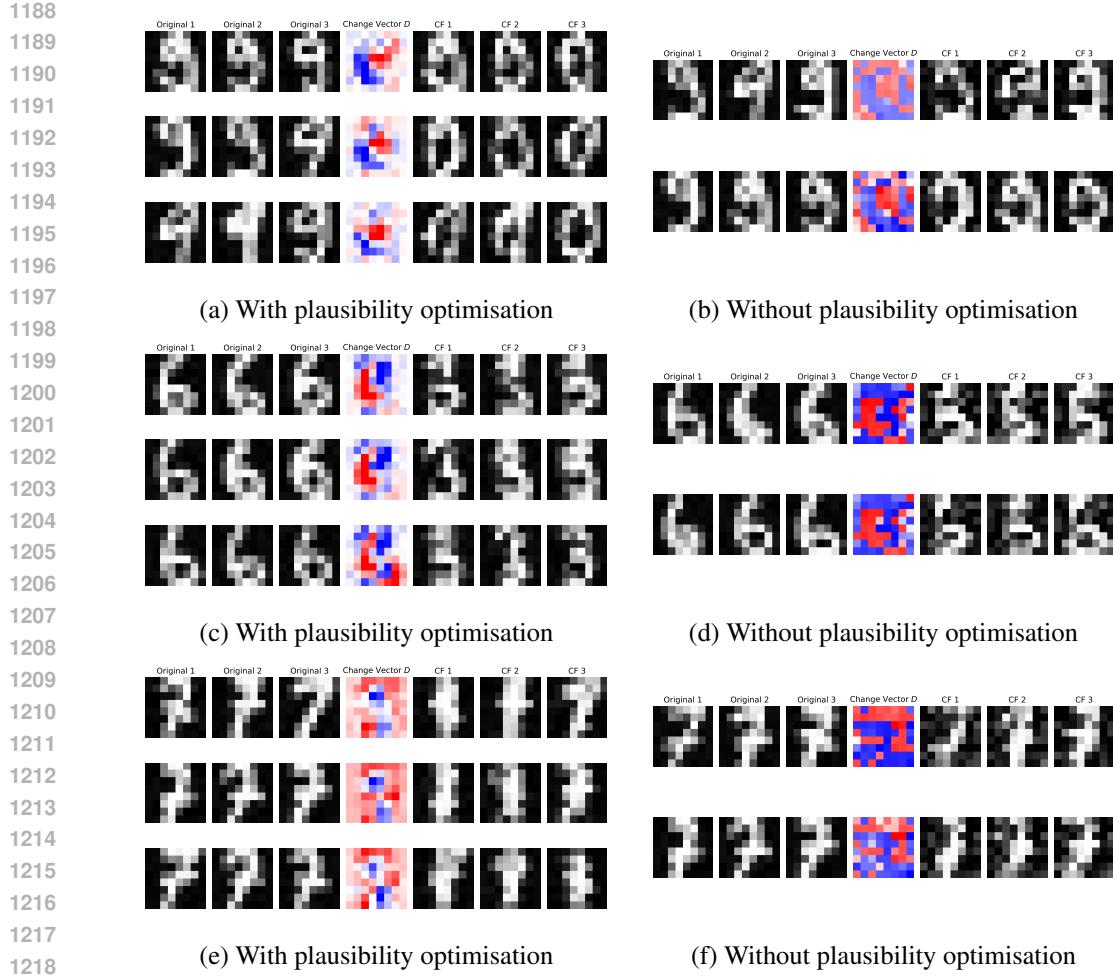
1180 In summary, incorporating probabilistic plausibility criteria yields outcomes that are less prone to
 1181 outliers, potentially enhancing end-user usability. Moreover, within the framework of methods op-
 1182 timizing plausibility, we achieve results of comparable quality to the local counterfactual method,
 1183 albeit with fewer shifting vectors.

1184

J.4 EXTENDED QUANTITATIVE EVALUATION

1185

1186 This section presents a comprehensive evaluation of our method compared to baseline counterfactual
 1187 explanation techniques. All results are averaged over five cross-validation folds, with mean values
 1188 and standard deviations reported in six detailed tables that fall into two categories:



1220 Figure 5: Comparison of group-wise counterfactual explanations with and without plausibility optimisation for different digit pairs. Each pair of columns represents counterfactual explanations for a specific digit transformation (e.g., 9 to 0, 6 to 3, and 7 to 1). Without plausibility optimisation, the method clusters the problem into two groups. With plausibility optimisation, the method refines the counterfactuals into three distinct groups, ensuring more interpretable and realistic transformations. Original images are on the left, shifting vectors are in the middle column, and counterfactuals are on the right for each method. Red pixels in the shifting vector indicate subtracted values, while blue pixels indicate added values.

1221 **Base Metrics Tables** (Tables 12, 14, and 16) contain the primary metrics calculation reported in Tables 1, 2, and 3, including execution times. **Plausibility and Cost Metrics Tables** (Tables 13, 15, and 17) provide additional metrics for a more thorough assessment of counterfactual plausibility and action cost. Following Guidotti (2022), we employ a comprehensive evaluation framework with these metrics:

1233 Base Metrics:

- 1234 • *Validity (Valid.):* Success rate of counterfactuals in changing model predictions.
- 1235 • *Proximity (L2):* L2 distance between original and counterfactual instances.
- 1236 • *Isolation Forest (IsoForest):* Lower scores indicate more anomalous counterfactuals.

1240 Additional Plausibility Metrics:

- 1241 • *Local Outlier Factor (LOF):* Higher values indicate more anomalous counterfactuals.

- *Log Density (Log. Dens.):* Higher values indicate stronger alignment between counterfactuals and the target class distribution, as measured by a normalizing flow model.
- *Probabilistic Plausibility (Prob. Plaus.):* Higher values indicate more counterfactuals satisfying Eq. equation 2b.

Additional Cost Metric:

- *Cost:* We adopt a cost metric proposed by Ley et al. (2023). Features are divided into 10 equal-sized bins where changing a feature value incurs a cost equal to the number of bin boundaries crossed.

For group-wise and global methods, we additionally report *Coverage* (percentage of instances with valid counterfactuals), while for group-wise methods, we also include the final number of identified groups (*Groups*).

We also conducted comparative analyses with additional baseline methods: AReS by Rawal & Lakkaraju (2020) and the method by Artelt & Hammer (2020) (Artelt). These methods were excluded from the main paper due to compatibility limitations: AReS does not support datasets with fewer than 3 features, while Artelt’s method works exclusively with Logistic Regression models, making it impossible to evaluate with Multilayer Perceptron classifiers.

Tables 12 and 13 compare global CF methods. Our method consistently achieves perfect validity across nearly all datasets, whereas GLOBE-CE and GLANCE struggle particularly with the Digits dataset. Additionally, our method demonstrates superior probabilistic plausibility and notably higher Log Density scores, indicating better alignment with the target class distribution. While GLANCE often requires significantly longer execution times, our method maintains efficiency without compromising performance.

Tables 14 and 15 evaluate group-wise CF methods. Our approach shows strong adaptability across datasets, achieving perfect coverage and validity on all datasets. In contrast, EA completely fails with the Digits dataset, and both EA and GLANCE generally produce counterfactuals with substantially lower plausibility. Our method intelligently identifies an appropriate number of groups based on dataset characteristics, while maintaining consistently superior probabilistic plausibility scores compared to baselines. T-CREx, while efficient in execution time, produces much larger numbers of groups, which makes interpretation more difficult.

Tables 16 and 17 present results for local CF methods, comparing DiCE, Wachter (Wach), and CCHVAE with our approach. While all methods achieve high validity, our method consistently demonstrates perfect probabilistic plausibility while maintaining competitive L2 proximity. DiCE typically produces the least plausible counterfactuals, particularly with complex datasets, as evidenced by substantially negative Log Density values. CCHVAE performs well on some metrics but falls short on plausibility for datasets like Blobs and Moons. Our method balances execution time, proximity, and plausibility more effectively than competing approaches across all tested datasets and model types.

J.5 STATISTICAL SIGNIFICANCE ANALYSIS

To assess the statistical significance of performance differences across methods, we applied the Friedman test, a non-parametric statistical test suitable for comparing multiple related samples. We performed separate Friedman tests for each metric within each configuration (global, group-wise, and local), with a significance level of $\alpha = 0.05$. For metrics where the Friedman test indicated significant differences ($p < 0.05$), we conducted post-hoc pairwise comparisons using the Wilcoxon signed-rank test with Bonferroni correction.

Table 18 presents the Friedman test results. All 14 metrics demonstrated statistically significant differences, providing strong evidence that the choice of counterfactual generation method substantially impacts performance.

Discussion of Statistical Results The Friedman test results provide compelling validation for our experimental findings. In the global configuration, highly significant differences were observed across all metrics, with particularly strong evidence for validity ($p < 0.001$) and plausibility

1296 Table 12: Comparative analysis of our method in **global configuration** with other CF methods
 1297 across various datasets and classification models. Values are averaged over five cross-validation
 1298 folds.

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

($p < 0.001$). Post-hoc pairwise comparisons revealed that our method significantly outperforms GLANCE in validity ($p < 0.001$) and achieves superior plausibility compared to both GLOBE-CE and GLANCE (both $p < 0.001$).

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

	METHOD	VALID.↑	L2↓	IsoFOREST↑	TIME(s)↓
MLP					
BLOBS	GLOBE-CE	0.99 ± 0.01	0.25 ± 0.04	-0.06 ± 0.03	0.66 ± 0.03
	GLOBALGLANCE	1.00 ± 0.00	0.42 ± 0.01	0.01 ± 0.00	43.30 ± 9.72
	OUR _{global}	1.00 ± 0.00	0.48 ± 0.01	0.03 ± 0.00	7.89 ± 0.86
DIGITS	GLOBE-CE	0.00 ± 0.00	-	-	0.95 ± 0.08
	GLOBALGLANCE	0.30 ± 0.07	11.24 ± 0.70	0.09 ± 0.01	678.36 ± 29.07
	OUR _{global}	1.00 ± 0.00	17.08 ± 0.54	0.1 ± 0.00	31.48 ± 5.28
HELOC	ARES	0.28 ± 0.06	0.68 ± 0.16	0.02 ± 0.02	13.25 ± 1.79
	GLOBE-CE	1.00 ± 0.00	0.52 ± 0.03	0.03 ± 0.01	2.02 ± 0.18
	GLOBALGLANCE	0.97 ± 0.01	0.68 ± 0.07	-0.01 ± 0.02	99.89 ± 44.14
	OUR _{global}	1.00 ± 0.00	0.36 ± 0.02	0.06 ± 0.00	32.47 ± 10.01
LAW	GLOBE-CE	1.00 ± 0.00	0.22 ± 0.02	0.01 ± 0.01	0.81 ± 0.02
	GLOBALGLANCE	0.97 ± 0.00	0.45 ± 0.02	-0.04 ± 0.01	90.81 ± 9.03
	OUR _{global}	1.00 ± 0.00	0.38 ± 0.01	0.01 ± 0.00	13.44 ± 3.11
MOONS	GLOBE-CE	1.00 ± 0.00	0.30 ± 0.03	-0.06 ± 0.01	0.65 ± 0.01
	GLOBALGLANCE	0.68 ± 0.05	0.39 ± 0.02	-0.02 ± 0.01	77.97 ± 9.11
	OUR _{global}	0.91 ± 0.12	0.45 ± 0.04	-0.01 ± 0.01	9.55 ± 1.37
WINE	GLOBE-CE	1.00 ± 0.00	0.73 ± 0.20	0.04 ± 0.02	0.39 ± 0.01
	GLOBALGLANCE	0.57 ± 0.17	0.46 ± 0.07	0.06 ± 0.01	5.82 ± 3.10
	OUR _{global}	1.00 ± 0.00	0.73 ± 0.07	0.06 ± 0.01	5.73 ± 0.89
LR					
BLOBS	GLOBE-CE	1.00 ± 0.00	0.29 ± 0.02	-0.08 ± 0.00	0.22 ± 0.01
	GLOBALGLANCE	1.00 ± 0.00	0.42 ± 0.01	0.02 ± 0.00	38.36 ± 10.34
	OUR _{global}	1.00 ± 0.00	0.5 ± 0.02	0.02 ± 0.00	7.93 ± 1.05
DIGITS	GLOBE-CE	0.00 ± 0.00	-	-	0.16 ± 0.01
	GLOBALGLANCE	0.50 ± 0.11	10.94 ± 1.04	0.09 ± 0.00	534.20 ± 40.88
	OUR _{global}	1.00 ± 0.00	15.61 ± 0.47	0.1 ± 0.00	34.46 ± 8.66
HELOC	ARES	0.18 ± 0.13	0.50 ± 0.23	0.03 ± 0.02	14.53 ± 1.62
	GLOBE-CE	1.00 ± 0.00	0.32 ± 0.05	0.05 ± 0.01	0.45 ± 0.05
	GLOBALGLANCE	0.97 ± 0.02	0.61 ± 0.06	-0.00 ± 0.02	61.63 ± 11.58
	OUR _{global}	1.00 ± 0.00	0.33 ± 0.03	0.06 ± 0.00	27.45 ± 11.74
LAW	GLOBE-CE	1.00 ± 0.00	0.19 ± 0.01	0.02 ± 0.00	0.24 ± 0.01
	GLOBALGLANCE	0.98 ± 0.01	0.47 ± 0.04	-0.05 ± 0.01	83.25 ± 19.79
	OUR _{global}	1.00 ± 0.00	0.39 ± 0.02	0.01 ± 0.00	12.71 ± 2.75
MOONS	GLOBE-CE	1.00 ± 0.00	0.28 ± 0.01	-0.01 ± 0.01	0.22 ± 0.01
	GLOBALGLANCE	1.00 ± 0.01	0.53 ± 0.03	-0.04 ± 0.01	67.90 ± 11.41
	OUR _{global}	1.00 ± 0.00	0.46 ± 0.06	0.00 ± 0.01	11.95 ± 2.41
WINE	GLOBE-CE	1.00 ± 0.00	0.73 ± 0.17	0.03 ± 0.02	0.20 ± 0.00
	GLOBALGLANCE	0.60 ± 0.12	0.47 ± 0.05	0.06 ± 0.01	2.77 ± 1.14
	OUR _{global}	1.00 ± 0.00	0.76 ± 0.05	0.06 ± 0.01	6.07 ± 0.27

1350
1351
1352
1353
1354
1355
1356
1357

1358 Table 13: Additional comparative plausibility and cost analysis of our method in **global configuration**
1359 with other CF methods across various datasets and classification models. Values are averaged
1360 over five cross-validation folds.

1361

	METHOD	PROB. PLAUS. \uparrow	LOG DENS. \uparrow	LOF \downarrow	Cost \downarrow
MLP					
BLOBS	GLOBE-CE	0.00 \pm 0.00	-4.57 \pm 1.67	2.04 \pm 0.18	1.97 \pm 1.53
	GLOBALGLANCE	0.00 \pm 0.00	-49.99 \pm 14.79	1.11 \pm 0.02	5.78 \pm 0.26
	OUR _{global}	0.92 \pm 0.03	2.89 \pm 0.1	1.04 \pm 0.01	6.65 \pm 0.66
DIGITS	GLOBE-CE	-	-	-	-
	GLOBALGLANCE	0.00 \pm 0.00	-285.44 \pm 21.71	1.31 \pm 0.03	27.45 \pm 1.99
	OUR _{global}	0.72 \pm 0.09	-99.42 \pm 0.61	1.09 \pm 0.01	49.27 \pm 8.59
HELOC	ARES	0.18 \pm 0.14	19.60 \pm 14.31	1.23 \pm 0.09	13.42 \pm 3.24
	GLOBE-CE	0.17 \pm 0.02	-17.27 \pm 47.94	1.47 \pm 0.09	4.03 \pm 4.20
	GLOBALGLANCE	0.00 \pm 0.00	-2.43 \pm 9.38	1.67 \pm 0.10	13.48 \pm 1.94
	OUR _{global}	0.46 \pm 0.01	29.25 \pm 0.4	1.15 \pm 0.01	10.75 \pm 4.96
LAW	GLOBE-CE	0.37 \pm 0.05	-14.5 \pm 28.64	1.24 \pm 0.09	2.22 \pm 1.79
	GLOBALGLANCE	0.34 \pm 0.10	-0.26 \pm 0.61	1.22 \pm 0.03	6.00 \pm 0.41
	OUR _{global}	0.79 \pm 0.02	1.5 \pm 0.05	1.09 \pm 0.01	6.35 \pm 2.02
MOONS	GLOBE-CE	0.00 \pm 0.00	-17.53 \pm 10.28	2.36 \pm 0.08	3.07 \pm 1.84
	GLOBALGLANCE	0.30 \pm 0.07	-2.04 \pm 0.64	1.63 \pm 0.12	5.19 \pm 0.61
	OUR _{global}	0.63 \pm 0.06	-0.33 \pm 0.9	1.48 \pm 0.18	5.92 \pm 2.04
WINE	GLOBE-CE	0.00 \pm 0.00	-14.74 \pm 16.35	1.86 \pm 0.6	2.69 \pm 4.07
	GLOBALGLANCE	0.00 \pm 0.00	-64.51 \pm 60.94	1.20 \pm 0.04	9.32 \pm 0.75
	OUR _{global}	0.95 \pm 0.11	7.78 \pm 0.18	1.09 \pm 0.03	21.40 \pm 4.06
LR					
BLOBS	GLOBE-CE	0.00 \pm 0.00	-6.03 \pm 0.76	2.22 \pm 0.18	2.45 \pm 1.34
	GLOBALGLANCE	0.00 \pm 0.00	-69.32 \pm 21.46	1.11 \pm 0.01	6.07 \pm 0.18
	OUR _{global}	0.92 \pm 0.03	2.83 \pm 0.12	1.04 \pm 0.02	6.83 \pm 0.79
DIGITS	GLOBE-CE	-	-	-	-
	GLOBALGLANCE	0.00 \pm 0.00	-312.00 \pm 76.17	1.32 \pm 0.04	24.78 \pm 2.82
	OUR _{global}	0.69 \pm 0.04	-100.41 \pm 0.31	1.1 \pm 0.01	45.70 \pm 9.08
HELOC	ARES	0.07 \pm 0.14	-49.16 \pm 97.83	1.67 \pm 0.52	10.12 \pm 0.10
	GLOBE-CE	0.13 \pm 0.04	-21.66 \pm 30.5	1.4 \pm 0.11	3.91 \pm 2.73
	GLOBALGLANCE	0.00 \pm 0.00	-15.95 \pm 23.40	1.70 \pm 0.14	10.30 \pm 0.51
	OUR _{global}	0.46 \pm 0.02	29.93 \pm 0.61	1.14 \pm 0.01	10.09 \pm 4.47
LAW	GLOBE-CE	0.4 \pm 0.04	0.10 \pm 0.17	1.14 \pm 0.01	2.00 \pm 1.45
	GLOBALGLANCE	0.25 \pm 0.13	-1.39 \pm 1.37	1.32 \pm 0.07	6.05 \pm 0.40
	OUR _{global}	0.82 \pm 0.01	1.57 \pm 0.12	1.07 \pm 0.01	6.70 \pm 2.07
MOONS	GLOBE-CE	0.05 \pm 0.1	-0.67 \pm 0.34	1.32 \pm 0.03	2.84 \pm 1.54
	GLOBALGLANCE	0.25 \pm 0.08	-17.44 \pm 12.46	1.92 \pm 0.08	6.53 \pm 0.15
	OUR _{global}	0.59 \pm 0.21	0.89 \pm 0.14	1.17 \pm 0.03	6.93 \pm 2.08
WINE	GLOBE-CE	0.06 \pm 0.05	-15.72 \pm 16.9	1.63 \pm 0.24	8.14 \pm 10.54
	GLOBALGLANCE	0.00 \pm 0.00	-249.34 \pm 343.47	1.17 \pm 0.05	9.53 \pm 0.65
	OUR _{global}	0.95 \pm 0.11	7.75 \pm 0.68	1.11 \pm 0.05	22.36 \pm 4.95

1396
1397
1398
1399
1400
1401
1402
1403

1404

1405

1406

1407

1408

1409

1410

1411 Table 14: Comparative analysis of our method in **group-wise configuration** with other CF methods
 1412 across various datasets and classification models. Values are averaged over five cross-validation
 1413 folds.

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

DATASET	METHOD	GROUPS	COVERAGE↑	VALID.↑	L2↓	IsoFOREST↑	TIME(s)↓
MLP							
BLOBS	EA	3.60 ± 1.67	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	-0.16 ± 0.00	95.38 ± 40.81
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.96 ± 0.03	0.56 ± 0.02	-0.10 ± 0.01	49.07 ± 3.9
	TCREX	2.40 ± 0.55	1.00 ± 0.00	1.00 ± 0.00	0.00 ± 0.00	0.02 ± 0.00	0.00 ± 0.00
	OUR _{group}	1.60 ± 0.49	1.00 ± 0.00	1.00 ± 0.00	0.46 ± 0.01	0.03 ± 0.00	14.55 ± 2.51
DIGITS	EA	4.00 ± 0.00	0.00 ± 0.00	—	—	—	972.35 ± 62.15
	GLANCE	4.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	2.01 ± 0.18	-0.08 ± 0.01	761.25 ± 75.97
	TCREX	91.00 ± 50.76	1.00 ± 0.00	1.00 ± 0.00	0.15 ± 0.06	0.09 ± 0.00	13.37 ± 5.26
	OUR _{group}	2.80 ± 1.83	1.00 ± 0.00	1.00 ± 0.00	16.35 ± 1.25	0.10 ± 0.00	102.23 ± 13.14
HELOC	EA	4.60 ± 1.14	1.00 ± 0.00	1.00 ± 0.00	1.90 ± 0.09	-0.02 ± 0.03	338.84 ± 43.44
	GLANCE	10.00 ± 0.00	1.00 ± 0.00	0.95 ± 0.01	1.00 ± 0.07	-0.01 ± 0.01	116.31 ± 16.93
	TCREX	26.80 ± 21.02	1.00 ± 0.00	0.94 ± 0.07	0.07 ± 0.05	0.05 ± 0.00	0.13 ± 0.07
	OUR _{group}	16.80 ± 2.56	1.00 ± 0.00	1.00 ± 0.00	0.48 ± 0.06	0.02 ± 0.01	169.58 ± 24.21
LAW	EA	4.40 ± 1.95	1.00 ± 0.00	1.00 ± 0.00	1.13 ± 0.07	-0.12 ± 0.01	121.26 ± 44.08
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.95 ± 0.03	0.53 ± 0.05	-0.05 ± 0.02	96.32 ± 15.61
	TCREX	5.00 ± 2.00	1.00 ± 0.00	0.79 ± 0.29	0.11 ± 0.09	0.03 ± 0.00	0.00 ± 0.00
	OUR _{group}	4.40 ± 1.36	1.00 ± 0.00	1.00 ± 0.00	0.36 ± 0.02	0.04 ± 0.01	77.31 ± 60.42
MOONS	EA	5.20 ± 2.05	1.00 ± 0.00	1.00 ± 0.00	1.03 ± 0.00	-0.14 ± 0.01	131.36 ± 50.25
	GLANCE	3.00 ± 0.00	1.00 ± 0.00	0.84 ± 0.14	0.53 ± 0.03	-0.02 ± 0.02	91.44 ± 6.34
	TCREX	6.00 ± 0.00	1.00 ± 0.00	0.83 ± 0.15	0.10 ± 0.05	0.00 ± 0.01	0.00 ± 0.00
	OUR _{group}	10.80 ± 0.98	1.00 ± 0.00	1.00 ± 0.00	0.46 ± 0.04	0.02 ± 0.00	42.47 ± 25.88
WINE	EA	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.39 ± 0.26	-0.03 ± 0.03	16.66 ± 0.50
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.84 ± 0.10	0.70 ± 0.09	0.05 ± 0.01	7.2 ± 3.48
	TCREX	15.40 ± 11.28	1.00 ± 0.00	1.00 ± 0.00	0.09 ± 0.15	0.05 ± 0.01	0.00 ± 0.00
	OUR _{group}	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	0.81 ± 0.07	0.07 ± 0.01	32.41 ± 23.19
LR							
BLOBS	EA	3.60 ± 1.67	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	-0.16 ± 0.00	90.42 ± 39.69
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.94 ± 0.04	0.55 ± 0.03	-0.07 ± 0.03	37.93 ± 8.77
	TCREX	2.40 ± 0.55	1.00 ± 0.00	1.00 ± 0.00	0.00 ± 0.00	0.02 ± 0.00	0.00 ± 0.00
	OUR _{group}	1.60 ± 0.49	1.00 ± 0.00	1.00 ± 0.00	0.46 ± 0.01	0.03 ± 0.00	14.55 ± 2.51
DIGITS	EA	4.00 ± 0.00	0.00 ± 0.00	—	—	—	895.26 ± 46.34
	GLANCE	4.00 ± 0.00	1.00 ± 0.00	0.66 ± 0.11	1.69 ± 0.17	-0.06 ± 0.01	605.66 ± 58.69
	TCREX	101.00 ± 38.21	1.00 ± 0.00	1.00 ± 0.00	0.10 ± 0.09	0.09 ± 0.00	14.46 ± 6.04
	OUR _{group}	2.80 ± 1.83	1.00 ± 0.00	1.00 ± 0.00	16.35 ± 1.25	0.10 ± 0.00	102.23 ± 13.14
HELOC	EA	5.00 ± 1.58	0.98 ± 0.05	1.00 ± 0.00	1.64 ± 0.15	0.01 ± 0.01	240.68 ± 34.91
	GLANCE	10.00 ± 0.00	1.00 ± 0.00	0.95 ± 0.03	0.89 ± 0.11	0.00 ± 0.01	81.45 ± 9.69
	TCREX	21.00 ± 3.94	1.00 ± 0.00	1.00 ± 0.01	0.05 ± 0.03	0.05 ± 0.00	0.11 ± 0.03
	OUR _{group}	16.80 ± 2.56	1.00 ± 0.00	1.00 ± 0.00	0.48 ± 0.06	0.02 ± 0.01	169.58 ± 24.21
LAW	EA	4.6 ± 1.82	0.95 ± 0.01	1.00 ± 0.00	1.06 ± 0.01	-0.11 ± 0.01	127.38 ± 21.35
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.97 ± 0.03	0.53 ± 0.03	-0.06 ± 0.01	95.86 ± 17.19
	TCREX	6.00 ± 1.22	1.00 ± 0.00	0.37 ± 0.29	0.25 ± 0.08	0.01 ± 0.02	0.00 ± 0.00
	OUR _{group}	4.40 ± 1.36	1.00 ± 0.00	1.00 ± 0.00	0.36 ± 0.02	0.04 ± 0.01	77.31 ± 60.42
MOONS	EA	3.50 ± 0.71	1.00 ± 0.00	0.79 ± 0.13	1.05 ± 0.03	-0.13 ± 0.00	95.86 ± 17.19
	GLANCE	3.00 ± 0.00	1.00 ± 0.00	0.97 ± 0.04	0.58 ± 0.02	-0.04 ± 0.03	61.51 ± 9.72
	TCREX	7.00 ± 1.87	1.00 ± 0.00	0.91 ± 0.10	0.11 ± 0.09	-0.01 ± 0.02	0.00 ± 0.00
	OUR _{group}	10.80 ± 0.98	1.00 ± 0.00	1.00 ± 0.00	0.46 ± 0.04	0.02 ± 0.00	42.47 ± 25.88
WINE	EA	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.6 ± 0.17	-0.06 ± 0.03	17.59 ± 1.74
	GLANCE	2.00 ± 0.00	1.00 ± 0.00	0.85 ± 0.12	0.62 ± 0.09	0.05 ± 0.01	4.29 ± 2.31
	TCREX	17.40 ± 10.67	1.00 ± 0.00	1.00 ± 0.00	0.20 ± 0.10	0.05 ± 0.01	0.00 ± 0.00
	OUR _{group}	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	0.81 ± 0.07	0.07 ± 0.01	32.41 ± 23.19

1458
1459
1460
1461
1462
1463
14641465 Table 15: Additional comparative plausibility and cost analysis of our method in **group-wise configuration**
1466 with other CF methods across various datasets and classification models. Values are
1467 averaged over five cross-validation folds.

1468

1469 DATASET	1470 METHOD	1471 GROUPS	1472 PROB. PLAU.S.↑	1473 LOG DENS.↑	1474 LOF↓	1475 COST↓
MLP						
1471 BLOBS	1472 EA	1473 3.60 ± 1.67	1474 0.00 ± 0.00	1475 -194.1 ± 109.3	1476 10.96 ± 0.20	1477 10.25 ± 0.75
1472 GLANCE	1473 2.00 ± 0.00	1474 0.02 ± 0.03	1475 -7.16 ± 1.92	1476 2.53 ± 0.36	1477 5.94 ± 0.40	1478
1472 TCRED	1473 2.40 ± 0.55	1474 0.00 ± 0.00	1475 -44.51 ± 27.94	1476 1.10 ± 0.02	1477 0.00 ± 0.00	1478
1472 OUR _{group}	1473 1.60 ± 0.49	1474 0.78 ± 0.05	1475 2.98 ± 0.06	1476 1.04 ± 0.01	1477 6.50 ± 0.17	1478
1474 DIGITS	1475 EA	1476 4.00 ± 0.00	1477 0.00 ± 0.00	1478 -360 ± 49	1479 1.64 ± 0.06	1480 $-$
1475 GLANCE	1476 4.00 ± 0.00	1477 0.00 ± 0.00	1478 -359.28 ± 8.52	1479 1.08 ± 0.00	1480 0.00 ± 0.00	1481
1475 TCRED	1476 91.00 ± 50.76	1477 0.00 ± 0.00	1478 -100.96 ± 0.97	1479 1.12 ± 0.02	1480 48.92 ± 2.71	1481
1475 OUR _{group}	1476 2.80 ± 1.83	1477 0.36 ± 0.08	1478	1479	1480	1481
1477 HELOC	1478 EA	1479 4.60 ± 1.14	1480 0.00 ± 0.00	1481 -1631 ± 2694	1482 3.48 ± 0.41	1483 55.68 ± 13.55
1478 GLANCE	1479 10.00 ± 0.00	1480 0.00 ± 0.00	1481 -83.00 ± 52.99	1482 1.97 ± 0.08	1483 13.52 ± 2.28	1484
1478 TCRED	1479 26.80 ± 21.02	1480 0.03 ± 0.04	1481 -15.54 ± 23.72	1482 1.11 ± 0.02	1483 0.85 ± 1.01	1484
1478 OUR _{group}	1479 16.80 ± 2.56	1480 0.07 ± 0.01	1481 11.72 ± 3.02	1482 1.47 ± 0.05	1483 7.35 ± 1.19	1484
1480 LAW	1481 EA	1482 4.40 ± 1.95	1483 0.00 ± 0.00	1484 -748 ± 884	1485 4.19 ± 0.20	1486 13.33 ± 3.42
1480 GLANCE	1481 2.00 ± 0.00	1482 0.22 ± 0.14	1483 -2.58 ± 2.25	1484 1.36 ± 0.16	1485 5.65 ± 0.52	1486
1480 TCRED	1481 5.00 ± 2.00	1482 0.44 ± 0.25	1483 -2.85 ± 1.35	1484 1.05 ± 0.01	1485 0.62 ± 0.95	1486
1480 OUR _{group}	1481 4.40 ± 1.36	1482 0.74 ± 0.03	1483 2.10 ± 0.03	1484 1.05 ± 0.01	1485 5.88 ± 0.39	1486
1482 MOONS	1483 EA	1484 5.20 ± 2.05	1485 0.00 ± 0.00	1486 -1250 ± 1896	1487 6.17 ± 0.36	1488 11.89 ± 3.38
1483 GLANCE	1484 3.00 ± 0.00	1485 0.27 ± 0.08	1486 -9.02 ± 10.34	1487 1.46 ± 0.29	1488 5.39 ± 2.05	1489
1483 TCRED	1484 6.00 ± 0.00	1485 0.27 ± 0.15	1486 -8.29 ± 7.90	1487 1.28 ± 0.05	1488 1.38 ± 1.41	1489
1483 OUR _{group}	1484 10.80 ± 0.98	1485 0.92 ± 0.06	1486 1.76 ± 0.05	1487 1.01 ± 0.01	1488 6.00 ± 0.62	1489
1485 WINE	1486 EA	1487 1.00 ± 0.00	1488 0.00 ± 0.00	1489 -48.89 ± 21.95	1490 2.38 ± 0.44	1491 20.00 ± 6.49
1486 GLANCE	1487 2.00 ± 0.00	1488 0.09 ± 0.09	1489 -2.63 ± 5.21	1490 1.16 ± 0.03	1491 9.46 ± 1.39	1492
1486 TCRED	1487 15.40 ± 11.28	1488 0.00 ± 0.00	1489 -372.30 ± 669.40	1490 1.10 ± 0.08	1491 0.07 ± 0.27	1492
1486 OUR _{group}	1487 1.00 ± 0.00	1488 0.72 ± 0.18	1489 8.67 ± 0.51	1490 1.06 ± 0.02	1491 24.05 ± 1.92	1492
LR						
1488 BLOBS	1489 EA	1490 3.60 ± 1.67	1491 0.00 ± 0.00	1492 -141 ± 28	1493 10.97 ± 0.21	1494 10.25 ± 0.75
1489 GLANCE	1490 2.00 ± 0.00	1491 0.12 ± 0.13	1492 -2.55 ± 2.29	1493 1.89 ± 0.44	1494 6.04 ± 1.15	1495
1489 TCRED	1490 2.40 ± 0.55	1491 0.00 ± 0.00	1492 -45.59 ± 16.68	1493 1.10 ± 0.02	1494 0.00 ± 0.00	1495
1489 OUR _{group}	1490 1.60 ± 0.49	1491 0.78 ± 0.05	1492 2.98 ± 0.06	1493 1.04 ± 0.01	1494 6.50 ± 0.17	1495
1492 DIGITS	1493 EA	1494 4.00 ± 0.00	1495 0.00 ± 0.00	1496 $-$	1497 $-$	1498
1492 GLANCE	1493 4.00 ± 0.00	1494 0.01 ± 0.01	1495 -485 ± 42	1496 1.54 ± 0.10	1497 27.83 ± 6.16	1498
1492 TCRED	1493 101.00 ± 38.21	1494 0.00 ± 0.00	1495 -353.45 ± 86.64	1496 1.08 ± 0.00	1497 0.00 ± 0.00	1498
1492 OUR _{group}	1493 2.80 ± 1.83	1494 0.36 ± 0.08	1495 -100.96 ± 0.97	1496 1.12 ± 0.02	1497 48.92 ± 2.71	1498
1494 HELOC	1495 EA	1496 5.00 ± 1.58	1497 0.00 ± 0.00	1498 -2170 ± 3061	1499 3.09 ± 0.68	1500 46.13 ± 9.94
1495 GLANCE	1496 10.00 ± 0.00	1497 0.00 ± 0.00	1498 -107 ± 141	1499 1.98 ± 0.17	1500 10.66 ± 0.77	1501
1495 TCRED	1496 21.00 ± 3.94	1497 0.03 ± 0.04	1498 -30.15 ± 44.41	1499 1.10 ± 0.01	1500 0.60 ± 1.00	1501
1495 OUR _{group}	1496 16.80 ± 2.56	1497 0.07 ± 0.01	1498 11.72 ± 3.02	1499 1.47 ± 0.05	1500 7.35 ± 1.19	1501
1497 LAW	1498 EA	1499 4.6 ± 1.82	1500 0.00 ± 0.00	1501 -63.32 ± 21.79	1502 4.08 ± 0.16	1503 13.04 ± 2.88
1498 GLANCE	1499 2.00 ± 0.00	1500 0.18 ± 0.10	1501 -2.56 ± 1.03	1502 1.40 ± 0.11	1503 5.84 ± 0.72	1504
1498 TCRED	1499 6.00 ± 1.22	1500 0.61 ± 0.12	1501 0.02 ± 1.80	1502 1.06 ± 0.03	1503 0.67 ± 1.02	1504
1498 OUR _{group}	1499 4.40 ± 1.36	1500 0.74 ± 0.03	1501 2.10 ± 0.03	1502 1.05 ± 0.01	1503 5.88 ± 0.39	1504
1500 MOONS	1501 EA	1502 3.50 ± 0.71	1503 0.00 ± 0.00	1504 -92.74 ± 101	1505 6.37 ± 0.02	1506 11.74 ± 2.86
1501 GLANCE	1502 3.00 ± 0.00	1503 0.29 ± 0.11	1504 -153 ± 329	1505 1.77 ± 0.50	1506 6.77 ± 1.12	1507
1501 TCRED	1502 7.00 ± 1.87	1503 0.10 ± 0.13	1504 -236.58 ± 237.20	1505 1.14 ± 0.06	1506 1.40 ± 1.80	1507
1501 OUR _{group}	1502 10.80 ± 0.98	1503 0.92 ± 0.06	1504 1.76 ± 0.05	1505 1.01 ± 0.01	1506 6.00 ± 0.62	1507
1502 WINE	1503 EA	1504 1.00 ± 0.00	1505 0.00 ± 0.00	1506 -66.5 ± 47.9	1507 2.76 ± 0.38	1508 26.03 ± 4.93
1503 GLANCE	1504 2.00 ± 0.00	1505 0.02 ± 0.04	1506 -3.98 ± 2.84	1507 1.14 ± 0.05	1508 9.63 ± 1.61	1509
1503 TCRED	1504 17.40 ± 10.67	1505 0.00 ± 0.00	1506 -629.24 ± 648.00	1507 1.11 ± 0.08	1508 1.05 ± 1.32	1509
1503 OUR _{group}	1504 1.00 ± 0.00	1505 0.72 ± 0.18	1506 8.67 ± 0.51	1507 1.06 ± 0.02	1508 24.05 ± 1.92	1509

1510
1511

1512

1513

1514 Table 16: Comparative analysis of our method in **local configuration** with other local CF methods
 1515 across various datasets and classification models. Values are averaged over five cross-validation
 1516 folds.

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

DATASET	METHOD	COVERAGE \uparrow	VALID. \uparrow	L2 \downarrow	IsoForest \uparrow	TIME(s) \downarrow
MLP						
BLOBS	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.51 \pm 0.03	-0.1 \pm 0.00	8.15 \pm 5.24
	WACH	0.99 \pm 0.03	1.00 \pm 0.00	0.23 \pm 0.01	-0.04 \pm 0.00	0.22 \pm 0.05
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.37 \pm 0.05	-0.06 \pm 0.01	2.15 \pm 0.62
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.47 \pm 0.01	0.04 \pm 0.00	19.55 \pm 0.30
	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	0.39 \pm 0.01	0.03 \pm 0.00	6.20 \pm 0.20
DIGITS	DICE	1.00 \pm 0.00	1.00 \pm 0.00	23.77 \pm 0.99	0.03 \pm 0.01	162.88 \pm 15.52
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	2.10 \pm 0.44	0.09 \pm 0.00	16.41 \pm 0.62
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	2.19 \pm 0.24	0.04 \pm 0.01	3.38 \pm 0.52
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	11.42 \pm 0.05	0.10 \pm 0.01	25.09 \pm 0.40
	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	11.41 \pm 0.51	0.11 \pm 0.00	18.58 \pm 0.68
HELOC	DICE	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.06	-0.01 \pm 0.00	230.85 \pm 26.00
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	0.16 \pm 0.02	0.06 \pm 0.00	33.88 \pm 4.98
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.59 \pm 0.02	0.11 \pm 0.00	14.60 \pm 3.83
	PPCEF	1.00 \pm 0.00	0.98 \pm 0.02	0.42 \pm 0.02	0.07 \pm 0.00	24.31 \pm 4.52
	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	0.47 \pm 0.01	0.08 \pm 0.00	20.21 \pm 2.02
LAW	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.52 \pm 0.01	-0.05 \pm 0.00	43.82 \pm 9.62
	WACH	0.97 \pm 0.05	1.00 \pm 0.01	0.16 \pm 0.01	0.05 \pm 0.00	21.66 \pm 3.91
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.31 \pm 0.01	0.09 \pm 0.01	0.28 \pm 0.17
	PPCEF	1.00 \pm 0.00	0.95 \pm 0.01	0.32 \pm 0.02	0.06 \pm 0.00	20.63 \pm 1.08
	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	0.32 \pm 0.00	0.05 \pm 0.00	7.80 \pm 0.29
MOONS	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.55 \pm 0.01	-0.04 \pm 0.01	17.85 \pm 6.64
	WACH	0.97 \pm 0.06	1.00 \pm 0.00	0.16 \pm 0.01	-0.00 \pm 0.00	0.23 \pm 0.05
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.28 \pm 0.01	0.02 \pm 0.01	0.10 \pm 0.04
	PPCEF	1.00 \pm 0.00	0.98 \pm 0.01	0.34 \pm 0.04	0.03 \pm 0.01	20.44 \pm 1.75
	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	0.30 \pm 0.01	0.03 \pm 0.00	7.32 \pm 0.22
WINE	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.72 \pm 0.08	0.03 \pm 0.01	0.70 \pm 0.05
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	0.43 \pm 0.08	0.03 \pm 0.02	0.10 \pm 0.02
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.79 \pm 0.05	0.09 \pm 0.00	0.02 \pm 0.00
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.66 \pm 0.05	0.07 \pm 0.01	12.41 \pm 0.52
	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	0.69 \pm 0.07	0.05 \pm 0.01	5.49 \pm 0.32
LR						
BLOBS	ARTEL	1.00 \pm 0.00	1.00 \pm 0.00	0.33 \pm 0.02	-0.06 \pm 0.00	3.42 \pm 0.90
	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.49 \pm 0.02	-0.1 \pm 0.01	12.65 \pm 3.59
	WACH	0.99 \pm 0.01	1.00 \pm 0.00	0.32 \pm 0.05	-0.01 \pm 0.02	0.34 \pm 0.02
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.33 \pm 0.03	-0.05 \pm 0.01	0.94 \pm 0.33
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.50 \pm 0.04	0.04 \pm 0.01	3.22 \pm 0.84
DIGITS	ARTEL	1.00 \pm 0.00	1.00 \pm 0.00	19.56 \pm 1.55	0.07 \pm 0.01	27.08 \pm 1.16
	DICE	1.00 \pm 0.00	1.00 \pm 0.00	22.2 \pm 0.71	0.04 \pm 0.01	138.12 \pm 12.88
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	2.46 \pm 0.32	0.10 \pm 0.00	9.68 \pm 0.08
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	2.07 \pm 0.14	0.04 \pm 0.01	2.61 \pm 0.45
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	10.33 \pm 0.04	0.09 \pm 0.01	8.68 \pm 3.65
HELOC	ARTEL	1.00 \pm 0.00	1.00 \pm 0.00	10.55 \pm 0.48	0.11 \pm 0.00	17.16 \pm 0.45
	DICE	1.00 \pm 0.00	0.98 \pm 0.05	0.88 \pm 0.07	0.01 \pm 0.01	175.64 \pm 26.01
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	0.15 \pm 0.02	0.06 \pm 0.00	11.69 \pm 0.32
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.56 \pm 0.01	0.12 \pm 0.01	8.29 \pm 3.86
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.23 \pm 0.01	0.07 \pm 0.00	12.44 \pm 2.36
LAW	ARTEL	1.00 \pm 0.00	1.00 \pm 0.00	0.20 \pm 0.01	0.01 \pm 0.00	11.71 \pm 2.34
	DICE	1.00 \pm 0.00	0.96 \pm 0.09	0.55 \pm 0.06	-0.06 \pm 0.02	43.05 \pm 7.67
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	0.19 \pm 0.03	0.04 \pm 0.00	10.33 \pm 0.42
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.32 \pm 0.01	0.09 \pm 0.01	0.12 \pm 0.05
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.23 \pm 0.01	0.07 \pm 0.00	2.42 \pm 0.10
MOONS	ARTEL	1.00 \pm 0.00	1.00 \pm 0.00	0.34 \pm 0.03	0.04 \pm 0.01	7.65 \pm 0.30
	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.29 \pm 0.01	-0.02 \pm 0.01	6.84 \pm 2.25
	WACH	0.99 \pm 0.02	1.00 \pm 0.00	0.62 \pm 0.04	-0.07 \pm 0.01	18.04 \pm 7.50
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.34 \pm 0.02	0.00 \pm 0.01	7.50 \pm 6.43
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.36 \pm 0.01	0.03 \pm 0.01	0.37 \pm 0.08
WINE	ARTEL	1.00 \pm 0.00	1.00 \pm 0.00	0.59 \pm 0.07	0.05 \pm 0.01	1.66 \pm 0.85
	DICE	1.00 \pm 0.00	1.00 \pm 0.00	0.78 \pm 0.07	0.02 \pm 0.01	1.18 \pm 1.16
	WACH	1.00 \pm 0.00	1.00 \pm 0.00	0.41 \pm 0.07	0.05 \pm 0.02	0.11 \pm 0.03
	CCHVAE	1.00 \pm 0.00	1.00 \pm 0.00	0.81 \pm 0.06	0.09 \pm 0.01	0.01 \pm 0.00
	PPCEF	1.00 \pm 0.00	1.00 \pm 0.00	0.53 \pm 0.04	0.09 \pm 0.01	2.03 \pm 0.47
WINE	OUR _{local}	1.00 \pm 0.00	1.00 \pm 0.00	0.71 \pm 0.04	0.05 \pm 0.00	5.66 \pm 0.29

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638

Table 18: Friedman test results for statistical significance analysis across all configurations. All metrics show significant differences among methods ($p < 0.05$).

Configuration	Metric	<i>p</i> -value
Global	Validity	2.39×10^{-5}
	L2 Distance	0.0133
	Plausibility (IsoForest)	3.94×10^{-4}
	Time	6.05×10^{-13}
Group-wise	Coverage	3.28×10^{-8}
	Validity	5.53×10^{-11}
	L2 Distance	2.65×10^{-15}
	Plausibility (IsoForest)	1.51×10^{-11}
	Time	4.21×10^{-13}
Local	Coverage	6.42×10^{-9}
	Validity	6.00×10^{-14}
	L2 Distance	2.28×10^{-18}
	Plausibility (IsoForest)	5.24×10^{-15}
	Time	2.96×10^{-15}

1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673