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ABSTRACT

The growing complexity of Al systems has intensified the need for transparency
through Explainable Al (XAI). Counterfactual explanations (CFs) offer action-
able “what-if” scenarios on three levels: Local CFs providing instance-specific
insights, Global CFs addressing broader trends, and Group-wise CFs (GWCFs)
striking a balance and revealing patterns within cohesive groups. Despite the avail-
ability of methods for each granularity level, the field lacks a unified method that
integrates these complementary approaches. We address this limitation by propos-
ing a gradient-based optimization method for differentiable models that generates
Local, Global, and Group-wise Counterfactual Explanations in a unified manner.
We especially enhance GWCF generation by combining instance grouping and
counterfactual generation into a single efficient process, replacing traditional two-
step methods. Moreover, to ensure trustworthiness, we innovatively introduce the
integration of plausibility criteria into the GWCF domain, making explanations
both valid and realistic. Our results demonstrate the method’s effectiveness in
balancing validity, proximity, and plausibility while optimizing group granularity,
with practical utility validated through practical use cases.

1 INTRODUCTION

The increasing complexity of Al systems has fueled regulatory and societal demands for trans-
parency, a need addressed by Explainable Al (XAI) (Goodman & Flaxman), 2017} Wachter et al.|
2017; |Adadi & Berradal 2018} [Samek & Miiller, 2019). Among XAI techniques, counterfactual
explanations (CFs) are particularly valuable for providing actionable ”what-if”” scenarios that spec-
ify how input feature changes can alter model predictions (Wachter et al.l 2017). For example, a
CF could show a loan applicant the precise changes needed for loan approval, offering actionable
feedback crucial in many fields (Guidotti, 2022).

Counterfactual explanations can be generated at three distinct levels of granularity. The most popular
Local CFs offer tailored guidance for individual instances but miss broader patterns (Fragkathoulas
et al., |2024; [Carrizosa et al., |2024). Global CFs provide high-level summaries for entire datasets
but lack individual specificity (Ramamurthy et al.l |2020; [Plumb et al.| [2020). Bridging this gap,
group-wise counterfactual explanations (GWCFs) explain cohesive data subsets, revealing shared
patterns while maintaining actionable insights, which is crucial for fairness and policy-making in
sensitive domains (Carrizosa et al., [2024; [Kanamori et al.| 2022; [Warren et al.| [2024). A detailed
comparison of these approaches is illustrated in Figure|l{and discussed in Appendix

Despite their promise, existing GWCF methods face significant challenges. Most rely on a two-
step process of first clustering data and then generating CFs (or vice versa), which is inefficient
and dependent on clustering parameterization (Kavouras et al., [2024} |Artelt & Gregoriades), |2024)).
Furthermore, ensuring the plausibility of CFs—that is, their alignment with the data distribution and
real-world constraints—remains a key challenge, as unrealistic explanations undermine trust and
actionability (Artelt & Hammer, 2020).

To address these challenges, we propose a unified framework for generating local, group-wise, and
global counterfactuals, as illustrated in Figure[I] Our end-to-end, gradient-based method simultane-
ously optimizes instance grouping and counterfactual generation, eliminating the inefficient two-step
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(a) Global CFs (b) Group-wise CFs (c) Local CFs

Figure 1: The figure illustrates three types of explanations generated by our approach: (a) global
CFs, identifying a single direction of change applicable to the entire dataset; (b) group-wise CFss,
providing vectors of change for specific groups, distinguished by colors (red, blue); and (c) local
counterfactual explanations, offering instance-specific shift vectors, minimal changes required to
modify individual predictions. Decision boundary (green line) and density threshold contours.

process common in prior work. It can dynamically generate explanations for a varying number of
groups, automatically balancing a number through regularization. By formulating this as a single
optimization problem, our method efficiently produces CFs at any desired granularity. Crucially,
we introduce a probabilistic plausibility criterion, using normalizing flows for density estimation
(Rezende & Mohamed, [20135)), to ensure that explanations are not only valid but also realistic and
actionable.

In summary, our key contributions are:

* A novel unified approach for generating CFs at local, group-wise, and global levels, dynam-
ically adapting to user needs and automatically balancing groups diversity and granularity,
leveraging gradient-based optimization.

* A significant advancement in GWCFs generation through end-to-end optimization that uni-
fies group discovery and counterfactual generation while introducing probabilistic plausi-
bility constraints in this domain.

* An experimental evaluation and real-world use case analysis demonstrating our approach’s
performance, providing the effective balance between validity, proximity, plausibility, and
the number of shifting vectors.

2 RELATED WORKS

Local Counterfactual Explanations Local CFs identify minimal feature changes to alter a
model’s prediction for a single instance (Wachter et al., [2017). While early methods were often
heuristic-based, subsequent work has introduced more sophisticated techniques, including gradient-
based optimization, generative models, and contrastive explanations, to improve CF quality and
diversity (Dhurandhar et al.l [2018; [Russell, [2019; [Kanamori et al) |2020; [Mothilal et al., 2020;
Guidotti, 2022). However, ensuring the plausibility and actionability of these explanations remains
an ongoing challenge (Keane et al., 2021).

Global and Group-wise Counterfactual Explanations Global and group-wise CFs extend ex-
planations beyond single instances to entire datasets or cohesive subgroups. Global approaches
seek a single or a few explanations for all instances, using techniques like feature space translations
(Plumb et al., 2020), actionable rule sets (Rawal & Lakkaraju, 2020; [Ley et al., 2022), or scalable
vector-based methods (Ley et al.,[2023). Group-wise methods provide more granular insights. Some
approaches partition the input space using tree structures to assign collective actions (Ramamurthy
et al.,2020; Kanamori et al., [2022; Bewley et al., 2024). Others follow a two-step process, first gen-
erating local CFs and then clustering them to find group-level explanations (Kavouras et al.| [2024;
Artelt & Gregoriades|, 2024). These two-step methods, however, can be inefficient and sensitive to
clustering parameters.
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Plausible Counterfactual Explanations Plausibility ensures that a CF resides in a high-density
region of the data manifold, making it realistic and trustworthy. Various techniques have been pro-
posed to enforce this, such as imposing density constraints using Gaussian Mixture Models (Artelt &
Hammer, 2020) or normalizing flows (Wielopolski et al., [2024). Other approaches leverage causal
constraints (Mahajan et al., 2019) or generative models like VAEs to learn the data manifold and
generate plausible CFs from it (Pawelczyk et al.l [2020). A comprehensive survey by Karimi et al.
(2022) details the challenges and opportunities in this area.

3 BACKGROUND

Counterfactual Explanations Following|Wachter et al.|(2017), a local counterfactual explanation
finds a new instance x’ € R” for an original instance xo € R” such that the prediction of a model
h changes to a desired class ¢/, i.e., h(x’) = y’. The instance x’ is typically found by solving the
optimization problem:

arg min d(xg,x") + X - L(h(x'),y). (1)

x'eRDP

The function (-, -) refers to a loss function tailored for classification tasks such as the 0-1 loss
or cross-entropy. On the other hand, d(-,-) quantifies the distance between the original input x
and its counterfactual counterpart x’, employing metrics like the L1 (Manhattan) or L2 (Euclidean)
distances to evaluate the deviation. The parameter A > 0 plays a pivotal role in regulating the trade-
off, ensuring that the counterfactual explanation remains sufficiently close to the original instance
while altering the prediction outcome as intended.

Plausible Counterfactual Explanations To ensure realism, |Artelt & Hammer|(2020) introduced
a plausibility constraint, requiring the counterfactual x’ to lie in a high-density region of the data
distribution p(x|y’) for the target class. The optimization problem becomes:
arg min d(xo,x') + A L(h(xX),y) (2a)
x’'eR

st. 6 <p1y), (2b)

where p(x’|y’) denotes conditional probability of the counterfactual explanation x’ under desired
target class value ¢’ and § represents the density threshold.

Global and Group-wise Counterfactual Explanations Global and group-wise explanations ex-
tend the local concept by applying a shared change vector d to a set of instances. For a global
explanation, a single vector d is applied to all instances. For group-wise explanations, different
vectors are found for different subgroups of the data. The counterfactual for an instance xg is then
generated by a simple update:

x' =x9+d, 3)
where d is the shift vector of size D, which remains invariant across all observations within the
same class or group.

In contrast to the standard formulation, GLOBE-CE (Ley et al.,2023)) introduces a scaling factor, k,
specific to each observation, allowing for individual adjustments to the magnitude of the shift:

X' =xo+k-d 4)

4 METHOD

4.1 GLOBAL COUNTERFACTUAL EXPLANATIONS

The base problem of global counterfactual explanation assumes finding the global shifting vector d
of size D. In order to solve that problem using optimization techniques, we can define the problem
in the following way:

argmin d%(Xo, X') + X - £9(h(X"), /), ()
where Xy = [X1,0,...,X1, ~]7T represents the matrix storing the initial input N examples, X’ =
xi0+d,....,x1 8+ d]7 represent the extracted conterfactuals, after shifting the input examples
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with vector d. Formally, X’ = Xy + D, where D = 1y - dT and 15 represents N-dimesional
vector containing ones. We define a global distance as d“ (X, X') = EnN:1 d(xy,0,%],), and global
classification loss as an aggregation of the components: /€ (h(X'),7') = SN 0(h(x),), ).

n=1 n

Extracting a single direction vector d can be inefficient due to the dispersed initial positions X and,
as discussed by [Kanamori et al.| (2022, it strictly depends on the farthest observation. Therefore,
following the GLOBE-CE (Ley et al.,[2023)), we incorporate additional magnitude components and
represent the counterfactuals as:

X% =X+ KD, (6)

where K is the diagonal matrix of magnitudes on the diagonal, i.e., K = diag(k1, ..., ky). In order
to ensure non-negative values of magnitudes, we represent them as k; = exp (h;). ThlS formulation
extends the classical vector-based update rule given by eq. equation[]to the matrix notation. In order
to extract the counterfactuals, we simply include X in eq. equation[S]and optimize K together with

d.

4.2 GROUP-WISE COUNTERFACTUAL EXPLANATIONS

Incorporating magnitude components into the global counterfactual problem enhances the shifting
options during counterfactual calculation, yet the direction remains uniform across all observations.
To address this, we propose a novel method that automatically identifies groups represented by local
shifting vectors with varying magnitudes. This approach restricts the number of desired shifting
components to these identified groups. The formula for extracting group-wise counterfactuals is
defined as:

XIGW = Xy + KSDgw, 7

where D¢y is a matrix of size K x D, K is the number of base shifting vectors and D is the
dimesionality of the data. S is a sparse selection matrix of size N x K, where s, € {0,1}
and Zszl Sn,,; = 1 for each of the considered rows. Practically, the operation selects one of
the base shifting vectors dj, where D = [dy,...,d K]T, scaled by components k,, located on
diagonal of matrix K. We aim to optimize the selection matrix S together with base vectors D gy
and magnitude components K using the gradient-based approach. Optimizing binary S directly is
challenging due to the type of data and the given constraints. Therefore, we replace the S with the
probability matrix P, where the rows p,, o represent the values of Sparsemax (Martins & Astudillo}
2016) activation function:

Pn,e = arg mHAl Hp - bn,o||27 (8)

where A = {p € RE : 1Lp = 1,p > 0k} and b,, . is n-th row of B, which is the real-valued
auxiliary matrix that is used to model rows of S as one-hot binary vectors. Practically, each row of
the matrix P represents a multinomial distribution, and matrix B is optimized in the gradient-based
framework.

The objective for extracting group-wise counterfactuals is as follows:

. G / /
arg  min d%(Xo, Xgw) + A - 9 (h(Xew ), v )+ ©)

+ A5 - 4s(B) + Ai - £ (B),
where {;(B) and ¢ (B) are entropy-based regularisers applied to preserve sparsity of matrix P, and

As and Ay, are regularisation hyperparameters. The regularizer £;(B) is encouraging assignment to
one group for each of the raw vectors p,, o:

N K
ZZ Pnk - 10g P k- (10)
n=1k=1

The second regularisation component is responsible for reducing the number of groups extracted
during counterfactual optimization:

==Y pi-logp, (1)
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Zi\] —1 Pk,n

Sk h—i P

The problem formulation provided by eq. equation [7] and equation [9] represents the unified frame-
work for counterfactual explanations. If the number of base shifting vectors in matrix Dgywy is equal
to the number of examples (K = N), S = K = 1, and Ay, = \; = 0, the problem statements
refer to standard formulation of local explanations. In the case where Doy = D, S = K =1
and Ay = A\, = 0, the statement pertains to standard global counterfactual explanations. When
K # I, it is equivalent to the formulation given in Eq. [f] i.e., GCFs with magnitude. In other
cases (1 < K < N), the problem is formulated as a group-wise explanation case. In this setting,
we can disable automatic group detection (A = 0) and instead prioritize manual control over the

automatic number of group formations (A; > 0). This latter configuration will be our primary focus
for GWCFs.

where pp, =

4.3 PLAUSIBLE COUNTERFACTUAL EXPLANATIONS AT ALL LEVELS

The plausibility is an important aspect of generating relevant counterfactuals. In this paper, we focus
on density-based problem formulation, where the extracted example should satisfy the condition
of preserving the density function value on a given threshold level (see eq. equation 2b): § <
p(X'|y’). Moreover, we utilize a specific form of classification loss that enables a balance between
the plausibility and validity of the extracted examples.

The general criterion for extracting plausible group-wise counterfactuals can be formulated as fol-
lows:
arg  min d%(Xo, Xaw) + A €6 (h(Xew), v )+
K,B,Dgw (12)

+ X bp(XGw, y') + As - £s(B) + A - Le(B),

where the loss component £, (X, ¥') controls probabilistic plausibility constraint (§ < p(x'[y’))
and is defined as:

N
6 (X, y) = > max (6 = p(xw,aly),0). (13)
n=1
where Xy, ,, is n-th counterfactual example stored in rows of Xy = [XGy1s - - - Xaw, )T and

0 is the density threshold defined by the user depending on the desired level of plau51b111ty

Various approaches, like Kernel Density Estimation (KDE) or Gaussian Mixture Model (GMM)
can be used to model conditional density function p(xgyy,|y'). In this work, we follow Wielopol-
ski et al| (2024) and use a conditional normalizing flow model (Rezende & Mohamed; [2015)) to
estimate the density. Compared to standard methods, like KDE or GMM, normalizing flows do
not assume a particular parametrized form of density function and can be successively applied for
high-dimensional data. Compared to other generative models, normalizing flows enables the calcu-
lation of density function directly using the change of variable formula and can be trained via direct
negative log-likelihood (NLL) optimization. A detailed description of how to model and train nor-
malizing flows is provided in Appendix [B| Having the trained discriminative model pa(y'|xgy,,)
and generative normalizing flow p(xgyy,,[y’) the set of conterfacuals X{,y, is estimated using a
standard gradient-based approach.

4.4 VALIDITY LOSS COMPONENT

The application of the cross-entropy classification lloss.EG(h(X’GW),.y’ ) in eq. equation |12| con-
stantly encourages 100% confidence of the discriminative model, which may have some negative
impact on balancing other components in aggregated loss. In order to eliminate this limitation, we

replace £ (h(Xyy), y') with validity loss based on Wielopolski et al.[(2024):
Co(M(Xew),y') =

N (14)
Zmax(g;axpd(yleWn) +e—pa(y |xGWn),0)

n=1

This enforces that pa(y'[xgyy,,) Will be higher than the most probable class among the remaining
classes by the e margin. Using our criterion, the model can focus more on producing closer and
more plausible counterfactuals.
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4.5 GROUP DIVERSITY REGULARIZATION

During optimization, the algorithm may converge towards proposing similar groups, overly cap-
turing fine details. To ensure diversity among the base shifting vectors in Dy, we introduce a
determinant-based regularization term that encourages linear independence and broad representa-
tion. The penalty is defined as:

ta(Daw) = —logdet(Dgw D&y + €I), (15)

where € is a small positive constant that ensures numerical stability by preventing the determinant
from becoming zero.

The optimization objective from Eq. equation [I2]is updated to include the diversity term:

arg. min  d9(Xo,Xow) + A L(h(Xaw), v )+

K,B,Dgw
+ X b (Xew, y') + As - £:(B)+ (16)
+ X - £e(B) + A - La(Daw),

This term maximizes the volume spanned by the group shifting vectors, promoting distinct and
diverse groups of counterfactual explanations.

Based on this, we conducted an ablation study on each component and their combinations (see
Appendix I) and selected hyperparameters based on our findings to ensure optimal performance. We
initialize with K = N base shifting vectors and assign the highest weight, A = 10°, to emphasize
validity. For plausibility, group sparsity, and number-of-groups regularization, we use equal weights
Ap = As = A, = 104, reflecting their comparable importance in balancing realistic counterfactuals
with group number. Finally, to ensure diversity among the group shifting vectors while allowing
other constraints to dominate, we set Ay = 10'. Furthermore, we used the first quartile of the
probabilities of the observed train set as the probability threshold 4.

5 EXPERIMENTS

In this section, we evaluate the performance of our method in global, group-wise, and local con-
figurations using various datasets and metrics. The experiments benchmark our approach against
state-of-the-art methods, highlighting its strengths and providing insights into its unified capabili-
ties. To further illustrate the practical value of our method, we analyze the created groups in two
use cases, demonstrating its ability to generate actionable and interpretable insights. The code for
these experiments is publicly available on GitHulﬂ Detailed results and additional evaluations are
provided in Appendix [J}

5.1 COMPARATIVE EXPERIMENTS

Datasets We conducted experiments on six datasets that cover diverse domains and challenges and
are frequently used as benchmarks in the counterfactual explanation literature. The datasets include:
three for tabular data binary classification (Law, HELOC, Moons); two for tabular data multiclass
classification (Blobs, Wine); and one image dataset with multiple classes (Digits). The sizes of these
datasets range from 178 samples (Wine) to 10,459 samples (HELOC), while feature dimensionality
spans from 2 features (Moons, Blobs) to 64 features (Digits), ensuring robustness across different
scales and complexities. Detailed descriptions of these datasets are available in Appendix

Classification Models For classification models, we trained a 2-layer Multilayer Perceptron
(MLP) to test non-linear deep neural network configurations. For completeness, we provide ad-
ditional comparative results using the LR model in Appendix Detailed descriptions of both
model architectures are provided in Appendix [E.2]

Metrics We evaluated counterfactual explanations using three key metrics: Validity, which mea-
sures the success of CFs in altering the model’s predictions; Proximity, calculated as the L2 distance
between the original instance and the CFs; Plausibility, assessed through the Isolation Forest metric

'Will be added in camera-ready version.
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Table 1: Comparative analysis: Global Methods.

DATASET \ METHOD COVERAGET VALID.T L2} ISOFORESTT TIME(S)]
GLOBE-CE 1.00 & 0.00 0.99 4 0.01 0.25 £ 0.04 —0.06 4+ 0.03 0.66 £+ 0.03
BLOBS GLANCE 1.00 + 0.00  1.00 =% 0.00 0.42 £ 0.01 0.01 4 0.00 43.30 + 9.72
OUR g obal 1.00 + 0.00  1.00 =% 0.00 0.48 £ 0.01 0.03 £ 0.00 7.89 £+ 0.86
GLOBE-CE 1.00 + 0.00 0.00 4 0.00 - - 0.95 + 0.08
DIGITS GLANCE 1.00 & 0.00 0.30 +0.07 11.24 £ 0.70 0.09 +0.01  678.36 & 29.07
OURobal 1.00 +0.00 1.00 & 0.00 17.08 4 0.54 0.10 £ 0.00 31.48 £+ 5.28
GLOBE-CE 1.00 + 0.00 1.00 &+ 0.00 0.52 £ 0.03 0.03 £ 0.01 2.02 £ 0.18
HELOC GLANCE 1.00 + 0.00 0.97 £+ 0.01 0.68 & 0.07 —0.01 4+ 0.02 99.89 + 44.14
OUR6bal 1.00 + 0.00  1.00 £ 0.00 0.36 £+ 0.02 0.06 £ 0.00 32.47 £+ 10.01
GLOBE-CE 1.00 +0.00 1.00 &+ 0.00 0.22 + 0.02 0.01 £ 0.01 0.81 + 0.02
Law GLANCE 1.00 + 0.00 0.97 4 0.00 0.45 £ 0.02 —0.04 + 0.01 90.81 £ 9.03
OUR6bal 1.00 +0.00  1.00 £ 0.00 0.38 £ 0.01 0.01 £ 0.00 13.44 £ 3.11
GLOBE-CE 1.00 + 0.00  1.00 &£ 0.00 0.30 £+ 0.03 —0.06 + 0.01 0.65 + 0.01
MOONS GLANCE 1.00 + 0.00 0.68 & 0.05 0.39 £ 0.02 —0.02 +0.01 77.97 £9.11
OUR6bal 1.00 % 0.00 0.91 4+ 0.12 0.45+0.04 —0.01 £ 0.01 9.55 + 1.37
GLOBE-CE 1.00 £ 0.00 1.00 £ 0.00 0.73 + 0.20 0.04 + 0.02 0.39 £+ 0.01
WINE GLANCE 1.00 £ 0.00 0.57 4+ 0.17 0.46 + 0.07 0.06 £ 0.01 5.82 + 3.10
OUR g opal 1.00 + 0.00  1.00 =% 0.00 0.73 £ 0.07 0.06 £ 0.01 5.73 4 0.89
Table 2: Comparative analysis: Group-Wise Methods.
DATASET METHOD \ GROUPS COVERAGET VALID.T L2y ISOFORESTT TIME(S))
EA 3.60 + 1.67 1.00 + 0.00  1.00 &£ 0.00 1.00 £0.00 —0.16 £ 0.00 95.38 4 40.81
BLoBS GLANCE 2.00 £ 0.00 1.00 & 0.00 0.96 £ 0.03 0.56 +£0.02  —0.10 £ 0.01 49.07 + 3.9
TCREX 2.40 £ 0.55 1.00 £ 0.00 1.00 £ 0.00 0.00 + 0.00 0.02 + 0.00 0.00 £ 0.00
OURgroup 1.60 + 0.49 1.00 +0.00 1.00 +0.00 0.46 £ 0.01 0.03 £ 0.00 14.55 £+ 2.51
EA 4.00 4 0.00 0.00 + 0.00 - - —  972.35 4 62.15
DIGITS GLANCE 4.00 4 0.00 1.00 + 0.00 1.00 =% 0.00 2.01 +£0.18  —0.08 £0.01  761.25 4 75.97
TCREX 91.00 £ 50.76 | 1.00 & 0.00 1.00+0.00 0.15 % 0.06 0.09 £ 0.00 13.37 £+ 5.26
OURgroup | 2.80 % 1.83 1.00 + 0.00  1.00 =% 0.00 16.35 £ 1.25 0.10 £0.00 102.23 £ 13.14
EA 4.60 + 1.14 1.00 & 0.00 1.00 =% 0.00 1.90 £0.09 —0.02+0.03  338.84 £ 43.44
HELOC GLANCE 10.00 + 0.00 1.00 & 0.00 0.95 £ 0.01 1.00 £0.07  —0.01 +0.01 116.31 4+ 16.93
TCREX 26.80 4 21.02 | 1.00 = 0.00 0.94 £0.07  0.07 £ 0.05 0.05 &+ 0.00 0.13 £ 0.07
OURgroup 16.80 4 2.56 1.00 + 0.00  1.00 =% 0.00 0.48 £ 0.06 0.02 £ 0.01 169.58 4+ 24.21
EA 4.40 +1.95 1.00 + 0.00  1.00 =% 0.00 1.134+0.07 —0.12 £ 0.01 121.26 4 44.08
Law GLANCE 2.00 £ 0.00 1.00 & 0.00 0.95 £ 0.03 0.53 £0.05  —0.05 & 0.02 96.32 4 15.61
TCREX 5.00 £ 2.00 1.00 & 0.00 0.79 £0.29  0.11 &+ 0.09 0.03 £ 0.00 0.00 £ 0.00
OURgroup | 4.40 + 1.36 1.00 + 0.00  1.00 =+ 0.00 0.36 & 0.02 0.04 £+ 0.01 77.31 £ 60.42
EA 5.20 & 2.05 1.00 + 0.00  1.00 =+ 0.00 1.034+0.00 —0.14 £0.01 131.36 4+ 50.25
MOONS GLANCE 3.00 £ 0.00 1.00 % 0.00 0.84 £0.14 0.53 £0.03  —0.02 £ 0.02 91.44 + 6.34
TCREX 6.00 £ 0.00 1.00 3 0.00 0.83+£0.15 0.10 £ 0.05 0.00 £ 0.01 0.00 + 0.00
OURgroup 10.80 4 0.98 1.00 + 0.00 1.00 =+ 0.00 0.46 £ 0.04 0.02 + 0.00 42.47 4 25.88
EA 1.00 4 0.00 1.00 + 0.00 1.00 =+ 0.00 1.394+0.26  —0.03 4 0.03 16.66 £ 0.50
WINE GLANCE 2.00 £ 0.00 1.00 3 0.00 0.84 £0.10 0.70 £ 0.09 0.05 £ 0.01 7.2 +3.48
TCREX 15.40 + 11.28 | 1.00 +0.00 1.00+0.00 0.09 £+ 0.15 0.05 £ 0.01 0.00 £ 0.00
OURgroup 1.00 & 0.00 1.00 + 0.00  1.00 =+ 0.00 0.81 £ 0.07 0.07 £+ 0.01 32.41 4 23.19

(Liu et al.,|2012) to evaluate whether the CFs are realistic with respect to the target class distribution.
The extended evaluation within more metrics is available in Appendix[J-4] For methods that produce
CFs via tree structures, we calculate these metrics by first applying each instance leaf-specific action
to generate its counterfactual, then evaluating the metrics individually before aggregating across the
dataset.

Baselines We benchmarked our method against various approaches across local, global, and
group-wise configurations to ensure a comprehensive comparison of effectiveness and applicability
at different levels of explanation. For the global configuration, we compared against GLOBE-CE
(Ley et al.,2023)) and GLANCE (Kavouras et al.,[2024) in its global option (with only one group), as
these represent state-of-the-art global CF methods, providing robust baselines for evaluating global
coherence and plausibility. For group-wise counterfactual explanations, we evaluated our method
against GLANCE, EA (Artelt & Gregoriades|, [2024), and T-CREx (Bewley et al.| [2024)), which are
designed to produce coherent and interpretable group-wise CFs. For the local configuration, we
compared against several methods: the foundational gradient-based CF method by [Wachter et al.
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Table 3: Comparative analysis: Local Methods.

DATASET \ METHOD \ COVERAGE?T VALID. T L2 ISOFORESTT TIME(S)]
DICE 1.00 + 0.00  1.00 =% 0.00 0.51 4 0.03 —0.1 4 0.00 8.15 £ 5.24
WACH 0.99 + 0.03 1.00 £ 0.00 0.23 £+ 0.01 —0.04 & 0.00 0.22 + 0.05
BLOBS CCHVAE 1.00 £ 0.00 1.00 % 0.00 0.37 £ 0.05 —0.06 + 0.01 2.15 4+ 0.62
PPCEF 1.00 + 0.00  1.00 =+ 0.00 0.47 £ 0.01 0.04 + 0.00 19.55 £ 0.30
OUR[ycal 1.00 + 0.00 1.00 =+ 0.00 0.39 £ 0.01 0.03 £ 0.00 6.20 £ 0.20
DICE 1.00 +0.00 1.00+0.00 23.77 £ 0.99 0.03 £ 0.01 162.88 £ 15.52
WACH 1.00 +0.00 1.00+0.00 2.10+ 0.44 0.09 £ 0.00 16.41 + 0.62
DIGITS CCHVAE 1.00 + 0.00 1.00 =+ 0.00 2.19 £+ 0.24 0.04 £+ 0.01 3.38 £ 0.52
PPCEF 1.00 + 0.00  1.00 £ 0.00 11.42 4+ 0.05 0.10 £ 0.01 25.09 + 0.40
OUR[pcal 1.00 + 0.00 1.00 =+ 0.00 11.41 4+ 0.51 0.11 + 0.00 18.58 4 0.68
DICE 1.00 + 0.00 1.00 =+ 0.00 1.00 £ 0.06  —0.01+0.00  230.85 % 26.00
WACH 1.00 +0.00 1.00+0.00 0.16 £ 0.02 0.06 + 0.00 33.88 + 4.98
HELOC CCHVAE 1.00 & 0.00 1.00 &+ 0.00 0.59 + 0.02 0.11 £ 0.00 14.60 £ 3.83
PPCEF 1.00 £ 0.00 0.98 + 0.02 0.42 + 0.02 0.07 £ 0.00 24.31 + 4.52
OUR{pcal 1.00 + 0.00  1.00 £ 0.00 0.47 £+ 0.01 0.08 + 0.00 20.21 £ 2.02
DICE 1.00 + 0.00  1.00 % 0.00 0.52 + 0.01 —0.05 + 0.00 43.82 4+ 9.62
WACH 0.97 £0.05 1.00+0.01 0.16 + 0.01 0.05 + 0.00 21.66 + 3.91
LAW CCHVAE 1.00 + 0.00 1.00 £ 0.00 0.31 + 0.01 0.09 £ 0.01 0.28 + 0.17
PPCEF 1.00 £ 0.00 0.95 + 0.01 0.32 £ 0.02 0.06 + 0.00 20.63 £ 1.08
OUR{pcal 1.00 + 0.00  1.00 £ 0.00 0.32 £ 0.00 0.05 £ 0.00 7.80 4 0.29
DICE 1.00 + 0.00  1.00 =4 0.00 0.55 + 0.01 —0.04 + 0.01 17.85 + 6.64
WACH 0.97 £0.06 1.00+0.00 0.16 + 0.01 —0.00 4 0.00 0.23 £+ 0.05
MOONS CCHVAE 1.00 + 0.00 1.00 £ 0.00 0.28 £+ 0.01 0.02 £+ 0.01 0.10 £ 0.04
PPCEF 1.00 £ 0.00 0.98 £ 0.01 0.34 £ 0.04 0.03 £+ 0.01 20.44 £ 1.75
OUR{pcal 1.00 + 0.00 1.00 £ 0.00 0.30 £ 0.01 0.03 + 0.00 7.32 4+ 0.22
DICE 1.00 + 0.00 1.00 £ 0.00 0.72 £ 0.08 0.03 £+ 0.01 0.70 £+ 0.05
WACH 1.00 £ 0.00 1.00+0.00 0.43 + 0.08 0.03 £ 0.02 0.10 £ 0.02
WINE CCHVAE 1.00 & 0.00 1.00 £ 0.00 0.79 + 0.05 0.09 £ 0.00 0.02 £ 0.00
PPCEF 1.00 + 0.00 1.00 &£ 0.00 0.66 £ 0.05 0.07 £ 0.01 12.41 £ 0.52
OUR{pcal 1.00 + 0.00  1.00 &£ 0.00 0.69 + 0.07 0.05 £ 0.01 5.49 £+ 0.32

(2017) (Wach), which serves as a widely recognized baseline; PPCEF (Wielopolski et al., [2024)),
which employs a similar approach using normalizing flow models for plausibility and is particularly
relevant as as our local configuration mathematically reduces to PPCEF’s formulation when setting
specific parameters (K = N, S = K =1, \; = A\ = A\g = 0), as detailed in Appendix [[.3} CCH-
VAE (Pawelczyk et al.,[2020), which also focuses on plausibility through generative modeling; and
DiCE (Mothilal et al.,[2020), which is used by both GLANCE and EA for prior clustering, making
it a relevant comparison for local CFs.

Experiment Results The results are reported in Tables and[3] presenting comparative perfor-
mance across six datasets with mean values and standard deviations over multiple runs. To validate
the robustness of observed differences, we conducted Friedman tests across all configurations, which
revealed statistically significant differences among methods for all evaluated metrics (p < 0.05);
detailed statistical analysis is provided in Appendix [l.5] Our proposed method consistently outper-
formed baseline approaches across all granularity levels: global, group-wise, and local.

In the global configuration (Table [I), our framework achieved perfect or near-perfect validity
across all datasets except Moons, substantially outperforming GLOBE-CE, which achieved 0.00 va-
lidity on Digits. GLANCE showed lower validity on multiple datasets. For plausibility, OURg;0pa1
consistently achieved the highest scores, demonstrating superior data manifold alignment compared
to baselines, which often produced negative scores. Post-hoc pairwise comparisons confirmed these
improvements are statistically significant (OUR vs. GLANCE: p < 0.001 for both validity and
plausibility). Regarding proximity, our method achieved the best performance on Heloc and com-
petitive results elsewhere, balancing minimal feature changes with plausibility. Notably, OUR g4,
was significantly faster than GLANCE while maintaining superior quality metrics.

For group-wise counterfactuals (Table [2), our approach identified compact, interpretable group
structures while maintaining high validity and plausibility. On all datasets, OUR .o, achieved per-
fect validity scores (1.00), matching or exceeding all baselines. For plausibility, OUR ;.. consis-
tently achieved positive IsoForest scores, statistically significantly outperforming EA and GLANCE
(p < 0.001), while matching the performance of TCREX, yet identifying substantially fewer groups.
For instance, on Digits, OUR 4., identified 2.80£1.83 groups versus TCREx’s 91.004:50.76. The
proximity scores demonstrate that our counterfactuals required reasonable feature changes while en-
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suring realistic outcomes. An ablation study on the number of groups (see Appendix [G) confirms
that while increasing groups improves plausibility, the benefits plateau, validating our regularization
approach.

At the local level (Table [3), all methods achieved perfect or near-perfect coverage and validity,
making plausibility the key differentiator. OUR;,.,; significantly surpassed DiCE and Wach in
plausibility across all datasets (p < 0.001). When compared to PPCEF and CCHVAE, our approach
achieved statistically comparable performance (no significant differences, p > 0.05), demonstrat-
ing that our unified framework matches specialized plausibility-focused methods. While CCHVAE
demonstrated strong plausibility and often the fastest execution time, and PPCEF showed compa-
rable plausibility on several datasets, OUR;,.,; maintained consistently high plausibility across all
datasets with reasonable computational efficiency. Our method generates CFs balancing validity,
proximity, and plausibility. Proximity alone is insufficient as CFs must also be realistic (plausible).
Methods achieving the lowest proximity often generate unrealistic examples that cross the decision
boundary minimally but lie in low-density regions.

Overall, the evaluation demonstrates that our method excels in validity and plausibility across all
granularities, with statistically significant improvements confirmed through rigorous testing. It
maintains competitive proximity scores, effectively balancing plausibility and actionability. Further-
more, our group-wise approach, integrating probabilistic plausibility criteria, enhances performance
by consistently achieving plausible results while maintaining reasonable proximity. This highlights
an effective trade-off between plausibility and distance, showcasing the practical utility and effec-
tiveness of our unified framework.

5.2 CASE STUDY 1: CREDIT SCORING WITH HELOC DATASET

The dataset comprises HELOC credit line applications aimed at predicting whether applicants will
repay their credit lines within two years. We selected five financial indicators (Number of Satis-
factory Trades, Net Fraction of Revolving Burden, Net Fraction of Installment Burden, Number of
Revolving Trades with Balance, Number of Installment Trades with Balance) for their potential to
enable rapid behavioral adjustments. By allowing the selection of only a subset of variables, enforc-
ing monotonicity constraints where features can change in only one direction, and specifying feature
ranges, our method ensures actionability by focusing on financially adjustable features within realis-
tic limits. Implementation details are provided in Appendix[C] Specifically, we applied the following
constraints: Number of Satisfactory Trades can only increase (reflecting improved credit standing),
Net Fraction of Revolving Burden and Net Fraction of Installment Burden can only decrease (in-
dicating reduced debt utilization), Number of Revolving Trades with Balance can only decrease
(showing debt consolidation), while Number of Installment Trades with Balance can both increase
or decrease (allowing flexibility in loan management strategies). These indicators facilitate imme-
diate changes, such as simulating the effects of a rejected credit scenario. Our method generated
CFs, optimizing them into six groups. The proposed actions are illustrated in Figure @ The results
reveal diverse group-specific recommendations. Although some groups prioritize increasing satis-
factory trades, others focus on reducing revolving burdens or trades. In addition, the groups differ
significantly in size, which highlights potential for subgroup analysis. A detailed interpretation is
provided in Appendix [I.2]

5.3 CASE STUDY 2: HANDWRITTEN DIGIT TRANSFORMATIONS WITH DIGITS DATASET

Figure [2| demonstrates our method’s application to the Digits dataset, presenting group-wise coun-
terfactual explanations for two cases. In Figure [2a] the origin class is 9, transitioning to the desired
class 0. In Figure [2b] the origin class is 6, transitioning to the desired class 3. Our method clusters
instances into three groups, ensuring that instances within the same group require similar modifica-
tions to achieve their counterfactuals.

In Figure [2a] the first group demands substantial changes, as shown by prominent shifts in the
change vector, while the third group requires fewer adjustments, indicating an easier path to the
desired class. This variation underscores our method’s ability to differentiate the effort required
for different groups to reach the target class. Figure [2b] highlights that the third group uniquely
requires a subtraction in the lower-right corner, while the first and second groups do not exhibit
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Figure 2: CFs for different digit pairs, showing the transformation process between different digit
classes. Each row represents a distinct group. Original images are on the left, shifting vectors are
in the middle column, and CFs are on the right. Red pixels in the shifting vector indicate subtracted
values, while blue pixels indicate added values.

significant changes in this region. This distinction demonstrates how our method tailors group-
specific counterfactuals based on structural and feature differences.

These findings confirm our method’s capability to produce interpretable and group-specific coun-
terfactual explanations for image data, offering insights into the transformations needed to achieve
GWCFs for diverse instance groups.

6 CONCLUSIONS

In this work, we introduced a unified method for generating counterfactual explanations at the local,
group-wise, and global levels. Our approach dynamically adapts to different levels of granularity,
eliminating the need for separate clustering and counterfactual generation steps. By formulating a
counterfactual search as a single optimization task, we efficiently generate explanations that balance
validity, proximity, and plausibility while optimizing group granularity. Additionally, we integrate
probabilistic plausibility constraints within global and group-wise counterfactual explanations, en-
suring that generated recourse suggestions remain realistic and actionable. The experimental results
demonstrate the effectiveness of our approach across multiple datasets and classification models. In
particular, we showed that our group-wise method produces a relatively small number of meaning-
ful and interpretable groups, capturing distinct patterns within the data. Compared to state-of-the-art
methods, our framework achieves superior validity while maintaining competitive plausibility and
proximity. This method provides a valuable tool for enhancing transparency, accountability, and
trust in machine learning by offering a comprehensive understanding of model behavior. It supports
informed decision-making and advances research in model debugging and decision support systems.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and ex-
perimental configurations throughout this work. The complete source code for our unified counter-
factual explanation framework will be made publicly available on GitHub upon acceptance. Our
mathematical formulation is fully specified in Section including all loss components, regular-
ization terms, and optimization objectives. Detailed experimental protocols are described in Sec-
tion[5] with comprehensive hyperparameter settings, baseline comparisons, and evaluation metrics.
Complete dataset descriptions, model architectures, and training procedures are provided in Ap-
pendix [E.T|and [E.2] The computational environment and resource requirements are documented in
Appendix |[E.3] All experimental results include mean values and standard deviations across five-fold
cross-validation, with detailed numerical results presented in Appendix|J| Our ablation studies (Ap-
pendix [[) provide thorough analysis of individual components, enabling researchers to understand
the contribution of each element. The normalizing flow implementation for plausibility estimation
is detailed in Appendix |B} and actionability constraints are fully specified in Appendix

10
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ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics in all aspects of this research, which aims
to contribute positively to society by advancing Al transparency and interpretability through im-
proved counterfactual explanations. Our method is designed to make Al systems more accountable
and trustworthy, supporting fairer decision-making across local, group-wise, and global explanation
levels. We use only publicly available datasets following established privacy-preserving practices,
with no collection of new personal data or re-identification attempts. We acknowledge potential
dual-use concerns where explanation techniques could be misused to game Al systems, emphasiz-
ing the need for responsible deployment with appropriate governance frameworks, particularly in
high-stakes domains. We provide comprehensive disclosure of our method capabilities and limita-
tions and we remain committed to the responsible development of explainable Al techniques.
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A COMPARISON OF COUNTERFACTUAL EXPLANATION TYPES

Aspect | Local Global Group-Wise
Specificity High Low Moderate
Scalability | Low (instance-specific) High Moderate-high

Fairness Analysis Limited Weak Strong
Actionability High (per instance) Low High (per group)
Interpretability | Complex for stakeholders  Abstract Balanced
Privacy Concerns | Higher risk (individuals)  Minimal Minimal

Table 4: Comparison of Local, Global, and Group-Wise Counterfactual Explanations

Table 4| provides a detailed comparison of the three primary types of counterfactual explanations:
Local, Global, and Group-Wise. It highlights their respective strengths, limitations, and potential use
cases. This comparison builds on the frameworks and analyses presented in related works (Wachter
et al.} 2017;|Artelt & Hammer, |2020; Karimi et al.| [2022} |Guidottil [2022; [Ley et al., [2022}; |Kavouras
et al.| 2024} |Artelt & Gregoriades, [2024)

B DENSITY ESTIMATIONS USING NORMALIZING FLOWS

Normalizing Flows have gained significant traction in generative modeling due to their flexibility
and the straightforward training process through direct negative log-likelihood (NLL) optimization.
This flexibility is rooted in the change-of-variable technique, which maps a latent variable z with a
known prior distribution p(z) to an observed variable x with an unknown distribution. This mapping
is achieved through a series of invertible (parametric) functions: x = fx o --- o fi(z,y). Given a
known prior p(z) for z, the conditional log-likelihood for x is formulated as:

det , a7

X Of
log p =1 -1 u
og pr(xly) = log p(z) I; og |det 7
where z = f|° lo...of 1;1 (x,y) is a result of the invertible mapping. A key challenge in normalizing
flows is the choice of the invertible functions fx, ..., f;. Several solutions have been proposed in

the literature to address this issue with notable approaches, including NICE (Dinh et al., |2015)),
RealNVP (Dinh et al.l 2017)), and MAF (Papamakarios et al.,[2017).

For a given training set D = {(x,,, h(x,))}2_; we simply train the conditional normalizing flow
by minimizing negative log-likelihood:

N
Q=— logpr(Xnlyn), (18)

n=1

where log pr (X, |yn) is defined by eq. equation The model is trained using a gradient-based
approach applied to the flow parameters stored in f; functions.

C SATISFYING ACTIONABILITY CONTRAINT

In our work we enforce actionability constraint by controlling the direction of the gradient. Specif-
ically, before applying each gradient step, the sign of the gradient is checked to determine whether
it is positive or negative. For features such as age, where changes are only allowed in one direction
(e.g., increasing but not decreasing), the gradient is modified accordingly. Additionally, certain fea-
tures may be completely non-actionable, such as demographic characteristics (e.g., race, gender) or
historical records, which cannot be modified under any circumstances and must remain fixed during
counterfactual generation. The new gradient value is computed as:
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where ngl represents the gradient value with respect to the -th variable, Fion decrease denotes the

set of features subject to non-decreasing monotonicity constraints, indicating that these variables
can only exhibit increases (e.g., age). Fron-increase 18 the set of features governed by non-increasing
monotonicity constraints, signifying that these variables may only be decreased. Fimmutable 1S the set
of features that must remain invariant.

D LIMITATIONS

An inherent limitation in our methodology arises from the reliance on gradient-based optimization
techniques within the data space. This approach requires the use of differentiable discriminative
models and, consequently, does not support categorical variables. Nonetheless, the landscape of
contemporary modeling techniques largely mitigates this constraint, as many modern models are
differentiable or can be adapted to include differentiable components. This integration capacity
ensures that our method remains applicable across various settings. While our method generates
plausible counterfactuals that lie in dense regions of the data manifold, which may naturally exhibit
greater stability under perturbations, we do not provide formal robustness guarantees.

E EXPERIMENT DETAILS
E.1 DATASETS

Table 5: Dataset Characteristics and Model Performances. This table provides an overview of the
datasets used in our experiments, including the number of samples (/N), number of features (D),
number of classes (C), accuracy of Logistic Regression (LR Acc.), Multi-Layer Perceptron (MLP
Acc.), and the log density of the Masked Autoregressive Flow (MAF Log Dens.).

DATASET \ N D C LRAcc. MLPAcc. MAF LoG DENS.
MOONS 1,024 2 2 0.90 0.99 1.44
Law 2,220 3 2 0.75 0.79 1.54
HELOC 10,459 23 2 0.74 0.75 32.72
WINE 178 13 3 0.97 0.98 9.25
BLOBS 1,500 2 3 1.00 1.00 2.59
DIGITS 5,620 64 10 0.96 0.98 -93.32

In Table |5| we provide detailed descriptions of the datasets utilized in our study: Moonﬂ Lawﬂ
Helocﬂ WineE], Blobﬂ and Digit The Moons dataset is an artificially generated set comprising
two interleaving half-circles. It includes a standard deviation of Gaussian noise set at 0.01. The
Law dataset (Wightman, |1998)) originates from the Law School Admissions Council (LSAC) and is

2https://scikit—learn.org/l.6/modules/generated/sklearn.datasets.make_
moons.html

’https://www.kaggle.com/datasets/danofer/law-school-admissions—-bar-passage

‘nttps://community.fico.com/s/explainable-machine-learning-challenge

Shttps://archive.ics.uci.edu/dataset/109/wine

®https://scikit-learn.org/l.6/modules/generated/sklearn.datasets.make_
blobs.html

7https://archive.ics.uci.edu/dataset/SO/optical+recognition+of+
handwritten+digits
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referred to in the literature as the Law School Admissions dataset. For our analysis, we selected the
three features most correlated with the target variable: entrance exam scores (LSAT), grade-point av-
erage (GPA), and first-year average grade (FYA). The Heloc dataset (FICO, 2018), initially utilized
in the "FICO xML Challenge’, consists of Home Equity Line of Credit (HELOC) applications sub-
mitted by real homeowners. This dataset contains numeric features summarizing information from
applicants’ credit reports. The primary objective is to predict whether the applicant will repay their
HELOC account within a two-year period. This prediction is instrumental in determining the ap-
plicant’s qualification for a line of credit. The Wine dataset (Aeberhard & Forina, |1992) comprises
chemical analysis results for wines originating from the same region in Italy, produced from three
distinct cultivars. This analysis quantified 13 different constituents present in each of the three wine
varieties. The Blobs dataset is an artificially generated isotropic Gaussian blobs, characterized by
equal variance. The Digits dataset (Alpaydin & Kaynak,[1998)) is utilized for the optical recognition
of handwritten digits. It consists of 32x32 bitmap images that are segmented into non-overlapping
4x4 blocks. Within each block, the count of "on’ pixels is recorded, resulting in an 8x8 input matrix.
Each element of this matrix is an integer between 0 and 16.

E.2 CLASSIFICATION MODELS

We used Logistic Regression (LR) and a Multilayer Perceptron (MLP) with two dense layers of 256
neurons each and ReL.U activation. Both models utilized a softmax activation function in the output
layer and were trained to minimize the cross-entropy loss function for up to 1000 epochs with an
early stopping. These configurations ensured efficient training and robust evaluation across linear
and non-linear settings.

E.3 COMPUTATIONAL RESOURCES

In experiments, we used Python as the main programming language (Van Rossum & Drake Jr,[1995).
Python with an open-source machine learning library PyTorch (Paszke et al.,|2019) forms the back-
bone of our computational environment. We employed a batch-based gradient optimization method,
which proved highly efficient by enabling the processing of complete test sets in a single batch. The
experiments were executed on an M1 Apple Silicon CPU with 16GB of RAM, a configuration that
provided enough computational power and speed to meet the demands of our algorithm.

F GROUP DIVERSITY REGULARIZATION ABLATION STUDY

We conducted an ablation study to evaluate the effect of the group diversity regularization term by
varying the weight parameter A\;. All other parameters were fixed according to our base settings:
A = 10% A, = 10%, Ay = 10%, and Ay = 103. The evaluation was based on four key metrics.
Validity was assessed by measuring the success rate of generating CFs that led to the desired class.
Proximity was quantified using the L, distance between the original instances and their CFs. Plau-
sibility was determined through the log density of the normalizing flow model, which evaluates the
alignment of CFs with the data distribution. Diversity was analyzed using two metrics: the minimum
pairwise cosine similarity among group shifting vectors and the mean distance of these vectors to
their centroid.

The results presented in Table [6] demonstrated that setting g to lower or zero values led to highly
similar group shifting vectors, as indicated by near-zero cosine similarity and smaller centroid dis-
tances. Increasing A4 enhanced diversity by producing less similar and more dispersed group shift-
ing vectors, while maintaining plausibility and proximity.

Table 6: Impact of Group Diversity Regularization (A;) on our method performance.

Ad \ VALIDITY PROXIMITY PLAUSIBILITY MIN PAIRWISE COSINE SIM. MEAN CENTROID DISTANCE
0.00 1.00 +0.00 0.49 +0.04 1.71 4+ 0.06 0.00 £ 0.00 0.38 £0.23
1071t 1.00 £0.00 0.49 £ 0.04 1.70 4+ 0.06 0.00 £ 0.00 0.36 £ 0.23
102 1.00 = 0.00 0.50 4+ 0.04 1.72 4+ 0.06 0.28 £0.18 4.31 £0.35
102 1.00 +0.00 0.50 +0.03 1.70 4+ 0.04 0.55 £ 0.22 4.73 £0.56
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G NUMBER OF GROUPS ABLATION STUDY

We conducted an ablation study to investigate the impact of the number of groups on our method’s
performance across various metrics. The ablation study was performed using Logistic Regression
(LR) and the HELOC dataset. By varying the number of groups from 2 to 10 while keeping all other
hyperparameters fixed (using our base configuration: A = 105, A, = 10%, A\; = 10%, A, = 104,
A¢ = 101), we analyzed the trade-offs between model complexity and performance.

Table 7: Impact of the Number of Groups on Method Performance. The table shows how varying
the number of groups affects validity, proximity, plausibility metrics, and group diversity.

GROUPS | VALIDITY? L2  ISOFORESTT  LOG DENSITYT  PROB. PLAUSIBILITYT  MIN PAIRWISE COSINE SIM.

2 0.98  0.37 0.06 30.15 0.51 7.72
3 0.99  0.39 0.06 30.41 0.54 2.04
4 0.98  0.38 0.07 31.06 0.58 0.54
5 0.99 0.38 0.07 31.27 0.59 0.26
6 0.99  0.39 0.07 31.08 0.60 0.20
7 0.99 0.39 0.07 31.80 0.62 0.17
8 0.99  0.40 0.07 31.47 0.63 0.14
9 0.99 0.38 0.07 31.85 0.64 0.17
10 0.99 0.38 0.07 32.07 0.65 0.14

The results presented in Table[/|demonstrate several key insights about the relationship between the
number of groups and performance metrics:

Validity remains consistently high regardless of the number of groups, indicating that our method
reliably generates valid counterfactuals across different group configurations.

Probabilistic Plausibility shows a clear positive correlation with the number of groups, increasing
monotonically from 0.51 with 2 groups to 0.65 with 10 groups. This improvement suggests that
more groups allow for better local approximations of the target distribution, enabling the generation
of more plausible counterfactual explanations that better align with the data distribution.

Group Diversity, measured by the minimum pairwise cosine similarity, exhibits the biggest change.
The similarity drops sharply from 7.72 (2 groups) to 2.04 (3 groups), then continues decreasing to
stabilize around 0.14-0.17 for 7-10 groups. This pattern indicates that the largest gains in group
diversity occur when moving from 2 to 7 groups, with minimal improvements beyond that point.

Proximity remains relatively stable across all configurations, suggesting that the number of groups
does not significantly impact the distance between original instances and their counterfactuals.

These findings confirm that, while more groups can improve certain metrics, particularly probabilis-
tic plausibility and group diversity, the benefits plateau after approximately 7 groups. This insight
supports our adaptive approach that automatically determines the appropriate number of groups
based on the specific dataset characteristics, balancing group diversity with performance.

H GPU ACCELERATION ABLATION STUDY

We conducted an ablation study comparing execution times between CPU and GPU implementa-
tions for our gradient-based optimization framework. While our main experiments used CPU for
consistency with baselines, our approach is naturally compatible with GPU acceleration due to its
gradient-based nature. All experiments were performed using 5-fold cross-validation to ensure ro-
bustness of timing measurements.

Tables E] and E] present execution times (in seconds) for our method on the HELOC dataset under
global and group-wise configurations.

The results demonstrate that GPU acceleration provides significant performance improvements, par-
ticularly for group-wise configurations. While global settings (Table[§]) show modest speedups (ap-
proximately 1.5x for LR), group-wise settings (Table[J) achieved dramatic improvements with 12.4x
speedup for LR (from 230.07s to 18.48s) and 7.6x for MLP (from 237.69s to 31.43s). The standard
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Table 8: Comparison of CPU vs. GPU Execution Times (seconds) for Global Settings on HELOC
Dataset

Model CPU GPU

LR 2745 £3.58 18.60 £ 1.25
MLP 3247 +401 31.69+2.74

Table 9: Comparison of CPU vs. GPU Execution Times (seconds) for Group-wise Settings on
HELOC Dataset

Model CPU GPU

LR 230.07 £21.10 18.48 £ 1.53
MLP  237.69 +£30.88 31.43+£3.27

deviations across the 5-fold cross-validation indicate that these performance improvements are con-
sistent and reliable.

This ablation study further validates our choice of a gradient-based optimization framework, as it
not only provides effective solutions for generating valid, plausible, and proximate counterfactual
explanations but also leverages modern computational architectures to deliver substantial efficiency
gains.

I HYPERPAPARAMETER VALUES ABLATION STUDY

To systematically evaluate the role of each loss term, we designed a series of experiments sum-
marized in Table The table combines three categories of settings: (i) Individual Component
Analysis (E1-E5), where each term is activated independently to isolate its contribution, (ii) In-
cremental Component Addition (E6-E9), where loss terms are introduced step by step to observe
cumulative effects, and (iii) Alternative Configurations (E10-E14), which test different weighting
strategies. The corresponding quantitative results are presented separately in Table

1.1 KEY FINDINGS

Individual Components (E1-ES). Validity-only (E1) reaches full validity but produces dis-
tant, implausible counterfactuals. Plausibility-only (E2) pulls counterfactuals closest to the source
(L2~0.18) with much higher plausibility, but validity collapses. Regularizers applied in isolation
(E3-E5) fail to produce meaningful counterfactuals without the validity term, confirming their aux-
iliary nature.

Incremental Additions (E6-E9). Starting from validity+plausibility (E6) sharply improves plausi-
bility and proximity over E1 while keeping validity at 1.00. Turning on the group-count regularizer
(E7) and then adding sparsity (E8—E9) keeps validity high and nudges proximity slightly down (to
~0.47-0.48) at the expense of a modest plausibility drop.

Alternative Configurations (E10-E14). All-nonzero weights with large magnitudes (E10) stay in
the same proximity band as ES§-E9 (~0.47-0.48) with plausibility around 0.07. Mid-scale weights
(E11-E13) show a gradual proximity/plausibility trade-off: as sparsity increases from E11 to E13,
proximity slightly worsens (L2 rising from 0.49 to 0.50) while plausibility decreases modestly (from
0.07 to 0.06), with validity remaining perfect across all configurations. The lowest all-nonzero
setting (E14) remains valid but is farthest from the source points and least plausible among the
non-degenerate settings.

1.2 CRITICAL TRADE-OFFS

Two central trade-offs emerge. First, proximity vs. plausibility: optimizing purely for plausibil-
ity (E2) yields the closest counterfactuals but breaks validity, while balancing both terms (E6, E9)
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achieves practical usability. Second, group constraints vs. proximity: introducing group-based
regularization (E7-E8) systematically increases the L2 distance, as counterfactuals must satisfy ad-
ditional structural requirements.

Table 10: Experimental design for the ablation study. The table summarizes all configurations E1—
E14, grouped into three categories: Individual Component Analysis (E1-ES5), Incremental Compo-
nent Addition (E6-E9), and Alternative Configurations (E10-E14). Each row specifies the weight-
ing of the loss components: validity (\), plausibility (\,), group sparsity (), number-of-groups
regularization (\g), and diversity (Ag). The rationale column provides the motivation for each setup.

Exp.ID | A Ap As Ak Aa) RATIONALE
El 10° 0 0 0 0 VALIDITY IMPACT ALONE
E2 0 10° 0 0 0 PLAUSIBILITY IMPACT ALONE
E3 0 0 10° 0 0 GROUP SPARSITY IMPACT ALONE
E4 0 0 0 10° 0 NUMBER-OF-GROUPS REGULARIZATION ALONE
E5 0 0 0 0 10°  DIVERSITY REGULARIZATION ALONE
E6 10° 10 0 0 0 VALIDITY + PLAUSIBILITY
E7 10> 10* 0 10* 0 ADD GROUP-COUNT REGULARIZATION TO E6
E8 10> 10* 102 10* 10  TURN ON SPARSITY WITH SMALL WEIGHT
E9 10> 10* 102 10*  10'  INCREASE SPARSITY WHILE KEEPING VALIDITY/PLAUSIBILITY HIGH
E10 105 10* 10* 10* 10!  ALL ACTIVE WITH LARGEST SHARED WEIGHTS
Ell 10°  10® 10?2 10° 10t MID-SCALE WEIGHTS, LOWER SPARSITY
El12 10° 10® 10®° 10° 10'  MID-SCALE BALANCED WEIGHTS
El13 10° 102 10* 10® 10t MID-SCALE PLAUSIBILITY/GROUP, STRONGER SPARSITY
El4 10° 102 102 102 10"  LOWEST ALL-ON CONFIGURATION (CLOSEST TO “LIGHT” REGULARIZATION)

Table 11: Complete Ablation Study Results across configurations E1-E14.

ExP. ID | VALIDITYT  PROXIMITY (L2))  ISOFORESTT LOG DENSITYT  PROB. PLAUSIBILITYT GROUP NUM. |
El 1.00£0.00 1.01£0.07 —0.04£0.00 —76.44+21.71 0.01+0.01 510.20+48.30
E2 0.05+0.00 0.18+0.02 0.07+0.00 32.104+0.59 0.294+0.07 1022.00+35.38
E3 - - - - - -

E4 — — — — — _

E5 — — — — — —

E6 1.00£0.00 0.50+0.06 0.02+0.01 14.60+2.24 0.09+0.01 327.404+47.62
E7 1.0040.00 0.47+0.06 0.02+0.01 11.18+2.73 0.07+0.01 16.80+£2.79
E8 1.00£0.00 0.48+0.06 0.02+0.01 11.12+2.75 0.07+0.01 16.60+2.87
E9 1.00£0.00 0.48+0.06 0.02+0.01 11.67£2.75 0.07+£0.01 16.80+£2.71
E10 1.00£0.00 0.48+0.06 0.02+0.01 11.69+£3.01 0.07+0.01 16.80+2.56
Ell 1.00£0.00 0.49+0.06 0.02+0.01 10.62+2.88 0.07+0.01 87.40+6.65
El12 1.0040.00 0.50+0.06 0.02+0.01 10.03+3.09 0.06+0.01 37.80+6.01
E13 1.00£0.00 0.50+0.06 0.02+0.01 9.96+3.28 0.06+0.01 41.80+4.62
El4 1.0040.00 0.54+0.05 0.01+£0.01 5.99+2.40 0.04+£0.01 52.00+5.90

1.3 LocAL CONFIGURATION SPECIAL CASE

We provide explicit clarification on how our framework relates to PPCEF in the local setting. With
specific parameter configuration (K = N, S = K =1, A, = Ay = Ay = 0), our unified framework
mathematically reduces to N independent PPCEF |Wielopolski et al.| (2024) optimizations:

» When K = N: each instance has its own dedicated shifting vector in Dy € RVXP

* When S = [y« n: each instance selects only its own corresponding vector (no grouping)

* When K = [y« n: all magnitude scalers equal 1 (no scaling)

Under these conditions, our general group-wise formulation (Eq. 7) simplifies to:
X/GW =Xg+1:-T-Dew = Xg+ Dew

For each instance n: x|, = x,, o + d,,, where d,, is the n-th row of Dgw (an independent, instance-
specific shift vector).
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The optimization objective decouples into N independent problems:

argmin - d(xp,0,x5) + A+ Lo (h(x7,) ) + Ap - o(X3597,)

This is precisely PPCEF’s formulation (Eq. 6 from |Wielopolski et al.| (2024))). Thus, our local
configuration essentially generalizes PPCEF approach within our broader unified architecture.

J ADDITIONAL RESULTS

J.1 METHODS VISUALIZATION

This section provides an in-depth analysis of the methods, focusing on two main aspects: the vari-
ation in resulting explanations across global, group-wise, and local contexts, and the visual assess-
ment of plausibility for our method compared to reference methods, as illustrated in Figure[3] Initial
observations (blue and red dots) and final counterfactual explanations (orange dots) transition across
the Multilayer Perceptron decision boundary (green line) into a probabilistically plausible region
(red area), where the density satisfies plausibility thresholds.

For the reference methods, all produce valid counterfactuals, but with varying degrees of plausibil-
ity. The GLOBE-CE method generates counterfactual explanations just over the decision boundary,
resulting in highly implausible outcomes. The GLANCE method achieves some plausible counter-
factuals but struggles to balance group granularity with plausibility effectively. The DiCE method
produces counterfactuals that are often significantly distant from the initial observations, reducing
their practical relevance.

Our method, when configured globally, also struggles to produce fully plausible results but tends to
prioritize a global shifting vector that maximizes plausibility for as many instances as possible. In the
group configuration, our method successfully clusters distant instances into the same group, gener-
ating valid and plausible counterfactuals. Both the group-wise and local configurations demonstrate
the ability to produce counterfactuals that are both valid and plausible, offering a balanced approach
to explanation generation.

(d) OURglobal (e) OURgToup (f) OURlocal

Figure 3: Visual comparison of the efficacy of various baseline counterfactual explanation methods
with our method in traversing the decision boundary of a MLP model.
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Figure 4: The figure illustrates group-wise counterfactual explanations generated using our method
on the HELOC dataset with an MLP model. Each subplot highlights group-specific recommenda-
tions for financial adjustments, showing the mean change for selected financial indicators normalized
over the average magnitude of changes. For each group, the number of instances is also provided.

J.2  CASE STUDY 1: CREDIT SCORING WITH HELOC DATASET

This subsection presents a detailed interpretation of the practical use case illustrated in Figure [4]
We carefully selected features based on their varying degrees of actionability and impact on credit
assessment, prioritizing those that individuals could realistically modify through specific financial
behaviors. The selected actionable features include:

* Number of Satisfactory Trades — Represents successfully completed credit engagements
with good standing. This feature can only increase through maintaining existing accounts
and establishing new ones over time.

* Net Fraction of Revolving Burden — The ratio of revolving credit utilized to the total
credit limit. This highly actionable feature can be changed quickly and should decrease to
improve outcomes, as lower utilization is generally preferred by lenders.

* Net Fraction of Installment Burden — The proportion of the installment debt relative to
the original loan amount. This feature requires additional payments to decrease the burden
through accelerated repayment.

* Number of Revolving Trades with Balance — Tracks ongoing revolving credit accounts
with outstanding balances. This highly actionable feature can be decreased by completely
paying off certain revolving accounts.

* Number of Installment Trades with Balance — Tracks ongoing installment credit ac-
counts with outstanding balances. This feature can either increase (by taking on new loans)
or decrease (by paying off existing loans).

This selection of features is particularly effective for counterfactual explanations because it provides
a balanced approach to credit improvement. It combines both adjusting revolving burden and credit-
building strategies (increasing satisfactory trades). Additionally, it addresses multiple dimensions
that influence credit decisions by incorporating credit history depth, utilization rates, and account
management practices across both revolving and installment credit types. For each group shown in
Figure[d] we propose interpretations from the perspective of a user applying our method.

Group 0 For individuals in this category, it is advisable to significantly decrease the Net Fraction
of Revolving Burden while moderately increasing the Number of Satisfactory Trades. Minor
adjustments include increasing the Number of Installment Trades with Balance and reducing
the Number of Revolving Trades with Balance. This group likely has established credit but is
overextended on revolving credit, necessitating debt reduction to enhance their creditworthiness.
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Group 1 For this group, the primary strategy involves substantially increasing the Number of
Satisfactory Trades while moderately reducing the Net Fraction of Revolving Burden. These in-
dividuals should make minor improvements by slightly decreasing the Net Fraction of Installment
Burden and the Number of Revolving Trades with Balance, with a small increase in the Number
of Installment Trades with Balance. This suggests consumers with thin credit profiles who need
both credit-building and utilization management.

Group 2 Members of this group should focus on decreasing both the Net Fraction of Revolving
Burden and the Net Fraction of Installment Burden substantially. They should moderately in-
crease the Number of Satisfactory Trades while slightly increasing the Number of Installment
Trades with Balance and reducing the Number of Revolving Trades with Balance. This indicates
consumers who are overextended across multiple credit products and need comprehensive debt re-
duction.

Group 3 Representing the smallest segment, these individuals require the most extensive changes:
significant decreases in both the Net Fraction of Revolving Burden and the Net Fraction of In-
stallment Burden, coupled with a substantial increase in the Number of Satisfactory Trades. Mi-
nor adjustments include slightly increasing the Number of Installment Trades with Balance and
reducing the Number of Revolving Trades with Balance. This suggests severely overleveraged
borrowers requiring comprehensive credit rehabilitation.

Group 4 As the largest group, explanations include moderately decreasing the Net Fraction of
Revolving Burden while making minor improvements to other factors: slight increases in both
the Number of Satisfactory Trades and the Number of Installment Trades with Balance, with
a small reduction in the Number of Revolving Trades with Balance. This represents “typical”
consumers who primarily need to address revolving debt utilization with minimal other adjustments.

Group 5 In this group, the explanation suggests substantial increases in the Number of Satisfac-
tory Trades and moderate increases in the Number of Installment Trades with Balance. Signif-
icant decreases are needed in both the Net Fraction of Revolving Burden and the Net Fraction
of Installment Burden, with minor reductions in the Number of Revolving Trades with Balance.
This approach requires comprehensive credit improvement across all dimensions.

Across nearly all groups, enhancing the Number of Satisfactory Trades emerges as a critical fac-
tor in credit approval decisions. Reducing the Net Fraction of Revolving Burden is consistently
beneficial across all groups, while the importance of managing the Net Fraction of Installment
Burden varies significantly between segments. Most groups benefit from minor adjustments to
account composition, with careful balance between revolving and installment credit products.

J.3 CASE STUDY 2: HANDWRITTEN DIGIT TRANSFORMATIONS WITH DIGITS DATASET

Figure [3]illustrates these findings in the context of digit transformations. The rows compare coun-
terfactual explanations with and without plausibility optimization for three digit instance pairs (9 to
0, 6 to 3, and 7 to 1). Without plausibility, our group-wise method partitions the data into two coarse
groups, while incorporating plausibility refines the explanations into three distinct and interpretable
clusters. This added granularity demonstrates the advantage of plausibility optimization in creating
realistic and practical CFs.

In summary, incorporating probabilistic plausibility criteria yields outcomes that are less prone to
outliers, potentially enhancing end-user usability. Moreover, within the framework of methods op-
timizing plausibility, we achieve results of comparable quality to the local counterfactual method,
albeit with fewer shifting vectors.

J.4 EXTENDED QUANTITATIVE EVALUATION
This section presents a comprehensive evaluation of our method compared to baseline counterfactual

explanation techniques. All results are averaged over five cross-validation folds, with mean values
and standard deviations reported in six detailed tables that fall into two categories:
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Figure 5: Comparison of group-wise counterfactual explanations with and without plausibility opti-
misation for different digit pairs. Each pair of columns represents counterfactual explanations for a
specific digit transformation (e.g., 9 to 0, 6 to 3, and 7 to 1). Without plausibility optimisation, the
method clusters the problem into two groups. With plausibility optimisation, the method refines the
counterfactuals into three distinct groups, ensuring more interpretable and realistic transformations.
Original images are on the left, shifting vectors are in the middle column, and counterfactuals are
on the right for each method. Red pixels in the shifting vector indicate subtracted values, while blue
pixels indicate added values.

Base Metrics Tables (Tables [12] [I4] and [I6) contain the primary metrics calculation reported in
Tables and [3] including execution times. Plausibility and Cost Metrics Tables (Tables
and[17) provide additional metrics for a more thorough assessment of counterfactual plausibility
and action cost. Following |Guidotti|(2022), we employ a comprehensive evaluation framework with
these metrics:

Base Metrics:

* Validity (Valid.): Success rate of counterfactuals in changing model predictions.
* Proximity (L2): L2 distance between original and counterfactual instances.

e Isolation Forest (IsoForest): Lower scores indicate more anomalous counterfactuals.
Additional Plausibility Metrics:

* Local Outlier Factor (LOF): Higher values indicate more anomalous counterfactuals.
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» Log Density (Log. Dens.): Higher values indicate stronger alignment between counterfac-
tuals and the target class distribution, as measured by a normalizing flow model.

* Probabilistic Plausibility (Prob. Plaus.): Higher values indicate more counterfactuals sat-
isfying Eq. equation [2b]

Additional Cost Metric:

* Cost: We adopt a cost metric proposed by |[Ley et al.| (2023). Features are divided into 10
equal-sized bins where changing a feature value incurs a cost equal to the number of bin
boundaries crossed.

For group-wise and global methods, we additionally report Coverage (percentage of instances with
valid counterfactuals), while for group-wise methods, we also include the final number of identified
groups (Groups).

We also conducted comparative analyses with additional baseline methods: AReS by Rawal &
Lakkaraju| (2020) and the method by |Artelt & Hammer| (2020) (Artelt). These methods were ex-
cluded from the main paper due to compatibility limitations: AReS does not support datasets with
fewer than 3 features, while Artelt’s method works exclusively with Logistic Regression models,
making it impossible to evaluate with Multilayer Perceptron classifiers.

Tables [12| and |13| compare global CF methods. Our method consistently achieves perfect validity
across nearly all datasets, whereas GLOBE-CE and GLANCE struggle particularly with the Digits
dataset. Additionally, our method demonstrates superior probabilistic plausibility and notably higher
Log Density scores, indicating better alignment with the target class distribution. While GLANCE
often requires significantly longer execution times, our method maintains efficiency without com-
promising performance.

Tables[T4] and [T5] evaluate group-wise CF methods. Our approach shows strong adaptability across
datasets, achieving perfect coverage and validity on all datasets. In contrast, EA completely fails
with the Digits dataset, and both EA and GLANCE generally produce counterfactuals with substan-
tially lower plausibility. Our method intelligently identifies an appropriate number of groups based
on dataset characteristics, while maintaining consistently superior probabilistic plausibility scores
compared to baselines. T-CREX, while efficient in execution time, produces much larger numbers
of groups, which makes interpretation more difficult.

Tables @] and present results for local CF methods, comparing DiCE, Wachter (Wach), and
CCHVAE with our approach. While all methods achieve high validity, our method consistently
demonstrates perfect probabilistic plausibility while maintaining competitive L2 proximity. DiCE
typically produces the least plausible counterfactuals, particularly with complex datasets, as evi-
denced by substantially negative Log Density values. CCHVAE performs well on some metrics but
falls short on plausibility for datasets like Blobs and Moons. Our method balances execution time,
proximity, and plausibility more effectively than competing approaches across all tested datasets and
model types.

J.5 STATISTICAL SIGNIFICANCE ANALYSIS

To assess the statistical significance of performance differences across methods, we applied the
Friedman test, a non-parametric statistical test suitable for comparing multiple related samples. We
performed separate Friedman tests for each metric within each configuration (global, group-wise,
and local), with a significance level of @ = 0.05. For metrics where the Friedman test indicated
significant differences (p < 0.05), we conducted post-hoc pairwise comparisons using the Wilcoxon
signed-rank test with Bonferroni correction.

Table |18| presents the Friedman test results. All 14 metrics demonstrated statistically significant
differences, providing strong evidence that the choice of counterfactual generation method substan-
tially impacts performance.

Discussion of Statistical Results The Friedman test results provide compelling validation for our
experimental findings. In the global configuration, highly significant differences were observed
across all metrics, with particularly strong evidence for validity (p < 0.001) and plausibility
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Table 12: Comparative analysis of our method in global configuration with other CF methods
across various datasets and classification models. Values are averaged over five cross-validation
folds.

| METHOD | VALID.T L2] ISOFOREST?T TIME(S)|
MLP

GLOBE-CE 0.99 4+ 0.01 0.25 1+ 0.04 —0.06 +0.03 0.66 + 0.03

BLOBS GLOBALGLANCE 1.00 £ 0.00 0.42 +0.01 0.01 + 0.00 43.30 £9.72
OURyiobar 1.00 £+ 0.00 0.48 £ 0.01 0.03 4+ 0.00 7.89 4 0.86
GLOBE-CE 0.00 £ 0.00 - - 0.95 + 0.08

DIGITS GLOBALGLANCE 0.30 £ 0.07 11.24 4+ 0.70 0.09 £0.01  678.36 &+ 29.07
OURiobal 1.00 £0.00 17.08 +0.54 0.1 & 0.00 31.48 & 5.28

ARES 0.28 4+ 0.06 0.68 +0.16 0.02 4 0.02 13.25 & 1.79

HELOC GLOBE-CE 1.00 £+ 0.00 0.52 4 0.03 0.03 +0.01 2.02 +0.18
GLOBALGLANCE 0.97 +0.01 0.68 £ 0.07 —0.01 4 0.02 99.89 4 44.14
OURyobar 1.00 £ 0.00 0.36 + 0.02 0.06 & 0.00 32.47 £+ 10.01
GLOBE-CE 1.00 £ 0.00 0.22 + 0.02 0.01 £+ 0.01 0.81 + 0.02

Law GLOBALGLANCE 0.97 £ 0.00 0.45 £ 0.02 —0.04 +0.01 90.81 £ 9.03
OURgiobar 1.00 £ 0.00 0.38 +0.01 0.01 £ 0.00 13.44 £+ 3.11
GLOBE-CE 1.00 £+ 0.00 0.30 + 0.03 —0.06 +0.01 0.65 + 0.01

MOONS GLOBALGLANCE 0.68 £ 0.05 0.39 £+ 0.02 —0.02 £ 0.01 77.97 +£9.11
OURyobar 0.91 £0.12 0.45+0.04 —0.0140.01 9.55 £ 1.37
GLOBE-CE 1.00 £ 0.00 0.73 + 0.20 0.04 £ 0.02 0.39 £ 0.01

WINE GLOBALGLANCE 0.57 £0.17 0.46 £ 0.07 0.06 £ 0.01 5.82 1 3.10
OURgobal 1.00 £ 0.00 0.73 + 0.07 0.06 + 0.01 5.73 & 0.89

LR

GLOBE-CE 1.00 £ 0.00 0.29 £+ 0.02 —0.08 4+ 0.00 0.22 + 0.01

BLOBS GLOBALGLANCE 1.00 4 0.00 0.42 £+ 0.01 0.02 £ 0.00 38.36 + 10.34
OURyobar 1.00 £ 0.00 0.5 £0.02 0.02 & 0.00 7.93+£1.05
GLOBE-CE 0.00 £ 0.00 - - 0.16 + 0.01

DIGITS GLOBALGLANCE 0.50 +£0.11 10.94 +1.04 0.09 + 0.00 534.20 4 40.88
OURgiobal 1.00 £0.00 15.61 4 0.47 0.1 4+ 0.00 34.46 & 8.66

ARES 0.18 £ 0.13 0.50 4 0.23 0.03 4 0.02 14.53 4+ 1.62

HELOC GLOBE-CE 1.00 £+ 0.00 0.32 4+ 0.05 0.05 4+ 0.01 0.45 + 0.05
GLOBALGLANCE 0.97 £ 0.02 0.61 £ 0.06 —0.00 4 0.02 61.63 £ 11.58
OURyobal 1.00 £ 0.00 0.33 £0.03 0.06 & 0.00 27.45 £ 11.74
GLOBE-CE 1.00 £ 0.00 0.19 £+ 0.01 0.02 £ 0.00 0.24 £+ 0.01

LAw GLOBALGLANCE 0.98 +0.01 0.47 +0.04 —0.05 4 0.01 83.25 £ 19.79
OURobat 1.00 £ 0.00 0.39 4 0.02 0.01 4 0.00 12.71 £ 2.75
GLOBE-CE 1.00 £+ 0.00 0.28 + 0.01 —0.01 +0.01 0.22 + 0.01

MOONS | GLOBALGLANCE | 1.00 &4 0.01 0.53 £0.03 —0.04 +0.01 67.90 £ 11.41
OURyobar 1.00 £ 0.00 0.46 £ 0.06 0.00 + 0.01 11.95 +2.41
GLOBE-CE 1.00 £ 0.00 0.73 +0.17 0.03 £0.02 0.20 £ 0.00

WINE GLOBALGLANCE 0.60 £ 0.12 0.47 £0.05 0.06 £ 0.01 2.77 £ 1.14
OURobar 1.00 £ 0.00 0.76 £+ 0.05 0.06 £ 0.01 6.07 +0.27

(p < 0.001). Post-hoc pairwise comparisons revealed that our method significantly outperforms
GLANCE in validity (p < 0.001) and achieves superior plausibility compared to both GLOBE-CE
and GLANCE (both p < 0.001).

For the group-wise configuration, all five metrics demonstrated extremely strong significance
(p < 10~7), with L2 distance showing the strongest differentiation among methods (p < 1071%).
Post-hoc analysis confirmed that our method achieves significantly better plausibility than EA and
GLANCE while maintaining competitive validity.

In the local configuration, all metrics again showed highly significant differences (p < 10~%). No-
tably, our method demonstrated comparable plausibility to specialized plausibility-focused methods
(PPCEF and CCHVAE) with no significant differences observed (p = 0.064 and p = 0.984, re-
spectively), while significantly outperforming DiCE (p < 0.001). These results confirm that the
performance gains of our unified approach are statistically robust and not due to random variation.
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Table 13: Additional comparative plausibility and cost analysis of our method in global configura-
tion with other CF methods across various datasets and classification models. Values are averaged
over five cross-validation folds.

| METHOD | PrROB. PLAUS.T LOG DENSs.1 LOF| | CosTtl
MLP

GLOBE-CE 0.00 + 0.00 —4.57 + 1.67 2.04+0.18 1.97 +1.53

BLOBS | GLOBALGLANCE 0.00 + 0.00 —49.99 + 14.79 1.11 4 0.02 5.78 +0.26
OURyiobal 0.92 1+ 0.03 2.80+0.1 1.04+0.01 6.65 & 0.66
GLOBE-CE - - - -

DIGITS GLOBALGLANCE 0.00 £ 0.00 —285.44 £ 21.71 1.314+0.03 | 27.45 +1.99
OURgiobal 0.72 £ 0.09 —99.424+0.61 1.09 + 0.01 49.27 + 8.59

ARES 0.18 +0.14 19.60 £ 14.31 1.23 £ 0.09 13.42 £+ 3.24

HeLoc | GLOBE-CE 0.17 +0.02 —17.27 £47.94 1.47 4 0.09 4.03 +4.20
GLOBALGLANCE 0.00 + 0.00 —2.43 £9.38 1.67 £ 0.10 13.48 £1.94
OURgiobat 0.46 £ 0.01 29.25+ 0.4 1.15+0.01 10.75 + 4.96
GLOBE-CE 0.37 + 0.05 —14.5 +28.64 1.24 £ 0.09 2.22 + 1.79

Law GLOBALGLANCE 0.34 +0.10 —0.26 £ 0.61 1.22 £ 0.03 6.00 + 0.41
OURi0bat 0.79 4+ 0.02 1.5+ 0.05 1.09 +0.01 6.35 + 2.02
GLOBE-CE 0.00 + 0.00 —17.53 £10.28 2.36 + 0.08 3.07 + 1.84

MOONS | GLOBALGLANCE 0.30 + 0.07 —2.04 £ 0.64 1.63 £ 0.12 5.19 + 0.61
OURyiobal 0.63 +0.06 —0.334+0.9 1.4840.18 5.92 4 2.04
GLOBE-CE 0.00 + 0.00 —14.74 £ 16.35 1.86 £ 0.6 2.69 1 4.07

WINE GLOBALGLANCE 0.00 + 0.00 —64.51 + 60.94 1.20 £ 0.04 9.32+0.75
OURgiobal 0.95 +0.11 7.78 £0.18 1.09 + 0.03 21.40 £ 4.06

LR

GLOBE-CE 0.00 + 0.00 —6.03 £ 0.76 2.22+0.18 2.45 + 1.34

BLOBS | GLOBALGLANCE 0.00 + 0.00 —69.32 £ 21.46 1.11 £+ 0.01 6.07 £0.18
OURyiobal 0.92 1+ 0.03 2.834+0.12 1.04 + 0.02 6.83+0.79
GLOBE-CE - - - -

DIGITS | GLOBALGLANCE 0.00 + 0.00 —312.00 + 76.17 1.324+0.04 | 24.78 £ 2.82
OURgiobal 0.69 £ 0.04 —100.41+0.31 1.1+ 0.01 45.70 4+ 9.08

ARES 0.07+0.14 —49.16 + 97.83 1.67 & 0.52 10.12 £0.10

HeLoc | GLOBE-CE 0.13+0.04 —21.66 + 30.5 1.440.11 3.91 1+ 2.73
GLOBALGLANCE 0.00 + 0.00 —15.95 + 23.40 1.70 £ 0.14 10.30 £ 0.51
OURgi0bat 0.46 + 0.02 29.934+0.61 1.14 4+ 0.01 10.09 + 4.47
GLOBE-CE 0.4 £0.04 0.10 +0.17 1.14 +0.01 2.00 + 1.45

Law GLOBALGLANCE 0.25+0.13 —1.39 £1.37 1.32 +0.07 6.05 + 0.40
OURgi0bal 0.82 1+ 0.01 1.57+0.12 1.07 £ 0.01 6.70 + 2.07
GLOBE-CE 0.05+0.1 —0.67+0.34 1.32+0.03 2.84 + 1.54

MOONS | GLOBALGLANCE 0.25 +0.08 —17.44 £ 12.46 1.92 £ 0.08 6.53 +0.15
OURgiobat 0.59 +0.21 0.89 + 0.14 1.17 £ 0.03 6.93 +2.08
GLOBE-CE 0.06 + 0.05 —15.72 + 16.9 1.63+0.24 | 8.14 1+ 10.54

WINE GLOBALGLANCE 0.00 +0.00  —249.34 + 343.47 1.17 £ 0.05 9.53 + 0.65
OURi0bat 0.95 +0.11 7.75+0.68 1.1110.05 22.36 + 4.95
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Table 14: Comparative analysis of our method in group-wise configuration with other CF methods

across various datasets and classification models.

Values are averaged over five cross-validation

folds.
DATASET METHOD \ GROUPS COVERAGET VALID.T L2] ISOFORESTT TIME(S)]
MLP
BLOBS EA 3.60 + 1.67 1.00 +0.00 1.00 &+ 0.00 1.00 +£0.00  —0.16 4 0.00 95.38 + 40.81
GLANCE 2.00 £ 0.00 1.00 £ 0.00 0.96 £ 0.03 0.56 £ 0.02 —0.10 4+ 0.01 49.07 £ 3.9
TCREX 2.40 £ 0.55 1.00 & 0.00 1.00 £ 0.00 0.00 + 0.00 0.02 + 0.00 0.00 £ 0.00
OURgroup 1.60 £ 0.49 1.00 + 0.00 1.00 £ 0.00 0.46 + 0.01 0.03 + 0.00 14.55 + 2.51
DIGITS EA 4.00 £ 0.00 0.00 %+ 0.00 - - —  972.35 £ 62.15
GLANCE 4.00 + 0.00 1.00 £ 0.00 1.00 + 0.00 2.01 +£0.18 —0.08 + 0.01 761.25 + 75.97
TCREX 91.00 £ 50.76 1.00 £ 0.00 1.00 & 0.00 0.15 + 0.06 0.09 + 0.00 13.37 £ 5.26
OURgroup 2.80 + 1.83 1.00 +0.00 1.00 &+ 0.00 16.35 £ 1.25 0.10 +£0.00  102.23 £ 13.14
HELOC EA 4.60 + 1.14 1.00 £ 0.00 1.00 + 0.00 1.90 + 0.09 —0.02 + 0.03 338.84 + 43.44
GLANCE 10.00 + 0.00 1.00 + 0.00 0.95 4+ 0.01 1.00 + 0.07 —0.01 £+ 0.01 116.31 4+ 16.93
TCREX 26.80 £ 21.02 1.00 & 0.00 0.94 +0.07  0.07 £ 0.05 0.05 £ 0.00 0.13 £+ 0.07
OURgroup 16.80 + 2.56 1.00 + 0.00  1.00 % 0.00 0.48 £ 0.06 0.02 £ 0.01 169.58 £ 24.21
Law EA 4.40 +1.95 1.00 +0.00 1.00 & 0.00 1.134+0.07  —0.1240.01 121.26 + 44.08
GLANCE 2.00 £ 0.00 1.00 & 0.00 0.95 + 0.03 0.53 £ 0.05 —0.05 4 0.02 96.32 £ 15.61
TCREX 5.00 £ 2.00 1.00 % 0.00 0.79+£0.29 0.11 4+ 0.09 0.03 £ 0.00 0.00 £ 0.00
OURgroup | 4.40 + 1.36 1.00 + 0.00  1.00 % 0.00 0.36 & 0.02 0.04 £+ 0.01 77.31 £ 60.42
MOONS EA 5.20 £ 2.05 1.00 +0.00 1.00 % 0.00 1.034+0.00 —0.14 4+ 0.01 131.36 + 50.25
GLANCE 3.00 £ 0.00 1.00 & 0.00 0.84 +0.14 0.53 4 0.03 —0.02 4+ 0.02 91.44 £+ 6.34
TCREX 6.00 £ 0.00 1.00 % 0.00 0.83+£0.15 0.10 £ 0.05 0.00 4 0.01 0.00 £ 0.00
OURgroup 10.80 4 0.98 1.00 + 0.00  1.00 =+ 0.00 0.46 £ 0.04 0.02 + 0.00 42.47 4 25.88
WINE EA 1.00 + 0.00 1.00 + 0.00 1.00 % 0.00 1.39 4+ 0.26 —0.03 4+ 0.03 16.66 + 0.50
GLANCE 2.00 £ 0.00 1.00 % 0.00 0.84 £+ 0.10 0.70 4 0.09 0.05 4 0.01 7.2 +3.48
TCREX 15.40 4 11.28 1.00 £ 0.00 1.00 £ 0.00 0.09 £+ 0.15 0.05 + 0.01 0 + 0.00
OURgroup 1.00 4 0.00 1.00 + 0.00  1.00 =+ 0.00 0.81 4 0.07 0.07 £ 0.01 32.41 + 23.19
LR
BLOBS EA 3.60 & 1.67 1.00 + 0.00 1.00 % 0.00 1.00 £ 0.00  —0.16 4 0.00 90.42 + 39.69
GLANCE 2.00 £ 0.00 1.00 & 0.00 0.94 £ 0.04 0.55 4 0.03 —0.07 4+ 0.03 37.93 + 8.77
TCREX 2.40 £ 0.55 1.00 £ 0.00 1.00+0.00 0.00 + 0.00 0.02 4 0.00 0.00 £ 0.00
OURgroup 1.60 4 0.49 1.00 + 0.00  1.00 =+ 0.00 0.46 £ 0.01 0.03 £ 0.00 14.55 4+ 2.51
DIGITS EA 4.00 4 0.00 0.00 £ 0.00 - — —  895.26 & 46.34
GLANCE 4.00 4 0.00 1.00 % 0.00 0.66 +0.11 1.694+0.17  —0.06 +0.01  605.66 + 58.69
TCREX 101.00 + 38.21 1.00 £ 0.00 1.00 % 0.00 0.10 £ 0.09 0.09 £ 0.00 14.46 + 6.04
OURgroup 2.80 £ 1.83 1.00 + 0.00  1.00 % 0.00 16.35 &+ 1.25 0.10 £0.00  102.23 4 13.14
HELOC EA 5.00 £ 1.58 0.98 £0.05  1.00 & 0.00 1.64 +0.15 0.01 4 0.01 240.68 £ 34.91
GLANCE 10.00 4 0.00 1.00 £ 0.00 0.95 + 0.03 0.89 £+ 0.11 0.00 £ 0.01 81.45 4 9.69
TCREX 21.00 £ 3.94 1.00 £ 0.00 1.00+0.01 0.05+0.03 0.05 £ 0.00 0.11 + 0.03
OURgroup 16.80 + 2.56 1.00 & 0.00 1.00 &+ 0.00 0.48 + 0.06 0.02 + 0.01 169.58 + 24.21
LAwW EA 4.6 4+ 1.82 0.95 £+ 0.01 1.00 % 0.00 1.06 £ 0.01 —0.11 4+ 0.01 127.38 £ 21.35
GLANCE 2.00 + 0.00 1.00 & 0.00 0.97 £+ 0.03 0.53 + 0.03 —0.06 + 0.01 95.86 + 17.19
TCREX 6.00 £ 1.22 1.00 £ 0.00 0.37 £0.29 0.25 + 0.08 0.01 + 0.02 0.00 £ 0.00
OURgroup 4.40 £+ 1.36 1.00 +0.00 1.00 &+ 0.00 0.36 + 0.02 0.04 £+ 0.01 77.31 £ 60.42
MOONS EA 3.50 £ 0.71 1.00 + 0.00 0.79 £ 0.13 1.05 £ 0.03 —0.13 + 0.00 95.86 + 17.19
GLANCE 3.00 £ 0.00 1.00 £ 0.00 0.97 £+ 0.04 0.58 + 0.02 —0.04 + 0.03 61.51 +9.72
TCREX 7.00 + 1.87 1.00 £ 0.00 0.91 +£0.10 0.11 + 0.09 —0.01 4+ 0.02 0.00 £ 0.00
OURgroup 10.80 4 0.98 1.00 +0.00 1.00 &+ 0.00 0.46 + 0.04 0.02 + 0.00 42.47 + 25.88
WINE EA 1.00 £ 0.00 1.00 +0.00 1.00 &+ 0.00 1.6 £0.17  —0.06 £ 0.03 17.59 4+ 1.74
GLANCE 2.00 + 0.00 1.00 £ 0.00 0.85 + 0.12 0.62 + 0.09 0.05 + 0.01 4.29 + 2.31
TCREX 17.40 4+ 10.67 1.00+0.00 1.004+0.00 0.20+£0.10 0.05 + 0.01 0.00 £ 0.00
OURgroup 1.00 £ 0.00 1.00 +0.00 1.00 &+ 0.00 0.81 + 0.07 0.07 £+ 0.01 32.41 + 23.19
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Table 15: Additional comparative plausibility and cost analysis of our method in group-wise con-
figuration with other CF methods across various datasets and classification models. Values are

averaged over five cross-validation folds.

DATASET | METHOD | Groups | PrOB. PLAUS.T LOG DENs. 1 LOF| | CosTl
MLP
BLOBS EA 3.60 + 1.67 0.00 £+ 0.00 —194.1 £ 109.3 10.96 + 0.20 10.25 + 0.75
GLANCE 2.00 £+ 0.00 0.02 = 0.03 —7.16 £1.92 2.53 £0.36 5.94 £+ 0.40
TCREX 2.40 + 0.55 0.00 4+ 0.00 —44.51 + 27.94 1.10 + 0.02 0.00 & 0.00
OURgroup 1.60 £ 0.49 0.78 + 0.05 2.98 1 0.06 1.04 £+ 0.01 6.50 4+ 0.17
DiGiTs EA 4.00 £+ 0.00 0.00 £+ 0.00 — — -
GLANCE 4.00 £+ 0.00 0.00 £+ 0.00 —360 £+ 49 1.64 + 0.06 30.44 £ 5.24
TCREX 91.00 £ 50.76 0.00 £ 0.00 —359.28 + 8.52 1.08 + 0.00 | 0.00 &£ 0.00
OURgroup | 2.80 % 1.83 0.36 + 0.08 —100.96 + 0.97 1.12 £ 0.02 | 48.92 +2.71
HELOC EA 4.60 +1.14 0.00 £+ 0.00 —1631 £ 2694 3.48 +0.41 55.68 £13.55
GLANCE 10.00 4+ 0.00 0.00 £+ 0.00 —83.00 £+ 52.99 1.97 £+ 0.08 13.52 + 2.28
TCREX 26.80 + 21.02 0.03 4+ 0.04 —15.54 4+ 23.72 1.11 £ 0.02 0.85 + 1.01
OURgroup | 16.80 £ 2.56 0.07 £+ 0.01 11.72 + 3.02 1.47 £ 0.05 7.35 4+ 1.19
Law EA 4.40 +1.95 0.00 £+ 0.00 —T748 + 884 4.19 + 0.20 13.33 4+ 3.42
GLANCE 2.00 £ 0.00 0.22 +£0.14 —2.58 + 2.25 1.36 +£ 0.16 5.65 + 0.52
TCREX 5.00 £+ 2.00 0.44 + 0.25 —2.85+1.35 1.05 £ 0.01 0.62 + 0.95
OURgroup | 4.40 % 1.36 0.74 4+ 0.03 2.10 £ 0.03 1.05 + 0.01 5.88 4 0.39
MOONS EA 5.20 £+ 2.05 0.00 £+ 0.00 —1250 + 1896 6.17 + 0.36 11.89 4+ 3.38
GLANCE 3.00 £+ 0.00 0.27 + 0.08 —9.02 + 10.34 1.46 + 0.29 5.39 £ 2.05
TCREX 6.00 £+ 0.00 0.27 £ 0.15 —8.29 + 7.90 1.28 + 0.05 1.38 +1.41
OURgroup | 10.80 £ 0.98 0.92 + 0.06 1.76 +£ 0.05 1.01 % 0.01 6.00 4 0.62
WINE EA 1.00 + 0.00 0.00 £+ 0.00 —48.89 + 21.95 2.38 £0.44 20.00 + 6.49
GLANCE 2.00 £ 0.00 0.09 + 0.09 —2.63 +5.21 1.16 + 0.03 9.46 + 1.39
TCREX 15.40 + 11.28 0.00 £+ 0.00 —372.30 £ 669.40 1.10 + 0.08 0.07 + 0.27
OURgroup | 1.00 % 0.00 0.72 £ 0.18 8.67 £ 0.51  1.06 £ 0.02 | 24.05+ 1.92
LR
BLOBS EA 3.60 + 1.67 0.00 £+ 0.00 —141 £+ 28 10.97 + 0.21 10.25 + 0.75
GLANCE 2.00 £ 0.00 0.12 +0.13 —2.55 + 2.29 1.89 +0.44 6.04 = 1.15
TCREX 2.40 £ 0.55 0.00 £+ 0.00 —45.59 + 16.68 1.10 + 0.02 0.00 + 0.00
OURgroup | 1.60 £ 0.49 0.78 4+ 0.05 2.98 £ 0.06 1.04 + 0.01 6.50 4+ 0.17
DIGITS EA 4.00 £+ 0.00 0.00 £+ 0.00 — — -
GLANCE 4.00 £+ 0.00 0.01 4+ 0.01 —485 + 42 1.54 + 0.10 27.83 £ 6.16
TCREX 101.00 £ 38.21 0.00 £ 0.00 —353.45 + 86.64 1.08 £ 0.00 0.00 + 0.00
OURgroup 2.80 +1.83 0.36 + 0.08 —100.96 + 0.97 1.12 + 0.02 48.92 £ 2.71
HELOC EA 5.00 £+ 1.58 0.00 £+ 0.00 —2170 + 3061 3.09 + 0.68 46.13 £9.94
GLANCE 10.00 4 0.00 0.00 £ 0.00 —107 £ 141 1.98 +0.17 10.66 £0.77
TCREX 21.00 + 3.94 0.03 £+ 0.04 —30.15 + 44.41 1.10 £ 0.01 0.60 £+ 1.00
OURgroup 16.80 + 2.56 0.07 £+ 0.01 11.72 4+ 3.02 1.47+0.05 | 7.35+1.19
LAaw EA 4.6 + 1.82 0.00 £ 0.00 —63.32 £ 21.79 4.08 +0.16 13.04 4+ 2.88
GLANCE 2.00 £+ 0.00 0.18 £ 0.10 —2.56 + 1.03 1.40 £ 0.11 5.84 + 0.72
TCREX 6.00 + 1.22 0.61 +0.12 0.02 £+ 1.80 1.06 £ 0.03 0.67 + 1.02
OURgroup 4.40 + 1.36 0.74 £+ 0.03 2.10 4+ 0.03 1.05 £+ 0.01 5.88 + 0.39
MOONS EA 3.50 + 0.71 0.00 £+ 0.00 —92.74 + 101 6.37 + 0.02 11.74 + 2.86
GLANCE 3.00 £+ 0.00 0.29 +0.11 —153 £ 329 1.77 £ 0.50 6.77 £1.12
TCREX 7.00 £ 1.87 0.10 £ 0.13 —236.58 £ 237.20 1.14 + 0.06 1.40 £+ 1.80
OURgroup 10.80 + 0.98 0.92 + 0.06 1.76 +£0.05 1.01 % 0.01 6.00 + 0.62
WINE EA 1.00 + 0.00 0.00 £ 0.00 —66.5 + 47.9 2.76 £ 0.38 26.03 + 4.93
GLANCE 2.00 £+ 0.00 0.02 4+ 0.04 —3.98 + 2.84 1.14 + 0.05 9.63 + 1.61
TCREX 17.40 + 10.67 0.00 £+ 0.00 —629.24 £ 648.00 1.11 £+ 0.08 1.05 +1.32
OURgroup 1.00 + 0.00 0.72 £ 0.18 8.67 £ 0.51 1.06 + 0.02 | 24.05+ 1.92
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Table 16: Comparative analysis of our method in local configuration with other local CF methods
across various datasets and classification models. Values are averaged over five cross-validation
folds.

DATASET METHOD COVERAGET VALID.T L2] ISOFORESTT TIME(S)]
MLP
DICE 1.00 4+ 0.00 1.00 £ 0.00 0.51 £ 0.03 —0.1 4 0.00 8.15 + 5.24
WACH 0.99 £0.03 1.00£0.00 0.23 +0.01 —0.04 % 0.00 0.22 £ 0.05
BLOBS CCHVAE 1.00 & 0.00 1.00 £ 0.00 0.37 + 0.05 —0.06 + 0.01 2.15 + 0.62
PPCEF 1.00 + 0.00 1.00 £ 0.00 0.47 £ 0.01 0.04 £ 0.00 19.55 £ 0.30
OUR;ocal 1.00 + 0.00  1.00 &£ 0.00 0.39 £+ 0.01 0.03 £ 0.00 6.20 £ 0.20
DICE 1.004+0.00 1.004+0.00 23.77 £0.99 0.03 +£0.01  162.88 4 15.52
WACH 1.00 £ 0.00 1.00 & 0.00 2.10 + 0.44 0.09 + 0.00 16.41 4+ 0.62
DIGITS CCHVAE 1.00 & 0.00 1.00 £ 0.00 2.19 +0.24 0.04 + 0.01 3.38 £ 0.52
PPCEF 1.00 + 0.00 1.00 % 0.00 11.42 £+ 0.05 0.10 £ 0.01 25.09 £ 0.40
OURlocal | 1.00 4+ 0.00 1.00 =% 0.00 11.41 £ 0.51 0.11 4 0.00 18.58 + 0.68
DICE 1.00 +0.00 1.00 % 0.00 1.00 +0.06  —0.014+0.00  230.85 % 26.00
WACH 1.00 +0.00 1.00+0.00 0.16 £ 0.02 0.06 4 0.00 33.88 + 4.98
HELOC CCHVAE 1.00 % 0.00 1.00 % 0.00 0.59 4 0.02 0.11 + 0.00 14.60 £ 3.83
PPCEF 1.00 & 0.00 0.98 £ 0.02 0.42 4 0.02 0.07 4 0.00 24.31 £ 4.52
OURlocal | 1.00+ 0.00 1.00 % 0.00 0.47 £ 0.01 0.08 4 0.00 20.21 £ 2.02
DICE 1.00 + 0.00 1.00 % 0.00 0.52 4 0.01 —0.05 4 0.00 43.82 4 9.62
WACH 0.97 £ 0.05 1.00 +£0.01  0.16 £ 0.01 0.05 4 0.00 21.66 & 3.91
LAW CCHVAE 1.00 £ 0.00 1.00 £ 0.00 0.31 4+ 0.01 0.09 £+ 0.01 0.28 +0.17
PPCEF 1.00 £ 0.00 0.95 £ 0.01 0.32 £ 0.02 0.06 £ 0.00 20.63 & 1.08
OUR{ycal 1.00 + 0.00  1.00 =+ 0.00 0.32 £ 0.00 0.05 £ 0.00 7.80 £ 0.29
DICE 1.00 + 0.00  1.00 =+ 0.00 0.55 4 0.01 —0.04 4+ 0.01 17.85 4 6.64
WACH 0.97 £0.06 1.00+0.00 0.16 + 0.01 —0.00 % 0.00 0.23 £+ 0.05
MOONS CCHVAE 1.00 & 0.00 1.00 &+ 0.00 0.28 £+ 0.01 0.02 + 0.01 0.10 £+ 0.04
PPCEF 1.00 4+ 0.00 0.98 £ 0.01 0.34 £ 0.04 0.03 £+ 0.01 20.44 £+ 1.75
OURlocal | 1.0040.00 1.00 =+ 0.00 0.30 £ 0.01 0.03 £ 0.00 7.32 £0.22
DICE 1.00 + 0.00 1.00 % 0.00 0.72 £ 0.08 0.03 £ 0.01 0.70 £ 0.05
WACH 1.00 + 0.00 1.00+0.00 0.43 £ 0.08 0.03 £ 0.02 0.10 £ 0.02
WINE CCHVAE 1.00 +0.00 1.00 &+ 0.00 0.79 + 0.05 0.09 + 0.00 0.02 + 0.00
PPCEF 1.00 + 0.00 1.00 £ 0.00 0.66 & 0.05 0.07 £ 0.01 12.41 4+ 0.52
OURlocal | 1.0040.00 1.00 = 0.00 0.69 £ 0.07 0.05 £ 0.01 5.49 £ 0.32
LR
ARTELT 1.00 + 0.00  1.00 #+ 0.00 0.33 £0.02  —0.06 & 0.00 3.42 £ 0.90
DICE 1.00 + 0.00  1.00 % 0.00 0.49 £ 0.02 —0.140.01 12.65 + 3.59
BLOBS WACH 0.99 £0.01 1.00+0.00 0.324+0.05 —0.0140.02 0.34 £+ 0.02
CCHVAE 1.00 + 0.00 1.00 £ 0.00 0.33 £0.03  —0.05 £ 0.01 0.94 £ 0.33
PPCEF 1.00 4+ 0.00 1.00 £ 0.00 0.50 & 0.04 0.04 £+ 0.01 3.22 4+ 0.84
OUR{pcal 1.00 4+ 0.00 1.00 £ 0.00 0.45 £ 0.04 0.04 £+ 0.01 6.56 & 0.24
ARTELT 1.00 + 0.00 1.00 £ 0.00 19.56 £ 1.55 0.07 £ 0.01 27.08 £+ 1.16
DICE 1.00 4+ 0.00 1.00 £ 0.00 22.2 £ 0.71 0.04 £ 0.01 138.12 + 12.88
DIGITS WACH 1.00 4+ 0.00 1.00 £ 0.00 2.46 £ 0.32 0.10 £ 0.00 9.68 £ 0.08
CCHVAE 1.00 +0.00 1.00+0.00 2.07+0.14 0.04 £ 0.01 2.61 £+ 0.45
PPCEF 1.00 4 0.00  1.00 £ 0.00 10.33 £+ 0.04 0.09 + 0.01 8.68 + 3.65
OURlocal | 1.0040.00 1.00 =% 0.00 10.55 £ 0.48 0.11 £ 0.00 17.16 £ 0.45
DICE 1.00 4+ 0.00 0.98 £ 0.05 0.88 £ 0.07 0.01 £ 0.01 175.64 £ 26.01
WACH 1.00 & 0.00 1.00 & 0.00 0.15 + 0.02 0.06 + 0.00 11.69 + 0.32
HELOC CCHVAE 1.00 % 0.00 1.00 £ 0.00 0.56 + 0.01 0.12 £+ 0.01 8.29 + 3.86
PPCEF 1.00 + 0.00  1.00 &£ 0.00 0.23 £+ 0.01 0.07 £ 0.00 12.44 + 2.36
OURlocal | 1.00 4+ 0.00 1.00 =% 0.00 0.44 £ 0.02 0.08 4 0.00 19.36 + 3.58
ARTELT 1.00 4+ 0.00 1.00 £ 0.00 0.20 £ 0.01 0.01 £ 0.00 11.71 £ 2.34
DICE 1.00 4 0.00 0.96 + 0.09 0.55 4+ 0.06  —0.06 & 0.02 43.05 + 7.67
Law WACH 1.00 +0.00 1.00+0.00 0.19 £ 0.03 0.04 £ 0.00 10.33 £ 0.42
CCHVAE 1.00 £ 0.00 1.00 % 0.00 0.32 4+ 0.01 0.09 £+ 0.01 0.12 £ 0.05
PPCEF 1.00 + 0.00 1.00 % 0.00 0.23 £ 0.01 0.07 4 0.00 2.42 £ 0.10
OUR{ocal 1.00 + 0.00  1.00 % 0.00 0.34 £ 0.03 0.04 £ 0.01 7.65 £ 0.30
ARTELT 1.00 % 0.00 1.00 % 0.00 0.29 4 0.01 —0.02 4 0.01 6.84 4+ 2.25
DICE 1.00 + 0.00 1.00 =+ 0.00 0.62 +0.04  —0.07 £ 0.01 18.04 £ 7.50
MOONS WACH 0.99 £0.02 1.00+0.00 0.28 + 0.02 0.00 £ 0.01 7.50 £ 6.43
CCHVAE 1.00 + 0.00 1.00 % 0.00 0.34 £+ 0.02 0.03 £+ 0.01 0.37 £ 0.08
PPCEF 1.00 + 0.00  1.00 =+ 0.00 0.36 & 0.01 0.03 £+ 0.01 1.85 + 0.01
OURlocal | 1.00 4+ 0.00 1.00 =+ 0.00 0.39 £ 0.04 0.03 £ 0.00 6.73 & 0.98
ARTELT 1.00 + 0.00 1.00 =+ 0.00 0.59 £ 0.07 0.05 £ 0.01 1.66 + 0.85
DICE 1.00 + 0.00  1.00 =+ 0.00 0.78 £+ 0.07 0.02 £ 0.01 1.18 + 1.16
WINE WACH 1.00 + 0.00 1.00+0.00 0.41 £ 0.07 0.05 £ 0.02 0.11 £ 0.03
CCHVAE 1.00 +0.00 1.00 &+ 0.00 0.81 + 0.06 0.09 £+ 0.01 0.01 £ 0.00
PPCEF 1.00 + 0.00 1.00 #+ 0.00 0.53 & 0.04 0.09 £+ 0.01 2.03 £ 0.47
OURlocal | 1.004 0.00 1.00 = 0.00 0.71 £ 0.04 0.05 £ 0.00 5.66 & 0.29
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Table 17: Additional comparative plausibility and cost analysis of our method in local configuration
with other local CF methods across various datasets and classification models. Values are averaged
over five cross-validation folds.

DATASET | METHOD | PROB. PLAUS.T LOG DENs. T LOF| | CosTl
MLP

DICE 0.07 £ 0.02 —6.63+ 1.3 2.91 £+ 0.22 5.86 £ 2.57

WACH 0.00 £ 0.00 —1.55 4+ 0.53 1.62 + 0.10 3.46 £+ 0.88

BLOBS CCHVAE 0.00 £ 0.00 —8.92 + 3.11 2.78 +0.28 4.60 + 1.52
PPCEF 1.00 * 0.00 2.91 + 0.04 1.03 £ 0.02 -

[010) T 1.00 4 0.00 2.74 £+ 0.07 1.04 + 0.01 5.53 £ 1.01

DICE 0.00 + 0.00 —596.9 + 171.94 1.88 4+ 0.03 36.18 4 12.95

WACH 0.01 £ 0.01 —128.91 £ 3.72 1.29 +0.02 | 12.13 £ 8.92

DIGITS CCHVAE 0.09 £ 0.09 —74.81 +26.92 1.07 £ 0.02 41.62 4 6.93
PPCEF 0.98 £ 0.01 —97.28 + 1.36 1.13 4 0.01 -

OURjycar 1.00 &+ 0.00 —101.31 £ 1.26 1.23 4+ 0.02 45.78 4+ 7.83

DICE 0.00 £ 0.00 —35.19 +11.26 2.0 £ 0.05 15.41 + 8.85

WACH 0.24 £ 0.02 21.30 £ 1.70 1.13 4+ 0.01 26.80 & 4.32

HELOC CCHVAE 0.74 +0.23 35.90 + 1.46 1.00 £ 0.01 21.14 £ 6.79
PPCEF 1.00 + 0.00 33.24 4 0.46 1.08 4+ 0.01 -

OURjycar 1.00 %+ 0.00 33.36 & 0.33 1.09 4+ 0.01 10.75 1 4.96

DICE 0.3 £ 0.01 —0.84+0.28 1.32 4 0.03 6.45 £ 2.54

WACH 0.57 4 0.08 1.06 4+ 0.24 1.05 4 0.00 6.13 £ 1.95

LAW CCHVAE 1.00 + 0.00 2.65 +0.14 1.02 + 0.02 4.45 +1.98
PPCEF 1.00 + 0.00 2.04 £ 0.02 1.03 4 0.00 -

OURjycar 1.00 % 0.00 2.33 £ 0.08 1.03 4 0.00 5.41 £ 2.02

DICE 0.29 £ 0.05 —3.44 4 2.42 1.67 0.1 6.08 £ 3.01

WACH 0.00 £ 0.00 —2.66 + 1.06 1.58 4+ 0.06 2.22 + 0.83

MOONS CCHVAE 0.00 £ 0.00 —1.56 4+ 1.01 1.41 +0.13 3.54 £+ 1.09
PPCEF 1.00 + 0.00 1.424+0.04  1.00 £ 0.02 -

OURjycqr 1.00 £+ 0.00 1.47 +£0.04 1.00 £+ 0.01 3.88 +£0.71

DICE 0.03 £ 0.05 —3.66 4+ 2.97 1.46 4+ 0.09 8.87 + 3.00

WACH 0.09 £ 0.11 0.22 £ 2.29 1.36 £ 0.11 11.10 + 7.38

WINE CCHVAE 0.08 £ 0.17 5.50 & 1.62 1.03 + 0.02 24.95 £ 5.26
PPCEF 0.99 + 0.01 7.79+0.59 1.01 4 0.01 -

OURjycql 1.00 4+ 0.00 7.38 £0.61 1.18 + 0.05 21.40 £ 4.06

LR

ARTELT 0.00 £ 0.00 —4.67 4+ 1.29 1.88 4 0.31 4.83 4+ 1.37

DICE 0.05 £ 0.02 —6.63 + 0.86 2.85 £0.11 5.90 £ 2.49

BLOBS WACH 0.18 £ 0.37 1.00 &+ 1.17 1.31 +£0.18 4.04 +0.83
i CCHVAE 0.00 £ 0.00 —6.05 + 1.28 2.64 +0.26 4.41 4 1.40
PPCEF 1.00 4+ 0.00 3.00 £ 0.11 1.01 + 0.01 -

OURj,cq; 1.00 + 0.00 3.01 £ 0.06 1.03 +0.01 5.91 £ 0.89

ARTELT 0.00 £ 0.00 —201.24 + 24.49 1.71 +£0.12 28.27 £ 4.98

DICE 0.00 £ 0.00  —411.41 4 135.26 1.84 4+ 0.02 32.97 4+ 12.83

DIGITS WACH 0.07 £ 0.07 —117.81 £ 1.99 1.24 +0.01 9.85 £ 3.39
CCHVAE 0.07 £ 0.07 —69.42 4 26.05 1.07 £ 0.02 4.41 £+ 1.40

PPCEF 1.00 4 0.00 —98.26 + 1.69 1.12 +0.01 -

[010) T 1.00 4 0.00 —100.92 + 0.69 1.2 +0.00 15.23 + 2.51

DICE 0.01 £ 0.01 —43.76 £ 17.02 1.99 +0.12 11.06 + 4.30

WACH 0.20 £ 0.03 16.87 + 3.75 1.14 + 0.01 16.98 + 2.41

HELOC CCHVAE 0.92 + 0.08 37.794+0.96 1.02 4 0.02 22.12 £ 7.29
PPCEF 1.00 4 0.00 32.34 £+ 0.56 1.07 +0.01 -

[010): T 1.00 &+ 0.00 33.93 £ 0.28 1.08 4+ 0.01 | 10.09 % 4.47

ARTELT 0.39 £ 0.04 0.02 £+ 0.17 1.15 4+ 0.01 6.73 + 2.33

DICE 0.19 £+ 0.10 —2.3140.76 1.42 4+ 0.07 6.55 + 2.49

Law WACH 0.64 £0.14 1.35 4 0.48 1.07 4+ 0.00 6.53 + 1.43
CCHVAE 1.00 % 0.00 2.83 +£0.12 1.02 £ 0.02 4.51 + 2.08

PPCEF 1.00 &+ 0.00 2.05 4 0.02 1.03 4 0.00 -

OURjycar 1.00 £ 0.00 2.18 4 0.09 1.04 4+ 0.01 5.81 & 1.90

ARTELT 0.05 £ 0.11 —0.74 4+ 0.42 1.32 4 0.04 6.04 £+ 1.92

DICE 0.24 £ 0.05 —17.28 4 20.11 2.04 +£0.24 7.17 £ 2.68

MOONS WACH 0.15 4+ 0.14 —0.24 4 0.69 1.28 4 0.05 5.73 £ 1.52
CCHVAE 0.00 £ 0.00 —1.61 + 1.06 1.63 4+ 0.06 4.32 +1.65

PPCEF 1.00 £+ 0.00 1.69 4+ 0.07 1.01 3 0.02 -

OURjycqr 0.88 & 0.27 1.27 4+ 0.07 1.08 4+ 0.06 5.15 £ 1.84

ARTELT 0.12 +0.14 —2.97 4+ 2.69 1.45 4 0.14 15.26 + 3.72

DICE 0.03 £ 0.05 —3.63 &+ 2.67 1.48 4+ 0.09 9.53 £ 3.35

WINE WACH 0.20 £ 0.25 2.30 £ 2.55 1.26 4+ 0.08 10.94 + 2.89
CCHVAE 0.11 £ 0.24 4.66 +2.44  1.05 £ 0.02 23.91 £ 5.49

PPCEF 1.00 + 0.00 7.72 + 0.62 1.12 4 0.01 -

OURjycqr 1.00 4+ 0.00 7.71 £0.89 1.21 4+ 0.07 22.36 £+ 4.95

30



Under review as a conference paper at ICLR 2026

Table 18: Friedman test results for statistical significance analysis across all configurations. All
metrics show significant differences among methods (p < 0.05).

Configuration  Metric p-value
Validity 2.39 x 107°
Global L2 Distance 0.0133
Plausibility (IsoForest) ~ 3.94 x 10~*
Time 6.05 x 10713
Coverage 3.28 x 1078
Validity 5.53 x 1071
Group-wise L2 Distance 2.65 x 10715
Plausibility (IsoForest)  1.51 x 107!
Time 4.21 x 10713
Coverage 6.42 x 1077
Validity 6.00 x 10714
Local L2 Distance 2.28 x 10718
Plausibility (IsoForest)  5.24 x 10~ *°
Time 2.96 x 10715
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