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ABSTRACT

The growing complexity of Al systems has intensified the need for transparency
through Explainable Al (XAI). Counterfactual explanations (CFs) offer action-
able “what-if” scenarios on three levels: Local CFs providing instance-specific
insights, Global CFs addressing broader trends, and Group-wise CFs (GWCFs)
striking a balance and revealing patterns within cohesive groups. Despite the avail-
ability of methods for each granularity level, the field lacks a unified method that
integrates these complementary approaches. We address this limitation by propos-
ing a gradient-based optimization method for differentiable models that generates
Local, Global, and Group-wise Counterfactual Explanations in a unified manner.
We especially enhance GWCF generation by combining instance grouping and
counterfactual generation into a single efficient process, replacing traditional two-
step methods. Moreover, to ensure trustworthiness, we innovatively introduce the
integration of plausibility criteria into the GWCF domain, making explanations
both valid and realistic. Our results demonstrate the method’s effectiveness in
balancing validity, proximity, and plausibility while optimizing group granularity,
with practical utility validated through practical use cases.

1 INTRODUCTION

The increasing complexity of Al systems has fueled regulatory and societal demands for trans-
parency, a need addressed by Explainable Al (XAI) (Goodman & Flaxman), 2017} Wachter et al.|
2017; |Adadi & Berradal 2018} [Samek & Miiller, 2019). Among XAI techniques, counterfactual
explanations (CFs) are particularly valuable for providing actionable ”what-if”” scenarios that spec-
ify how input feature changes can alter model predictions (Wachter et al.l 2017). For example, a
CF could show a loan applicant the precise changes needed for loan approval, offering actionable
feedback crucial in many fields (Guidotti, 2022).

Counterfactual explanations can be generated at three distinct levels of granularity. The most popular
Local CFs offer tailored guidance for individual instances but miss broader patterns (Fragkathoulas
et al., |2024; [Carrizosa et al., |2024). Global CFs provide high-level summaries for entire datasets
but lack individual specificity (Ramamurthy et al.l |2020; [Plumb et al.| [2020). Bridging this gap,
group-wise counterfactual explanations (GWCFs) explain cohesive data subsets, revealing shared
patterns while maintaining actionable insights, which is crucial for fairness and policy-making in
sensitive domains (Carrizosa et al., [2024; [Kanamori et al.| 2022; [Warren et al.| [2024). A detailed
comparison of these approaches is illustrated in Figure|l{and discussed in Appendix

Despite their promise, existing GWCF methods face significant challenges. Most rely on a two-
step process of first clustering data and then generating CFs (or vice versa), which is inefficient
and dependent on clustering parameterization (Kavouras et al., [2024} |Artelt & Gregoriades), |2024)).
Furthermore, ensuring the plausibility of CFs—that is, their alignment with the data distribution and
real-world constraints—remains a key challenge, as unrealistic explanations undermine trust and
actionability (Artelt & Hammer, 2020).

To address these challenges, we propose a unified framework for generating local, group-wise, and
global counterfactuals, as illustrated in Figure[I] Our end-to-end, gradient-based method simultane-
ously optimizes instance grouping and counterfactual generation, eliminating the inefficient two-step
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(a) Global CFs (b) Group-wise CFs (c) Local CFs

Figure 1: The figure illustrates three types of explanations generated by our approach: (a) global
CFs, identifying a single direction of change applicable to the entire dataset; (b) group-wise CFss,
providing vectors of change for specific groups, distinguished by colors (red, blue); and (c) local
counterfactual explanations, offering instance-specific shift vectors, minimal changes required to
modify individual predictions. Decision boundary (green line) and density threshold contours.

process common in prior work. It can dynamically generate explanations for a varying number of
groups, automatically balancing a number through regularization. By formulating this as a single
optimization problem, our method efficiently produces CFs at any desired granularity. Crucially,
we introduce a probabilistic plausibility criterion, using normalizing flows for density estimation
(Rezende & Mohamed, [20135)), to ensure that explanations are not only valid but also realistic and
actionable.

In summary, our key contributions are:

* A novel unified approach for generating CFs at local, group-wise, and global levels, dynam-
ically adapting to user needs and automatically balancing groups diversity and granularity,
leveraging gradient-based optimization.

* A significant advancement in GWCFs generation through end-to-end optimization that uni-
fies group discovery and counterfactual generation while introducing probabilistic plausi-
bility constraints in this domain.

* An experimental evaluation and real-world use case analysis demonstrating our approach’s
performance, providing the effective balance between validity, proximity, plausibility, and
the number of shifting vectors.

2 RELATED WORKS

Local Counterfactual Explanations Local CFs identify minimal feature changes to alter a
model’s prediction for a single instance (Wachter et al., [2017). While early methods were often
heuristic-based, subsequent work has introduced more sophisticated techniques, including gradient-
based optimization, generative models, and contrastive explanations, to improve CF quality and
diversity (Dhurandhar et al.l [2018; [Russell, [2019; [Kanamori et al) |2020; [Mothilal et al., 2020;
Guidotti, 2022). However, ensuring the plausibility and actionability of these explanations remains
an ongoing challenge (Keane et al., 2021).

Global and Group-wise Counterfactual Explanations Global and group-wise CFs extend ex-
planations beyond single instances to entire datasets or cohesive subgroups. Global approaches
seek a single or a few explanations for all instances, using techniques like feature space translations
(Plumb et al., 2020), actionable rule sets (Rawal & Lakkaraju, 2020; [Ley et al., 2022), or scalable
vector-based methods (Ley et al.,[2023). Group-wise methods provide more granular insights. Some
approaches partition the input space using tree structures to assign collective actions (Ramamurthy
et al.,2020; Kanamori et al., [2022; Bewley et al., 2024). Others follow a two-step process, first gen-
erating local CFs and then clustering them to find group-level explanations (Kavouras et al.| [2024;
Artelt & Gregoriades|, 2024). These two-step methods, however, can be inefficient and sensitive to
clustering parameters.
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Plausible Counterfactual Explanations Plausibility ensures that a CF resides in a high-density
region of the data manifold, making it realistic and trustworthy. Various techniques have been pro-
posed to enforce this, such as imposing density constraints using Gaussian Mixture Models (Artelt &
Hammer, 2020) or normalizing flows (Wielopolski et al., [2024). Other approaches leverage causal
constraints (Mahajan et al., 2019) or generative models like VAEs to learn the data manifold and
generate plausible CFs from it (Pawelczyk et al.l [2020). A comprehensive survey by Karimi et al.
(2022) details the challenges and opportunities in this area.

3 BACKGROUND

Counterfactual Explanations Following|Wachter et al.|(2017), a local counterfactual explanation
finds a new instance x’ € R” for an original instance xo € R” such that the prediction of a model
h changes to a desired class ¢/, i.e., h(x’) = y’. The instance x’ is typically found by solving the
optimization problem:

arg min d(xg,x") + X - L(h(x'),y). (1)

x'eRDP

The function (-, -) refers to a loss function tailored for classification tasks such as the 0-1 loss
or cross-entropy. On the other hand, d(-,-) quantifies the distance between the original input x
and its counterfactual counterpart x’, employing metrics like the L1 (Manhattan) or L2 (Euclidean)
distances to evaluate the deviation. The parameter A > 0 plays a pivotal role in regulating the trade-
off, ensuring that the counterfactual explanation remains sufficiently close to the original instance
while altering the prediction outcome as intended.

Plausible Counterfactual Explanations To ensure realism, |Artelt & Hammer|(2020) introduced
a plausibility constraint, requiring the counterfactual x’ to lie in a high-density region of the data
distribution p(x|y’) for the target class. The optimization problem becomes:
arg min d(xo,x') + A L(h(xX),y) (2a)
x’'eR

st. 6 <p1y), (2b)

where p(x’|y’) denotes conditional probability of the counterfactual explanation x’ under desired
target class value ¢’ and § represents the density threshold.

Global and Group-wise Counterfactual Explanations Global and group-wise explanations ex-
tend the local concept by applying a shared change vector d to a set of instances. For a global
explanation, a single vector d is applied to all instances. For group-wise explanations, different
vectors are found for different subgroups of the data. The counterfactual for an instance xg is then
generated by a simple update:

x' =x9+d, 3)
where d is the shift vector of size D, which remains invariant across all observations within the
same class or group.

In contrast to the standard formulation, GLOBE-CE (Ley et al.,2023)) introduces a scaling factor, k,
specific to each observation, allowing for individual adjustments to the magnitude of the shift:

X' =xo+k-d 4)

4 METHOD

4.1 GLOBAL COUNTERFACTUAL EXPLANATIONS

The base problem of global counterfactual explanation assumes finding the global shifting vector d
of size D. In order to solve that problem using optimization techniques, we can define the problem
in the following way:

argmin d%(Xo, X') + X - £9(h(X"), /), ()
where Xy = [X1,0,...,X1, ~]7T represents the matrix storing the initial input N examples, X’ =
xi0+d,....,x1 8+ d]7 represent the extracted conterfactuals, after shifting the input examples
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with vector d. Formally, X’ = Xy + D, where D = 1y - dT and 15 represents N-dimesional
vector containing ones. We define a global distance as d“ (X, X') = EnN:1 d(xy,0,%],), and global
classification loss as an aggregation of the components: /€ (h(X'),7') = SN 0(h(x),), ).

n=1 n

Extracting a single direction vector d can be inefficient due to the dispersed initial positions X and,
as discussed by [Kanamori et al.| (2022, it strictly depends on the farthest observation. Therefore,
following the GLOBE-CE (Ley et al.,[2023)), we incorporate additional magnitude components and
represent the counterfactuals as:

X% =X+ KD, (6)

where K is the diagonal matrix of magnitudes on the diagonal, i.e., K = diag(k1, ..., ky). In order
to ensure non-negative values of magnitudes, we represent them as k; = exp (h;). ThlS formulation
extends the classical vector-based update rule given by eq. equation[]to the matrix notation. In order
to extract the counterfactuals, we simply include X in eq. equation[S]and optimize K together with

d.

4.2 GROUP-WISE COUNTERFACTUAL EXPLANATIONS

Incorporating magnitude components into the global counterfactual problem enhances the shifting
options during counterfactual calculation, yet the direction remains uniform across all observations.
To address this, we propose a novel method that automatically identifies groups represented by local
shifting vectors with varying magnitudes. This approach restricts the number of desired shifting
components to these identified groups. The formula for extracting group-wise counterfactuals is
defined as:

XIGW = Xy + KSDgw, 7

where D¢y is a matrix of size K x D, K is the number of base shifting vectors and D is the
dimesionality of the data. S is a sparse selection matrix of size N x K, where s, € {0,1}
and Zszl Sn,,; = 1 for each of the considered rows. Practically, the operation selects one of
the base shifting vectors dj, where D = [dy,...,d K]T, scaled by components k,, located on
diagonal of matrix K. We aim to optimize the selection matrix S together with base vectors D gy
and magnitude components K using the gradient-based approach. Optimizing binary S directly is
challenging due to the type of data and the given constraints. Therefore, we replace the S with the
probability matrix P, where the rows p,, o represent the values of Sparsemax (Martins & Astudillo}
2016) activation function:

Pn,e = arg mHAl Hp - bn,o||27 (8)

where A = {p € RE : 1Lp = 1,p > 0k} and b,, . is n-th row of B, which is the real-valued
auxiliary matrix that is used to model rows of S as one-hot binary vectors. Practically, each row of
the matrix P represents a multinomial distribution, and matrix B is optimized in the gradient-based
framework.

The objective for extracting group-wise counterfactuals is as follows:

. G / /
arg  min d%(Xo, Xgw) + A - 9 (h(Xew ), v )+ ©)

+ A5 - 4s(B) + Ai - £ (B),
where {;(B) and ¢ (B) are entropy-based regularisers applied to preserve sparsity of matrix P, and

As and Ay, are regularisation hyperparameters. The regularizer £;(B) is encouraging assignment to
one group for each of the raw vectors p,, o:

N K
ZZ Pnk - 10g P k- (10)
n=1k=1

The second regularisation component is responsible for reducing the number of groups extracted
during counterfactual optimization:

==Y pi-logp, (1)
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Zi\] —1 Pk,n

Sk h—i P

The problem formulation provided by eq. equation [7] and equation [9] represents the unified frame-
work for counterfactual explanations. If the number of base shifting vectors in matrix Dgywy is equal
to the number of examples (K = N), S = K = 1, and Ay, = \; = 0, the problem statements
refer to standard formulation of local explanations. In the case where Doy = D, S = K =1
and Ay = A\, = 0, the statement pertains to standard global counterfactual explanations. When
K # I, it is equivalent to the formulation given in Eq. [f] i.e., GCFs with magnitude. In other
cases (1 < K < N), the problem is formulated as a group-wise explanation case. In this setting,
we can disable automatic group detection (A = 0) and instead prioritize manual control over the

automatic number of group formations (A; > 0). This latter configuration will be our primary focus
for GWCFs.

where pp, =

4.3 PLAUSIBLE COUNTERFACTUAL EXPLANATIONS AT ALL LEVELS

The plausibility is an important aspect of generating relevant counterfactuals. In this paper, we focus
on density-based problem formulation, where the extracted example should satisfy the condition
of preserving the density function value on a given threshold level (see eq. equation 2b): § <
p(X'|y’). Moreover, we utilize a specific form of classification loss that enables a balance between
the plausibility and validity of the extracted examples.

The general criterion for extracting plausible group-wise counterfactuals can be formulated as fol-
lows:
arg  min d%(Xo, Xaw) + A €6 (h(Xew), v )+
K,B,Dgw (12)

+ X bp(XGw, y') + As - £s(B) + A - Le(B),

where the loss component £, (X, ¥') controls probabilistic plausibility constraint (§ < p(x'[y’))
and is defined as:

N
6 (X, y) = > max (6 = p(xw,aly),0). (13)
n=1
where Xy, ,, is n-th counterfactual example stored in rows of Xy = [XGy1s - - - Xaw, )T and

0 is the density threshold defined by the user depending on the desired level of plau51b111ty

Various approaches, like Kernel Density Estimation (KDE) or Gaussian Mixture Model (GMM)
can be used to model conditional density function p(xgyy,|y'). In this work, we follow Wielopol-
ski et al| (2024) and use a conditional normalizing flow model (Rezende & Mohamed; [2015)) to
estimate the density. Compared to standard methods, like KDE or GMM, normalizing flows do
not assume a particular parametrized form of density function and can be successively applied for
high-dimensional data. Compared to other generative models, normalizing flows enables the calcu-
lation of density function directly using the change of variable formula and can be trained via direct
negative log-likelihood (NLL) optimization. A detailed description of how to model and train nor-
malizing flows is provided in Appendix [B| Having the trained discriminative model pa(y'|xgy,,)
and generative normalizing flow p(xgyy,,[y’) the set of conterfacuals X{,y, is estimated using a
standard gradient-based approach.

4.4 VALIDITY LOSS COMPONENT

The application of the cross-entropy classification lloss.EG(h(X’GW),.y’ ) in eq. equation |12| con-
stantly encourages 100% confidence of the discriminative model, which may have some negative
impact on balancing other components in aggregated loss. In order to eliminate this limitation, we

replace £ (h(Xyy), y') with validity loss based on Wielopolski et al.[(2024):
Co(M(Xew),y') =

N (14)
Zmax(g;axpd(yleWn) +e—pa(y |xGWn),0)

n=1

This guarantees that pq(y’|x(yy,,) Will be higher than the most probable class among the remaining
classes by the e margin. Using our criterion, the model can focus more on producing closer and
more plausible counterfactuals.
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Figure 2: Performance comparison of our counterfactual explanation framework across three gran-
ularity levels: (a) global, (b) group-wise, and (c) local, evaluated using validity, plausibility and
proximity metrics. Average ranks were computed across six datasets (Blobs, Digits, Heloc, Law,
Moons, Wine) and two classification models (Logistic Regression, MLP), with lower ranks indicat-
ing better performance. Error bars represent the standard deviation of these ranks.

4.5 GROUP DIVERSITY REGULARIZATION

During optimization, the algorithm may converge towards proposing similar groups, overly cap-
turing fine details. To ensure diversity among the base shifting vectors in Dgyy, we introduce a
determinant-based regularization term that encourages linear independence and broad representa-
tion. The penalty is defined as:

ly(Daw) = —logdet(Daw D&y, + €I), (15)

where € is a small positive constant that ensures numerical stability by preventing the determinant
from becoming zero.

The optimization objective from Eq. equation[I2]is updated to include the diversity term:

arg. min  d9(Xo, Xaw) + X Lo(h(Xaw), ¥ )+
K,B,Dgw

+ A p(Xew, y') + As - £s(B)+ (16)
+ A - Le(B) + Ad - La(Dew),

This term maximizes the volume spanned by the group shifting vectors, promoting distinct and
diverse groups of counterfactual explanations.

Building on this, we conducted an ablation study on each component and their combinations (see
Appendix [[) and selected hyperparameters based on our findings to ensure optimal performance. To
emphasize validity, we assign the highest Welght A = 10, to the validity term. Next, to prioritize
plausibility and group sparsity, we set A, = 10* and A\, = 10%, respectively. Regularizing the
number of groups was our subsequent priority, leading to A\ = 103. Finally, to ensure diversity
among group shifting vectors, we set A\; = 10%. Furthermore, we used the first quartile of the
probabilities of the observed train set as the probability threshold 4.

5 EXPERIMENTS

In this section, we evaluate the performance of our method in global, group-wise, and local con-
figurations using various datasets and metrics. The experiments benchmark our approach against
state-of-the-art methods, highlighting its strengths and providing insights into its unified capabili-
ties. To further illustrate the practical value of our method, we analyze the created groups in two
use cases, demonstrating its ability to generate actionable and interpretable insights. The code for
these experiments is publicly available on GitHulﬂ Detailed results and additional evaluations are
provided in Appendix[I]

'Will be added in camera-ready version.
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5.1 COMPARATIVE EXPERIMENTS

Datasets We conducted experiments on six datasets that cover diverse domains and challenges and
are frequently used as benchmarks in the counterfactual explanation literature. The datasets include:
three for tabular data binary classification (Law, HELOC, Moons); two for tabular data multiclass
classification (Blobs, Wine); and one image dataset with multiple classes (Digits). The sizes of these
datasets range from 178 samples (Wine) to 10,459 samples (HELOC), while feature dimensionality
spans from 2 features (Moons, Blobs) to 64 features (Digits), ensuring robustness across different
scales and complexities. Detailed descriptions of these datasets are available in Appendix

Classification Models For classification models, we used Logistic Regression to evaluate linear
settings and a 2-layer Multilayer Perceptron to test non-linear deep neural network configurations.
We provide their detailed description in Appendix [E.2]

Metrics We evaluated counterfactual explanations using three key metrics: Validity, which mea-
sures the success of CFs in altering the model’s predictions; Proximity, calculated as the L2 distance
between the original instance and the CFs; Plausibility, assessed through the Isolation Forest metric
(Liu et al.,|2012)) to evaluate whether the CFs are realistic with respect to the target class distribution.
The extended evaluation within more metrics is available in Appendix[J.4] For methods that produce
CFs via tree structures, we calculate these metrics by first applying each instance leaf-specific action
to generate its counterfactual, then evaluating the metrics individually before aggregating across the
dataset.

Baselines We benchmarked our method against various methods across local, global, and group-
wise configurations to ensure a comprehensive comparison of effectiveness and applicability at dif-
ferent levels of explanation. For the global configuration, we compared against GLOBE-CE by
Ley et al.| (2023) and GLANCE by Kavouras et al.[(2024) in global option (with only one group) as
these are state-of-the-art GCFs methods, providing robust baselines for evaluating global coherence
and plausibility. For group-wise counterfactual explanations, we evaluated our method against
GLANCE, EA by Artelt & Gregoriades|(2024) and T-CREx by [Bewley et al.| (2024) which are de-
signed to produce coherent and interpretable GWCEs. For the local configuration, we used the
foundational gradient-based CE method proposed by Wachter et al.|(2017)) (Wach), which serves as
a widely recognized baseline. Then, we included the method CCHVAE by |Pawelczyk et al.| (2020),
as it focuses on plausibility, a key aspect addressed by our method. Furthermore, we benchmark
against DiCE (Mothilal et al., [2020), as it is used by both GLANCE and EA for prior clustering,
making it a relevant comparison for local CFs.

Experiment Results The results are summarized in Figure 2| where we calculated average ranks
across six datasets and two classification models, with lower ranks indicating better performance.
Error bars represent the standard deviation of these ranks, illustrating performance consistency. This
non-parametric ranking allows for a fair comparison across metrics with different scales. The com-
plete numerical results that form the basis of this ranking analysis are provided in Appendix
Our proposed method consistently outperformed baseline approaches across all granularity levels:
global, group-wise, and local. Comparative rankings across metrics revealed that our framework
achieved higher validity and plausibility while balancing proximity. In the global configuration
(Figure [2a)), our framework achieved the lowest average ranks for validity and plausibility while
maintaining strong proximity scores, demonstrating its ability to balance interpretability with prac-
tical feasibility. For group-wise counterfactuals (Figure [2b)), our approach identified relatively
small number of groups and provided actionable recourse strategies, outperforming baselines in
validity and plausibility while maintaining competitive proximity. An ablation study on the num-
ber of groups (see Appendix [G) confirms that while increasing groups improves plausibility, the
benefits plateau, validating our regularization approach that automatically selects 3-7 groups based
on dataset complexity. In contrast, T-CREx shows marginally inferior results, while identifying
more groups, which makes interpretation more difficult. At the local level (Figure 2c), where most
methods demonstrated acceptable validity, our framework significantly surpassed DiCE, Wach, and
CCHVAE in plausibility. The competitive proximity ranks indicate that our counterfactuals required
minimal feature changes while ensuring realistic outcomes.
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Figure 3: The figure illustrates group-wise counterfactual explanations generated using our method
on the HELOC dataset with an MLP model. Each subplot highlights group-specific recommenda-
tions for financial adjustments, showing the mean change for selected financial indicators normalized
over the average magnitude of changes. For each group, the number of instances is also provided.

Overall, the evaluation demonstrates that our method excels in validity and plausibility across all
granularities, achieving the best results. It maintains competitive proximity scores, balancing plausi-
bility and actionability effectively. Furthermore, our group-wise approach, integrating probabilistic
plausibility criteria, enhances performance. It consistently achieves plausible results while maintain-
ing low proximity. This highlights an effective trade-off between plausibility and distance, show-
casing the practical utility and effectiveness of our method.

5.2 CASE STUDY 1: CREDIT SCORING WITH HELOC DATASET

The dataset comprises HELOC credit line applications aimed at predicting whether applicants will
repay their credit lines within two years. We selected five financial indicators (Number of Satis-
factory Trades, Net Fraction of Revolving Burden, Net Fraction of Installment Burden, Number of
Revolving Trades with Balance, Number of Installment Trades with Balance) for their potential to
enable rapid behavioral adjustments. By allowing the selection of only a subset of variables, enforc-
ing monotonicity constraints where features can change in only one direction, and specifying feature
ranges, our method ensures actionability by focusing on financially adjustable features within realis-
tic limits. Implementation details are provided in Appendix[C] Specifically, we applied the following
constraints: Number of Satisfactory Trades can only increase (reflecting improved credit standing),
Net Fraction of Revolving Burden and Net Fraction of Installment Burden can only decrease (in-
dicating reduced debt utilization), Number of Revolving Trades with Balance can only decrease
(showing debt consolidation), while Number of Installment Trades with Balance can both increase
or decrease (allowing flexibility in loan management strategies). These indicators facilitate imme-
diate changes, such as simulating the effects of a rejected credit scenario. Our method generated
CFs, optimizing them into six groups. The proposed actions are illustrated in Figure 3] The results
reveal diverse group-specific recommendations. Although some groups prioritize increasing satis-
factory trades, others focus on reducing revolving burdens or trades. In addition, the groups differ
significantly in size, which highlights potential for subgroup analysis. A detailed interpretation is
provided in Appendix [I.2]

5.3 CASE STUDY 2: HANDWRITTEN DIGIT TRANSFORMATIONS WITH DIGITS DATASET

Figure [4] demonstrates our method’s application to the Digits dataset, presenting group-wise coun-
terfactual explanations for two cases. In Figure da] the origin class is 9, transitioning to the desired
class 0. In Figure Ab] the origin class is 6, transitioning to the desired class 3. Our method clusters
instances into three groups, ensuring that instances within the same group require similar modifica-
tions to achieve their counterfactuals.
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Figure 4: CFs for different digit pairs, showing the transformation process between different digit
classes. Each row represents a distinct group. Original images are on the left, shifting vectors are
in the middle column, and CFs are on the right. Red pixels in the shifting vector indicate subtracted
values, while blue pixels indicate added values.

In Figure the first group demands substantial changes, as shown by prominent shifts in the
change vector, while the third group requires fewer adjustments, indicating an easier path to the
desired class. This variation underscores our method’s ability to differentiate the effort required
for different groups to reach the target class. Figure highlights that the third group uniquely
requires a subtraction in the lower-right corner, while the first and second groups do not exhibit
significant changes in this region. This distinction demonstrates how our method tailors group-
specific counterfactuals based on structural and feature differences.

These findings confirm our method’s capability to produce interpretable and group-specific coun-
terfactual explanations for image data, offering insights into the transformations needed to achieve
GWCFs for diverse instance groups.

6 CONCLUSIONS

In this work, we introduced a unified method for generating counterfactual explanations at the local,
group-wise, and global levels. Our approach dynamically adapts to different levels of granularity,
eliminating the need for separate clustering and counterfactual generation steps. By formulating a
counterfactual search as a single optimization task, we efficiently generate explanations that balance
validity, proximity, and plausibility while optimizing group granularity. Additionally, we integrate
probabilistic plausibility constraints within global and group-wise counterfactual explanations, en-
suring that generated recourse suggestions remain realistic and actionable. The experimental results
demonstrate the effectiveness of our approach across multiple datasets and classification models. In
particular, we showed that our group-wise method produces a relatively small number of meaning-
ful and interpretable groups, capturing distinct patterns within the data. Compared to state-of-the-art
methods, our framework achieves superior validity and plausibility while maintaining competitive
proximity. This method provides a valuable tool for enhancing transparency, accountability, and
trust in machine learning by offering a comprehensive understanding of model behavior. It supports
informed decision-making and advances research in model debugging and decision support systems.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and ex-
perimental configurations throughout this work. The complete source code for our unified counter-
factual explanation framework will be made publicly available on GitHub upon acceptance. Our
mathematical formulation is fully specified in Section {i.2] including all loss components, regular-
ization terms, and optimization objectives. Detailed experimental protocols are described in Sec-
tion[5] with comprehensive hyperparameter settings, baseline comparisons, and evaluation metrics.
Complete dataset descriptions, model architectures, and training procedures are provided in Ap-
pendix and The computational environment and resource requirements are documented in
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Appendix[E.3] All experimental results include mean values and standard deviations across five-fold
cross-validation, with detailed numerical results presented in Appendix|J| Our ablation studies (Ap-
pendix [[) provide thorough analysis of individual components, enabling researchers to understand
the contribution of each element. The normalizing flow implementation for plausibility estimation
is detailed in Appendix [B] and actionability constraints are fully specified in Appendix

ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics in all aspects of this research, which aims
to contribute positively to society by advancing Al transparency and interpretability through im-
proved counterfactual explanations. Our method is designed to make Al systems more accountable
and trustworthy, supporting fairer decision-making across local, group-wise, and global explanation
levels. We use only publicly available datasets (synthetic data, standard benchmarks, and commonly
used fairness datasets) following established privacy-preserving practices, with no collection of new
personal data or re-identification attempts. We acknowledge potential dual-use concerns where ex-
planation techniques could be misused to game Al systems, emphasizing the need for responsi-
ble deployment with appropriate governance frameworks, particularly in high-stakes domains. Our
group-wise explanations can help audit algorithmic fairness across population subgroups, and our
actionability constraints are designed to respect immutable characteristics and avoid discriminatory
recommendations. We provide comprehensive disclosure of our method capabilities and limitations
and we remain committed to the responsible development of explainable Al techniques.
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A COMPARISON OF COUNTERFACTUAL EXPLANATION TYPES

Aspect | Local Global Group-Wise
Specificity High Low Moderate
Scalability | Low (instance-specific) High Moderate-high

Fairness Analysis Limited Weak Strong
Actionability High (per instance) Low High (per group)
Interpretability | Complex for stakeholders  Abstract Balanced
Privacy Concerns | Higher risk (individuals)  Minimal Minimal

Table 1: Comparison of Local, Global, and Group-Wise Counterfactual Explanations

Table [1| provides a detailed comparison of the three primary types of counterfactual explanations:
Local, Global, and Group-Wise. It highlights their respective strengths, limitations, and potential use
cases. This comparison builds on the frameworks and analyses presented in related works (Wachter
et al.} 2017;|Artelt & Hammer, |2020; Karimi et al.| [2022} |Guidottil [2022; [Ley et al., [2022}; |Kavouras
et al.| 2024} |Artelt & Gregoriades, [2024)

B DENSITY ESTIMATIONS USING NORMALIZING FLOWS

Normalizing Flows have gained significant traction in generative modeling due to their flexibility
and the straightforward training process through direct negative log-likelihood (NLL) optimization.
This flexibility is rooted in the change-of-variable technique, which maps a latent variable z with a
known prior distribution p(z) to an observed variable x with an unknown distribution. This mapping
is achieved through a series of invertible (parametric) functions: x = fx o --- o fi(z,y). Given a
known prior p(z) for z, the conditional log-likelihood for x is formulated as:

det , a7

X Of
log p =1 -1 u
og pr(xly) = log p(z) I; og |det 7
where z = f|° lo...of 1;1 (x,y) is a result of the invertible mapping. A key challenge in normalizing
flows is the choice of the invertible functions fx, ..., f;. Several solutions have been proposed in

the literature to address this issue with notable approaches, including NICE (Dinh et al., |2015)),
RealNVP (Dinh et al.l 2017)), and MAF (Papamakarios et al.,[2017).

For a given training set D = {(x,,, h(x,))}2_; we simply train the conditional normalizing flow
by minimizing negative log-likelihood:

N
Q=— logpr(Xnlyn), (18)

n=1

where log pr (X, |yn) is defined by eq. equation The model is trained using a gradient-based
approach applied to the flow parameters stored in f; functions.

C SATISFYING ACTIONABILITY CONTRAINT

In our work we enforce actionability constraint by controlling the direction of the gradient. Specif-
ically, before applying each gradient step, the sign of the gradient is checked to determine whether
it is positive or negative. For features such as age, where changes are only allowed in one direction
(e.g., increasing but not decreasing), the gradient is modified accordingly. Additionally, certain fea-
tures may be completely non-actionable, such as demographic characteristics (e.g., race, gender) or
historical records, which cannot be modified under any circumstances and must remain fixed during
counterfactual generation. The new gradient value is computed as:
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: oL
0, if z; € Foon-decrease and on < 0,
constrained . oL
8’6 comstrane 07 if T; € fnon-increase and Oz, > Oa
0,

- ! (19)
axi if T € -Emmutablev
g f , otherwise,
where g—é represents the gradient value with respect to the i-th variable, Fon-decrease denotes the

set of features subject to non-decreasing monotonicity constraints, indicating that these variables
can only exhibit increases (e.g., age). Fron-increase 15 the set of features governed by non-increasing
monotonicity constraints, signifying that these variables may only be decreased. Fimmutable 1S the set
of features that must remain invariant.

D LIMITATIONS

An inherent limitation in our methodology arises from the reliance on gradient-based optimization
techniques within the data space. This approach requires the use of differentiable discriminative
models and, consequently, does not support categorical variables. Nonetheless, the landscape of
contemporary modeling techniques largely mitigates this constraint, as many modern models are
differentiable or can be adapted to include differentiable components. This integration capacity
ensures that our method remains applicable across various settings.

E EXPERIMENT DETAILS
E.1 DATASETS

Table 2: Dataset Characteristics and Model Performances. This table provides an overview of the
datasets used in our experiments, including the number of samples (/N), number of features (D),
number of classes (C), accuracy of Logistic Regression (LR Acc.), Multi-Layer Perceptron (MLP
Acc.), and the log density of the Masked Autoregressive Flow (MAF Log Dens.).

DATASET \ N D C LR Acc. MLP Acc. MAF LoG DENS.
MOONS 1,024 2 2 0.90 0.99 1.44
LAaw 2,220 3 2 0.75 0.79 1.54
HELOC 10,459 23 2 0.74 0.75 32.72
WINE 178 13 3 0.97 0.98 9.25
BLOBS 1,500 2 3 1.00 1.00 2.59
DIGITS 5,620 64 10 0.96 0.98 -93.32

In Table 2| we provide detailed descriptions of the datasets utilized in our study: Moonsﬂ Lawﬂ
Helo<ﬂ WineE], Blobsﬂ and Digit The Moons dataset is an artificially generated set comprising
two interleaving half-circles. It includes a standard deviation of Gaussian noise set at 0.01. The
Law dataset (Wightman), |1998) originates from the Law School Admissions Council (LSAC) and is
referred to in the literature as the Law School Admissions dataset. For our analysis, we selected the
three features most correlated with the target variable: entrance exam scores (LSAT), grade-point av-
erage (GPA), and first-year average grade (FYA). The Heloc dataset (FICO), 2018), initially utilized

2https://scikit—learn.org/l.6/modules/generated/sklearn.datasets.make_
moons.html

’https://www.kaggle.com/datasets/danofer/law-school-admissions—-bar-passage

‘nttps://community.fico.com/s/explainable-machine-learning-challenge

Shttps://archive.ics.uci.edu/dataset/109/wine

®https://scikit-learn.org/l.6/modules/generated/sklearn.datasets.make_
blobs.html

7https://archive.ics.uci.edu/dataset/SO/optical+recognition+of+
handwritten+digits
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in the "FICO xML Challenge’, consists of Home Equity Line of Credit (HELOC) applications sub-
mitted by real homeowners. This dataset contains numeric features summarizing information from
applicants’ credit reports. The primary objective is to predict whether the applicant will repay their
HELOC account within a two-year period. This prediction is instrumental in determining the ap-
plicant’s qualification for a line of credit. The Wine dataset (Aeberhard & Forina, |1992) comprises
chemical analysis results for wines originating from the same region in Italy, produced from three
distinct cultivars. This analysis quantified 13 different constituents present in each of the three wine
varieties. The Blobs dataset is an artificially generated isotropic Gaussian blobs, characterized by
equal variance. The Digits dataset (Alpaydin & Kaynak,[1998)) is utilized for the optical recognition
of handwritten digits. It consists of 32x32 bitmap images that are segmented into non-overlapping
4x4 blocks. Within each block, the count of "on’ pixels is recorded, resulting in an 8x8 input matrix.
Each element of this matrix is an integer between 0 and 16.

E.2 CLASSIFICATION MODELS

We used Logistic Regression (LR) and a Multilayer Perceptron (MLP) with two dense layers of 256
neurons each and ReL.U activation. Both models utilized a softmax activation function in the output
layer and were trained to minimize the cross-entropy loss function for up to 1000 epochs with an
early stopping. These configurations ensured efficient training and robust evaluation across linear
and non-linear settings.

E.3 COMPUTATIONAL RESOURCES

In experiments, we used Python as the main programming language (Van Rossum & Drake Jr,[1995).
Python with an open-source machine learning library PyTorch (Paszke et al.| 2019) forms the back-
bone of our computational environment. We employed a batch-based gradient optimization method,
which proved highly efficient by enabling the processing of complete test sets in a single batch. The
experiments were executed on an M1 Apple Silicon CPU with 16GB of RAM, a configuration that
provided enough computational power and speed to meet the demands of our algorithm.

F GROUP DIVERSITY REGULARIZATION ABLATION STUDY

We conducted an ablation study to evaluate the effect of the group diversity regularization term by
varying the weight parameter A\;. All other parameters were fixed according to our base settings:
A = 105, Ap = 10%, Ay = 10% and )\; = 103. The evaluation was based on four key metrics.
Validity was assessed by measuring the success rate of generating CFs that led to the desired class.
Proximity was quantified using the Ly distance between the original instances and their CFs. Plau-
sibility was determined through the log density of the normalizing flow model, which evaluates the
alignment of CFs with the data distribution. Diversity was analyzed using two metrics: the minimum
pairwise cosine similarity among group shifting vectors and the mean distance of these vectors to
their centroid.

The results presented in Table |3| demonstrated that setting A4 to lower or zero values led to highly
similar group shifting vectors, as indicated by near-zero cosine similarity and smaller centroid dis-
tances. Increasing A4 enhanced diversity by producing less similar and more dispersed group shift-
ing vectors, while maintaining plausibility and proximity.

Table 3: Impact of Group Diversity Regularization (A;) on our method performance.

Ad | VALIDITY PROXIMITY ~ PLAUSIBILITY  MIN PAIRWISE COSINE SIM.  MEAN CENTROID DISTANCE
0.00 1.00 £ 0.00 0.49 + 0.04 1.71 £ 0.06 0.00 £ 0.00 0.38 +£0.23
107! 1.00 £ 0.00 0.49 + 0.04 1.70 4+ 0.06 0.00 £ 0.00 0.36 £ 0.23
102 1.00 £ 0.00 0.50 + 0.04 1.72 £+ 0.06 0.28 £0.18 4.31 +£0.35
10 1.00 £ 0.00 0.50 & 0.03 1.70 £ 0.04 0.55 £ 0.22 4.73 £ 0.56
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G NUMBER OF GROUPS ABLATION STUDY

We conducted an ablation study to investigate the impact of the number of groups on our method’s
performance across various metrics. The ablation study was performed using Logistic Regression
(LR) and the HELOC dataset. By varying the number of groups from 2 to 10 while keeping all other
hyperparameters fixed (using our base configuration: A = 105, A, = 10%, A\; = 10%, A, = 103,
A = 10?), we analyzed the trade-offs between model complexity and performance.

Table 4: Impact of the Number of Groups on Method Performance. The table shows how varying
the number of groups affects validity, proximity, plausibility metrics, and group diversity.

GROUPS | VALIDITY? L2  ISOFORESTT  LOG DENSITYT  PROB. PLAUSIBILITYT  MIN PAIRWISE COSINE SIM.

2 0.98  0.37 0.06 30.15 0.51 7.72
3 0.99  0.39 0.06 30.41 0.54 2.04
4 0.98  0.38 0.07 31.06 0.58 0.54
5 0.99 0.38 0.07 31.27 0.59 0.26
6 0.99  0.39 0.07 31.08 0.60 0.20
7 0.99 0.39 0.07 31.80 0.62 0.17
8 0.99  0.40 0.07 31.47 0.63 0.14
9 0.99 0.38 0.07 31.85 0.64 0.17
10 0.99 0.38 0.07 32.07 0.65 0.14

The results presented in Table ] demonstrate several key insights about the relationship between the
number of groups and performance metrics:

Validity remains consistently high regardless of the number of groups, indicating that our method
reliably generates valid counterfactuals across different group configurations.

Probabilistic Plausibility shows a clear positive correlation with the number of groups, increasing
monotonically from 0.51 with 2 groups to 0.65 with 10 groups. This improvement suggests that
more groups allow for better local approximations of the target distribution, enabling the generation
of more plausible counterfactual explanations that better align with the data distribution.

Group Diversity, measured by the minimum pairwise cosine similarity, exhibits the biggest change.
The similarity drops sharply from 7.72 (2 groups) to 2.04 (3 groups), then continues decreasing to
stabilize around 0.14-0.17 for 7-10 groups. This pattern indicates that the largest gains in group
diversity occur when moving from 2 to 7 groups, with minimal improvements beyond that point.

Proximity remains relatively stable across all configurations, suggesting that the number of groups
does not significantly impact the distance between original instances and their counterfactuals.

These findings confirm that, while more groups can improve certain metrics, particularly probabilis-
tic plausibility and group diversity, the benefits plateau after approximately 7 groups. This insight
supports our adaptive approach that automatically determines the appropriate number of groups
based on the specific dataset characteristics, balancing group diversity with performance.

H GPU ACCELERATION ABLATION STUDY

We conducted an ablation study comparing execution times between CPU and GPU implementa-
tions for our gradient-based optimization framework. While our main experiments used CPU for
consistency with baselines, our approach is naturally compatible with GPU acceleration due to its
gradient-based nature. All experiments were performed using 5-fold cross-validation to ensure ro-
bustness of timing measurements.

Tables E] and E] present execution times (in seconds) for our method on the HELOC dataset under
global and group-wise configurations.

The results demonstrate that GPU acceleration provides significant performance improvements, par-
ticularly for group-wise configurations. While global settings (Table [5)) show modest speedups (ap-
proximately 1.5x for LR), group-wise settings (Table[6) achieved dramatic improvements with 12.4x
speedup for LR (from 230.07s to 18.48s) and 7.6x for MLP (from 237.69s to 31.43s). The standard
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Table 5: Comparison of CPU vs. GPU Execution Times (seconds) for Global Settings on HELOC
Dataset

Model CPU GPU

LR 2745 £3.58 18.60 £ 1.25
MLP 3247 +401 31.69+2.74

Table 6: Comparison of CPU vs. GPU Execution Times (seconds) for Group-wise Settings on
HELOC Dataset

Model CPU GPU

LR 230.07 £21.10 18.48 £1.53
MLP  237.69 +£30.88 31.43+3.27

deviations across the 5-fold cross-validation indicate that these performance improvements are con-
sistent and reliable.

This ablation study further validates our choice of a gradient-based optimization framework, as it
not only provides effective solutions for generating valid, plausible, and proximate counterfactual
explanations but also leverages modern computational architectures to deliver substantial efficiency
gains.

I HYPERPAPARAMETER VALUES ABLATION STUDY

To systematically evaluate the role of each loss term, we designed a series of experiments sum-
marized in Table [/ The table combines three categories of settings: (i) Individual Component
Analysis (E1-E5), where each term is activated independently to isolate its contribution, (ii) In-
cremental Component Addition (E6-E9), where loss terms are introduced step by step to observe
cumulative effects, and (iii) Alternative Configurations (E10-E14), which test different weighting
strategies to assess sensitivity to hyperparameter magnitudes. The corresponding quantitative results
are presented separately in Table[§]

1.1 KEY FINDINGS

Individual Components (E1-E5). Validity-only training (E1) achieves perfect validity but sac-
rifices plausibility, while plausibility-only training (E2) yields excellent proximity (L.2=0.28) and
perfect plausibility at the cost of severely reduced validity (0.42). Regularizers applied in isola-
tion (E3-ES5) fail to produce meaningful counterfactuals without the validity term, confirming their
auxiliary nature.

Incremental Additions (E6—E9). Combining validity and plausibility (E6) yields the best balance,
with perfect validity and plausibility while maintaining low proximity (0.36). Adding group sparsity
(E7) or group number regularization (E8) increases proximity, reflecting the additional constraints
imposed by group coherence. The full model (E9) maintains validity and plausibility at near-perfect
levels, confirming that the combined loss achieves the intended trade-offs.

Alternative Configurations (E10-E14). Reducing all weights uniformly (E10) degrades proximity
(L2=0.53). Strong plausibility emphasis (E11) similarly increases L2 (0.53) while yielding perfect
plausibility. Emphasizing group sparsity (E12) pushes counterfactuals furthest from the originals
(L2=0.66) and slightly lowers plausibility (0.94). In contrast, strongly penalizing the number of
groups (E13) keeps proximity low (L2=0.41) but reduces plausibility (0.85). Slightly relaxing va-
lidity (E14) maintains low proximity (L2=0.44) with high plausibility (0.99).

1.2 CRITICAL TRADE-OFFS

Two central trade-offs emerge. First, proximity vs. plausibility: optimizing purely for plausibil-
ity (E2) yields the closest counterfactuals but breaks validity, while balancing both terms (E6, E9)
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achieves practical usability. Second, group constraints vs. proximity: introducing group-based
regularization (E7-E8) systematically increases the L2 distance, as counterfactuals must satisfy ad-
ditional structural requirements.

Table 7: Experimental design for the ablation study. The table summarizes all configurations E1—
E14, grouped into three categories: Individual Component Analysis (E1-ES5), Incremental Compo-
nent Addition (E6-E9), and Alternative Configurations (E10-E14). Each row specifies the weight-
ing of the loss components: validity (), plausibility (},), group sparsity (A,), number-of-groups
regularization (\), and diversity (\g). The rationale column provides the motivation for each setup.

Exp.ID | X Ap As Ak (Aa) RATIONALE
El 10° 0 0 0 0 VALIDITY IMPACT ALONE
E2 0 10° 0 0 0 PLAUSIBILITY IMPACT ALONE
E3 0 0 10° 0 0 GROUP SPARSITY IMPACT ALONE
E4 0 0 0 10° 0 NUMBER-OF-GROUPS REGULARIZATION ALONE
E5 0 0 0 0 10°  DIVERSITY REGULARIZATION ALONE
E6 10° 10* 0 0 0 EVALUATE COMBINED VALIDITY + PLAUSIBILITY
E7 10>  10* 10* 0 0 ADD GROUP SPARSITY TO E6
ES8 10> 10* 10* 10% 0 ADD NUM-OF-GROUPS REGULARIZATION TO E7
E9 10>  10* 10* 10® 10°  ALL COMPONENTS ACTIVE (FULL MODEL)
E10 10> 102  10® 102  10'  LOWERED WEIGHTS UNIFORMLY
Ell 10° 10> 10* 10° 102  EMPHASIZE PLAUSIBILITY STRONGLY
El12 10°  10* 10° 10® 102  EMPHASIZE GROUP SPARSITY STRONGLY
El13 10>  10* 10* 10* 10®  STRONGLY PENALIZE NUMBER-OF-GROUPS
El4 104 10* 10® 10° 10?2 SLIGHTLY RELAX VALIDITY; TEST SENSITIVITY

Table 8: Complete Ablation Study Results across configurations E1-E14. Arrows indicate preferred
direction.

Exp. ID \ VALIDITYT  PROXIMITY (L2)|  ISOFORESTT  LOG DENSITYT  PROB. PLAUSIBILITY?T

El 1.00 0.38 0.03 -5.27 0.04
E2 0.42 0.28 0.07 33.25 1.00
E3 0.00 — — — —
E4 0.00 — — — —
E5 0.00 — — — —
E6 1.00 0.36 0.08 33.27 1.00
E7 1.00 0.42 0.08 33.91 1.00
E8 1.00 0.44 0.08 33.64 0.99
E9 1.00 0.44 0.08 33.64 0.99
E10 1.00 0.53 0.07 32.90 0.98
Ell 1.00 0.53 0.08 33.74 1.00
El12 1.00 0.66 0.07 32.93 0.94
E13 1.00 0.41 0.08 33.28 0.85
El4 1.00 0.44 0.08 33.32 0.99

J  ADDITIONAL RESULTS

J.1 METHODS VISUALIZATION

This section provides an in-depth analysis of the methods, focusing on two main aspects: the vari-
ation in resulting explanations across global, group-wise, and local contexts, and the visual assess-
ment of plausibility for our method compared to reference methods, as illustrated in Figure[5] Initial
observations (blue and red dots) and final counterfactual explanations (orange dots) transition across
the Multilayer Perceptron decision boundary (green line) into a probabilistically plausible region
(red area), where the density satisfies plausibility thresholds.

For the reference methods, all produce valid counterfactuals, but with varying degrees of plausibil-
ity. The GLOBE-CE method generates counterfactual explanations just over the decision boundary,
resulting in highly implausible outcomes. The GLANCE method achieves some plausible counter-
factuals but struggles to balance group granularity with plausibility effectively. The DiCE method
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produces counterfactuals that are often significantly distant from the initial observations, reducing
their practical relevance.

Our method, when configured globally, also struggles to produce fully plausible results but tends to
prioritize a global shifting vector that maximizes plausibility for as many instances as possible. In the
group configuration, our method successfully clusters distant instances into the same group, gener-
ating valid and plausible counterfactuals. Both the group-wise and local configurations demonstrate
the ability to produce counterfactuals that are both valid and plausible, offering a balanced approach
to explanation generation.

(d) OURglobal (e) OURgroup (f) OURlocal

Figure 5: Visual comparison of the efficacy of various baseline counterfactual explanation methods
with our method in traversing the decision boundary of a MLP model.

J.2 CASE STUDY 1: CREDIT SCORING WITH HELOC DATASET

This subsection presents a detailed interpretation of the practical use case illustrated in Figure [3]
We carefully selected features based on their varying degrees of actionability and impact on credit
assessment, prioritizing those that individuals could realistically modify through specific financial
behaviors. The selected actionable features include:

* Number of Satisfactory Trades — Represents successfully completed credit engagements
with good standing. This feature can only increase through maintaining existing accounts
and establishing new ones over time.

* Net Fraction of Revolving Burden — The ratio of revolving credit utilized to the total
credit limit. This highly actionable feature can be changed quickly and should decrease to
improve outcomes, as lower utilization is generally preferred by lenders.

* Net Fraction of Installment Burden — The proportion of the installment debt relative to
the original loan amount. This feature requires additional payments to decrease the burden
through accelerated repayment.

* Number of Revolving Trades with Balance — Tracks ongoing revolving credit accounts
with outstanding balances. This highly actionable feature can be decreased by completely
paying off certain revolving accounts.

* Number of Installment Trades with Balance — Tracks ongoing installment credit ac-
counts with outstanding balances. This feature can either increase (by taking on new loans)
or decrease (by paying off existing loans).
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This selection of features is particularly effective for counterfactual explanations because it provides
a balanced approach to credit improvement. It combines both adjusting revolving burden and credit-
building strategies (increasing satisfactory trades). Additionally, it addresses multiple dimensions
that influence credit decisions by incorporating credit history depth, utilization rates, and account
management practices across both revolving and installment credit types. For each group shown in
Figure[3] we propose interpretations from the perspective of a user applying our method.

Group 0 For individuals in this category, it is advisable to significantly decrease the Net Fraction
of Revolving Burden while moderately increasing the Number of Satisfactory Trades. Minor
adjustments include increasing the Number of Installment Trades with Balance and reducing
the Number of Revolving Trades with Balance. This group likely has established credit but is
overextended on revolving credit, necessitating debt reduction to enhance their creditworthiness.

Group 1 For this group, the primary strategy involves substantially increasing the Number of
Satisfactory Trades while moderately reducing the Net Fraction of Revolving Burden. These in-
dividuals should make minor improvements by slightly decreasing the Net Fraction of Installment
Burden and the Number of Revolving Trades with Balance, with a small increase in the Number
of Installment Trades with Balance. This suggests consumers with thin credit profiles who need
both credit-building and utilization management.

Group 2 Members of this group should focus on decreasing both the Net Fraction of Revolving
Burden and the Net Fraction of Installment Burden substantially. They should moderately in-
crease the Number of Satisfactory Trades while slightly increasing the Number of Installment
Trades with Balance and reducing the Number of Revolving Trades with Balance. This indicates
consumers who are overextended across multiple credit products and need comprehensive debt re-
duction.

Group 3 Representing the smallest segment, these individuals require the most extensive changes:
significant decreases in both the Net Fraction of Revolving Burden and the Net Fraction of In-
stallment Burden, coupled with a substantial increase in the Number of Satisfactory Trades. Mi-
nor adjustments include slightly increasing the Number of Installment Trades with Balance and
reducing the Number of Revolving Trades with Balance. This suggests severely overleveraged
borrowers requiring comprehensive credit rehabilitation.

Group 4 As the largest group, explanations include moderately decreasing the Net Fraction of
Revolving Burden while making minor improvements to other factors: slight increases in both
the Number of Satisfactory Trades and the Number of Installment Trades with Balance, with
a small reduction in the Number of Revolving Trades with Balance. This represents “typical”
consumers who primarily need to address revolving debt utilization with minimal other adjustments.

Group 5 In this group, the explanation suggests substantial increases in the Number of Satisfac-
tory Trades and moderate increases in the Number of Installment Trades with Balance. Signif-
icant decreases are needed in both the Net Fraction of Revolving Burden and the Net Fraction
of Installment Burden, with minor reductions in the Number of Revolving Trades with Balance.
This approach requires comprehensive credit improvement across all dimensions.

Across nearly all groups, enhancing the Number of Satisfactory Trades emerges as a critical fac-
tor in credit approval decisions. Reducing the Net Fraction of Revolving Burden is consistently
beneficial across all groups, while the importance of managing the Net Fraction of Installment
Burden varies significantly between segments. Most groups benefit from minor adjustments to
account composition, with careful balance between revolving and installment credit products.

J.3 CASE STUDY 2: HANDWRITTEN DIGIT TRANSFORMATIONS WITH DIGITS DATASET

Figure [6]illustrates these findings in the context of digit transformations. The rows compare coun-
terfactual explanations with and without plausibility optimization for three digit instance pairs (9 to
0,6 to 3, and 7 to 1). Without plausibility, our group-wise method partitions the data into two coarse
groups, while incorporating plausibility refines the explanations into three distinct and interpretable
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clusters. This added granularity demonstrates the advantage of plausibility optimization in creating
realistic and practical CFs.

In summary, incorporating probabilistic plausibility criteria yields outcomes that are less prone to
outliers, potentially enhancing end-user usability. Moreover, within the framework of methods op-
timizing plausibility, we achieve results of comparable quality to the local counterfactual method,
albeit with fewer shifting vectors.

\\\\\

gt \
Eﬂgf ﬂmﬁ EIEIE S FEE]

(a) With plausibility optimisation (b) Without plausibility optimisation

\\\\\

A =
EEE?‘EEE (A IS

(c) With plausibility optimisation (d) Without plausibility optimisation

rrrrrrrrrrrrrrr

171 TI § | ] 7 [ee—
PRSI FHIEIED et
ptirtieptpreiell § |1 11 1

(e) With plausibility optimisation (f) Without plausibility optimisation

Figure 6: Comparison of group-wise counterfactual explanations with and without plausibility opti-
misation for different digit pairs. Each pair of columns represents counterfactual explanations for a
specific digit transformation (e.g., 9 to 0, 6 to 3, and 7 to 1). Without plausibility optimisation, the
method clusters the problem into two groups. With plausibility optimisation, the method refines the
counterfactuals into three distinct groups, ensuring more interpretable and realistic transformations.
Original images are on the left, shifting vectors are in the middle column, and counterfactuals are
on the right for each method. Red pixels in the shifting vector indicate subtracted values, while blue
pixels indicate added values.

J.4 EXTENDED QUANTITATIVE EVALUATION

This section presents a comprehensive evaluation of our method compared to baseline counterfactual
explanation techniques. All results are averaged over five cross-validation folds, with mean values
and standard deviations reported in six detailed tables that fall into two categories:

Base Metrics Tables (Tables[9] [T1] and[I3) contain the primary metrics used for the ranking calcula-
tion shown in Figure[2] including execution times. Plausibility and Cost Metrics Tables (Tables
and[T4) provide additional metrics for a more thorough assessment of counterfactual plausibility
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and action cost. Following |Guidotti|(2022), we employ a comprehensive evaluation framework with
these metrics:

Base Metrics:

* Validity (Valid.): Success rate of counterfactuals in changing model predictions.
* Proximity (L2): L2 distance between original and counterfactual instances.

e Isolation Forest (IsoForest): Lower scores indicate more anomalous counterfactuals.
Additional Plausibility Metrics:

* Local Outlier Factor (LOF): Higher values indicate more anomalous counterfactuals.

* Log Density (Log. Dens.): Higher values indicate stronger alignment between counterfac-
tuals and the target class distribution, as measured by a normalizing flow model.

* Probabilistic Plausibility (Prob. Plaus.): Higher values indicate more counterfactuals sat-
isfying Eq. equation 2b]

Additional Cost Metric:

* Cost: We adopt a cost metric proposed by |Ley et al.| (2023). Features are divided into 10
equal-sized bins where changing a feature value incurs a cost equal to the number of bin
boundaries crossed.

For group-wise and global methods, we additionally report Coverage (percentage of instances with
valid counterfactuals), while for group-wise methods, we also include the final number of identified
groups (Groups).

We also conducted comparative analyses with additional baseline methods: AReS by Rawal &
Lakkaraju| (2020) and the method by |Artelt & Hammer (2020) (Artelt). These methods were ex-
cluded from the ranking due to compatibility limitations: AReS does not support datasets with
fewer than 3 features, while Artelt’s method works exclusively with Logistic Regression models,
making it impossible to evaluate with Multilayer Perceptron classifiers.

Tables [9] and [I0] compare global CF methods. Our method consistently achieves perfect validity
across nearly all datasets, whereas GLOBE-CE and GLANCE struggle particularly with the Digits
dataset. Additionally, our method demonstrates superior probabilistic plausibility and notably higher
Log Density scores, indicating better alignment with the target class distribution. While GLANCE
often requires significantly longer execution times, our method maintains efficiency without com-
promising performance.

Tables [TT] and [I2] evaluate group-wise CF methods. Our approach shows strong adaptability across
datasets, maintaining high coverage and validity. In contrast, EA completely fails with the Dig-
its dataset, and both EA and GLANCE generally produce counterfactuals with substantially lower
plausibility. Our method intelligently identifies an appropriate number of groups based on dataset
characteristics, while maintaining excellent probabilistic plausibility scores. T-CREXx, while effi-
cient in execution time, produces much larger numbers of groups, which makes interpretation more
difficult. and generally scores poorly on plausibility metrics.

Tables and present results for local CF methods, comparing DiCE, Wachter (Wach), and
CCHVAE with our approach. While all methods achieve high validity, our method consistently
demonstrates perfect probabilistic plausibility while maintaining competitive L2 proximity. DiCE
typically produces the least plausible counterfactuals, particularly with complex datasets, as evi-
denced by substantially negative Log Density values. CCHVAE performs well on some metrics but
falls short on plausibility for datasets like Blobs and Moons. Our method balances execution time,
proximity, and plausibility more effectively than competing approaches across all tested datasets and
model types.
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Table 9: Comparative analysis of our method in global configuration with other CF methods across
various datasets and classification models. Values are averaged over five cross-validation folds.

| METHOD | VALID. T L2} ISOFOREST?T TIME(S)
MLP

GLOBE-CE 0.99 £ 0.01 0.25 £ 0.04 —0.06 +0.03 0.66 £ 0.03

BLOBS GLOBALGLANCE | 1.00 4 0.00 0.42 +0.01 0.01 4 0.00 43.30 +9.72
OURgobar 1.00 £+ 0.00 0.48 +0.01 0.03 4 0.00 7.89 4 0.86
GLOBE-CE 0.00 + 0.00 - - 0.95 + 0.08

DIGITS | GLOBALGLANCE 0.30 £ 0.07 11.24 +0.70 0.09 £0.01  678.36 & 29.07
OURyobal 1.00 +0.00 17.08 +0.54 0.1 4+ 0.00 31.48 £5.28

ARES 0.28 £ 0.06 0.68 £0.16 0.02 £ 0.02 13.25 +1.79

HeLoc | GLOBE-CE 1.00 £ 0.00 0.52 4 0.03 0.03 £ 0.01 2.02 +0.18
GLOBALGLANCE 0.97 +0.01 0.68 4+ 0.07 —0.01 4 0.02 99.89 £ 44.14
OURgiobar 1.00 £+ 0.00 0.36 + 0.02 0.06 £ 0.00 32.47 £ 10.01
GLOBE-CE 1.00 £+ 0.00 0.22 4 0.02 0.01 £+ 0.01 0.81 + 0.02

LAwW GLOBALGLANCE 0.97 £ 0.00 0.45 £ 0.02 —0.04 4 0.01 90.81 £ 9.03
OURyiobal 1.00 £ 0.00 0.38 £0.01 0.01 + 0.00 13.44 + 3.11
GLOBE-CE 1.00 £ 0.00 0.30 1+ 0.03 —0.06 + 0.01 0.65 + 0.01

MOONS | GLOBALGLANCE 0.68 4+ 0.05 0.39 4 0.02 —0.02 £ 0.01 77.97 £9.11
OURgiobar 0.91 £0.12 0.45+0.04 —0.014+0.01 9.55 +£1.37
GLOBE-CE 1.00 £+ 0.00 0.73 + 0.20 0.04 £ 0.02 0.39 £ 0.01

WINE GLOBALGLANCE 0.57 £0.17 0.46 £ 0.07 0.06 £ 0.01 5.82 4 3.10
OURyiobal 1.00 £ 0.00 0.73 £+ 0.07 0.06 + 0.01 5.73 £0.89

LR

GLOBE-CE 1.00 £ 0.00 0.29 £ 0.02 —0.08 4 0.00 0.22 + 0.01

BLOBS GLOBALGLANCE | 1.00 + 0.00 0.42 +0.01 0.02 4 0.00 38.36 £ 10.34
OURgobar 1.00 £+ 0.00 0.5 £ 0.02 0.02 4 0.00 7.93 4+ 1.05
GLOBE-CE 0.00 + 0.00 - - 0.16 + 0.01

DIGITS | GLOBALGLANCE 0.50 £0.11 10.94 4 1.04 0.09 £0.00 534.20 4 40.88
OURyiobal 1.00 +0.00 15.61 4 0.47 0.1+ 0.00 34.46 £ 8.66

ARES 0.18 £0.13 0.50 £0.23 0.03 £0.02 14.53 4+ 1.62

HELOC GLOBE-CE 1.00 £ 0.00 0.32 + 0.05 0.05 4+ 0.01 0.45 + 0.05
GLOBALGLANCE 0.97 £ 0.02 0.61 4 0.06 —0.00 & 0.02 61.63 £ 11.58
OURyiobar 1.00 £+ 0.00 0.33 £0.03 0.06 4 0.00 27.45 £ 11.74
GLOBE-CE 1.00 £+ 0.00 0.19 £+ 0.01 0.02 £+ 0.00 0.24 + 0.01

LAW GLOBALGLANCE 0.98 £ 0.01 0.47 £0.04 —0.05 4 0.01 83.25 £+ 19.79
OURyiobal 1.00 £ 0.00 0.39 4 0.02 0.01 4 0.00 12.71 £ 2.75
GLOBE-CE 1.00 £ 0.00 0.28 + 0.01 —0.01 £ 0.01 0.22 £ 0.01

MOONS | GLOBALGLANCE | 1.00 &+ 0.01 0.53 4 0.03 —0.04 £ 0.01 67.90 £ 11.41
OURgobal 1.00 £+ 0.00 0.46 £ 0.06 0.00 4+ 0.01 11.95 +2.41
GLOBE-CE 1.00 £+ 0.00 0.73 + 0.17 0.03 +0.02 0.20 + 0.00

WINE GLOBALGLANCE 0.60 £ 0.12 0.47 £0.05 0.06 £ 0.01 2.77 £ 1.14
OURyiobal 1.00 £ 0.00 0.76 £ 0.05 0.06 + 0.01 6.07 £ 0.27
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Table 10: Additional comparative plausibility and cost analysis of our method in global configura-
tion with other CF methods across various datasets and classification models. Values are averaged
over five cross-validation folds.

| METHOD | PrROB. PLAUS.T LOG DENSs.1 LOF| | CosTtl
MLP

GLOBE-CE 0.00 + 0.00 —4.57 + 1.67 2.04+0.18 1.97 +1.53

BLOBS | GLOBALGLANCE 0.00 + 0.00 —49.99 + 14.79 1.11 4 0.02 5.78 +0.26
OURyiobal 0.92 1+ 0.03 2.80+0.1 1.04+0.01 6.65 & 0.66
GLOBE-CE - - - -

DIGITS GLOBALGLANCE 0.00 £ 0.00 —285.44 £ 21.71 1.314+0.03 | 27.45 +1.99
OURgiobal 0.72 £ 0.09 —99.424+0.61 1.09 + 0.01 49.27 + 8.59

ARES 0.18 +0.14 19.60 £ 14.31 1.23 £ 0.09 13.42 £+ 3.24

HeLoc | GLOBE-CE 0.17 +0.02 —17.27 £47.94 1.47 4 0.09 4.03 +4.20
GLOBALGLANCE 0.00 + 0.00 —2.43 £9.38 1.67 £ 0.10 13.48 £1.94
OURgiobat 0.46 £ 0.01 29.25+ 0.4 1.15+0.01 10.75 + 4.96
GLOBE-CE 0.37 + 0.05 —14.5 +28.64 1.24 £ 0.09 2.22 + 1.79

Law GLOBALGLANCE 0.34 +0.10 —0.26 £ 0.61 1.22 £ 0.03 6.00 + 0.41
OURi0bat 0.79 4+ 0.02 1.5+ 0.05 1.09 +0.01 6.35 + 2.02
GLOBE-CE 0.00 + 0.00 —17.53 £10.28 2.36 + 0.08 3.07 + 1.84

MOONS | GLOBALGLANCE 0.30 + 0.07 —2.04 £ 0.64 1.63 £ 0.12 5.19 + 0.61
OURyiobal 0.63 +0.06 —0.334+0.9 1.4840.18 5.92 4 2.04
GLOBE-CE 0.00 + 0.00 —14.74 £ 16.35 1.86 £ 0.6 2.69 1 4.07

WINE GLOBALGLANCE 0.00 + 0.00 —64.51 + 60.94 1.20 £ 0.04 9.32+0.75
OURgiobal 0.95 +0.11 7.78 £0.18 1.09 + 0.03 21.40 £ 4.06

LR

GLOBE-CE 0.00 + 0.00 —6.03 £ 0.76 2.22+0.18 2.45 + 1.34

BLOBS | GLOBALGLANCE 0.00 + 0.00 —69.32 £ 21.46 1.11 £+ 0.01 6.07 £0.18
OURyiobal 0.92 1+ 0.03 2.834+0.12 1.04 + 0.02 6.83+0.79
GLOBE-CE - - - -

DIGITS | GLOBALGLANCE 0.00 + 0.00 —312.00 + 76.17 1.324+0.04 | 24.78 £ 2.82
OURgiobal 0.69 £ 0.04 —100.41+0.31 1.1+ 0.01 45.70 4+ 9.08

ARES 0.07+0.14 —49.16 + 97.83 1.67 & 0.52 10.12 £0.10

HeLoc | GLOBE-CE 0.13+0.04 —21.66 + 30.5 1.440.11 3.91 1+ 2.73
GLOBALGLANCE 0.00 + 0.00 —15.95 + 23.40 1.70 £ 0.14 10.30 £ 0.51
OURgi0bat 0.46 + 0.02 29.934+0.61 1.14 4+ 0.01 10.09 + 4.47
GLOBE-CE 0.4 £0.04 0.10 +0.17 1.14 +0.01 2.00 + 1.45

Law GLOBALGLANCE 0.25+0.13 —1.39 £1.37 1.32 +0.07 6.05 + 0.40
OURgi0bal 0.82 1+ 0.01 1.57+0.12 1.07 £ 0.01 6.70 + 2.07
GLOBE-CE 0.05+0.1 —0.67+0.34 1.32+0.03 2.84 + 1.54

MOONS | GLOBALGLANCE 0.25 +0.08 —17.44 £ 12.46 1.92 £ 0.08 6.53 +0.15
OURgiobat 0.59 +0.21 0.89 + 0.14 1.17 £ 0.03 6.93 +2.08
GLOBE-CE 0.06 + 0.05 —15.72 + 16.9 1.63+0.24 | 8.14 1+ 10.54

WINE GLOBALGLANCE 0.00 +0.00  —249.34 + 343.47 1.17 £ 0.05 9.53 + 0.65
OURi0bat 0.95 +0.11 7.75+0.68 1.1110.05 22.36 + 4.95
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Table 11: Comparative analysis of our method in group-wise configuration with other CF methods
across various datasets and classification models. Values are averaged over five cross-validation

folds.
DATASET METHOD \ GROUPS COVERAGET VALID.T L2] ISOFORESTT TIME(S)]
MLP
BLOBS EA 3.60 + 1.67 1.00 +0.00 1.00 &+ 0.00 1.00 +£0.00  —0.16 4 0.00 95.38 + 40.81
GLANCE 2.00 £ 0.00 1.00 £ 0.00 0.96 £ 0.03 0.56 £0.02  —0.10 £ 0.01 49.07 £ 3.9
TCREX 2.40 + 0.55 1.00 & 0.00 1.00 £ 0.00 0.00 + 0.00 0.02 + 0.00 0.00 £ 0.00
OURgroup 1.00 £ 0.00 1.00 + 0.00 1.00 £ 0.00 0.45 + 0.03 0.03 + 0.00 62.21 + 6.36
DIGITS EA 4.00 £ 0.00 0.00 %+ 0.00 - - —  972.35 £ 62.15
GLANCE 4.00 4 0.00 1.00 +0.00 1.00 & 0.00 2.01 +£0.18  —0.08 +£0.01  761.25 + 75.97
TCREX 91.00 £ 50.76 1.00 £ 0.00 1.00 % 0.00 0.15 £ 0.06 0.09 £ 0.00 13.37 £ 5.26
OURgroup | 4.00+0.71 1.00 £ 0.00 0.85 + 0.07 18.17 £ 0.5 0.09 £ 0.00 31.94 + 15.09
HELOC EA 4.60 £1.14 1.00 +0.00 1.00 & 0.00 1.90 +0.09  —0.024+0.03  338.84 +43.44
GLANCE 10.00 + 0.00 1.00 £ 0.00 0.95 £ 0.01 1.00 +0.07  —0.01 +0.01  116.31 + 16.93
TCREX 26.80 £ 21.02 1.00 + 0.00 0.94 +0.07  0.07 £ 0.05 0.05 £ 0.00 0.13 £+ 0.07
OURgroup 10.00 + 0.00 0.99 £ 0.01 0.98 £ 0.02 0.43 £ 0.04 0.02 4+ 0.01  237.69 4 30.88
Law EA 4.40 +1.95 1.00 +0.00 1.00 & 0.00 1.13 £0.07 —0.124+0.01  121.26 + 44.08
GLANCE 2.00 £ 0.00 1.00 & 0.00 0.95 £ 0.03 0.53 +£0.05  —0.05 4 0.02 96.32 £ 15.61
TCREX 5.00 £ 2.00 1.00 & 0.00 0.79+£0.29 0.11 4+ 0.09 0.03 £ 0.00 0.00 £ 0.00
OURgroup | 2.0040.71 0.97 £0.04  1.00 &£ 0.00 0.36 & 0.04 0.03 £+ 0.01 92.40 £ 16.20
MOONS EA 5.20 £ 2.05 1.00 +0.00 1.00 % 0.00 1.034+0.00 —0.1440.01  131.36 £+ 50.25
GLANCE 3.00 £ 0.00 1.00 & 0.00 0.84 +0.14 0.53 +£0.03  —0.02 4 0.02 91.44 £+ 6.34
TCREX 6.00 £ 0.00 1.00 & 0.00 0.83+£0.15 0.10 £ 0.05 0.00 4 0.01 0.00 £ 0.00
OURgroup | 2.40 £+ 0.55 0.88 £0.08  1.00 & 0.00 0.47 4 0.01 0.01 £+ 0.01 65.96 & 1.49
WINE EA 1.00 + 0.00 1.00 + 0.00 1.00 % 0.00 1.394+0.26  —0.03 4+ 0.03 16.66 + 0.50
GLANCE 2.00 £ 0.00 1.00 & 0.00 0.84 £+ 0.10 0.70 4 0.09 0.05 4 0.01 7.2 +3.48
TCREX 15.40 4 11.28 1.00 £ 0.00 1.00 £ 0.00 0.09 £+ 0.15 0.05 + 0.01 0.00 £ 0.00
OURgroup 1.40 4 0.89 0.98 £0.04  1.00 &+ 0.00 0.82 4 0.06 0.06 £+ 0.01 7.95 £ 0.20
LR
BLOBS EA 3.60 & 1.67 1.00 + 0.00 1.00 % 0.00 1.00 £ 0.00  —0.16 4 0.00 90.42 + 39.69
GLANCE 2.00 £ 0.00 1.00 & 0.00 0.94 £ 0.04 0.55 4+ 0.03  —0.07 4 0.03 37.93 £+ 8.77
TCREX 2.40 £ 0.55 1.00 £ 0.00 1.00+0.00 0.00 + 0.00 0.02 4 0.00 0.00 £ 0.00
OURgroup 1.00 4 0.00 1.00 + 0.00  1.00 =+ 0.00 0.46 £ 0.03 0.03 £ 0.00 56.14 £+ 4.11
DIGITS EA 4.00 4 0.00 0.00 £ 0.00 - — —  895.26 & 46.34
GLANCE 4.00 4 0.00 1.00 & 0.00 0.66 + 0.11 1.694+0.17  —0.06 +0.01  605.66 + 58.69
TCREX 101.00 + 38.21 1.00 £ 0.00 1.00 % 0.00 0.10 £ 0.09 0.09 £ 0.00 14.46 + 6.04
OURgroup | 4.0040.71 0.85+0.04  1.00 % 0.00 16.83 4 0.45 0.01 + 0.00 24.01 £ 0.30
HELOC EA 5.00 £ 1.58 0.98 £0.05  1.00 & 0.00 1.64 +0.15 0.01 4+ 0.01  240.68 4 34.91
GLANCE 10.00 4 0.00 1.00 + 0.00 0.95 £ 0.03 0.89 £+ 0.11 0.00 £ 0.01 81.45 4 9.69
TCREX 21.00 £ 3.94 1.00 £ 0.00 1.00+0.01 0.05+0.03 0.05 + 0.00 0.11 + 0.03
OURgroup | 7.40 % 0.50 0.99 +£0.00 1.00 %+ 0.00 0.38 £+ 0.07 0.07 £0.01  230.07 £ 21.10
LAW EA 4.6 4+ 1.82 0.95+0.01  1.00 % 0.00 1.06 4 0.01 —0.11 4+ 0.01 127.38 £ 21.35
GLANCE 2.00 + 0.00 1.00 & 0.00 0.97 £ 0.03 0.53 +£0.03  —0.06 £ 0.01 95.86 + 17.19
TCREX 6.00 £ 1.22 1.00 £ 0.00 0.37 £0.29  0.25 £ 0.08 0.01 + 0.02 0.00 £ 0.00
OURgroup 1.20 £+ 0.45 0.99 +£0.01  1.00 + 0.00 0.37 £+ 0.05 0.02 £+ 0.01 98.03 + 21.32
MOONS EA 3.50 £ 0.71 1.00 + 0.00 0.79 £ 0.13 1.054+0.03  —0.13 4+ 0.00 95.86 + 17.19
GLANCE 3.00 £ 0.00 1.00 £ 0.00 0.97 £+ 0.04 0.58 £ 0.02  —0.04 £ 0.03 61.51 +9.72
TCREX 7.00 + 1.87 1.00 £ 0.00 0.91+0.10 0.11+0.09 —0.01+0.02 0.00 £ 0.00
OURgroup | 2.00£0.71 0.99 +£0.01  1.00 %+ 0.00 0.53 + 0.06 0.00 £+ 0.01 92.66 + 11.09
WINE EA 1.00 £ 0.00 1.00 +0.00 1.00 &+ 0.00 1.6 £0.17  —0.06 £ 0.03 17.59 4+ 1.74
GLANCE 2.00 + 0.00 1.00 £ 0.00 0.85 + 0.12 0.62 + 0.09 0.05 + 0.01 4.29 + 2.31
TCREX 17.40 4+ 10.67 1.00+0.00 1.004+0.00 0.20+£0.10 0.05 £+ 0.01 0.00 £ 0.00
OURgroup 1.20 4 0.45 1.00 +0.00 1.00 &+ 0.00 0.84 + 0.04 0.05 + 0.01 7.32 4+ 0.23
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Table 12: Additional comparative plausibility and cost analysis of our method in group-wise con-
figuration with other CF methods across various datasets and classification models. Values are

averaged over five cross-validation folds.

DATASET | METHOD | Groups | PrOB. PLAUS.T LOG DENS. T LOF| | CosTl,
MLP
BLOBS EA 3.60 + 1.67 0.00 £+ 0.00 —194.1 £ 109.3 10.96 + 0.20 10.25 + 0.75
GLANCE 2.00 £+ 0.00 0.02 = 0.03 —7.16 £1.92 2.53 £0.36 5.94 £+ 0.40
TCREX 2.40 + 0.55 0.00 £+ 0.00 —44.51 £ 27.94 1.10 + 0.02 0.00 £ 0.00
OURgroup 1.00 £ 0.00 0.92 1 0.03 2.88 + 0.1 1.04 £+ 0.01 6.49 4+ 1.15
DIGITS EA 4.00 £ 0.00 0.00 =+ 0.00 - - -
GLANCE 4.00 % 0.00 0.00 = 0.00 —360+£49  1.64+0.06 | 30.44 +5.24
TCREX 91.00 £ 50.76 0.00 + 0.00 —359.28 + 8.52 1.08 £ 0.00 0.00 + 0.00
OURgroup | 4.0040.71 0.83 & 0.08 —99.0 + 0.8 1.09 £ 0.00 | 52.98 + 8.69
HELOC EA 4.60 + 1.14 0.00 £+ 0.00 —1631 4 2694 3.48 +0.41 55.68 £13.55
GLANCE 10.00 4+ 0.00 0.00 £+ 0.00 —83.00 £+ 52.99 1.97 £+ 0.08 13.52 + 2.28
TCREX 26.80 + 21.02 0.03 4+ 0.04 —15.54 + 23.72 1.11 + 0.02 0.85 + 1.01
OURgroup | 10.00 + 0.00 0.18 £ 0.01 14.96 + 2.41 1.42 4 0.06 10.75 £4.96
Law EA 4.40 +1.95 0.00 £+ 0.00 —T748 + 884 4.19 + 0.20 13.33 4+ 3.42
GLANCE 2.00 £ 0.00 0.22 +0.14 —2.58 +2.25 1.36 £ 0.16 5.65 4+ 0.52
TCREX 5.00 £ 2.00 0.44 +0.25 —2.85+1.35 1.05 £+ 0.01 0.62 + 0.95
OURgroup | 2.00+0.71 0.85 + 0.05 1.74+0.13 1.07 & 0.01 7.28 + 2.58
MOONS EA 5.20 + 2.05 0.00 4 0.00 —1250 + 1896 6.17 + 0.36 11.89 4+ 3.38
GLANCE 3.00 = 0.00 0.27 +0.08 —9.02 £+ 10.34 1.46 + 0.29 5.39 £+ 2.05
TCREX 6.00 & 0.00 0.27 £ 0.15 —8.29 + 7.90 1.28 + 0.05 1.38 +1.41
OURgroup | 2.40+0.55 0.92 £ 0.03 1.67+0.05 1.02 % 0.02 6.37 +1.93
WINE EA 1.00 & 0.00 0.00 # 0.00 —48.89 + 21.95 2.38 £ 0.44 20.00 + 6.49
GLANCE 2.00 £ 0.00 0.09 #+ 0.09 —2.63 £5.21 1.16 + 0.03 9.46 £+ 1.39
TCREX 15.40 4+ 11.28 0.00 % 0.00 —372.30 £ 669.40 1.10 + 0.08 0.07 + 0.27
OURgroup | 1.40+0.89 1.00 + 0.00 7.86 £0.59 1.03+0.02 | 27.75 & 5.57
LR
BLOBS EA 3.60 + 1.67 0.00 £ 0.00 —141 £+ 28 10.97 +0.21 10.25 + 0.75
GLANCE 2.00 £ 0.00 0.12 +0.13 —2.55 + 2.29 1.89 +0.44 6.04 = 1.15
TCREX 2.40 £ 0.55 0.00 % 0.00 —45.59 + 16.68 1.10 + 0.02 0.00 & 0.00
OURgroup | 1.00+0.00 0.92 + 0.03 2.86 +£0.07 1.04 4 0.01 6.50 & 1.16
DIGITS EA 4.00 £+ 0.00 0.00 % 0.00 - - -
GLANCE 4.00 % 0.00 0.01 + 0.01 —485 + 42 1.54 + 0.10 27.83 £ 6.16
TCREX 101.00 4 38.21 0.00 & 0.00 —353.45 + 86.64 1.08 £ 0.00 0.00 + 0.00
OURgroup | 4.00 %+ 0.71 0.85 + 0.05 —99.04+0.74 1.08 & 0.01 51.16 £8.80
HELOC EA 5.00 £+ 1.58 0.00 % 0.00 —2170 + 3061 3.09 + 0.68 46.13 £9.94
GLANCE 10.00 # 0.00 0.00 # 0.00 —107 £ 141 1.98 +0.17 10.66 £0.77
TCREX 21.00 + 3.94 0.03 £+ 0.04 —30.15 + 44.41 1.10 £+ 0.01 0.60 £+ 1.00
OURgroup | 7.40 % 0.50 0.62 + 0.05 31.74 + 2.03 1.34 4+ 0.07 | 5.26 &+ 3.03
LAaw EA 4.6 - 1.82 0.00 £ 0.00 —63.32 + 21.79 4.08 +0.16 13.04 4+ 2.88
GLANCE 2.00 £+ 0.00 0.18 £ 0.10 —2.56 + 1.03 1.40 £ 0.11 5.84 + 0.72
TCREX 6.00 + 1.22 0.61 +0.12 0.02 £+ 1.80 1.06 + 0.03 0.67 + 1.02
OURgroup 1.20 + 0.45 0.83 £+ 0.02 1.67 + 0.22 1.07 + 0.02 7.38 £ 2.62
MOONS EA 3.50 £ 0.71 0.00 £+ 0.00 —92.74 + 101 6.37 + 0.02 11.74 + 2.86
GLANCE 3.00 £+ 0.00 0.29 +0.11 —153 £ 329 1.77 £ 0.50 6.77 £1.12
TCREX 7.00 £ 1.87 0.10 £ 0.13 —236.58 £ 237.20 1.14 + 0.06 1.40 4 1.80
OURgroup | 2.00+0.71 0.77 £ 0.17 1.244+0.25 1.12 4 0.06 7.64 £+ 2.32
WINE EA 1.00 + 0.00 0.00 £ 0.00 —66.5 + 47.9 2.76 £ 0.38 26.03 + 4.93
GLANCE 2.00 £+ 0.00 0.02 4+ 0.04 —3.98 + 2.84 1.14 + 0.05 9.63 + 1.61
TCREX 17.40 + 10.67 0.00 £+ 0.00 —629.24 £ 648.00 1.11 £+ 0.08 1.05 4+ 1.32
OURgroup | 1.20 %+ 0.45 1.00 + 0.00 7.424+0.85 1.03+0.01 | 27.89 +5.15
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Table 13: Comparative analysis of our method in local configuration with other local CF methods
across various datasets and classification models. Values are averaged over five cross-validation
folds.

DATASET \ METHOD COVERAGET VALID.T L2y ISOFORESTT TIME(S)]
MLP
DICE 1.00 + 0.00  1.00 =% 0.00 0.51 4 0.03 —0.1 4 0.00 8.15 £ 5.24
BLOBS WACH 0.99 + 0.03 1.00 £ 0.00 0.23 £+ 0.01 —0.04 4 0.00 0.22 + 0.05
CCHVAE 1.00 + 0.00 1.00 =% 0.00 0.37 £0.05  —0.06 & 0.01 2.15 £ 0.62
OUR{ocal 1.00 + 0.00  1.00 % 0.00 0.39 £ 0.01 0.03 £ 0.00 6.20 £ 0.20
DICE 1.00 +0.00 1.00 +0.00 23.77 £ 0.99 0.03 4 0.01 162.88 £ 15.52
DIGITS WACH 1.00+0.00 1.00+0.00 2.10+ 0.44 0.09 £ 0.00 16.41 4 0.62
CCHVAE 1.00 + 0.00  1.00 =+ 0.00 2.19 4 0.24 0.04 £+ 0.01 3.38 £ 0.52
OURlocal | 1.00+ 0.00 1.00 =% 0.00 11.41 4+ 0.51 0.11 + 0.00 18.58 + 0.68
DICE 1.00 + 0.00  1.00 =+ 0.00 1.00 £ 0.06  —0.01 +0.00  230.85 % 26.00
HELOG WACH 1.00 +0.00 1.00+0.00 0.16 £ 0.02 0.06 £ 0.00 33.88 & 4.98
CCHVAE 1.00 + 0.00  1.00 =+ 0.00 0.59 £ 0.02 0.11 + 0.00 14.60 £ 3.83
OURlocal | 1.00+0.00 1.00 %+ 0.00 0.47 £ 0.01 0.08 £ 0.00 20.21 £ 2.02
DICE 1.00 + 0.00  1.00 % 0.00 0.52 £ 0.01 —0.05 4 0.00 43.82 4+ 9.62
Law WACH 0.97 £ 0.05 1.00 £ 0.01  0.16 £+ 0.01 0.05 4 0.00 21.66 + 3.91
CCHVAE 1.00 +0.00 1.00 &+ 0.00 0.31 £ 0.01 0.09 £+ 0.01 0.28 £ 0.17
OUR{ycal 1.00 + 0.00  1.00 £ 0.00 0.32 £ 0.00 0.05 £ 0.00 7.80 £ 0.29
DICE 1.00 + 0.00  1.00 % 0.00 0.55 £ 0.01 —0.04 4+ 0.01 17.85 4 6.64
MOONS WACH 0.97 £0.06 1.00£0.00 0.16 + 0.01 —0.00 % 0.00 0.23 £ 0.05
: CCHVAE 1.00 + 0.00 1.00 % 0.00 0.28 £ 0.01 0.02 £ 0.01 0.10 £+ 0.04
OURlocal | 1.00+0.00 1.00 %+ 0.00 0.3 £ 0.01 0.03 £ 0.00 7.32 £0.22
DICE 1.00 + 0.00  1.00 #+ 0.00 0.72 £ 0.08 0.03 £ 0.01 0.70 £ 0.05
WINE WACH 1.00 + 0.00 1.00+0.00 0.43 £ 0.08 0.03 £ 0.02 0.10 £ 0.02
CCHVAE 1.00 + 0.00 1.00 £ 0.00 0.79 £ 0.05 0.09 + 0.00 0.02 £ 0.00
OURlocal | 1.00+0.00 1.00 + 0.00 0.69 £ 0.07 0.05 £ 0.01 5.49 £ 0.32
LR
ARTELT 1.00 + 0.00  1.00 #+ 0.00 0.33 £0.02  —0.06 & 0.00 3.42 £ 0.90
DICE 1.00 + 0.00  1.00 % 0.00 0.49 £ 0.02 —0.140.01 12.65 + 3.59
BLOBS WACH 0.99 £0.01 1.00+0.00 0.324+0.05 —0.0140.02 0.34 £+ 0.02
CCHVAE 1.00 + 0.00 1.00 £ 0.00 0.33 £0.03  —0.05 £ 0.01 0.94 £ 0.33
OUR{pcal 1.00 + 0.00 1.00 £ 0.00 0.45 £ 0.04 0.04 £+ 0.01 6.56 & 0.24
ARTELT 1.00 + 0.00 1.00 £ 0.00 19.56 &+ 1.55 0.07 £ 0.01 27.08 £ 1.16
DICE 1.00 + 0.00 1.00 £ 0.00 22.2 4+ 0.71 0.04 £ 0.01 138.12 + 12.88
DIGITS WACH 1.00 4+ 0.00 1.00 £ 0.00 2.46 £ 0.32 0.10 £ 0.00 9.68 £ 0.08
CCHVAE 1.00 +0.00 1.00+0.00 2.07+0.14 0.04 £ 0.01 2.61 £+ 0.45
OURlocal | 1.00+0.00 1.00 % 0.00 10.55 £ 0.48 0.11 £ 0.00 17.16 £ 0.45
DICE 1.00 4+ 0.00 0.98 £+ 0.05 0.88 £ 0.07 0.01 £ 0.01 175.64 £ 26.01
HELOC WACH 1.00+0.00 1.004+0.00 0.15+ 0.02 0.06 £ 0.00 11.69 £ 0.32
e CCHVAE 1.00 4+ 0.00 1.00 £ 0.00 0.56 £ 0.01 0.12 £+ 0.01 8.29 + 3.86
OURlocal | 1.00+0.00 1.00 %+ 0.00 0.44 £ 0.02 0.08 + 0.00 19.36 + 3.58
ARTELT 1.00 4+ 0.00 1.00 £ 0.00 0.20 £ 0.01 0.01 £ 0.00 11.71 £ 2.34
DICE 1.00 4+ 0.00 0.96 £ 0.09 0.55+0.06  —0.06 & 0.02 43.05 4+ 7.67
Law WACH 1.00 % 0.00 1.00 % 0.00 0.19 + 0.03 0.04 + 0.00 10.33 + 0.42
CCHVAE 1.00 & 0.00 1.00 £ 0.00 0.32 + 0.01 0.09 £ 0.01 0.12 £ 0.05
OUR{ycql 1.00 + 0.00  1.00 £ 0.00 0.34 £ 0.03 0.04 £ 0.01 7.65 £ 0.30
ARTELT 1.00 & 0.00 1.00 £ 0.00 0.29 + 0.01 —0.02 +0.01 6.84 + 2.25
DICE 1.00 + 0.00  1.00 £ 0.00 0.62 +0.04  —0.07 £ 0.01 18.04 + 7.50
MOONS WACH 0.99 +£0.02 1.00£0.00 0.28 + 0.02 0.00 £ 0.01 7.50 + 6.43
CCHVAE 1.00 +0.00 1.00 % 0.00 0.34 £ 0.02 0.03 £ 0.01 0.37 £ 0.08
OURlocal | 1.00+ 0.00 1.00 =% 0.00 0.39 4 0.04 0.03 £ 0.00 6.73 4 0.98
ARTELT 1.00 +0.00 1.00 % 0.00 0.59 £ 0.07 0.05 4 0.01 1.66 4+ 0.85
DICE 1.00 % 0.00 1.00 % 0.00 0.78 £ 0.07 0.02 #+ 0.01 1.18 £ 1.16
WINE WACH 1.00 +0.00 1.004+0.00 0.41 £ 0.07 0.05 4 0.02 0.11 4 0.03
CCHVAE 1.00 + 0.00 1.00 % 0.00 0.81 & 0.06 0.09 £ 0.01 0.01 £ 0.00
OURlocal | 1.00+ 0.00 1.00 % 0.00 0.71 4 0.04 0.05 4 0.00 5.66 & 0.29
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Table 14: Additional comparative plausibility and cost analysis of our method in local configuration
with other local CF methods across various datasets and classification models. Values are averaged

over five cross-validation folds.

DATASET | METHOD | PROB. PLAUS.T LoG DENS.T LOF| CosTl
MLP
DICE 0.07 4 0.02 —6.63 £ 1.3 2.91 4+ 0.22 5.86 4 2.57
BLOBS WACH 0.00 % 0.00 —1.55 4 0.53 1.62 £ 0.10 3.46 £+ 0.88
CCHVAE 0.00 + 0.00 —8.92 + 3.11 2.78 4+ 0.28 4.60 + 1.52
OURocal 1.00 £+ 0.00 2.74 +0.07 1.04 £+ 0.01 5.53 £ 1.01
DICE 0.00 % 0.00 —596.9 + 171.94 1.8840.03 | 36.18 £ 12.95
DIGITS WACH 0.01 £ 0.01 —128.91 + 3.72 1.294+0.02 | 12.13 4 8.92
CCHVAE 0.09 £ 0.09 —74.81 4+ 26.92 1.07 + 0.02 41.62 + 6.93
OURlocal 1.00 £+ 0.00 —101.31 + 1.26 1.23 4+ 0.02 45.78 + 7.83
DICE 0.00 & 0.00 —35.19 + 11.26 2.0 4+ 0.05 15.41 + 8.85
HELoC WACH 0.24 £ 0.02 21.30 £+ 1.70 1.13 4+ 0.01 26.80 £ 4.32
CCHVAE 0.74 £ 0.23 35.90 +1.46  1.00 1 0.01 21.14 £ 6.79
OURlocal 1.00 + 0.00 33.36 & 0.33 1.09 +£0.01 | 10.75 4 4.96
DICE 0.3 + 0.01 —0.84+0.28 1.32 4 0.03 6.45 £ 2.54
Law WACH 0.57 £ 0.08 1.06 4+ 0.24 1.05 4+ 0.00 6.13 £ 1.95
CCHVAE 1.00 + 0.00 2.65+0.14 1.02 + 0.02 4.45 +1.98
OURjycqr 1.00 4 0.00 2.33 £ 0.08 1.03 4 0.00 5.41 £ 2.02
DICE 0.29 £ 0.05 —3.44 4+ 2.42 1.67 £ 0.1 6.08 £ 3.01
MOONS WACH 0.00 £ 0.00 —2.66 + 1.06 1.58 4+ 0.06 2.22 + 0.83
: CCHVAE 0.00 £ 0.00 —1.56 &+ 1.01 1.41 +0.13 3.54 £ 1.09
OURlocal 1.00 + 0.00 1.47 +£0.04 1.00 £ 0.01 3.88 +£0.71
DICE 0.03 £ 0.05 —3.66 + 2.97 1.46 4+ 0.09 8.87 £ 3.00
WINE WACH 0.09 £ 0.11 0.22 £ 2.29 1.36 £ 0.11 11.10 + 7.38
CCHVAE 0.08 £ 0.17 5.50 £ 1.62  1.03 £ 0.02 24.95 £ 5.26
OURlocal 1.00 + 0.00 7.38 4+ 0.61 1.18 + 0.05 21.40 £ 4.06
LR
ARTELT 0.00 £ 0.00 —4.67 4+ 1.29 1.88 4 0.31 4.83 4+ 1.37
DICE 0.05 £ 0.02 —6.63 + 0.86 2.85 £0.11 5.90 £ 2.49
BLOBS WACH 0.18 £ 0.37 1.00 &+ 1.17 1.31 +£0.18 4.04 +0.83
CCHVAE 0.00 £ 0.00 —6.05 + 1.28 2.64 +0.26 4.41 4 1.40
OURj,cq; 1.00 + 0.00 3.01 +£0.06 1.03+40.01 5.91 £ 0.89
ARTELT 0.00 £ 0.00 —201.24 + 24.49 1.71 +£0.12 28.27 £+ 4.98
DICE 0.00 £ 0.00  —411.41 4 135.26 1.84 4+ 0.02 32.97 4+ 12.83
DIGITS WACH 0.07 £ 0.07 —117.81 £ 1.99 1.24 +0.01 9.85 £ 3.39
CCHVAE 0.07 £ 0.07 —69.42 4 26.05 1.07 £ 0.02 4.41 +1.40
OURlocal 1.00 4+ 0.00 —100.92 £ 0.69 1.2 4 0.00 15.23 £ 2.51
DICE 0.01 £ 0.01 —43.76 £ 17.02 1.99 +0.12 11.06 + 4.30
HELOC WACH 0.20 £ 0.03 16.87 £ 3.75 1.14 +0.01 16.98 + 2.41
- CCHVAE 0.92 £ 0.08 37.794+0.96 1.02 4+ 0.02 22.12 £ 7.29
OURlocal 1.00 4 0.00 33.93 £+ 0.28 1.084+0.01 | 10.09 £ 4.47
ARTELT 0.39 £ 0.04 0.02 £+ 0.17 1.15 + 0.01 6.73 £ 2.33
DICE 0.19 £ 0.10 —2.314+0.76 1.42 +0.07 6.55 £ 2.49
Law WACH 0.64 £+ 0.14 1.35 4 0.48 1.07 £ 0.00 6.53 + 1.43
CCHVAE 1.00 * 0.00 2.83 +£0.12 1.02 £ 0.02 4.51 £ 2.08
OUR;ycal 1.00 £+ 0.00 2.18 4 0.09 1.04 £+ 0.01 5.81 4 1.90
ARTELT 0.05 £+ 0.11 —0.74 4+ 0.42 1.32 4 0.04 6.04 £ 1.92
DICE 0.24 £+ 0.05 —17.28 £ 20.11 2.04 +£0.24 7.17 4+ 2.68
MOONS WACH 0.15 +0.14 —0.24 + 0.69 1.28 +0.05 5.73 & 1.52
CCHVAE 0.00 4 0.00 —1.61 4+ 1.06 1.63 4+ 0.06 4.32 +1.65
OURlocal 0.88 £+ 0.27 1.27 +£0.07 1.08 £ 0.06 5.15 + 1.84
ARTELT 0.12 +0.14 —2.97 4+ 2.69 1.45 4+ 0.14 15.26 + 3.72
DICE 0.03 4 0.05 —3.63 + 2.67 1.48 4+ 0.09 9.53 £+ 3.35
WINE WACH 0.20 = 0.25 2.30 &+ 2.55 1.26 + 0.08 10.94 + 2.89
CCHVAE 0.11 £+ 0.24 4.66 +2.44  1.05 £ 0.02 23.91 £ 5.49
OURlocal 1.00 £ 0.00 7.71 4+ 0.89 1.21 £+ 0.07 22.36 + 4.95
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