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Abstract001

Recently, Large Language Models (LLMs)002
have demonstrated remarkable capabilities in003
natural language understanding, reasoning, and004
generation, prompting the recommendation005
community to leverage these powerful mod-006
els to address fundamental challenges in tradi-007
tional recommender systems, including limited008
comprehension of complex user intents, insuf-009
ficient interaction capabilities, and inadequate010
recommendation interpretability. This survey011
presents a comprehensive synthesis of this012
rapidly evolving field. We consolidate existing013
studies into three paradigms: (i) recommender-014
oriented methods, which directly enhance core015
recommendation mechanisms; (ii) interaction-016
oriented methods, which conduct multi-turn017
conversations to elicit preferences and deliver018
interpretable explanations; and (iii) simulation-019
oriented methods, that model user-item interac-020
tions through multi-agent frameworks. Then,021
we dissect a four-module agent architecture:022
profile, memory, planning, and action. Then we023
review representative designs, public datasets,024
and evaluation protocols. Finally, we give the025
open challenges that impede real-world deploy-026
ment, including cost-efficient inference, robust027
evaluation, and security.028

1 Introduction029

In the era of information explosion, recommender030

systems have become an indispensable component031

of digital platforms, helping users navigate through032

massive amounts of content across various domains.033

While traditional recommendation approaches (He034

et al., 2017) have achieved considerable success035

in providing personalized recommendations, they036

still face significant challenges, such as limited037

understanding of complex user intents, insufficient038

interaction capabilities, and the inability to provide039

interpretable recommendations (Zhu et al., 2024b).040

Recent advancements in Large Language Mod-041

els (LLMs) (Achiam et al., 2023) have sparked042

increasing interest in leveraging LLM-powered 043

agents (Wang et al., 2024a) to address the afore- 044

mentioned challenges in recommender systems. 045

The integration of LLM-powered agents into rec- 046

ommender systems offers several compelling ad- 047

vantages over traditional approaches (Zhu et al., 048

2024b). First, LLM agents can understand com- 049

plex user preferences and generate contextual rec- 050

ommendations through their sophisticated reason- 051

ing capabilities, enabling more nuanced decision- 052

making beyond simple feature-based matching. 053

Second, their natural language interaction abilities 054

facilitate multi-turn conversations that proactively 055

explore user interests and provide interpretable ex- 056

planations, enhancing both recommendation ac- 057

curacy and user experience. Third, these agents 058

revolutionize user behavior simulation by gener- 059

ating more realistic user profiles that incorporate 060

emotional states and temporal dynamics, enabling 061

more effective system evaluation. Furthermore, the 062

pre-trained knowledge and strong generalization 063

capabilities of LLMs facilitate better knowledge 064

transfer across domains, addressing persistent chal- 065

lenges such as cold-start (Shu et al., 2024) with 066

minimal additional training. 067

In this survey, we present a comprehensive re- 068

view of LLM-powered agents for recommender 069

systems. We argue that the core of LLM-powered 070

agents for recommender systems should be sys- 071

tematically analyzed through four key dimen- 072

sions: Method objective (the fundamental ob- 073

jectives and strategies of different approaches), 074

Agent Architecture (the structural components and 075

their interactions in the recommendation method), 076

Dataset (the comprehensive analysis of recommen- 077

dation experimental data), and Evaluation method- 078

ologies (the metrics and frameworks for recom- 079

mendation performance assessment). Hence, we 080

first systematically examine how LLM-powered 081

agents address these challenges through three main 082

paradigms: recommender-oriented (e.g., (Wang 083
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Our (Zhu et al., 2024b) (Zhang et al., 2025)
Method Objective ✓ × ✓

Agent Architecture ✓ ✓ ✓
Dataset ✓ ✓ ×

Evaluation ✓ × ×

Table 1: Comparison with Existing Surveys. ✓ indicates
that the corresponding aspect is covered, whereas ×
indicates that it is not.

et al., 2024b,c)), interaction-oriented (e.g., (Zeng084

et al., 2024; Friedman et al., 2023)), and simulation-085

oriented (e.g., (Yoon et al., 2024; Guo et al., 2024))086

approaches. Then, we utilize a unified agent ar-087

chitecture consisting of four core modules (Pro-088

file (Cai et al., 2024; Zhang et al., 2024c), Mem-089

ory (Shi et al., 2024; Fang et al., 2024), Plan-090

ning (Wang et al., 2023b; Shi et al., 2024), and Ac-091

tion (Zhu et al., 2024a; Zhao et al., 2024)) and ana-092

lyze how existing methods implement these com-093

ponents. Afterwards, we compile comprehensive094

comparisons of datasets and evaluation methodolo-095

gies, encompassing both standard recommendation096

metrics and novel evaluation approaches. Finally,097

we explore several promising future directions in098

this field.099

Comparison with existing surveys Recent sur-100

veys have made valuable contributions to under-101

standing LLM agents in information retrieval and102

recommender systems. Zhu et al. (Zhu et al.,103

2024b) presented a comprehensive survey on how104

LLM agents and recommender systems form a105

symbiotic relationship. Zhang et al. (Zhang et al.,106

2025) provided an even wider examination of LLM-107

empowered agents across both recommendation108

and search tasks. In Table 1, we report a gen-109

eral comparison between the related works. We110

can find that our survey provide analysis across all111

these critical aspects, which can enable researchers112

to develop a more complete understanding of the113

LLM-powered agents for recommender systems.114

(1) We propose a systematic categorization115

of LLM-powered recommender agents, identify-116

ing three fundamental paradigms: recommender-117

oriented, interaction-oriented, and simulation-118

oriented approaches. This taxonomy provides a119

structured framework for understanding.120

(2) We utilize an architectural framework for121

analyzing LLM-powered agent recommender, de-122

composing them into four essential modules: Pro-123

file Construction, Memory Management, Strategic124

Planning, and Action Execution. Through this, we125

systematically examine how existing methods inte-126

grate and implement these components. 127

(3) We provide a comprehensive comparative 128

analysis of existing methods, benchmark datasets, 129

and evaluation methodologies, encompassing both 130

traditional recommendation metrics and emerging 131

evaluation approaches specifically designed for 132

LLM-powered agent recommender. 133

2 Background 134

2.1 LLM as Agent 135

The LLMs as agents is an emerging research di- 136

rection that has garnered significant attention (Park 137

et al., 2023; Yao et al., 2023; Schick et al., 2023; 138

Shen et al., 2024). By transcending the traditional 139

static prompt-response paradigm, it establishes a 140

dynamic decision-making framework (Patil et al., 141

2023) capable of systematically decomposing com- 142

plex tasks into manageable components. A typical 143

LLM-powered agent architecture integrates four 144

fundamental modules (Wang et al., 2024a): (1) the 145

Profile module, which constructs and maintains 146

comprehensive user feature representations; (2) 147

the Memory module, which orchestrates historical 148

interactions and preserves contextual information 149

for systematic experience accumulation; (3) the 150

Planning module, which formulates strategic poli- 151

cies through sophisticated task decomposition and 152

multi-objective optimization; and (4) the Action 153

module, which executes decisions and facilitates 154

environment interaction. 155

2.2 LLM Agents for Recommendation 156

In LLM-powered agent for recommender systems, 157

we formulate the recommendation process through 158

an agent-centric framework. Let a ∈ A denote an 159

agent equipped with a set of functional modules 160

F = F1,F2, ...,FK , where each module Fk rep- 161

resents a specific capability. The recommendation 162

process for a user u can be formally expressed as: 163

ŷu = f(Fk(Xu)), k = 1 · · ·K , (1) 164

where Xu ∈ X represents the input space con- 165

taining user-specific information (e.g., interaction 166

history, contextual features), and ŷu ∈ RN denotes 167

the predicted preference distribution over the item 168

space. The integration function f : Fk(Xu) → 169

RN synthesizes module outputs to generate final 170

recommendations. Building upon the previously 171

introduced four functional module (Profile, Mem- 172

ory, Planning, and Action), this formulation pro- 173

vides a flexible framework that can accommodate 174
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Recommender-oriented Interaction-oriented Simulation-oriented

...Considering this preference, I would 
like to recommend Space Odyssey 

2001, a classic film that also explores 
profound themes about human and 

alien civilizations. What do you think?

historical 
preferences

AI xxxx
xxxxxxxx

historical 
preferences

AI

I like experimental 
music and want to 
explore new things.

=

I will click on the 
new song that 
combines jazz and 
electronic elements.

LLM AI

I have watched The Descent 
and Star Trek recently, can you 
recommend one movie for me?

 ML  ML  ML   AI   AI

generate strategic recommendation 
decisions based on historical behaviors

...

I don’t like...

...

...

Figure 1: Illustration of Different Method Objectives.
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Figure 2: Illustration of Agent Components and Corre-
sponding Functions.

various LLM-powered agent recommendation ap-175

proaches. These modules operate in a closed-loop176

framework, where interaction data continuously177

enriches user profiles and system memory, inform-178

ing planning strategies that ultimately manifest as179

personalized recommendations through action exe-180

cution and feedback collection.181

3 Methods182

In this section, we sort out existing LLM-powered183

agent recommendation works based on the overall184

objective of the method and the agent components185

of different methods.186

3.1 Method Objective187

In Table 2, we classify method objectives of exist-188

ing methods into three categories: recommender-189

oriented approaches, interaction-oriented methods,190

and simulation-oriented methods. The illustrations191

of categories are shown in Figure 1.192

(1) Recommender-oriented approaches fo-193

cus on developing intelligent recommendation194

equipped with enhanced planning, reasoning, mem-195

ory, and tool-using capabilities. In these ap-196

proaches, LLMs leverage users’ historical behav-197

iors to generate direct recommendation decisions.198

For instance, as shown in Figure 1, the model will 199

build and present multi-level content recommen- 200

dations based on the user’s historical preference 201

patterns. This paradigm demonstrates how agents 202

can effectively combine their core capabilities to 203

deliver direct item recommendations. For example, 204

RecMind (Wang et al., 2024b), which develops a 205

unified LLM agent with comprehensive capabili- 206

ties to generate recommendations directly through 207

LLM outputs. 208

Despite their significant potential, these ap- 209

proaches face two major challenges: (1) Incon- 210

sistency in objectives: the language modeling ob- 211

jective optimized by LLM differs from the recom- 212

mendation relevance objective, which may result 213

in fluent language but poor recommendation qual- 214

ity; (2) Computational efficiency bottleneck: the 215

high computational cost of directly using LLM to 216

generate recommendation decisions limits the real- 217

time recommendation capability and feasibility of 218

large-scale deployment. 219

(2) Interaction-oriented methods focus on en- 220

hancing the natural language interaction capabili- 221

ties and explainability of recommendation systems 222

through conversational interactions. This type of 223

method uses LLM to conduct human-like conver- 224

sations and provide recommendation explanations 225

to build a richer user experience. As shown in 226

Figure 1, LLM can track user preferences and nat- 227

urally express recommendation reasons in conver- 228

sations, making the recommendation process more 229

transparent and personalized. For example, Auto- 230

Concierge (Zeng et al., 2024) uses natural language 231

conversations to understand user needs and collect 232

user preferences, and uses LLM to understand and 233

generate language, ultimately providing explain- 234

able personalized restaurant recommendations. 235

Despite its promising prospects, this approach 236

faces two major challenges: (1) Implicit preference 237

extraction: Accurately identifying and quantifying 238

user preference signals from unstructured conver- 239
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sations is more complex than traditional explicit240

feedback; (2) Conversation strategy optimization:241

Achieving a dynamic balance between informa-242

tion acquisition, recommendation quality, and user243

experience, and determining the optimal decision244

sequence for when to ask questions, when to rec-245

ommend, and how to transition naturally remains246

difficult.247

(3) Simulation-oriented methods are committed248

to using LLM to reproduce real user behavior and249

preference patterns, which focus on using agents to250

simulate user behaviors and item characteristics in251

RSs. As shown in Figure 1, the system can simulate252

the user’s decision-making process and generate253

feedback that conforms to their interest character-254

istics, providing high-quality simulation data for255

the recommender systems. For example, UserSim-256

ulator proposes (Yoon et al., 2024) an evaluation257

protocol to assess LLMs as generative user simu-258

lators in conversational recommendation through259

five tasks to measure how closely these simulators260

can emulate authentic user behaviors.261

Although such methods have shown great poten-262

tial in the evaluation of recommendation systems,263

they still face the problem of difficulty in modeling264

complex situations: real user decisions are affected265

by environmental, emotional, and social factors.266

These complex situational factors are difficult to267

fully reproduce in a simulated environment, limit-268

ing the simulation system’s ability to model users.269

3.2 Agent Components270

The LLM-based agent recommendation architec-271

ture consists of four main modules: Profile Module,272

Memory Module, Planning Module, and Action273

Module. Figure 2 illustrates the core components274

of the architecture and corresponding functions.275

(1) Profile Module is a fundamental component276

that constructs and maintains dynamic represen-277

tations of users and items in recommender sys-278

tems. This module analyzes historical interaction279

data, identifies user behavior patterns, and forms280

structured representations to support personalized281

recommendations. For example, MACRec (Wang282

et al., 2024c) incorporates a user and item analyst,283

which play a crucial role in understanding user pref-284

erences and item characteristics. AgentCF (Zhang285

et al., 2024c) constructs natural language-based286

user profiles to capture dynamic user preferences287

and item profiles to represent item characteristics288

and potential adopters’ preferences, enabling per-289

sonalized agent-based collaborative filtering.290

Despite the progress, current methods still have 291

key limitations: the representation structure lacks 292

flexibility and is difficult to adapt to emerging user 293

behavior patterns; the temporal modeling capabil- 294

ity is insufficient and there is a lack of effective 295

mechanisms to balance long-term preferences with 296

short-term interests; and the profile update strategy 297

is overly simplified and fails to differentiate based 298

on the importance of information. 299

(2) Memory Module serves as a contextual 300

brain that manages and leverages historical interac- 301

tions and experiences to enhance recommendation 302

quality. This module usually adopts a hierarchi- 303

cal structure design, including different types such 304

as short-term/long-term memory and perceptual 305

memory, forming a multi-level memory storage 306

and retrieval mechanism. The structured memory 307

system enables the system to distinguish and pro- 308

cess instant interactive information, accumulate 309

personalized preferences and maintain long-term 310

consistency, providing comprehensive contextual 311

support for decision-making. For example, RecA- 312

gent (Wang et al., 2023a) comprises three hierar- 313

chical levels: sensory memory, short-term mem- 314

ory, and long-term memory. The sensory memory 315

processes environmental inputs, while short-term 316

memory serves as an intermediate layer that can 317

be transformed into long-term memory through 318

repetitive reinforcement. 319

However, it also faces the following problems: 320

(1) Retrieval efficiency: The accumulation of his- 321

torical data leads to a decrease in the efficiency 322

of locating key information in large-scale memory 323

libraries, which is particularly evident in real-time 324

recommendation scenarios; (2) Memory bloat: The 325

lack of an effective forgetting mechanism causes 326

the system to accumulate outdated information, in- 327

creasing the computational burden and introducing 328

noise, which affects the quality of recommenda- 329

tions. 330

(3) Planning Module outputs intelligent recom- 331

mendation strategies by designing multi-step ac- 332

tion plans that balance immediate user satisfaction 333

with long-term engagement goals. It dynamically 334

formulates recommendation trajectories through 335

careful strategy generation and task sequencing. 336

For example, in video recommendation, the system 337

might construct a strategic plan: “first recommend 338

a popular video to establish user interest, and then 339

gradually introduce niche but high-quality related 340

content, while maintaining the diversity of genres, 341

and ultimately achieve the goal of both satisfying 342
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Category Methods Profile Module Memory Module Planning Module Action Module

Recommender-
oriented
Method

RAH (Shu et al., 2024) × ✓ ✓ ✓

ToolRec (Zhao et al., 2024) × ✓ × ✓

PMS (Thakkar and Yadav, 2024a) ✓ × × ✓

DRDT (Wang et al., 2023b) × × ✓ ×

BiLLP (Shi et al., 2024) × ✓ ✓ ✓

RecMind (Wang et al., 2024b) × ✓ ✓ ✓

MACRec (Wang et al., 2024c) ✓ × ✓ ✓

Interaction-
oriented
Method

AutoConcierge (Zeng et al., 2024) × ✓ ✓ ✓

MACRS (Fang et al., 2024) ✓ ✓ ✓ ✓

RecLLM (Friedman et al., 2023) ✓ ✓ × ✓

InteRecAgent (Huang et al., 2023) ✓ ✓ ✓ ✓

MAS (Thakkar and Yadav, 2024b) ✓ ✓ ✓ ✓

H-MACRS (Nie et al., 2024) ✓ ✓ × ✓

Rec4Agentverse (Zhang et al., 2024b) ✓ × ✓ ×

Simulation-
oriented
Method

KGLA (Guo et al., 2024) ✓ ✓ × ✓

CSHI (Zhu et al., 2024a) ✓ ✓ × ✓

SUBER (Corecco et al., 2024) ✓ ✓ × ×

LUSIM (Zhang et al., 2024d) ✓ ✓ × ×

FLOW (Cai et al., 2024) ✓ ✓ × ✓

Agent4Rec (Zhang et al., 2024a) ✓ ✓ × ✓

AgentCF (Zhang et al., 2024c) ✓ ✓ × ✓

UserSimulator (Yoon et al., 2024) ✓ × × ✓

RecAgent (Wang et al., 2023a) ✓ ✓ × ✓

Table 2: Comparative analysis of LLM-powered agent recommendation methods, detailing their methodological
orientation (Recommender, Interaction, or Simulation-oriented) and the incorporation of core architectural modules
(Profile, Memory, Planning, Action).

user interest and expanding horizons”. Through343

this planning approach, the module optimizes re-344

source allocation and adapts recommendation se-345

quences to achieve both user engagement and item346

discovery.347

BiLLP (Shi et al., 2024) planning mechanism348

employs a hierarchical structure with two lev-349

els: macro-learning (Planner and Reflector LLMs)350

generates high-level strategic plans and guide-351

lines from experience, while micro-learning (Actor-352

Critic) translates these plans into specific recom-353

mendations. MACRS (Fang et al., 2024) uses354

a multi-agent planning system where a Planner355

Agent coordinates three Responder Agents (Ask,356

Recommend, Chat) through multi-step reasoning.357

The system adjusts its dialogue strategy through a358

feedback mechanism, enabling reflective planning359

based on user interactions.360

(4) Action Module serves as the execution en-361

gine that transforms decisions into concrete rec-362

ommendations through systematic interaction with363

various system components. For example, in an364

e-commerce scenario, when receiving the direc-365

tive “recommend entry-level camera for new user”366

from the Planning Module, the Action Module367

executes a coordinated sequence: analyzing pur- 368

chase patterns of similar users, querying the prod- 369

uct database with specific price and feature con- 370

straints, generating targeted recommendations, and 371

capturing user feedback. This execution enables 372

the system to deliver contextually appropriate rec- 373

ommendations while continuously learning from 374

interaction outcomes. 375

RecAgent (Wang et al., 2023a) orchestrates nat- 376

uralistic agent interactions within recommender 377

systems and social environments through a uni- 378

fied prompting framework, incorporating six action 379

modalities (encompassing search, browse, click, 380

pagination, chat, and broadcast functionalities). In- 381

teRecAgent (Huang et al., 2023) action module 382

integrates three core tools (information querying, 383

item retrieval, and item ranking) while leveraging a 384

Candidate Bus for sequential tool communication, 385

enabling an end-to-end interactive process from 386

user queries to final recommendations. 387

4 Datasets and Evaluations 388

4.1 Datasets 389

The evaluation of LLM agent-based recommenda- 390

tion systems usually uses two key datasets: tradi- 391

5



tional recommendation datasets and conversational392

recommendation datasets. The former provides393

large-scale user-item interaction records, while the394

latter contains multi-round conversation scenarios,395

which together constitute a comprehensive evalua-396

tion framework.397

Traditional Recommendation Dataset In Ta-398

ble 3, we list several traditional recommendation399

datasets for evaluating model performance. Several400

state-of-the-art methods have demonstrated their401

effectiveness using these datasets.402

For instance, the “Books” dataset (10.3M403

users, 4.4M items) from Amazon Review404

data (McAuley et al., 2015) has been used to405

evaluate Agent4Rec (Zhang et al., 2024a) and406

BiLLP (Shi et al., 2024) performance on large-407

scale tasks, while the “Video Games” dataset (2.8M408

users, 137.2K items) has validated DRDT (Wang409

et al., 2023b) and RAH (Shu et al., 2024) capabil-410

ities. The “Beauty” dataset (632K users, 112.6K411

items) has been utilized by IntcRecAgent (Huang412

et al., 2023) and DRDT (Wang et al., 2023b) to413

demonstrate their proficiency in recommendation.414

These diverse applications underscore the datasets’415

crucial role in advancing LLM-powered agent rec-416

ommender systems and providing a foundation for417

evaluating various of algorithms.418

The Steam, Lastfm, Anime, and Yelp datasets419

provide diverse domain-specific evaluation sce-420

narios for LLM-powered agent recommender sys-421

tems. The Steam dataset, introduced by (Kang and422

McAuley, 2018), contains 3.7M interactions be-423

tween 334.7K users and 13K gaming items, and424

has been extensively used by methods such as425

Agent4Rec (Zhang et al., 2024a), BiLLP (Shi et al.,426

2024), FLOW (Cai et al., 2024), and InteRecA-427

gent (Huang et al., 2023) to validate their effec-428

tiveness in game recommendation. The Lastfm429

dataset (Cantador et al., 2011), focusing on mu-430

sic recommendation, comprises 73.5K interactions431

from 1.2K users on 4.6K music items, and has been432

specifically utilized by FLOW (Cai et al., 2024) to433

demonstrate its capabilities in the music domain.434

Additionally, the Yelp dataset, containing 316.3K435

interactions between 30.4K users and 20.4K items,436

has been employed by RecMind (Wang et al.,437

2024b) to evaluate its performance in recommenda-438

tions. These domain-specific datasets offer unique439

evaluation opportunities in specialized recommen-440

dation contexts.441

Conversational Recommendation Dataset In 442

addition to the above traditional recommendation 443

datasets, some works (Zhu et al., 2024a) evaluate 444

the model performance on conversational datasets. 445

In Table 3, we list three widely-adopted datasets: 446

ReDial (Li et al., 2018), Reddit (He et al., 2023), 447

and OpenDialKG (Moon et al., 2019). CSHI (Zhu 448

et al., 2024a) employs ReDial (movie domain, in- 449

cluding 10006 dialogues) and OpenDialKG (multi- 450

ple domains, including 13802 dialogues) for perfor- 451

mance evaluation. These authentic human-human 452

conversations serve as crucial benchmarks for as- 453

sessing the model capabilities of LLM-powered 454

agents recommender systems. 455

However, these datasets face three significant 456

challenges in the context of LLM agent-based rec- 457

ommendation research: (1) Existing benchmarks 458

were primarily designed for traditional recommen- 459

dation algorithms rather than agent-based systems, 460

making it difficult to comprehensively evaluate 461

unique agent capabilities such as reasoning, mem- 462

ory utilization, and strategic planning. This mis- 463

alignment limits our ability to accurately assess 464

the true advantages of LLM agent approaches over 465

conventional methods. (2) The inherent need for 466

frequent LLM API calls during both training and 467

evaluation creates significant computational bottle- 468

necks. This has led researchers to adopt sampling 469

strategies—as evidenced by AgentCF’s 100-user 470

subsets (Zhang et al., 2024c) and DRDT’s 200-user 471

evaluation protocol—which (Wang et al., 2023b), 472

while practical, may compromise the statistical ro- 473

bustness of performance assessments and poten- 474

tially obscure algorithm behaviors on long-tail dis- 475

tributions. (3) Many benchmark datasets likely 476

overlap with LLM pre-training corpora, creating 477

potential data leakage. This contamination risk is 478

particularly problematic for fair evaluation, as it 479

becomes difficult to distinguish between genuine 480

reasoning capabilities and mere regurgitation of 481

memorized patterns, potentially leading to overly 482

optimistic conclusions about model effectiveness. 483

4.2 Evaluation 484

In Table 4, we summary the evaluation metrics used 485

by recent representative methods. 486

Standard Recommendation Metrics Most ex- 487

isting methods employ standard recommendation 488

evaluation metrics to assess model performance. 489

The commonly utilized metrics including Normal- 490

ized Discounted Cumulative Gain (NDCG@K), 491
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Category Datasets Reference Users Items Interactions Conversations Turns Methods

Traditional
Recommendation

Dataset

Books

(McAuley et al., 2015)

10.3M 4.4M 29.5M - - Agent4Rec, BiLLP, RAH,
SUBER

CDs and Vinyl 1.8M 701.7K 4.8M - - AgentCF, KGLA, Tool-
Rec

Video Games 2.8M 137.2K 4.6M - - DRDT, RAH, LUSIM
Beauty 632.0K 112.6K 701.5K - - InteRecAgent, DRDT,

RecMind
Clothing 22.6M 7.2M 66.0M - - DRDT
Movies 6.5M 747.8K 17.3M - - RAH, LUSIM

Office Products 7.6M 710.4K 12.8M - - AgentCF
Music 101.0K 70.5K 130.4K - - LUSIM

Movielens-100K

(Harper and Konstan, 2015)

0.9K 1.6K 100K - - FLOW, MACRS, SUBER
Movielens-1M 6K 3.7K 1.0M - - Agent4Rec, RecAgent,

DRDT, MACRS, ToolRec
Movielens-10M 69.9K 10.6K 10M - - InteRecAgent
Movielens-20M 138.5K 27.3K 20M - - MACRS, UserSimulator

Steam (Kang and McAuley,
2018)

334.7K 13K 3.7M - - Agent4Rec, BiLLP,
FLOW, InteRecAgent

Lastfm (Cantador et al., 2011) 1.2K 4.6K 73.5K - - FLOW

Yelp https://www.yelp.
com/dataset

30.4K 20.4K 316.3K - - RecMind, ToolRec,
LUSIM

Anime https://www.kaggle.
com/datasets

73.5K 12.2K 1.05M - - LUSIM

Conversational
Recommendation

Dataset

ReDial (Li et al., 2018) 0.9K 51.6K - 10K - UserSimulator, CSHI
Reddit (He et al., 2023) 36.2K 51.2K - 634.4K 1.6M UserSimulator

OpenDialKG (Moon et al., 2019) - - - 15.6K 91.2K CSHI

Table 3: Summary of Used Experimental Datasets.

Category Metrics Methods

Standard Recommendation

NDCG@K, Recall@K, HR@K,
Hit@K, MRR, Acc, F1-Score, MAP

DRDT, RecMind, InteRecAgent, RAH,
MACRS, PMS, Agent4Rec, AgentCF,
KGLA, FLOW, CSHI, ToolRec,
SUBER

RMSE, MAE, MSE RecMind

Language Generation Quality BLEU, ROUGE RecMind, PMS

Reinforcement Learning Rewards LUSIM, BiLLP, SUBER

Conversational Efficiency Average Turn (AT), Success Rate (SR) InteRecAgent, MACRS, CSHI

Custom Indicators

Proactivity, Economy, Explainability,
Correctness, Consistency, Efficiency

AutoConcierge

Simulated user behaviors believability,
Agent memory believability

RecAgent

Table 4: Summary of Used Evaluation Metrics.

Recall@K and Hit Ratio@K (HR@K), etc. For492

instance, AgentCF (Zhang et al., 2024c) evalu-493

ates its performance using NDCG@K and Re-494

call@K on the MovieLens-1M dataset. Simi-495

larly, DRDT (Wang et al., 2023b) conducts com-496

prehensive evaluations using Recall@10,20 and497

NDCG@10,20 across multiple datasets includ-498

ing ML-1M, Games, and Luxury datasets. Hit499

Ratio@K (HR@K) is another crucial metric for500

evaluating recommendation performance. Rec-501

Mind (Wang et al., 2024b) employ that for evaluat-502

ing the recommendation tasks on Amazon Reviews503

(Beauty) and Yelp datasets.504

Language Generation Quality Some meth-505

ods (Wang et al., 2024b) consider the evaluation506

of language generation quality (e.g., recommen-507

dation explanation generation, review summariza-508

tion), which primarily rely on BLEU and ROUGE509

metrics. BLEU measures the precision of gener- 510

ated text against references, while ROUGE evalu- 511

ates recall-based similarity, enabling comprehen- 512

sive assessment of language generation capabilities 513

in recommendation scenarios. PMS (Thakkar and 514

Yadav, 2024a) utilizes the ROUGE to evaluate the 515

quality of its generated textual recommendations. 516

Reinforcement Learning Metrics In evaluat- 517

ing LLM-powered agent recommender systems for 518

long-term engagement, BiLLP (Shi et al., 2024) 519

employs three key metrics adopted from reinforce- 520

ment learning: trajectory length, average single- 521

round reward, and cumulative trajectory reward. 522

Similarly, LUSIM (Zhang et al., 2024d) uses the 523

total reward to reflect the overall user engagement 524

during the entire interaction process, and the av- 525

erage reward to represent the average quality of a 526

single recommendation. These metrics are to eval- 527
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uate both immediate recommendation quality and528

long-term engagement effectiveness.529

Conversational Efficiency Metrics Recent re-530

search has introduced more comprehensive met-531

rics to evaluate the efficiency of conversational532

interactions in recommender systems. For in-533

stance, MACRS (Fang et al., 2024) employs key534

interaction-focused metrics such as Success Rate535

(proportion of successful recommendations) and536

Average Turn (AT) (number of interaction rounds537

needed to reach a recommendation) per session.538

These metrics assess how effectively the system can539

understand user preferences and deliver accurate540

recommendations while minimizing the number of541

interaction turns.542

Custom Indicators Beyond conventional met-543

rics, some methods (Yoon et al., 2024) pro-544

pose customized evaluation frameworks. Auto-545

Concierge (Zeng et al., 2024) presents six evalua-546

tion metrics for task-driven conversational agents:547

proactivity, economy, explainability, correctness,548

consistency, and efficiency. RecAgent (Wang et al.,549

2023a) proposes simulated user behaviors believ-550

ability and Agent memory believability, to assess551

the credibility of LLM-simulated user interactions552

and memory mechanism effectiveness. These met-553

rics assess system engagement, dialogue efficiency,554

answer interpretability, response accuracy, require-555

ment fulfillment, and response time, respectively.556

This diversity of evaluation methodologies re-557

flects the complexity of LLM-powered agent rec-558

ommenders but also introduces significant chal-559

lenges. The lack of standardization across stud-560

ies makes direct comparison between different ap-561

proaches difficult. Many custom metrics remain562

unvalidated across diverse datasets and use cases,563

raising questions about their generalizability. Fur-564

thermore, existing evaluation frameworks often as-565

sess individual aspects of performance in isolation,566

failing to capture the inherent trade-offs between567

recommendation accuracy, language quality, inter-568

action efficiency, and user experience.569

5 Related Research Fields570

LLM-powered Recommender Systems In re-571

cent years, recommender systems based on572

Large Language Models (LLMs) have attracted573

widespread attention. Such systems make full use574

of the powerful language understanding and genera-575

tion capabilities of LLMs, bringing a new paradigm576

to traditional recommender systems. Most exist- 577

ing methods are primarily designed for rating pre- 578

diction (Bao et al., 2023) and sequential recom- 579

mendation (Hou et al., 2024; Zheng et al., 2024). 580

CoLLM (Zhang et al., 2023) captures and maps 581

the collaborative information through external tra- 582

ditional models, forming collaborative embeddings 583

used by LLMs. LlamaRec (Yue et al., 2023) fine- 584

tunes Llama-2-7b for list-wise ranking of the pre- 585

selected items. However, these methods would face 586

significant limitations: the inability to simulate au- 587

thentic user behaviors for enhanced personaliza- 588

tion, the lack of effective memory mechanisms for 589

long-term context awareness, and the rigid pipeline 590

structure that prevents flexible task decomposition 591

and seamless integration with external tools. 592

6 Future Directions 593

Refinement of Evaluation Framework There 594

is a notable absence of unified and comprehensive 595

evaluation standards for accurately measuring di- 596

alogue quality and recommendation effectiveness. 597

Future research necessitates the establishment of ro- 598

bust evaluation frameworks, development of novel 599

performance metrics, and consideration of privacy 600

and security concerns in practical applications. 601

Security Recommender System (Ning et al., 602

2024) reveals the vulnerability of LLM-empowered 603

recommender systems to adversarial attacks. In 604

future, the researchers could develop robust adver- 605

sarial detection methods, investigate multi-agent 606

defensive architectures, and integrating domain- 607

specific security knowledge into defense. 608

7 Conclusion 609

Recent, the integration of LLM-powered agents 610

into recommender systems has emerged as a sig- 611

nificant advancement. In this survey, we estab- 612

lished a systematic taxonomy categorizing existing 613

approaches into three paradigms: recommender- 614

oriented, interaction-oriented, and simulation- 615

oriented. We analyzed these methods through a 616

comprehensive four-module architectural frame- 617

work and critically examined the datasets and eval- 618

uation methodologies employed across the litera- 619

ture. Finally, we identify two promising directions 620

for future exploration. 621

8 Limitation 622

First, our classification framework, while effective 623

for current approaches, may require extension as 624

8



novel hybrid methods continue to emerge at the in-625

tersection of our proposed paradigms. Second, due626

to the limited adoption of LLM-powered recom-627

mendation agents in industrial settings thus far, our628

survey does not extensively explore commercial629

implementations and their unique challenges.630
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