
Under review as a conference paper at ICLR 2023

THE MULTIPLE SUBNETWORK HYPOTHESIS
ENABLING MULTIDOMAIN LEARNING BY ISOLATING TASK-SPECIFIC SUBNET-
WORKS IN FEEDFORWARD NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks have seen an explosion of usage and research in the past decade,
particularly within the domains of computer vision and natural language process-
ing. However, only recently have advancements in neural networks yielded perfor-
mance improvements beyond narrow applications and translated to expanded mul-
titask models capable of generalizing across multiple data types and modalities.
Simultaneously, it has been shown that neural networks are overparameterized to a
high degree, and pruning techniques have proved capable of significantly reducing
the number of active weights within the network while largely preserving perfor-
mance. In this work, we identify a methodology and network representational
structure which allows a pruned network to employ previously unused weights to
learn subsequent tasks. We employ these methodologies on well-known bench-
marking datasets for testing purposes and show that networks trained using our
approaches are able to learn multiple tasks, which may be related or unrelated, in
parallel or in sequence without sacrificing performance on any task or exhibiting
catastrophic forgetting.

1 INTRODUCTION

It is well known and documented that artificial neural networks (ANNs) are often overparameterized,
resulting in computational inefficiency (LeCun et al., 1990; Liu et al., 2019). Applying unstructured
pruning to an ANN pares down the number of active weights by identifying which subset of weights
in an ANN is most important for the model’s predictive performance and discarding those which are
less important or even entirely unnecessary. This technique has been shown to reduce the compu-
tational cost of using and storing a model without necessarily affecting model accuracy (Frankle &
Carbin, 2019; Suzuki et al., 2001; Han et al., 2016; Lis et al., 2019; Wang et al., 2021). This phe-
nomenon naturally raises a corollary question: are pruned weights entirely useless, or could weights
identified as being unnecessary for one task be retained and used to learn other tasks? Further, can
the ANN’s performance on learned tasks be preserved while these weights learn to perform new
tasks?

The exploration of these questions leads us to propose the multitple subnetwork hypothesis – that
a dense, randomly-initialized feedforward ANN contains within its architecture multiple disjoint
subnetworks which can be utilized together to learn and make accurate predictions on multiple
tasks, regardless of the degree of similarity between tasks or input types. Instead of focusing on
matching or surpassing state of the art results on the data sets and tasks presented in this study, we
focus on testing the multiple subnetwork hypothesis on a set of standardized network architectures
and compare multitask model performance with traditionally trained, single-task models of identical
architectures.

An obstacle to developing multitask ANNs is the tendency of ANNs to exhibit catastrophic for-
getting (CF), during which they destroy internal state representations used in learning previously
acquired tasks when learning a new task (French, 1999; Goodfellow et al., 2013; Pfülb & Gepperth,
2019)). CF is especially pronounced in continuous learning paradigms with a low degree of inter-
task relatedness (Aljundi et al., 2017; Ma et al., 2018; Masana et al., 2021), posing a challenge to
creating multitask models able to perform prediction or classification across very different tasks,
input data types, or input shapes.

1



Under review as a conference paper at ICLR 2023

Isolating parameters for a given task, thereby fixing parameter subsets for a given task, is a means
of minimizing the effects of CF in a continuous learning context (Delange et al., 2021). Parameter
isolation methods localize the performance of learned tasks over a physically (Yoon et al., 2018;
Rusu et al., 2016; Mallya & Lazebnik, 2018) or logically (Liu et al., 2019; Serra et al., 2018; Mallya
et al., 2018) isolated region of an ANN, reducing or eliminating the interaction of weights responsi-
ble for a given task, therefore minimizing the opportunity for the acquisition of new tasks to interfere
with the ability of an ANN to continue to perform previously learned tasks. While the isolation of
subnetworks is the surest way to prevent interference arising from learning new tasks, this method
can scale poorly under memory and computational constraints and therefore demands a flexible
approach to limiting network capacity (Yoon et al., 2018) or minimizing the size of the network
utilized for each task. Our methodology aims to negate the high computational cost of parameter
isolation by representing multidomain multitask models as sparse tensors, thereby minimizing their
computational footprint. In this work, we demonstrate the implications of the multiple subnetwork
hypothesis through a set of experiments, the results of which demonstrate that our model training
procedure and multitask representational structure can be used to create multiclass models with
reduced computational footprints which are capable of overcoming CF.

2 METHODOLOGY

In this section, we will discuss how we enable a single model to learn multiple tasks across multiple
domains and datatypes through both a task-specific weight representational structure and a modified
training procedure which selects disjoint subsets of network weights for each individual task.

2.1 MULTITASK REPRESENTATIONAL STRUCTURE

The weights of fully connected neural network layers traditionally consist of a kernel tensor, k, of
shape m× n, and a bias vector, b, of length n, where m denotes the number of columns in the input
data and n denotes the number of neurons within the layer. To process input data x̄, the decision
function is thus Φ(kx̄+ b), where Φ denotes the layer’s activation function. Suppose then that there
are inputs from two different distributions, x̄1 and x̄2. Given the two-dimensional structure of the
kernel tensor in this traditional representation, there is no way to alter the decision function given
the distribution currently selected.

To address this problem, we add a new dimension, t, to the kernel tensor and the bias vector within
the layer to denote which distribution or task the input data belongs to, leaving the kernel tensor
with a shape of t ×m × n and transforming the bias vector into a bias matrix of shape t × n. The
decision function for this new layer is thus altered to that in Equation 1.

F (x̄, i) = Φ(kix̄+ bi) (1)

We take a similar approach for convolutional layers. For a two-dimensional convolutions with color
channels, the kernel is of shape s1 × s2 × c × f , where s1 and s2 denote the height and width of
the convolutional filters, c represents the number of channels in the input, and f corresponds to the
number of filters. The bias vector in this scenario has length f . In our multitask representation of
the convolutional layer, we once more add a new dimension to the front of both the kernel tensor
and the bias vector to denote the task.

2.2 SPARSIFICATION AND SUBNETWORK IDENTIFICATION

While the multitask representational structure described above could theoretically be used to enable
a network to learn multiple tasks as-is, it alone does not help us answer our hypothesis. Alone, this
structure allows multiple networks to be combined into a single model, as the number of param-
eters within each layer is increased by a factor of the number of tasks. To fully test our multiple
subnetwork hypothesis, we devised the Reduction of Sub-Network Neuroplasticity (RSN2) training
procedure, which ensures that only one weight along the task dimension is active for all other fixed
indices in multitask layers. In other words, due to the nature of RSN2’s pruning schema, no two
fixed weights along the task dimension, t, are active after pruning.

2



Under review as a conference paper at ICLR 2023

Algorithm 1 RSN2 Training Procedure
Input: Neural Network F (x), Training data for multiple tasks, Xi, Yi, i ∈ {1, 2, .., N}
for i ∈ {1, 2, .., N} do

Choose pi, pi ∈ (0, 100), ensuring
∑N

i=1 pi <= 100
Mask all weights which have been used for previous tasks
Unmask all weights which have not been used for previous tasks
Select (xi, yi) as a subset of training data and labels for the current task
Calculate weight gradients with respect to (xi, yi)
Set all masked weight gradients to 0
Identify the quantity qi such that p% of weight gradients with respect to (xi, yi) is less than qi
Deactivate all weights with gradients less than qi and do not allow them to train
Train the network as usual, only altering identified active weights and keeping all other weights
masked
Save all weight values for the specified task

end for
At inference time for task i, unmask only stored weights for task i and perform inference as usual

I(x) =

{
1, if x ̸= 0
0, otherwise

}
(2)

Mathematically, we utilize the indicator function from Equation 2 as an activation function to indi-
cate whether an individual weight is active or inactive within a layer. Using this function, we can
therefore demonstrate whether disjoint subnetworks are active for all tasks by taking the sum of the
indicator function across the task dimension for all other fixed indices. If for all fixed indices, b and
c, the condition present in Equation 3 holds, then each weight is only active once across all tasks,
meaning the task dimension adds no additional active weights to the network layer.

t∑
a=1

I(ka,b,c) ≤ 1; b, c fixed (3)

We utilize binary masking in our training procedure to impose these conditions. These masks there-
fore ensure only select weights are active during training through the bitwise multiplication of the
weight value and the mask value.

For weight selection and pruning, we utilize a gradient-based approach to identify which weights
are to be selected for each task. By performing pruning in this manner, all pruning is done in a
one-shot manner after initialization rather than iteratively as the model trains, with the pruning rate
a hyperparameter selected at training time. The entirety of the RSN2 training procedure for a single
network layer can be found in Algorithm 1. For performing inference, the masks used for training
can be removed, thus reducing the number of active weights to a maximum value of t∗p∗W , where t
represents the number of tasks, p the maximum proportion of weights active for any one task, and W
the number of weights which would be present in the network had a traditional, one-task structure
been used. Note that to satisfy Equation 1, t ∗ p ≤ 1. As a result, the RSN2 procedure, when
coupled with the multitask representational structure defined above, identifies and separates disjoint
subnetworks within a traditional network to allow each to individually perform separate tasks. Due
to the lack of interaction between these subnetworks in the resulting model, similarity between tasks
is not required, and no transfer learning will occur between tasks. For a visual representation of the
pruning methodology, we refer the reader to Appendix A.

2.3 EXPERIMENTS

We test our methodologies across a variety of experiments utilizing multiple datasets and various
model architectures to test the multiple subnetwork hypothesis and RSN2 training procedure. In our
first experiment, we test the merits of the hypothesis by identifying whether a single network can
learn the same task multiple times. To test this, we create a single convolutional multitask network
and isolate five separate subnetworks within it, each utilizing a disjoint 20% of the weights within

3



Under review as a conference paper at ICLR 2023

the overall network architecture. We then train each of these subnetworks on the Fashion MNIST
dataset (Xiao et al., 2017). The performances of each of these subnetworks, as well as the ensemble
of all five subnetworks, are then compared to a the performance of a dedicated network of identical
architecture.

For our second experiment, we train a fully-connected network to perform both the MNIST Digit
Recognition (LeCun & Cortes, 2010) and Fashion MNIST tasks and compare the performance of a
single network to two dedicated networks. This experiment is the first we perform to test whether a
single network can truly learn different tasks from multiple different domains and distributions, and
it is the first experiment designed to show whether a fully connected network can perform multiple
tasks.

In our third experiment, we train a convolutional network to perform both MNIST tasks from the
previous experiment. This network is identical in architecture to all convolutional architectures
trained previously, and once again this network is compared to two dedicated networks of the same
architecture.

Our fourth experiment tests whether a single network can learn multiple tasks across an even wider
array of input data types. For this experiment, we train a single fully-connected network to perform
four tasks: both MNIST tasks, the Boston housing regression task, and an IMDB reviews sentiment
classification task (Maas et al., 2011).

Our fifth experiment seeks to explore the feasibility of our methodologies in the context of more
complicated tasks. For this experiment, we trained a single convolutional model to perform four
tasks. The first three of these are the age, gender, and ethnicity prediction tasks from the UTK-
Face dataset (Zhang et al., 2017). The fourth task is the CIFAR10 task (Krizhevsky et al.). This
experimental network is tested against four dedicated networks of identical architectures.

Our final experiment tests our training procedure on a single-task transformer-based architecture,
with a primary focus on testing the pruning and optimization capabilities of RSN2. For this ex-
periment, we tested an unpruned transformer-based model’s performance on the Reuters-21578,
Distribution 1.0 dataset accessed via the UCI Machine Learning Repository (Dua & Graff, 2017).

3 RESULTS

In this section, we present the results for each experiment conducted. Firstly, we present the results
for each control model for all tasks, as well as describe the model architectures and training sched-
ules, as well as any data preprocessing steps which were taken. For control results, each control
model was created only once and will therefore be presented with greater detail upon first presenta-
tion, but its results will be included in every pertinent experiment. For more detailed indicators of
performance for all models, as well as mappings between integer labels and their respective classes,
we refer the reader to the appendices.

3.1 EXPERIMENT 1: MNIST FASHION ENSEMBLE, CONVOLUTIONAL ARCHITECTURE

Our first experiment involved creating a single convolutional network with five disjoint subnetworks
each trained on the MNIST Fashion dataset. We utilized a convolutional architecture with two
convolutional blocks, with the first block containing two convolutional layers with thirty-two 3× 3
filters and ReLU activation (Agarap, 2018) followed by maximum pooling over a 2 × 2 filter area.
The second convolutional block was identical to the first, except each of the convolutional layers
utilized sixty-four filters. The output to the convolutional blocks were then flattened and fed into
two fully-connected layers with 256 neurons each and ReLU activation. A final fully-connected
layer with ten neurons and softmax activation was used to provide the final outputs. The only
preprocessing which was done on input data was a division of pixel values by 255 to ensure all input
values were within the interval from 0 to 1. The model was trained using a batch size of 512, and
early stopping was initialized after three epochs with no improvement of greater than 0.01 in loss on
validation data. The same architecture, preprocessing steps, and training procedure were used in the
experimental case as well, with each subnetwork pruned so that 20% of the network weights were
allocated to each task. A summary of results can be found in Table 1.

4



Under review as a conference paper at ICLR 2023

Table 1: Experiment 1 Results.

NETWORK ACCURACY PRUNING RATE
EXPERIMENTAL

SUBNETWORK 1 90% 80%
SUBNETWORK 2 90% 80%
SUBNETWORK 3 90% 80%
SUBNETWORK 4 90% 80%
SUBNETWORK 5 92% 80%
ENSEMBLE 92% 80% EACH

CONTROL
MNIST FASHION 92% N/A

Table 2: Experiment 2 results.

NETWORK ACCURACY PRUNING RATE
EXPERIMENTAL

MNIST DIGIT 97% 90%
MNIST FASHION 86% 90%

CONTROL
MNIST DIGIT 97% N/A
MNIST FASHION 88% N/A

3.2 EXPERIMENT 2: MNIST DIGITS AND MNIST FASHION MODEL, FULLY-CONNECTED
ARCHITECTURE

Our second experiment is the first experiment to truly test whether a single model can learn disparate
tasks across a variety of data modalities. To do this, we trained a single fully-connected network
to perform both the MNIST Digit Recognition and the MNIST Fashion Recognition tasks. For this
experiment, we preprocessed the data for both tasks once more by dividing each pixel value by 255.
Each image was then flattened into a two-dimensional vector. The images would then be passed
through six fully connected layers each containing 1000 artificial neurons each and activated using
the ReLU activation function. The final layer contained ten neurons which were activated with the
softmax activation function. The model was trained with the same early stopping conditions as all
previous models, and a batch size of 512 was used once more. The experimental model was trained
using the same procedure and with the same architecture, with each task pruned to utilize 10% of
the network weights. The results of this experiment can be found in Table 2.

3.3 EXPERIMENT 3: MNIST FASHION TWO-TASK MODEL, CONVOLUTIONAL
ARCHITECTURE

For our third experiment, we utilized an identical architecture, data preprocessing, and training pro-
cedure to the previous experiment but trained two individual subnetworks within that architecture.
We trained the first subnetwork on the five classes which were most easily identified by the control
model, measured by F1 score, and we trained the second subnetwork on the five classes which were
the most difficult for the control model to identify, also measured by F1 score. The results of the
experiment can be found in Table 3.

3.4 EXPERIMENT 4: MNIST DIGIT, MNIST FASHION, BOSTON HOUSING, AND IMDB
REVIEWS MODEL, FULLY-CONNECTED ARCHITECTURE

Our fourth experiment provides perhaps the most wide-ranging set of tasks for a single network,
and as a result it is perhaps the best test of our multiple subnetwork hypothesis. In this experi-
ment, we utilized a single fully-connected neural network and trained the network on four separate
tasks; the first two of these tasks, both the MNIST Digit and MNIST Fashion tasks, were trained
simultaneously. The third task, the Boston Housing regression task, was then trained. Finally, the
IMDB reviews sentiment classification task was trained. The same architecture as previously used
in all fully-connected experiments was used in this experiment. For the MNIST and Boston Housing

5



Under review as a conference paper at ICLR 2023

Table 3: Experiment 3 results.

NETWORK ACCURACY PRUNING RATE
EXPERIMENTAL

EASY TASK 98% 80%
HARD TASK 84% 80%

CONTROL
MNIST FASHION 92% N/A

Table 4: Experiment 4 results. In the performance column, percentages correspond to accuracy
percentage on test data, while decimals represent mean squared error on test data.

NETWORK PERFORMANCE PRUNING RATE
EXPERIMENTAL

MINST DIGIT 97% 90%
MNIST FASHION 87% 90%
BOSTON HOUSING 0.011 90%
IMDB 82% 90%

CONTROL
MNIST DIGIT 97% N/A
MNIST FASHION 88% N/A
BOSTON HOUSING 0.017 N/A
IMDB 80% N/A

tasks, the same preprocessing and reshaping efforts took place as previous experiments with fully-
connected architectures. For the IMDB task, only the most common 10000 words were utilized and
sequences were padded (or truncated) to 128 words, with both padding and truncating occurring
at the end of the review. Furthermore, each of the input tokens was passed through an embedding
layer, which embedded the token in a two-dimensional vector space. The embedded tensors were
then flattened into a two-dimensional vector and passed through the architecture used throughout
this experiment1. For the multitask model in this experiment, the first fully-connected layer which
processed inputs from the IMDB task was dedicated solely to the IMDB task due to the differences
in input shapes between all tasks. During training, the same early stopping criteria were used for all
training iterations, batches sizes of 512 were used for the MNIST and IMDB tasks, while a batch
size of 32 was used for the Boston Housing task. The results for this experiment can be found in
Table 4, and task losses can be found in the appendices Section B. The model was pruned such that
each task utilizes 10% of the available weights in fully-connected layers; the embedding layer was
not pruned.

3.5 EXPERIMENT 5: UTKFACE AND CIFAR10 FOUR-TASK MODEL, CONVOLUTIONAL
ARCHITECTURE

In our fifth experiment, we tested the RSN2 training procedure on a larger network with more com-
plex tasks involved. We created a single network with a convolutional architecture on four individual
tasks, three tasks from the UTKFace dataset (Zhang et al., 2017) and one multiclass classification
task from CIFAR10 (Krizhevsky et al.). For the age task in the UTKFace data, we grouped values
into classes by decade, excluding a final class containing all individuals with age greater than 90.

Architecturally, the model trained in this experiment contains three convolutional blocks consisting
of 16, 32, and 64 3 × 3 filters, respectively. Each block contains two convolutional layers with
padding to preserve shape, followed by a max pooling layer. These blocks then feed into a fully
connected architecture of three layers, each with 128 neurons each and activated using ReLU acti-
vation (Agarap, 2018), followed by an output layer of the required shape to perform the specified
task.

For the multitask model, we utilized a shared convolutional embedding between all UTKFace tasks.
This resulted in a two-task structure for convolutional layers within the model, with one task chan-

1This architecture involves six fully-connected layers of 1000 neurons and ReLU activation.

6



Under review as a conference paper at ICLR 2023

Table 5: Experiment 5 results.

NETWORK ACCURACY PRUNING RATE
EXPERIMENTAL

UTKFACE AGE 55% 75%
UTKFACE GENDER 89% 75%
UTKFACE ETHNICITY 77% 75%
CIFAR10 50% 75%

CONTROL
UTKFACE AGE 32% N/A
UTKFACE GENDER 48% N/A
UTKFACE ETHNICITY 14% N/A
CIFAR10 10% N/A

Table 6: Experiment 6 results.

NETWORK ACCURACY PRUNING RATE

CONTROL 75% N/A
EXPERIMENTAL 79% 90%

nel processing the UTKFace images and the other task channel processing the CIFAR10 images.
For the fully-connected layers, each of the UTKFace tasks was isolated and a four-task architec-
ture was used. Along both the convolutional and the fully-connected architectures, each task was
pruned to utilize only 25% of the model’s available weights per task, meaning 50% of the weights in
the convolutional layers were utilized2 and 100% of the weights across the shared fully-connected
architecture was utilized.3 All four tasks were trained simultaneously, with early stopping criteria
utilized with patience of five epochs. A summary of the results of this experiment can be found in
Table 5. In addition to these performance results, which interestingly showed that the dedicated con-
trol models were unable to converge but that the multitask model was able to converge, it was also
found that the multitask model only utilized 130MB of disk space when saved, while the combined
single-task models utilized 203MB of disk space, over 56% more than the multitask model.

3.6 EXPERIMENT 6: TRANSFORMER-BASED ARCHITECTURE

For our final experiment, we tested the applicability of our RSN2 training procedure in training a
transformer-based architecture (Vaswani et al., 2017). For this experiment, we created a model with
sequence input length of 512 and a vocabulary of 30000, 8 attention heads, a feed-forward dimension
of 1028, and a dropout rate of 10%. Both models have approximately 35M parameters. We trained
our control and experimental models on the Reuters-21578, Distribution 1.0 dataset accessed via the
UCI Machine Learning Repository (Dua & Graff, 2017) with a batch size of 256 and utilizing 20%
of the training dataset as hold-out validation data for early stopping.

For the experimental model, we utilized our multitask representational structure for feed-forward
layers within the multi-headed attention components of the model, and these layers as well as all
downstream fully-connected layers were pruned. Due to the complexity of the embedding layers
within the model architectures, however, instead of applying pruning immediately before training,
we allowed our experimental model to be trained for two epochs before applying pruning. Once this
initial training occurred, we pruned the model using our gradient-based approach directly such that
of 90% of weights within the aforementioned pruned layers were active.

A summary of this experiment’s results can be found in Table 6. In addition to these results, we also
saw a significant reduction of the size of the resulting models. The experimental model required
133MB of disk space, while the control model required 397MB, nearly 200% more than the pruned
model.

2This is due to the two-task structure of the convolutional layers, as mentioned above.
3This is due to the four-task structure of the fully-connected layers, as mentioned above.

7



Under review as a conference paper at ICLR 2023

3.7 LIMITATIONS

There are a number of limitations to this study which limit the conclusions we can draw from the
results. Firstly, our experiments focus primarily on computer vision related tasks in this work, with
all experiments containing some image classification task. While we do also include experiments
which test our methods on both tabular input and natural language inputs, further studies should still
be conducted to more rigorously test our hypotheses and methods on various input and data types.

Another limitation to this study is the limited size of both the datasets and models which were
studied. Many state of the art models have been trained on millions of data samples, and the models
themselves consist of many tens or hundreds of millions of parameters. Our study, on the other
hand, considered labeled data with up to tens of thousands of samples and models which contained
hundreds of thousands to low-tens-of-millions of parameters, orders of magnitude fewer (in both
cases) than the state of the art in most cases. It is therefore unknown whether these methods would
need to be modified4 to accommodate larger modeling paradigms.

4 DISCUSSION AND CONCLUSIONS

This study was designed to test our multiple subnetwork hypothesis, which proposed that weights
that might otherwise be pruned can be repurposed, ultimately yielding ANNs which can effectively
perform multiple tasks across multiple data domains. To test our hypothesis, we developed the RSN2
training procedure to help identify subsets of weights within a network which are well-suited for a
particular tasks. To combat CF, we then developed a customized ANN representational structure
designed to isolate individual subnetworks within the overall architecture of the global model on
a layer-by-layer basis. We then utilized these techniques in a series of experiments across a range
of datasets utilizing a variety of common feedforward model architectures. , Across each of these
experiments, we consistently saw that a single network was able to converge on multiple tasks by
utilizing only a small fraction of network weights for each task. Furthermore, multitask models
were able to perform each task with near identical performance to dedicated models with all weights
active, even exceeding dedicated model performance in a few cases. Additionally, we saw that there
needed to be no similarity between tasks, as our methodologies do not utilize transfer learning across
tasks but instead rely on completely logically-isolated subnetworks within the network architecture.
In our most extreme experiment, we were able to teach a single model to perform two separate image
classification tasks and a sentiment classification task on natural language.

In addition to these results, we also saw performance improvements in terms of saved model sizes,
which we recorded for our larger models in our final two experiments. While also maintaining
performance compared to dedicated models for all tasks, our multitask convolutional model utilized
only 64% of the disk space of all of the dedicated, unpruned models. Similarly, our transformer-
based model required only 33.5% of the space the unpruned model required. All of these size
reduction numbers were achieved without the explicit use of sparse tensors in TensorFlow (Abadi
et al., 2015).

Despite the limitations to this study, there are still a number of conclusions we can draw from its
results. Each multitask model was clearly able to converge on all its assigned tasks, achieving
performance similar to, and in some cases exceeding, individual dedicated learners. These results
therefore confirm our Multiple Subnetwork Hypothesis, showing that a single neural architecture is
capable of utilizing small portions of itself to learn individual tasks. Additionally, we showed that
our methodology for identifying and logically separating network weights is robust to CF, and we
showed that we were therefore able to train multitask models across various domains and tasks both
in parallel or in sequence without any adverse effects on previously-learned tasks.

Because the resulting model would have the ability to robustly perform multiple tasks, we can also
conclude that a single model trained with these techniques could substitute multiple separate models
in a deployed scenario. This substitution would therefore reduce resource requirements for organiza-
tions deploying and utilizing models, thus saving costs and simplifying the deployment architectures
these organizations use. These models would also be able to acquire more downstream tasks over

4In particular, it is unknown whether our one-shot sparsification technique would generalize to much larger
models.

8



Under review as a conference paper at ICLR 2023

their traditionally-trained counterparts after previously being trained on initial tasks, meaning adding
new predictive analytics would be a much simpler undertaking as well, as it would only involve up-
dating an already-deployed model and not require creating a completely new deployment for every
new analytic.

4.1 FUTURE WORK

Following studies should be designed to address some of the limitations of this work as well as
to improve the methods used within. Future studies should provide a more thorough analysis on
how these methods perform on a larger variety of data modalities, including data types, task types,
data availability, and model sizes. Secondly, we intend to identify whether a more precise prun-
ing method can be applied as training occurs instead of in a one-shot manner as was done in this
study. If pruning can be applied in a more intelligent manner, we believe the resulting model would
potentially be able to more consistently surpass unpruned model performance while also achieving
greater sparsification rates than possible with one-shot techniques.

Additionally, this study does not perform any analysis to identify the maximum amount of tasks
which can be learned by a single network. Future work should therefore address finding the upper
bounds of the number of tasks an individual model can support. Finally, the methods in this work do
not allow for any transfer learning across tasks; instead, it is assumed that new tasks should utilize
a completely disjoint subset of weights relative to all previously-learned tasks. Additional studies
should be conducted to identify whether transfer learning can be leveraged during the acquisition of
similar tasks to enable further reduction in the number of active weights and the quicker acquisition
of new tasks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3366–3375, 2017.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Robert French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3:
128–135, 05 1999. doi: 10.1016/S1364-6613(99)01294-2.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/
1510.00149.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. URL http://yann.lecun.com/exdb/
mnist/.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touret-
zky (ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-
Kaufmann, 1990. URL https://proceedings.neurips.cc/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper.pdf.

Mieszko Lis, Maximilian Golub, and Guy Lemieux. Full deep neural network training on a pruned
weight budget. Proceedings of Machine Learning and Systems, 1:252–263, 2019.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJlnB3C5Ym.

10

https://www.tensorflow.org/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym


Under review as a conference paper at ICLR 2023

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1930–1939,
2018.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 67–82, 2018.

Marc Masana, Tinne Tuytelaars, and Joost van de Weijer. Ternary feature masks: zero-forgetting for
task-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3570–3579, 2021.

B. Pfülb and A. Gepperth. A comprehensive, application-oriented study of catastrophic forgetting
in DNNs. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=BkloRs0qK7.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Kenji Suzuki, Isao Horiba, and Noboru Sugie. A simple neural network pruning algorithm with
application to filter synthesis. Neural processing letters, 13(1):43–53, 2001.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Emerging paradigms of neural network pruning.
arXiv preprint arXiv:2103.06460, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Sk7KsfW0-.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2017.

11

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=BkloRs0qK7
https://openreview.net/forum?id=BkloRs0qK7
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=Sk7KsfW0-


Under review as a conference paper at ICLR 2023

A VISUAL REPRESENTATION OF RSN2

Figure 1: Diagram of the RSN2 training procedure and multitask representational structure for a
single fully-connected layer with two tasks. On the left, we begin with the initialized layer weight
matrix (center) and create two binary mask matrices (top and bottom). These binary masks are
then bitwise-multiplied to the weight matrix, resulting in two disjoint subsets of weights which are
then separated across the task dimension in our representational structure. Note to the right, no two
corresponding parameters are nonzero.

12



Under review as a conference paper at ICLR 2023

B TASK LOSSES, EXPERIMENT 4

Figure 2: Task losses obtained on test data for multitask model after training each set of tasks.

13



Under review as a conference paper at ICLR 2023

C CLASS LABELS FOR CLASSIFICATION TASKS.

Table 7: Class labels for MNIST tasks.
DATASET INTEGER LABEL
MNIST DIGIT

1 DIGIT “0”
2 DIGIT “1”
3 DIGIT “2”
4 DIGIT “3”
5 DIGIT “4”
6 DIGIT “5”
7 DIGIT “6”
8 DIGIT “7”
9 DIGIT “8”

10 DIGIT “9”
MNIST FASHION

1 T-SHIRT/TOP
2 TROUSER
3 PULLOVER
4 DRESS
5 COAT
6 SANDAL
7 SHIRT
8 SNEAKER
9 BAG

10 ANKLE BOOT

14



Under review as a conference paper at ICLR 2023

Table 8: Class labels for CIFAR10 and UTKFace tasks.
DATASET INTEGER LABEL
CIFAR-10

1 AIRPLANE
2 AUTOMOBILE
3 BIRD
4 CAT
5 DEER
6 DOG
7 FROG
8 HORSE
9 SHIP

10 TRUCK
UTKFACE AGE

1 0− 10
2 11− 20
3 21− 30
4 31− 40
5 41− 50
6 51− 60
7 61− 70
8 71− 80
9 81− 90

10 91+
UTKFACE GENDER

1 MALE
2 FEMALE

UTKFACE ETHNICITY
1 WHITE
2 BLACK
3 ASIAN
4 INDIAN
5 “OTHER” (DEFINED BY DATASET CREATORS)

Table 9: Class labels for IMDB task.
INTEGER LABEL

1 NEGATIVE REVIEW
2 POSITIVE REVIEW

15



Under review as a conference paper at ICLR 2023

D ADDITIONAL MODEL PERFORMANCE METRICS.

When conducting our study, we collected additional performance measures for all models which
were not included in the main manuscript above. These metrics are presented in the following
tables.

16



Under review as a conference paper at ICLR 2023

Ta
bl

e
10

:P
er

-c
la

ss
F1

an
d

ov
er

al
la

cc
ur

ac
y

sc
or

es
fo

rc
on

tr
ol

co
m

pu
te

rv
is

io
n

m
od

el
s.

“F
C

”
in

di
ca

te
s

fu
lly

-c
on

ne
ct

ed
ar

ch
ite

ct
ur

e.
“C

on
v”

in
di

ca
te

s
co

nv
ol

ut
io

na
l

ar
ch

ite
ct

ur
e.

N
E

T
W

O
R

K
C

L
A

S
S

N
U

M
B

E
R

A
C

C
U

R
A

C
Y

1
2

3
4

5
6

7
8

9
10

M
N

IS
T

D
IG

IT
F

C
.9

8
.9

9
.9

7
.9

7
.9

8
.9

7
.9

8
.9

7
.9

6
.9

6
.9

7
M

N
IS

T
D

IG
IT

C
O

N
V

.9
9

.9
9

.9
8

.9
9

.9
9

.9
9

.9
9

.9
9

.9
9

.9
8

.9
9

M
N

IS
T

FA
S

H
IO

N
F

C
.8

4
.9

8
.7

9
.8

8
.7

9
.9

7
.6

9
.9

5
.9

7
.9

6
.8

8
M

N
IS

T
FA

S
H

IO
N

C
O

N
V

.8
5

.9
9

.8
7

.9
2

.8
6

.9
8

.7
6

.9
7

.9
9

.9
7

.9
2

C
IF

A
R

-1
0

C
O

N
V

(E
X

P
6)

.5
5

.5
9

.3
5

.2
6

.3
8

.3
9

.5
1

.5
3

.5
5

.5
2

.4
7

U
T

K
FA

C
E

A
G

E
C

O
N

V
0

0
.4

9
0

0
0

0
0

0
0

.3
2

U
T

K
FA

C
E

G
E

N
D

E
R

C
O

N
V

0
64

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

48
U

T
K

FA
C

E
E

T
H

N
IC

IT
Y

C
O

N
V

0
0

25
0

0
N

/A
N

/A
N

/A
N

/A
N

/A
.1

4
C

IF
A

R
-1

0
C

O
N

V
(E

X
P

8)
0

0
0

0
0

18
0

0
0

0
10

17



Under review as a conference paper at ICLR 2023

Ta
bl

e
11

:P
er

-c
la

ss
F1

an
d

ov
er

al
la

cc
ur

ac
y

sc
or

es
fo

re
xp

er
im

en
ta

lc
om

pu
te

rv
is

io
n

m
od

el
s.

N
E

T
W

O
R

K
C

L
A

S
S

N
U

M
B

E
R

A
C

C
U

R
A

C
Y

1
2

3
4

5
6

7
8

9
10

E
X

P
1

S
U

B
N

E
T

W
O

R
K

1
0.

86
0.

98
0.

85
0.

90
0.

84
0.

98
0.

72
0.

96
0.

97
0.

97
0.

90
S

U
B

N
E

T
W

O
R

K
2

0.
85

0.
97

0.
84

0.
89

0.
83

0.
98

0.
72

0.
96

0.
98

0.
96

0.
90

S
U

B
N

E
T

W
O

R
K

3
0.

84
0.

98
0.

82
0.

88
0.

83
0.

98
0.

72
0.

96
0.

97
0.

97
0.

90
S

U
B

N
E

T
W

O
R

K
4

0.
85

0.
98

0.
84

0.
90

0.
84

0.
98

0.
72

0.
96

0.
98

0.
97

0.
90

S
U

B
N

E
T

W
O

R
K

5
0.

87
0.

99
0.

88
0.

91
0.

88
0.

98
0.

78
0.

96
0.

98
0.

97
0.

92
E

N
S

E
M

B
L

E
0.

87
0.

98
0.

87
0.

91
0.

86
0.

98
0.

76
0.

97
0.

98
0.

97
0.

92
E

X
P

2
E

A
S

Y
S

U
B

N
E

T
W

O
R

K
N

/A
1.

00
N

/A
N

/A
N

/A
0.

97
N

/A
0.

96
0.

99
0.

96
0.

98
H

A
R

D
S

U
B

N
E

T
W

O
R

K
0.

85
N

/A
0.

87
0.

92
0.

85
N

/A
0.

73
N

/A
N

/A
N

/A
0.

84
E

X
P

3
M

N
IS

T
D

IG
IT

0.
99

0.
99

0.
98

0.
97

0.
97

0.
97

0.
98

0.
98

0.
97

0.
96

0.
98

M
N

IS
T

FA
S

H
IO

N
0.

82
0.

97
0.

77
0.

87
0.

79
0.

96
0.

62
0.

94
0.

97
0.

95
0.

87
E

X
P

4
M

N
IS

T
D

IG
IT

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
98

0.
98

0.
99

M
N

IS
T

FA
S

H
IO

N
0.

85
0.

98
0.

85
0.

90
0.

85
0.

98
0.

71
0.

96
0.

97
0.

96
0.

90
E

X
P

5
M

N
IS

T
D

IG
IT

0.
98

0.
99

0.
97

0.
97

0.
97

0.
97

0.
97

0.
98

0.
97

0.
96

0.
97

M
N

IS
T

FA
S

H
IO

N
0.

82
0.

98
0.

78
0.

88
0.

78
0.

95
0.

68
0.

94
0.

96
0.

95
0.

87
E

X
P

6
M

N
IS

T
D

IG
IT

0.
98

0.
99

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
97

0.
98

M
N

IS
T

FA
S

H
IO

N
0.

84
0.

98
0.

83
0.

89
0.

83
0.

97
0.

70
0.

95
0.

97
0.

96
0.

89
C

IF
A

R
-1

0
0.

65
0.

72
0.

46
0.

43
0.

49
0.

49
0.

69
0.

70
0.

70
0.

69
0.

60
E

X
P

7
M

N
IS

T
D

IG
IT

0.
98

0.
99

0.
98

0.
96

0.
97

0.
96

0.
97

0.
96

0.
96

0.
96

0.
97

M
N

IS
T

FA
S

H
IO

N
0.

82
0.

97
0.

78
0.

87
0.

78
0.

95
0.

64
0.

93
0.

95
0.

95
0.

87
E

X
P

8
U

T
K

F
A

G
E

0.
89

0.
45

0.
68

0.
37

0.
14

0.
44

0.
34

0.
29

0.
45

0.
08

0.
55

U
T

K
F

G
E

N
D

E
R

0.
90

0.
88

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

0.
89

U
T

K
F

E
T

H
N

IC
IT

Y
0.

84
0.

83
0.

79
0.

68
0.

27
N

/A
N

/A
N

/A
N

/A
N

/A
0.

77
C

IF
A

R
-1

0
0.

58
0.

63
0.

27
0.

35
0.

44
0.

47
0.

53
0.

54
0.

61
0.

52
0.

50

18



Under review as a conference paper at ICLR 2023

Table 12: Per-class F1 and overall accuracy scores for experimental and control IMDB sentiment
analysis models.

NETWORK CLASS NUMBER ACCURACY
1 2

EXPERIMENT 7 IMDB 0.83 0.81 0.82
CONTROL IMDB 0.80 0.80 0.80

Table 13: Boston Housing model losses.

NETWORK LOSS
EXPERIMENT 5 0.016
EXPERIMENT 7 0.011
CONTROL 0.017

19



Under review as a conference paper at ICLR 2023

Table 14: Transformer performances. Per-class performance is reported as F1 score.

CLASS NUMBER CONTROL PERFORMANCE EXPERIMENTAL PERFORMANCE
1 0.48 0.70
2 0.80 0.75
3 0.48 0.63
4 0.92 0.93
5 0.83 0.85
6 0.00 0.00
7 0.57 0.96
8 0.00 0.00
9 0.41 0.69

10 0.80 0.88
11 0.88 0.90
12 0.64 0.73
13 0.00 0.40
14 0.59 0.56
15 0.00 0.40
16 0.14 0.17
17 0.70 0.74
18 0.33 0.32
19 0.45 0.56
20 0.66 0.68
21 0.41 0.55
22 0.54 0.67
23 0.00 0.00
24 0.12 0.24
25 0.50 0.49
26 0.54 0.76
27 0.75 0.35
28 0.00 0.67
29 0.20 0.37
30 0.00 0.33
31 0.33 0.32
32 0.32 0.50
33 0.24 0.95
34 0.00 0.80
35 0.35 0.73
36 0.00 0.50
37 0.14 0.70
38 0.00 0.00
39 0.50 0.00
40 0.00 0.13
41 0.00 0.46
42 0.46 0.62
43 0.00 0.00
44 0.00 0.00
45 0.67 0.89
46 0.00 0.67

OVERALL ACCURACY 0.75 0.79

20


	Introduction
	Methodology
	Multitask Representational Structure
	Sparsification and Subnetwork Identification
	Experiments

	Results
	Experiment 1: MNIST Fashion Ensemble, Convolutional Architecture
	Experiment 2: MNIST Digits and MNIST Fashion Model, Fully-Connected Architecture
	Experiment 3: MNIST Fashion Two-Task Model, Convolutional Architecture
	Experiment 4: MNIST Digit, MNIST Fashion, Boston Housing, and IMDB Reviews Model, Fully-Connected Architecture
	Experiment 5: UTKFace and CIFAR10 Four-Task Model, Convolutional Architecture
	Experiment 6: Transformer-Based Architecture
	Limitations

	Discussion and Conclusions
	Future Work

	Visual Representation of RSN2
	Task Losses, Experiment 4
	Class labels for classification tasks.
	Additional model performance metrics.

