
REAL: Resilience and Adaptation using
Large Language Models on Autonomous Aerial Robots

Andrea Tagliabue∗
LIDS
MIT

atagliab@mit.edu

Kota Kondo∗

LIDS
MIT

kkondo@mit.edu

Tong Zhao∗

EECS
MIT

tzhao@mit.edu

Mason Peterson∗

LIDS
MIT

masonbp@mit.edu

Claudius T. Tewari
LIDS
MIT

cttewari@mit.edu

Jonathan P. How
LIDS
MIT

jhow@mit.edu

Abstract: Large Language Models (LLMs) pre-trained on internet-scale datasets
have shown impressive capabilities in code understanding, synthesis, and general
purpose question-and-answering. Key to their performance is the substantial
prior knowledge acquired during training and their ability to reason over extended
sequences of symbols, often presented in natural language. In this work, we aim
to harness the extensive long-term reasoning, natural language comprehension, and
the available prior knowledge of LLMs for increased resilience and adaptation in
autonomous mobile robots. We introduce REAL, an approach for REsilience and
Adaptation using LLMs. REAL provides a strategy to employ LLMs as a part of
the mission planning and control framework of an autonomous robot. The LLM
employed by REAL provides (i) a source of prior knowledge to increase resilience
for challenging scenarios that the system had not been explicitly designed for; (ii) a
way to interpret natural-language and other log/diagnostic information available
in the autonomy stack, for mission planning; (iii) a way to adapt the control inputs
using minimal user-provided prior knowledge about the dynamics/kinematics of
the robot. We integrate REAL in the autonomy stack of a real multirotor, querying
onboard an offboard LLM at 0.1-1.0 Hz as part the robot’s mission planning and
control feedback loops. We demonstrate in real-world experiments the ability of
the LLM to reduce the position tracking errors of a multirotor under the presence
of (i) errors in the parameters of the controller and (ii) unmodeled dynamics. We
also show (iii) decision making to avoid potentially dangerous scenarios (e.g., robot
oscillates) that had not been explicitly accounted for in the initial prompt design.

Keywords: LLMs, Adaptive Control, Aerial Robotics

1 Introduction

Creating mission planning and control capabilities that are adaptive and resilient to unexpected
scenarios has been a large area of research in recent years. Adaptive control has enabled exceptional
performance when addressing specific failure modes, such as disturbances [1, 2, 3], incorrect
models/parameters [4, 5, 6], or poor controller tuning [7, 8, 9]. However, these approaches work
best under a pre-defined set of failure modalities, and/or leverage accurate models/prior knowledge
about the robot from the designer. Similarly, complex missions for autonomous mobile robots
have been successfully managed through sophisticated state machines and mission planners
[10, 11, 12, 13, 14, 15]. However, these planners often need to reason over a pre-defined set of states
and/or observation models, identified through extensive efforts.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Planner &
Controller

ObjectiveMission
Planner

LLM

System Failure Codes and Logs

Intervention Tuning

Behavior

State Information
Natural Language Logs

Failure Codes
Predefined System

InputsInitial Prompt
with Risk
Aversion

Figure 1: Schematic representation of our approach. We use a Large Language Model (LLM) to achieve
adaptation from low-level to mission-scale decision-making, enabling resilience across the different dynamics and
components of our autonomous system. Despite the ability of the LLM to apply changes to the low-level control of
the multirotor, the LLM does not need to know specific details about the autonomy stack of the platform, instead
using embedded prior knowledge to make decisions. In experiments, we demonstrate that an LLM queried from
onboard the robot can reason about the current and desired state of the robot, deciding which corrective actions to
apply to the control input to achieve the desired objective.

Recently, foundational models, and especially Large Language Models (LLMs) pre-trained on
internet-scale datasets [16, 17, 18], have demonstrated impressive performance on a variety of
reasoning problems, including natural language [19, 20] and mathematics [21]. This performance
stems in part from the large size of their training data (e.g., internet-scale), which embeds a vast amount
of prior knowledge into the weights of the model. Additionally, their billion-of-parameters model
architectures enable reasoning over long sequences of symbols, causing them to be a natural choice
for any problem that involves generating a sequence of symbols. The embedded prior knowledge and
extended sequential reasoning capabilities have led to LLMs finding increased application in task
planning and motion planning for robotics. In this context, the main focus of recent work has been
planning for manipulation [22, 23, 24, 25, 26, 27, 28], using human input as a task specification and
outputting calls to manipulator APIs. However, their potential has not been explored for combined
adaptive low-level control and mission planning/reasoning on agile autonomous aerial robots.

In this paper, we present REAL (Resilience and Adaptation using LLMs), a method for harnessing the
capabilities of LLMs for mission-planning and low-level adaptive control of an agile mobile robot, a
multirotor UAV. Our work leverages the LLM’s embedded prior knowledge of the UAV’s dynamics to
create adaptation throughout the stack, including altering low-level parameters, producing commands
to better track trajectories, and making mission-level decisions. REAL uses a single human-crafted
prompt (zero-shot prompting) to define minimal robot specification and task/controller API available
to the LLM. Then, during real-time deployment, REAL receives as input a set of natural-language
and numerical signals available onboard the multirotor which capture mission-relevant information at
different timescales, including information about the dynamics of the robot and its high-level mission
objectives. Then, based on these automatically generated robot prompts, REAL chooses the most
suitable control/mission planning APIs that are executed by the robot. This feedback loop operates
at about 0.1-1.0 Hz, while the prompts are processed remotely using the OpenAI GPT-4 API.

We evaluate REAL in hardware experiments, exposing our multirotor to a variety of performance-
lowering conditions. Some of these conditions require low-level adaptation (e.g., by adjusting the
commanded thrust), while others which require mission-level adaptation (e.g., by improving controller
tuning or conducting an emergency landing). Through these experiments, we also show that the
behavior of an LLM as an adaptive controller can be modified by the use of natural language cues

2

(e.g. using stronger language when the instructions given to the LLM are safety-related and important
to follow). Additionally, we show that although the LLM cannot be queried at a high rate (up to 1 Hz),
it can still process and make suggestions in response to high-frequency information by making use
of algorithmically pre-processed information.

Contributions:

• We present REAL, an approach to leverage prior knowledge in LLMs to enable online
adaptation and decision-making across different time scales and components (low-level
controller, mission planner) of the autonomy stack of an aerial robot. We leverage zero-shot
prompting, and we show that our prompt requires minimal knowledge of the robot’s
model/dynamics and mission specifications.

• We present hardware experiments, demonstrating adaptation and decision-making capabilities
using LLMs that improve the position control performance of the robot or regulate the safety
of the mission. To the best of our knowledge, this is the first time that such capabilities have
been demonstrated on an aerial robot.

2 Related Works

2.1 Adaptation at Mission-Scale and Low-Level Control

Adaptive Control. There are two broad categories of methods used for adaptive control: direct and
indirect methods. Indirect methods aim at explicitly estimating models or parameters, which are
leveraged in model-based controllers, such as MPC [29], to improve performance. Model/parameter
identification include filtering techniques [30, 31], disturbance observers [32, 33, 34], set-membership
identification methods [35, 36] or learning-based methods [5, 37]. Direct methods, instead, develop
policy updates that improve a certain performance metric. These updates are often done to drive
the behavior of the system towards that of a reference model, with the updates themselves involving
changing the shallow layers of the DNN policy [1, 38, 39]. Other strategies include learning a policy
update strategy offline using meta-learning [2, 40], or using parametric adaptation laws such as L1

adaptive control [3]. While many adaptive control strategies are able to improve low-level performance
in real-world systems, these strategies often fail when mission-level adaptation is required. Our work
provides the first example of a system that exhibits both low-level and mission-level adaptation.

Uncertainty-Aware Mission Planning. Mission-level adaptation is usually achieved with robot
autonomy. State-of-the-art approaches to autonomy have involved the use of finite-state machines
and uncertainty-aware planners [13, 15, 41], enabling autonomy on many systems, from a single
autonomous car [10] to multiple heterogeneous robots [11, 12]. While these methods achieve
impressive performance in the coordination of multiple autonomous systems, they do not leverage
the internet-scale prior knowledge in LLMs that may be helpful in making decisions under natural
language-based observations that are available at the system level (e.g., log), nor they require to specify
observations models/mission states.

2.2 Foundational Models in Robotics

Foundational models have quickly found a variety of applications in robotics, with a focus on planning
from natural language instructions. [42] develop a holistic foundational model that performs perception,
planning, and control using internet-scale datasets to train a multi-modal foundational model that,
given a goal described in natural language, can use video feed to plan and execute a sequence of
commands to achieve that goal. [22] decodes an LLM weighted by skill affordances [43] from value
functions to generate feasible plans for robots. [23, 24, 25] all translate a high-level instruction into
a plan expressed in code, which is then executed by the robot. [26] uses an LLM to translate a natural
language planning problem into a domain-specific language, then runs a classical planner to solve
the problem. [28] uses an LLM to generate a plan in natural language, then uses a similarity measure

3

to translate the plan from natural language into one executable by the robot. [27] uses closed-loop
environmental feedback to improve the performance of using an LLM for planning and control in
manipulation tasks. While existing methods have focused on task-level planning (especially for
manipulation), our work leverages LLMs for combined mission management and low-level control on
an agile aerial robot, demonstrating a new domain of possible deployment of LLMs-based reasoning.

3 Approach

3.1 Approach Overview

The objective of our work is to design a decision-making and adaptation mechanism that uses LLMs
to enable successful and resilient mission execution in autonomous systems despite the presence of
uncertainties and potentially unplanned/unexpected failures that may happen across different levels
of the autonomy stack. The considered autonomous system is a multirotor, whose objective consists
in reaching and hovering at a desired position. During the mission, the robot is subject to uncertainties,
such as model errors or wind, that may cause a critical mission failure. The robot needs to understand
how to mitigate the effect of those uncertainties and autonomously decide whether to abort the
mission if the effects of those uncertainties cannot be corrected, based on a natural-language specified
risk tolerance. Our approach, summarized in Fig. 1, leverages an LLM to trigger adaptive/resilient
behaviors in the mission planning and control stack, taking as input available signals, pre-defined
error codes, and natural-language based logs and error messages. In the following sections, we define
in detail the interface between an existing autonomy stack and the LLM.

3.2 Autonomy Stack

3.2.1 Controller

We consider a multirotor controlled by a cascaded position and attitude controller. The employed
position controlled is based on a Linear-Quadratic Regulator (LQR) that uses a hover-linearized model
(derived from [44]) of an attitude-controlled robot of the form xt+1 =Axt+But, where x ∈ R8

is the state and u∈R3 is the control input. The state is x=[Wp⊤,Wv⊤,Iϕ,Iθ]
⊤, where Wp⊤∈R3

and Wv⊤∈R3 represent, respectively, the position and velocity expressed in a world frame W . The
quantities Iϕ and Iθ denote the attitude of the robot, expressed as roll and pitch Euler angles in a
gravity-aligned, yaw-fixed frame I , whose x-axis is aligned with the world reference frame W .

We define the control input u to be: u= [Iϕcmd,Iθcmd,δfcmd]
⊤, where δfcmd denotes the linearized

commanded thrust, and Iϕcmd and Iθcmd are the commanded roll and pitch. These commands are
executed by a cascaded attitude controller.

The control input is computed via:

ut= ūt+K(xt−xref
t)+δut, (1)

where ūt represents the nominal command at hover and xref
t a desired reference trajectory computed

by the mission-level planner. K is a linear gain matrix, obtained by solving the Discrete Algebraic
Riccati Equation (DARE) using the linearized model A, B and given positive-definite tuning matrices
R and Q. Key to this work, the additive control input δut represents an adaptive term that will be
controlled by the LLM based on descriptions of the state of the system (error codes, logs), enabling
adaptation at low-level control.

3.2.2 Mission Planner

The mission is managed by a finite state machine (FSM) that contains desired initial/terminal position
setpoints, and timed transitions in between the desired states. Once a desired position is selected, the
FSM generates reference trajectories (position, velocity) that are tracked via the position controller
Eq. (1). Every state inside the FSM is connected to an emergency_landing action that leads to a
safe state (on the ground below the robot), which can be triggered by the LLM upon seeing what it
determines is sufficient cause to terminate the mission.

4

3.3 Prompt Design And Interface with the Autonomy Stack

In this section, we present the strategy to interface the control and mission/trajectory planning stack
with the LLM. We use an approach inspired by [23], i.e., we leverage Python-based syntax to define the
possible failure modes in the autonomy stack, as well as the description of a set of function callbacks
(API) in our control framework available to execute corrective actions. However, our approach differs
from [23], as we provide additional natural language instructions to express mission-level goals
and trade-offs, i.e., the willingness to risk to continue the mission when complications arise, versus
aborting the mission. Additionally, we limit the potentially dangerous execution of automatically
generated Python code by providing the LLM with the instruction to call a set of pre-defined Python
APIs. Last, in our experiments, the LLM is connected in a closed feedback loop with the rest of the
autonomy stack, without human intervention beyond the initial prompt design.

Code Color Convention: Note that throughout this work we use the following convention: green
denotes the initial prompt to the LLM; this prompt is hand-crafted by a human and is loaded at the
start of the mission; grey denotes the query automatically generated by the autonomous system, and
blue denotes the reply from the LLM, closing the feedback loop.

Our prompt begins with the following sentence:

Initial Prompt (Part 1)
Inside the codebase of my multirotor I found the following python code:

This sentence introduces the LLM to the Python-based syntax that will be used next to list possible
mission failures/issues, requirements, and actions available, and additionally introduces the LLM
to the type of platform it needs to control. Next, we introduce a list of possible, easy-to-monitor,
state-based errors and failures:

Initial Prompt (Part 2)
list of possible issues/failures in mission planner/controller:
NO_ISSUE = 0
FLYING_TOO_HIGH = 3
FLYING_TOO_LOW= 4
FLYING_TOO_LARGE_POSITIVE_POSITION_ERROR_X = 7
FLYING_TOO_LARGE_NEGATIVE_POSITION_ERROR_X = 8
FLYING_TOO_LARGE_POSITIVE_POSITION_ERROR_Y = 5
FLYING_TOO_LARGE_NEGATIVE_POSITION_ERROR_Y = 6

These failures can be easily detected, and their corresponding number is fed as input to the LLM.
Additionally, we found that the LLM is more easily able to interpret failures expressed in natural
language than failures expressed in numerical signals (i.e., current trajectory tracking errors). The
corresponding error codes are generated by comparing the current trajectory tracking error pt−pdes

t ,
and by triggering an issue on the corresponding axis if the error exceeds a predefined threshold.

Next, we define a new fictitious Python variable and function call that computes the possible failures:

Initial Prompt (Part 3)
check current failure using check_failure. outputs a list of possible failures, for example [2, 3],
and a string with additional information. The string may be empty.
Example current_failure: ([2, 3], ’position error = [0.1, -0.1, 1.5]’)
current_failures = check_failures()

As in [23], we make use of Python comments to provide contextual information on the output of the
function call and describe additional inputs that we will be feeding into the LLM, using the second
term in tuple of current_failure. This extra input can be used to provide descriptive error messages
or other information that is not known/does not need to be specified a priori, providing additional
flexibility in the type of information that we can feed to the LLM.

Next, we provide the LLM with information about the system-level actions (APIs) that the LLM can
select:

5

Initial Prompt (Part 4)
possible failure mitigation strategies
from controller import (
modify control input
increase_thrust, decrease_thrust, accel_positive_x, accel_negative_x, accel_positive_y, accel_negative_y,
Mission-level decisions
emergency_landing, do_nothing,
Controller tuning – we use a LQR
tune_controller_by_decreasing_the_cost_of_actuation_usage,
tune_controller_by_increasing_the_cost_of_actuation_usage,
tune_controller_by_increasing_penalty_on_position_errors,
tune_controller_by_decreasing_penalty_on_position_errors,

)

These actions correspond to changes in the control inputs or to events in the mission planner. More
specifically, increase_thrust and decrease_thrust increase/decrease an adaptive term in the
control input, while accel_positive_... and accel_negative_... produce accelerations along
an axis by increasing/decreasing the extra roll/pitch setpoints by a pre-specified amount. Additionally,
tune_controller_... updates the corresponding part of the weight matricesR andQ of the position
controller Eq. (1); the corresponding DARE is solved onboard and the resulting gain matrix updates K.

Towards the end of the prompt, we switch back to natural language to provide mission specifications:

Initial Prompt (Part 5)
From now on, I provide you with the value of the variable “current_failure”,
and your output needs to be your best guess of the function names in the python list
"list_of_function_names_to_be_executed_right_now".
For instance, your output: ["emergency_landing"],"low_battery_voltage",
"because the drone can hardly move it is safer to land"
Try to think like a drone control engineer.

This prompt specifies the output that we expect from the LLM (a list of names of functions the
controller can execute). It additionally includes two elements that can help the LLM reason about
its choice of actions, and a brief and long explanation of the issue. Following best prompting practices,
we also encourage the LLM to role-play, i.e., thinking like a "drone control engineer".

In addition, we discourage the LLM from outputting planned future actions and encourage brevity
in its explanations, by adding the following lines in the initial prompt:

Initial Prompt (Part 6)
DO NOT output function names to be called in the future, but account for past problems to come up
with your guess of the functions in "list_of_function_names_to_be_executed_right_now".

Last, we further make the LLM aware of the possibility of taking emergency landings:

Initial Prompt (Part 7)
If problems persist, do not hesitate to emergency land.
if your actions do not take the desired effect, you must perform an emergency landing.

We note that omitting these sentences was making the LLM less prone to trigger an emergency landing,
while exaggerating the need to emergency land (e.g., using "MUST" instead of "must") made the LLM
more prone to immediately trigger an emergency landing, potentially providing a natural-language
avenue to specify willingness to take risks in an autonomous system.

4 Evaluation

4.1 Implementation Details

We perform real-world experiments by deploying REAL on a multirotor. The multirotor is equipped
with an Intel® NUCTM 10. Our system operates in real-time on the NUCTM 10, driven by the Intel®
CoreTM i7-10710U Processor. All planning, control, and state estimation, which merges IMU data
with a motion capture system, are executed onboard, except the LLM, which is queried from onboard,
receiving replies generated via the OpenAI GPT-4 API. The UAV connects to the internet over Wi-Fi
and queries the LLM at as high of a rate as possible. This results in the LLM running at from 0.1 to
1.0 Hz, depending on network latency and API usage.

6

4.2 Low-Level Adaptation and Controller Auto-Tuning

In this experiment, we evaluate the ability of the LLM to perform low-level adaptive control and
decision-making, by adjusting the control input of our UAV based on the issues reported to the
LLM. To introduce tracking error, we purposefully use the wrong value for the mass parameter while
synthesizing the controller; the value of the mass parameter used is about 15% of the robot’s true
mass, resulting in a large altitude error. We then deploy the UAV in a mission that consists of taking
off, following a figure-eight trajectory, and then landing. We repeat the experiment two times, with
the difference that in the first experiment, to study the choice that the LLM would make absent this
parameter, we removed the tune_controller_by_.. in Initial Prompt (Part 4) that API call.

Fig. 2a shows the result without tuning the API call tune_controller_by_.. in Initial Prompt
(Part 4), highlighting that throughout the mission, REAL succeeds at improving the altitude improve
the trajectory tracking through the duration of the experiment (about 100 s) by repeatedly calling the
increase_thrust in Initial Prompt (Part 4), obtaining an altitude tracking error within 30 cm.
Fig. 2b shows the results on the same trajectory, but with the tune_controller_by_.. in Initial
Prompt (Part 4) added back to the prompt. In this experiment, the LLM calls both commands,
as shown by the conversation between the LLM and the robot during the experiment (please see
Conversation 1 in the Appendix).

The altitude tracking error resulting from this experiment is within only 10 cm. This shows that the LLM
is capable of selecting multiple mission-relevant low-level control APIs, without providing detailed
prior instructions on its choice, and whose usage is beneficial at improving the outcome of the mission.

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

(a) Trajectory Tracking without Control Gain K Tuning

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]
(b) Trajectory Tracking with Control Gain K Tuning.

Figure 2: REAL’s successful altitude (z-axis) adaptation during a figure eight trajectory (0.25m/s) with an
incorrect mass parameter used in the controller (15% error from nominal value). The top figure shows the
experiment performed when the API calls tune_controller_by_... removed from the initial prompt, and
the bottom figure shows the same experiment with the tune_controller_by_... APIs added back. These
results illustrate that REAL can successfully interpret the system-provided error messages, and call useful
APIs. Specifically, REAL achieves adaptation in the top plot by calling the increase_thrust API, successfully
converging to the desired altitude. In the secondary scenario (bottom figure), REAL calls a combination of
tune_controller_by_... and increase_thrust APIs, triggering changes in the controller matrix K. This
results in faster/better convergence to the desired trajectory.

4.3 Low-Level Adaptation to Unmodeled Dynamics

This experiment presents a more challenging scenario that highlights REAL’s ability to correct for
unmodeled dynamics. To test this, we place a large extra mass on the end of one of the multirotor’s
arms, creating an unmodeled torque disturbance. For brevity, the prompt is not shown, but adaptation
is triggered by repeatedly selecting the expected API calls: increase_thrust, accel_negative_y
and accel_negative_x. Fig. 3a shows the hardware experiment results of the LLM successfully
reasoning how to eliminate error along each of its axes. Note that in this earlier experiment, roll
and pitch torque function names were used in the prompt to control acceleration along the y and x
axes respectively. We later found that the LLM was more consistent when using the commands for
requesting acceleration in x and y directions directly.

7

0.5

1.0

1.5
x

[m
]

actual

desired

−3

−2

y
[m

]

0 20 40 60

Time [s]

1.0

1.5

z
[m

]

(a) REAL reducing position errors across the x, y, and z-axes under
unmodeled dynamics: In this experiment an additional weight of 210g
was added to one of the UAV’s arms, creating a large unmodeled external
torque that affects the attitude and position control of the UAV. REAL
identifies the correct APIs to reduce this error, though convergence is
slowed down due to the limited rate at which the API can be called.

1

2

x
[m

]

actual

desired

−3.0

−2.5

−2.0

y
[m

]

0 20 40 60

Time [s]

1.0

1.5

z
[m

]

emergency_landing called

(b) REAL’s position adaptation combined with its ability to trigger
emergency landing automatically. The UAV was configured with a
15% mass-mismatch, that is successfully compensated by REAL
in the initial phase of the experiment. Subsequently, we artificially
introduced oscillations by pulling a cable attached to the UAV.
Upon receiving a natural-language log that informs REAL of these
oscillations, the LLM invokes the emergency_landing API. This
experiment highlights REAL’s ability to handle both lower-level
control adaptations and higher-level mission-critical decisions
such as aborting the mission for safety reasons.

Figure 3: Real’s ability to perform low-level adaptation and trigger mission-relevant decision.

4.4 Mission-scale Decision Making via Unsafe State Detection and Automatic Mission Abortion

The purpose of this experiment is two-fold: (1) test the LLM’s ability to make critical mission-level
decisions in the event that unforeseen circumstances cause the UAV to lose control and (2) test the
LLM’s ability to process additional information that was not in the original prompt.

Since the LLM is only able to make adaptive corrections at a slow rate, we would expect it to call for an
emergency landing in the event of loss-of-control. To simulate a loss-of-control event, we apply large
external disturbances to the robot by pulling it via a rope, causing large oscillations along the y axis,
as seen in Fig. 3b. Onboard the drone, we implement a module that stores a buffer of positions and uses
a Fast Fourier Transform (FFT) to evaluate the maximum amplitude of any frequency content. If the
maximum frequency content is above a threshold, this information is outputted to the log received by the
LLM, as shown in the conversation history in Conversation 2 (please see Conversation 2 in Appendix).
Although the LLM was not told it would receive any information about oscillations nor what to do if it
did receive this information, it was able to make the critical decision to select the emergency_landAPI
when it recognized that the UAV was in a dangerous condition via the provided log message "DANGEROUS
oscillations...". Fig. 3b additionally highlights the LLM’s ability to correct the altitude errors of
the UAV, caused by an additional 15% mass mismatch, as visible before the interaction begins.

5 Conclusions

We have presented REAL, a method to utilize LLMs for zeros-shot cross-stack adaptation and autonomy
on mobile robots. The method works by leveraging LLMs’ natural language understanding, its ability
to reason over long sequences, and its embedded prior knowledge of the robot’s model/dynamics.
Our evaluation in hardware experiments has demonstrated promising first-steps towards low-level
adaptation and increased mission-level resilience. In the future we would like to further extend this
framework to more complex, multi-robot autonomous systems, where more complex reasoning is
required to diagnose and recover from failures.

8

Acknowledgments

Work funded by the Air Force Office of Scientific Research MURI FA9550-19-1-0386.

References
[1] G. Joshi and G. Chowdhary. Deep model reference adaptive control. In 2019 IEEE 58th

Conference on Decision and Control (CDC), pages 4601–4608. IEEE, 2019.

[2] S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone. Adaptive-control-oriented meta-learning
for nonlinear systems. Robotics: Science and Systems (RSS), 2021.

[3] N. Hovakimyan, C. Cao, E. Kharisov, E. Xargay, and I. M. Gregory. L1 adaptive control for
safety-critical systems. IEEE Control Systems Magazine, 31(5):54–104, 2011.

[4] L. Ljung. System identification. In Signal analysis and prediction, pages 163–173. Springer, 1998.

[5] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
Robotics: Science and Systems (RSS), 2021.

[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse identification of nonlinear dynamics with
control (sindyc). IFAC-PapersOnLine, 49(18):710–715, 2016.

[7] A. Loquercio, A. Saviolo, and D. Scaramuzza. Autotune: Controller tuning for high-speed flight.
IEEE Robotics and Automation Letters, 7(2):4432–4439, 2022.

[8] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic lqr tuning based on gaussian
process global optimization. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 270–277. IEEE, 2016.

[9] F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe controller optimization for quadrotors with
gaussian processes. In 2016 IEEE international conference on robotics and automation (ICRA),
pages 491–496. IEEE, 2016.

[10] A. Furda and L. Vlacic. Towards increased road safety: Real-time decision making for driverless
city vehicles. In 2009 IEEE International Conference on Systems, Man and Cybernetics, pages
2421–2426, 2009. doi:10.1109/ICSMC.2009.5346395.

[11] M. Tranzatto, M. Dharmadhikari, L. Bernreiter, M. Camurri, S. Khattak, F. Mascarich, P. Pfre-
undschuh, D. Wisth, S. Zimmermann, M. Kulkarni, V. Reijgwart, B. Casseau, T. Homberger,
P. D. Petris, L. Ott, W. Tubby, G. Waibel, H. Nguyen, C. Cadena, R. Buchanan, L. Wellhausen,
N. Khedekar, O. Andersson, L. Zhang, T. Miki, T. Dang, M. Mattamala, M. Montenegro,
K. Meyer, X. Wu, A. Briod, M. Mueller, M. Fallon, R. Siegwart, M. Hutter, and K. Alexis. Team
cerberus wins the darpa subterranean challenge: Technical overview and lessons learned, 2022.

[12] A. Agha, K. Otsu, B. Morrell, D. D. Fan, R. Thakker, A. Santamaria-Navarro, S.-K. Kim,
A. Bouman, X. Lei, J. Eadlund, M. F. Ginting, K. Ebadi, M. Anderson, T. Pailevanian, E. Terry,
M. Wolf, A. Tagliabue, T. S. Vaquero, M. Palieri, S. Tepsuporn, Y. Chang, A. Kalantari, F. Chavez,
B. Lopez, N. Funabiki, G. Miles, T. Touma, A. Buscicchio, J. Tordesillas, N. Alatur, J. Nash,
W. Walsh, S. Jung, H. Lee, C. Kanellakis, J. Mayo, S. Harper, M. Kaufmann, A. Dixit, G. Correa,
C. Lee, J. Gao, G. Merewether, J. Maldonado-Contreras, G. Salhotra, M. S. D. Silva, B. Ramtoula,
Y. Kubo, S. Fakoorian, A. Hatteland, T. Kim, T. Bartlett, A. Stephens, L. Kim, C. Bergh,
E. Heiden, T. Lew, A. Cauligi, T. Heywood, A. Kramer, H. A. Leopold, C. Choi, S. Daftry,
O. Toupet, I. Wee, A. Thakur, M. Feras, G. Beltrame, G. Nikolakopoulos, D. Shim, L. Carlone,
and J. Burdick. Nebula: Quest for robotic autonomy in challenging environments; team costar
at the darpa subterranean challenge, 2021.

[13] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato. Firm: Sampling-based feedback
motion-planning under motion uncertainty and imperfect measurements. The International
Journal of Robotics Research, 33(2):268–304, 2014.

9

http://dx.doi.org/10.1109/ICSMC.2009.5346395

[14] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, and J. P. How. Decentralized control of
partially observable markov decision processes using belief space macro-actions. In 2015 IEEE
international conference on robotics and automation (ICRA), pages 5962–5969. IEEE, 2015.

[15] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pailevanian, S.-K.
Kim, K. Otsu, J. Burdick, et al. Autonomous spot: Long-range autonomous exploration of
extreme environments with legged locomotion. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2518–2525. IEEE, 2020.

[16] OpenAI. Gpt-4 technical report, 2023.

[17] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[18] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A.
Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

[19] I. Drori, S. Zhang, R. Shuttleworth, L. Tang, A. Lu, E. Ke, K. Liu, L. Chen, S. Tran,
N. Cheng, R. Wang, N. Singh, T. L. Patti, J. Lynch, A. Shporer, N. Verma, E. Wu, and
G. Strang. A neural network solves, explains, and generates university math problems
by program synthesis and few-shot learning at human level. Proceedings of the National
Academy of Sciences, 119(32):e2123433119, 2022. doi:10.1073/pnas.2123433119. URL
https://www.pnas.org/doi/abs/10.1073/pnas.2123433119.

[20] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone,
C. Anil, I. Schlag, T. Gutman-Solo, Y. Wu, B. Neyshabur, G. Gur-Ari, and V. Misra. Solving
quantitative reasoning problems with language models, 2022.

[21] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems, 2021.

[22] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,
K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,
Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet,
N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng.
Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

[23] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[24] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li. Instruct2act: Mapping multi-modality
instructions to robotic actions with large language model, 2023.

[25] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and
T. Funkhouser. Tidybot: Personalized robot assistance with large language models, 2023.

[26] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+p: Empowering large
language models with optimal planning proficiency, 2023.

10

http://dx.doi.org/10.1073/pnas.2123433119
https://www.pnas.org/doi/abs/10.1073/pnas.2123433119

[27] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In arXiv
preprint arXiv:2207.05608, 2022.

[28] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.

[29] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[30] J. Svacha, J. Paulos, G. Loianno, and V. Kumar. Imu-based inertia estimation for a quadrotor
using newton-euler dynamics. IEEE Robotics and Automation Letters, 5(3):3861–3867, 2020.

[31] V. Wüest, V. Kumar, and G. Loianno. Online estimation of geometric and inertia parameters
for multirotor aerial vehicles. In 2019 International Conference on Robotics and Automation
(ICRA), pages 1884–1890. IEEE, 2019.

[32] A. Tagliabue, A. Paris, S. Kim, R. Kubicek, S. Bergbreiter, and J. P. How. Touch the wind:
Simultaneous airflow, drag and interaction sensing on a multirotor. In RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1645–1652.

[33] A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto. Robust collaborative object transportation
using multiple MAVs. The International Journal of Robotics Research, 38(9):1020–1044, 2019.

[34] C. D. McKinnon and A. P. Schoellig. Unscented external force and torque estimation for
quadrotors. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5651–5657. IEEE, 2016.

[35] B. T. Lopez. Adaptive robust model predictive control for nonlinear systems. PhD thesis,
Massachusetts Institute of Technology, 2019.

[36] J. P. How, B. Lopez, P. Lusk, and S. Morozov. Performance analysis of adaptive dynamic tube
MPC. page 0785, 2021.

[37] A. Saviolo, J. Frey, A. Rathod, M. Diehl, and G. Loianno. Active learning of discrete-time
dynamics for uncertainty-aware model predictive control. arXiv preprint arXiv:2210.12583, 2022.

[38] G. Joshi, J. Virdi, and G. Chowdhary. Design and flight evaluation of deep model reference
adaptive controller. In AIAA Scitech 2020 Forum, page 1336, 2020.

[39] S. Zhou, K. Pereida, W. Zhao, and A. P. Schoellig. Bridging the model-reality gap with lipschitz
network adaptation. IEEE Robotics and Automation Letters, 7(1):642–649, 2021.

[40] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung.
Neural-fly enables rapid learning for agile flight in strong winds. Science Robotics, 7(66):
eabm6597, 2022. doi:10.1126/scirobotics.abm6597.

[41] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, S.-Y. Liu, J. P. How, and J. Vian.
Decentralized control of multi-robot partially observable markov decision processes using belief
space macro-actions. The International Journal of Robotics Research, 36(2):231–258, 2017.

[42] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,
L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao,
K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. Tran,
V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao, P. Xu, S. Xu,
T. Yu, and B. Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. In arXiv preprint arXiv:2307.15818, 2023.

11

http://dx.doi.org/10.1126/scirobotics.abm6597

[43] A. Zeng. Learning Visual Affordances for Robotic Manipulation. PhD thesis, Princeton
University, 2019.

[44] M. Kamel, M. Burri, and R. Siegwart. Linear vs nonlinear mpc for trajectory tracking
applied to rotary wing micro aerial vehicles. IFAC-PapersOnLine, 50(1):3463–3469,
2017. ISSN 2405-8963. doi:https://doi.org/10.1016/j.ifacol.2017.08.849. URL https:
//www.sciencedirect.com/science/article/pii/S2405896317313083. 20th IFAC World Congress.

6 Appendix

6.1 Conversation 1

Conversation 1

t = 3.92s: Prompt ([0], ”)

t = 3.92s: Response list_of_function_names_to_be_executed_right_now: ["do_nothing"], "no_issue", "Since there

are currently no issues detected with the drone, no corrective actions are needed at this time."

t = 8.47s: Prompt ([4, 6], ’z error is -0.14, y error is -0.44, ’)

t = 8.47s: Response list_of_function_names_to_be_executed_right_now: ["increase_thrust", "accel_positive_y"]

"flying_too_low_and_negative_y_position", "The drone is currently flying too low and also has a

negative error in the Y-axis. Increasing thrust will correct the altitude issue, and accelerating in

the positive Y direction will correct the positional error."

t = 14.03s: Prompt ([4, 6], ’z error is -0.63, y error is -1.18, ’)

t = 14.03s: Response list_of_function_names_to_be_executed_right_now: ["increase_thrust", "accel_positive_y",

"tune_controller_by_increasing_penalty_on_position_errors"], "flying_too_low_and_large_negative

_y_position", "The drone is flying significantly too low and has a large negative error on the Y-axis.

It’s necessary to increase thrust and accelerate in the positive Y direction to correct these issues.

Additionally, the large errors suggest it may be beneficial to tune the controller to penalize

position errors more severely."

t = 19.0s: Prompt ([4, 5, 7], ’z error is -0.30, y error is 0.15, x

error is 0.12, ’)

t = 19.0s: Response list_of_function_names_to_be_executed_right_now: ["increase_thrust", "accel_negative_y",

"accel_negative_x"], "flying_too_low_and_positive_position_errors", "The drone is below the desired

altitude and has minor positive errors in both X and Y axis. To correct these, it should increase

thrust to gain altitude, and decelerate in Y and X directions."

6.2 Conversation 2

Conversation 2

t = 6.07s: Prompt ([0], ”)

t = 6.07s: Response list_of_function_names_to_be_executed_right_now: ["do_nothing"] reason: The reported

information indicates that there are currently no discernible issues with the drone. Therefore, no

actions are necessary at this time.

t = 13.95s: Prompt ([4, 6, 8], ’z error is -0.69, y error is -0.62,

x error is -0.40, ’)

t = 13.95s: Response list_of_function_names_to_be_executed_right_now: ["increase_thrust", "tune_controller_by

_decreasing_the_cost_of_actuation_usage", "accel_positive_y", "accel_positive_x"] reason: The drone

is flying too low and has negative position errors in both X and Y directions, hence, increasing

thrust is the first step, along with acceleration in positive X and Y directions to correct the

position errors. Besides, the cost of actuation usage should also be decreased to ensure a higher

rate of control input changes for faster response. It’s preferable to decrease the cost of

actuation usage to make the drone respond more swiftly to the control inputs, as there are multiple

issues happening simultaneously.

t = 57.48s: Prompt ([6, 8], ’y error is -0.65, x error is -0.28, VERY

DANGEROUS oscillations on y-axis. Frequency is 0.67 [Hz],

amplitude is 0.19 [m].’)

t = 57.48s: Response list_of_function_names_to_be_executed_right_now: ["emergency_landing"] reason: The drone

has large errors in both X and Y directions, and additionally, is exhibiting dangerous oscillations

on the Y-axis. This indicates unstable flight dynamics which could be detrimental to the safety of the

operation. An immediate emergency landing should be executed to prevent potential damage or hazards.

12

http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2017.08.849
https://www.sciencedirect.com/science/article/pii/S2405896317313083
https://www.sciencedirect.com/science/article/pii/S2405896317313083

