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ABSTRACT

Reinforcement learning (RL) provides a theoretical framework for continuously
improving an agent’s behavior via trial and error. However, efficiently learning
policies from scratch can be very difficult, particularly for tasks that present ex-
ploration challenges. In such settings, it might be desirable to initialize RL with
an existing policy, offline data, or demonstrations. However, naively performing
such initialization in RL often works poorly, especially for value-based methods.
In this paper, we present a meta algorithm that can use offline data, demonstrations,
or a pre-existing policy to initialize an RL policy, and is compatible with any RL
approach. In particular, we propose Jump-Start Reinforcement Learning (JSRL),
an algorithm that employs two policies to solve tasks: a guide-policy, and an
exploration-policy. By using the guide-policy to form a curriculum of starting
states for the exploration-policy, we are able to efficiently improve performance
on a set of simulated robotic tasks. We show via experiments that it is able to
significantly outperform existing imitation and reinforcement learning algorithms,
particularly in the small-data regime. In addition, we provide an upper bound on
the sample complexity of JSRL and show that with the help of a guide-policy, one
can improve the sample complexity for non-optimism exploration methods from
exponential in horizon to polynomial.

1 INTRODUCTION

A promising aspect of reinforcement learning (RL) is the ability of a policy to iteratively improve via
trial and error. Often, however, the most difficult part of this process is the very beginning, where a
policy that is learning without any prior data needs to randomly encounter rewards to further improve.
A common way to side-step this exploration issue is to aid the policy with prior knowledge. One
source of prior knowledge might come in the form of a prior policy, which can provide some initial
guidance in collecting data with non-zero rewards, but which is not by itself fully optimal. Such
policies could be obtained from demonstration data (e.g., via behavioral cloning), from sub-optimal
prior data (e.g., via offline RL), or even simply via manual engineering. In the case where this prior
policy is itself parameterized as a function approximator, it could serve to simply initialize a policy
gradient method. However, sample-efficient algorithms based on value functions are notoriously
difficult to bootstrap in this way. As observed in prior work (Peng et al., 2019; Nair et al., 2020;
Kostrikov et al., 2021; Lu et al., 2021), value functions require both good and bad data to initialize
successfully, and the mere availability of a starting policy does not by itself readily provide an initial
value function of comparable performance. This leads to the question we pose in this work: how can
we bootstrap a value-based RL algorithm with a prior policy that attains reasonable but sub-optimal
performance?

The main insight that we leverage to address this problem is that we can bootstrap any RL algorithm
by gradually “rolling in” with the prior policy, which we refer to as the guide-policy. In particular, the
guide-policy provides a curriculum of starting states for the RL exploration-policy, which significantly
simplifies the exploration problem and allows for fast learning. As the exploration-policy improves,
the effect of the guide-policy is diminished, leading to an RL-only policy that is capable of further
autonomous improvement. Our approach is generic, as it can be applied to any RL method that
explores its environment for policy improvement, though we focus on value-based methods in this
work. The only requirements of our method are that the guide-policy can select actions based
on observations of the environment, and its performance is reasonable (i.e., better than a random
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Figure 1: We study how to efficiently bootstrap value-based RL algorithms given access to a prior
policy. In vanilla RL (left), the agent explores randomly from the initial state until it encounters a
reward (gold star). JSRL (right), leverages a guide-policy (dashed blue line) that takes the agent closer
to the reward. After the guide-policy finishes, the exploration-policy (solid orange line) continues
acting in the environment. As the exploration-policy improves, the influence of the guide-policy
diminishes, resulting in a learning curriculum for bootstrapping RL.

policy). Since the guide-policy significantly speeds up the early phases of RL, we call this approach
Jump-Start Reinforcement Learning (JSRL). We provide an overview diagram of JSRL in Fig. 1.

JSRL can utilize any form of prior policy to accelerate RL. It is also compatible with RL algorithms
that involve rolling out a policy to explore an environment. Thus, JSRL can easily be combined
with existing offline and/or online RL methods. In addition, we provide a theoretical justification of
JSRL by deriving an upper bound on its sample complexity compared to RL alternatives. Finally,
we demonstrate that JSRL outperforms previously proposed imitation and reinforcement learning
approaches on a set of benchmark tasks as well as more challenging vision-based robotic problems.

2 RELATED WORK

Imitation learning combined with reinforcement learning (IL+RL). Several previous works on
leveraging a prior policy to initialize RL focus on doing so by combining imitation learning and RL.
Some methods treat RL as a sequence modelling problem and train an autoregressive model using
offline data Zheng et al. (2022); Janner et al. (2021); Chen et al. (2021). One well-studied class of
approaches initializes policy search methods with policies trained via behavioral cloning Schaal et al.
(1997); Kober et al. (2010); Rajeswaran et al. (2017). This is an effective strategy for initializing
policy search methods, but is generally ineffective with actor-critic or value-based methods, where
the critic also needs to be initialized (Nair et al., 2020), as we also illustrate in Section 3. Methods
have been proposed to include prior data in the replay buffer for a value-based approach (Nair et al.,
2018; Vecerik et al., 2018), but this requires prior data rather than just a prior policy. More recent
approaches improve this strategy by using offline RL Kumar et al. (2020); Nair et al. (2020); Lu
et al. (2021) to pre-train on prior data, then finetune. We compare to such methods, showing that our
approach not only makes weaker assumptions (requiring only a policy rather than a dataset), but also
performs comparably or better.

Curriculum learning and exact state resets for RL. Many prior works have investigated efficient
exploration strategies in RL that are based on starting exploration from specific states. Commonly,
these works assume the ability to reset to arbitrary states in simulation (Salimans & Chen, 2018).
Some methods uniformly sample states from demonstrations as start states (Hosu & Rebedea,
2016; Peng et al., 2018; Nair et al., 2018), while others generate curriculas of start states. The
latter includes methods that start at the goal state and iteratively expand the start state distribution,
assuming reversible dynamics (Florensa et al., 2017; McAleer et al., 2019) or access to an approximate
dynamics model (Ivanovic et al., 2019). Other approaches generate the curriculum from demonstration
states (Resnick et al., 2018) or from online exploration (Ecoffet et al., 2021). In contrast, our method
does not control the exact starting state distribution, but instead utilizes the implicit distribution

0A project webpage is available at https://jumpstartrl.github.io
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naturally arising from rolling out the guide-policy. This broadens the distribution of start states
compared to exact resets along a narrow set of demonstrations, making the learning process more
robust. In addition, our approach could be extended to the real world, where resetting to a state in the
environment is impossible.

Provably efficient exploration techniques. Online exploration in RL has been well studied in
theory (Osband & Van Roy, 2014; Jin et al., 2018; Zhang et al., 2020b; Xie et al., 2021; Zanette et al.,
2020; Jin et al., 2020). The proposed methods either rely on the estimation of confidence intervals
(e.g. UCB, Thompson sampling), which is hard to approximate and implement when combined with
neural networks, or suffer from exponential sample complexity in the worst-case. In this paper, we
leverage a pre-trained guide-policy to design an algorithm that is more sample-efficient than these
approaches while being easy to implement in practice.

“Rolling in” policies. Using a pre-existing policy (or policies) to initialize RL and improve exploration
has been studied in past literature. Some works use an ensemble of roll-in policies or value functions
to refine exploration Jiang et al. (2017); Agarwal et al. (2020). With a policy that models the
environment’s dynamics, it is possible to look ahead to guide the training policy towards useful
actions (Lin, 1992). Similar to our work, an approach from Smart & Pack Kaelbling (2002) rolls out a
fixed controller to provide bootstrap data for a policy’s value function. However, this method does not
mix the prior policy and the learned policy, but only uses the prior policy for data collection. We use a
multi-stage curriculum to gradually reduce the contribution of the prior policy during training, which
allows for on-policy experience for the learned policy. Our method is also conceptually related to
DAgger (Ross & Bagnell, 2010), which also bridges distributional shift by rolling in with one policy
and then obtaining labels from a human expert, but DAgger is intended for imitation learning and rolls
in the learned policy, while our method addresses RL and rolls in with a sub-optimal guide-policy.

3 PRELIMINARIES

We define a Markov decision process M = (S,A, P,R, p0, γ,H), where S and A are state and
action spaces, P : S × A × S → R+ is a state-transition probability function, R : S × A → R
is a reward function, p0 : S → R+ is an initial state distribution, γ is a discount factor, and H
is the task horizon. Our goal is to effectively utilize a prior policy of any form in value-based
reinforcement learning (RL). The goal of RL is to find a policy π(a|s) that maximizes the expected
discounted reward over trajectories, τ , induced by the policy: Eπ[R(τ)] where s0 ∼ p0, st+1 ∼
P (·|st, at) and at ∼ π(·|st). To solve this maximization problem, value-based RL methods take
advantage of state or state-action value functions (Q-function) Qπ(s, a), which can be learned using
approximate dynamic programming approaches. The Q-function, Qπ(s, a), represents the discounted
returns when starting from state s and action a, followed by the actions produced by the policy π.

Figure 2: Naı̈ve policy initialization. We pre-train a policy to medium
performance (depicted by negative steps), then use this policy to ini-
tialize actor-critic fine-tuning (starting from step 0), while initializing
the critic randomly. Actor performance decays, as the untrained critic
provides a poor learning signal, causing the good initial policy to be
forgotten. In Figures 7 and 8, we repeat this experiment but allow the
randomly initialized critic to ”warm up” before fine-tuning.

In order to leverage prior
data in value-based RL
and continue fine-tuning,
researchers commonly use
various offline RL meth-
ods (Kostrikov et al., 2021;
Kumar et al., 2020; Nair
et al., 2020; Lu et al.,
2021) that often rely on
pre-trained, regularized Q-
functions that can be fur-
ther improved using online
data. In the case where
a pre-trained Q-function is
not available and we only
have access to a prior policy,
value-based RL methods
struggle to effectively incor-
porate that information as
depicted in Fig. 2. In this
experiment, we train an actor-critic method up to step 0, then we start from a fresh Q-function and
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continue with the pre-trained actor, simulating the case where we only have access to a prior policy.
This is the setting that we are concerned with in this work.

4 JUMP-START REINFORCEMENT LEARNING

In this section, we describe our method, Jump-Start Reinforcement Learning (JSRL), that we use to
initialize value-based RL algorithms with a prior policy of any form. We first describe the intuition
behind our method then lay out a detailed algorithm along with theoretical analysis.

4.1 ROLLING IN WITH TWO POLICIES

We assume access to a fixed prior policy that we refer to as the “guide-policy”, πg(a|s), which we
leverage to initialize an RL algorithm. It is important to note that we do not assume any particular
form of πg; it could be learned with imitation learning, RL, or it could be manually scripted. We will
refer to the RL policy that is being learned via trial and error as the “exploration-policy” πe(a|s),
since, as it is commonly done in RL literature, this is the policy that is used for exploration as well as
online improvement. The only requirement for πe is that it is an RL policy that can adapt with online
experience. Our approach and the set of assumptions is generic in that it can handle any downstream
RL method that rolls out a policy for exploring an environment, though we focus on the case where
πe is learned via a value-based RL algorithm.

The main idea behind our method is to leverage the two policies, πg and πe, executed sequentially
to learn tasks more efficiently. During the initial phases of training, πg is significantly better than
the untrained policy πe, so we would like to collect data using πg. However, this data is out of
distribution for πe, since exploring with πe will visit different states. Therefore, we would like to
gradually transition data collection away from πg and toward πe. Intuitively, we would like to use
πg to get the agent into “good” states, and then let πe take over and explore from those states. As
it gets better and better, πe should take over earlier and earlier, until all data is being collected by
πe and there is no more distributional shift. We can employ different switching strategies to switch
from πg to πe, but the most direct curriculum simply switches from πg to πe at some time step h,
where h is initialized to the full task horizon and gradually decreases over the course of training. This
naturally provides a curriculum for πe. At each curriculum stage, πe needs to master a small part of
the state-space that is required to reach the states covered by the previous curriculum stage.

4.2 ALGORITHM

We provide a detailed description of JSRL in Algorithm 1. Given an RL task with horizon H , we first
choose a sequence of initial guide-steps to which we roll out our guide-policy, {H1, H2, · · · , Hn},
where Hi ∈ {1, 2, · · · , H} denotes the number of steps that the guide-policy at the ith iteration
acts for. Let h denote the iterator over such a sequence of initial guide-steps. At the beginning of
each training episode, we roll out πg for h steps, then πe continues acting in the environment for
the additional H − h steps until the task horizon H is reached. We can write the combination of
the two policies as the combined policy, π, where π1:h = πg and πh+1:H = πe. After we roll out
π to collect online data, we use the new data to update our exploration-policy πe and combined
policy π by calling a standard training procedure TRAINPOLICY. The TRAINPOLICY updates both
the Q function and the corresponding evaluation policy. For example, the training procedure may
be updating the exploration-policy via a Deep Q-Network (Mnih et al., 2013) with ϵ-greedy as the
exploration technique (i.e. πe(a|s) = 1− ϵ if a = argmaxa Q(s, a) and ϵ/|A| otherwise). The new
combined policy is then evaluated over the course of training using a standard evaluation procedure
EVALUATEPOLICY(π). Once the performance of the combined policy π reaches a threshold, β, we
continue the for loop with the next guide step h.

While any guide-step sequence could be used with JSRL, we focus on two specific strategies for
determining guide-step sequences: curriculum and random-switching. With the curriculum strategy,
we start with a large guide-step (ie. H1 = H) and use policy evaluations of the combined policy π
to progressively decrease Hn as πe improves. Intuitively, this means that we train our policy in a
backward manner by first rolling out πg to the last guide-step and then exploring with πe, and then
rolling out πg to the second to last guide-step and exploring with πe, and so on. With the random-
switching strategy, we sample each h uniformly and independently from the set {H1, H2, · · · , Hn}.

4



Under review as a conference paper at ICLR 2023

In the rest of the paper, we refer to the curriculum variant as JSRL, and the random switching variant
as JSRL-Random.
Algorithm 1 Jump-Start Reinforcement Learning
1: Input: guide-policy πg , performance threshold β, task horizon H , a sequence of initial guide-steps

H1, H2, · · · , Hn, where Hi ∈ {1, 2, · · · , H} for all i ≤ n.
2: Initialize exploration-policy from scratch or with the guide-policy πe ← πg . Initialize Q-function Q̂ and

dataset D ← ∅.
3: for current guide step h = H1, H2, · · · , Hn do
4: Set the non-stationary policy π1:h = πg , πh+1:H = πe

5: Roll out the policy π to get trajectory {(s1, a1, r1), · · · , (sH , aH , rH)}; Append the trajectory to the
dataset D.

6: πe, Q̂← TRAINPOLICY(πe, Q̂,D)
7: if EVALUATEPOLICY(π) ≥ β then
8: Continue
9: end if

10: end for

4.3 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of JSRL, showing that the roll-in data collection
strategy that we propose provably attains polynomial sample complexity. The sample complexity
refers to the number of samples required by the algorithm to learn a policy with small suboptimality,
where we define the suboptimality for a policy π as Es∼p0

[V ⋆(s)− V π(s)]. In particular, we aim to
answer two questions: Why is JSRL better than other exploration algorithms which start exploration
from scratch? Under which conditions does the guide-policy provably improve exploration? To
answer these questions, we study upper and lower bounds for the sample complexity of exploration
algorithms. We first provide a lower bound showing that simple non-optimism-based exploration
algorithms like ϵ-greedy suffer from a sample complexity that is exponential in the horizon. Then, we
show that with the help of a guide-policy with good coverage of important states, the JSRL algorithm
with ϵ-greedy as the exploration strategy can achieve polynomial sample complexity.

We focus on comparing JSRL with standard non-optimism-based exploration methods, e.g. ϵ-
greedy (Langford & Zhang, 2007) and FALCON+ (Simchi-Levi & Xu, 2020). Although the optimism-
based RL algorithms like UCB (Jin et al., 2018) and Thompson sampling (Ouyang et al., 2017) turn
out to be efficient strategies for exploration from scratch, they all require uncertainty quantification,
which can be hard for vision-based RL tasks with neural network parameterization. Note that the
cross entropy method used in the vision-based RL framework Qt-Opt (Kalashnikov et al., 2018) is
also a non-optimism-based method. In particular, it can be viewed as a variant of ϵ-greedy algorithm
in continuous action space, with the Gaussian distribution as the exploration distribution.

We first show that without the help of a guide-policy, the non-optimism-based method usually suffers
from a sample complexity that is exponential in horizon for episodic MDP. We adapt the combination
lock example in Koenig & Simmons (1993) to show the hardness of exploration from scratch for
non-optimism-based methods.

Theorem 4.1 (Koenig & Simmons (1993)). For 0-initialized ϵ-greedy, there exists an MDP instance
such that one has to suffer from a sample complexity that is exponential in total horizon H in order
to find a policy that has suboptimality smaller than 0.5.

We include the construction of combination lock MDP and the proof in Appendix A.4.2 for com-
pleteness. This lower bound also applies to any other non-optimism-based exploration algorithm
which explores uniformly when the estimated Q for all actions are 0. As a concrete example, this
also shows that iteratively running FALCON+ Simchi-Levi & Xu (2020) suffers from exponential
sample complexity. With the above lower bound, we are ready to show the upper bound for JSRL
under certain assumptions on the guide-policy. In particular, we assume that the guide-policy πg is
able to cover good states that are visited by the optimal policy under some feature representation:

Assumption 4.2 (Quality of guide-policy πg). Let dπ(s) be the marginalized state occupancy
distribution when we follow policy π. Assume that the state is parametrized by some feature mapping
ϕ : S 7→ Rd such that for any policy π, Qπ(s, a) and π(s) depend on s only through ϕ(s), and that
in the feature space, the guide-policy πg cover the states visited by the optimal policy:
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sup
s,h

dπ
⋆

h (ϕ(s))

dπ
g

h (ϕ(s))
≤ C.

We provide formal definition of the marginalized state occupancy distribution in Appendix A.4. In
other words, the guide-policy visits only all good states in the feature space. A policy that satisfies
Assumption 4.2 may be far from optimal due to wrong choice of actions in each step. Assumption 4.2
is also much weaker than the single policy concentratability coefficient assumption, which requires
the guide-policy visits all good state and action pairs and is a standard assumption in the literature
in offline learning Rashidinejad et al. (2021); Xie et al. (2021). The ratio in Assumption 4.2 is also
sometimes referred to as the distribution mismatch coefficient in the literature of policy gradient
methods Agarwal et al. (2021).

We show via the following theorem that given Assumption 4.2, a simplified JSRL algorithm which
only explores at current guide step h+ 1 gives good performance guarantees for both tabular MDP
and MDP with general function approximation. The simplified JSRL algorithm coincides with the
Policy Search by Dynamic Programming (PSDP) algorithm in Bagnell et al. (2003), although our
method is mainly motivated by the problem of fine-tuning and efficient exploration in value based
methods, while PSDP focuses on policy-based methods.
Theorem 4.3 (Informal). Under Assumption 4.2 and an appropriate choice of TrainPolicy and
EvaluatePolicy, JSRL in Algorithm 1 guarantees a suboptimality of O(CH5/2S1/2A/T 1/2) for
tabular MDP; and a near-optimal bound up to factor of C · poly(H) for MDP with general function
approximation.

To achieve a polynomial bound for JSRL, it suffices to take TrainPolicy as ϵ-greedy. This is in sharp
contrast to Theorem 4.1, where ϵ-greedy suffers from exponential sample complexity. As is discussed
in the related work section, although polynomial and even near-optimal bound can be achieved by
many optimism-based methods Jin et al. (2018); Ouyang et al. (2017), the JSRL algorithm does not
require constructing a bonus function for uncertainty quantification, and can be implemented easily
based on naı̈ve ϵ-greedy methods. Furthermore, although we focus on analyzing the simplified JSRL
which only updates policy π at current guide steps h+ 1, in practice we run a JSRL algorithm as in
Algorithm 1, which updates all policies after step h + 1. This is the main difference between our
proposed algorithm and PSDP. For a formal statement and more discussion related to Theorem 4.3,
please refer to Appendix A.4.3.

5 EXPERIMENTS
In our experimental evaluation, we study the following questions: (1) How does JSRL compare with
competitive IL+RL baselines? (2) Does JSRL scale to complex vision-based robotic manipulation
tasks? (3) How sensitive is JSRL to the quality of the guide-policy? (4) How important is the
curriculum component of JSRL? (5) Does JSRL generalize? That is, can a guide-policy still be useful
if it was pre-trained on a related task?

5.1 COMPARISON WITH IL+RL BASELINES

To study how JSRL compares with competitive IL+RL methods, we utilize the D4RL (Fu et al.,
2020) benchmark tasks, which vary in task complexity and offline dataset quality. We focus on the
most challenging D4RL tasks: Ant Maze and Adroit manipulation. We consider a common setting
where the agent first trains on an offline dataset (1m transitions for Ant Maze, 100k transitions for
Adroit) and then runs online fine-tuning for 1m steps. We compare against algorithms designed
specifically for this setting, which include AWAC (Nair et al., 2020), IQL (Kostrikov et al., 2021),
CQL (Kumar et al., 2020), and behavior cloning (BC). While JSRL can be used in combination with
any initial guide-policy or fine-tuning algorithm, we show the combination of JSRL with the strongest
baseline, IQL. IQL (Implicit Q-Learning) is an actor-critic method that completely avoids estimating
the values of actions that are not seen in the offline dataset. This is a recent state-of-the-art method
for the IL+RL setting we consider. In Table 1, we see that across the Ant Maze environments and
Adroit environments, IQL+JSRL is able to successfully fine-tune given an initial offline dataset, and
is competitive with baselines. We will come back for further analysis of Table 1 when discussing the
sensitivity to the size of the dataset.

1The AWAC, BC, and CQL performance scores for D4RL are taken from Kostrikov et al. (2021) which only
evaluated settings with full-sized datasets.
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Figure 3: We evaluate the importance of guide-policy quality for JSRL on Instance Grasping, the
most challenging task we consider. By limiting the initial demonstrations, JSRL is less sensitive to
limitations of initial demonstrations compared to baselines, especially in the small-data regime. For
each of these initial demonstration settings, we find that Qt-Opt+JSRL is more sample efficient than
Qt-Opt+JSRL-Random in early stages of training, but converge to the same final performances. A
similar analysis for Indiscriminate Grasping is provided in Fig. 10 in the Appendix.

Figure 4: IL+RL methods on two simulated robotic grasping tasks. The baselines show improvement with
fine-tuning, but Qt-Opt+JSRL is more sample efficient and attains higher final performance.

5.2 VISION-BASED ROBOTIC TASKS

Utilizing offline data is challenging in complex tasks such as vision-based robotic manipulation. The
high dimensionality of both the continuous control action space as well as the pixel-based state space
present unique scaling challenges for IL+RL methods. To study how JSRL scales to such settings, we
focus on two simulated robotic manipulation tasks: Indiscriminate Grasping and Instance Grasping.
In these tasks, a simulated robot arm is placed in front of a table with various categories of objects.
When the robot lifts any object, a sparse reward is given for the Indiscriminate Grasping task; for
the more challenging Instance Grasping task, the sparse reward is only given when a sampled target
object is grasped. An image of the task is shown in Fig. 5 and described in detail in Appendix A.1.2.
We compare JSRL against methods that have been shown to scale to such complex vision-based
robotics settings: Qt-Opt (Kalashnikov et al., 2018), AW-Opt (Lu et al., 2021), and BC. Each method
has access to the same offline dataset of 2,000 successful demonstrations and is allowed to run online
fine-tuning for up to 100,000 steps. While AW-Opt and BC utilize offline successes as part of their
original design motivation, we allow a more fair comparison for Qt-Opt by initializing the replay
buffer with the offline demonstrations, which was not the case in the original Qt-Opt paper. Since we
have already shown that JSRL can work well with an offline RL algorithm in the previous experiment,
to demonstrate the flexibility of our approach, in this experiment we combine JSRL with an online
Q-learning method: Qt-Opt. As seen in Fig. 4, the combination of Qt-Opt+JSRL (both versions of
the curricula) outperforms the other methods in both sample efficiency as well as final performance.

5.3 INITIAL DATASET SENSITIVITY

While most IL+RL methods are improved by more data and higher quality data, there are often
practical limitations that restrict initial offline datasets. JSRL is no exception to this dependency, as
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Environment Dataset AWAC1 BC1 CQL1 IQL IQL+JSRL (Ours)
Curriculum Random

antmaze-umaze-v0 1k – – – 0.2 ± 0.5 15.6 ± 19.9 10.4 ± 9.6
10k – – – 55.5 ± 12.5 71.7 ± 14.5 52.3 ± 26.7
100k – – – 74.2 ± 25.6 93.7 ± 4.2 92.1 ± 2.8

1m (standard) 59.0 54.6 99.4 97.6 ± 3.2 98.1 ± 1.4 95.0 ± 3.0
antmaze-umaze-diverse-v0 1k – – – 0.0 ± 0.0 3.1 ± 8.0 1.9 ± 4.8

10k – – – 33.1 ± 10.7 72.6 ± 12.2 39.4 ± 20.1
100k – – – 29.9 ± 23.1 81.3 ± 23.0 82.3 ± 14.2

1m (standard) 49.0 45.6 99.4 53.0 ± 30.5 88.6 ± 16.3 89.8 ± 10.0
antmaze-medium-play-v0 1k – – – 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

10k – – – 0.1 ± 0.3 16.7 ± 12.9 3.8 ± 5.0
100k – – – 32.8 ± 32.6 86.7 ± 3.7 56.2 ± 28.8

1m (standard) 0.0 0.0 0.0 92.8 ± 2.7 91.1 ± 3.9 87.8 ± 4.2
antmaze-medium-diverse-v0 1k – – – 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

10k – – – 0.0 ± 0.0 16.6 ± 11.7 5.1 ± 8.2
100k – – – 15.7 ± 17.7 81.5 ± 18.8 67.0 ± 17.4

1m (standard) 0.3 0.0 32.3 92.4 ± 4.5 93.1 ± 3.1 86.3 ± 5.9
antmaze-large-play-v0 1k – – – 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

10k – – – 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0
100k – – – 2.6 ± 8.2 36.3 ± 16.4 17.7 ± 13.4

1m (standard) 0.0 0.0 0.0 62.4 ± 12.4 62.9 ± 11.3 48.6 ± 10.0
antmaze-large-diverse-v0 1k – – – 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

10k – – – 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0
100k – – – 4.1 ± 10.4 34.4 ± 23.0 22.4 ± 15.4

1m (standard) 0.0 0.0 0.0 68.3 ± 8.9 68.3 ± 8.8 58.3 ± 6.5
pen-binary-v0 100 – – – 18.8 ± 11.6 24.3 ± 12.1 29.1 ± 7.6

1k – – – 30.1 ± 10.2 36.7 ± 7.9 46.3 ± 6.3
10k – – – 38.4 ± 11.2 44.3 ± 6.2 52.1 ± 3.3

100k (standard) 70.3 0.0 9.9 65.0 ± 2.9 62.6 ± 3.6 60.6 ± 2.7
door-binary-v0 100 – – – 0.8 ± 3.8 0.4 ± 1.8 0.1 ± 0.2

1k – – – 0.5 ± 1.5 0.7 ± 1.0 0.45 ± 1.2
10k – – – 10.6 ± 14.1 4.3 ± 8.4 22.3 ± 11.6

100k (standard) 30.1 0.0 0.0 50.2 ± 2.5 28.5 ± 19.5 24.3 ± 11.5
relocate-binary-v0 100 – – – 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0

1k – – – 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0
10k – – – 0.2 ± 0.3 0.6 ± 1.6 0.5 ± 0.7

100k (standard) 2.7 0.0 0.0 8.6 ± 7.7 0.0 ± 0.1 4.7 ± 4.2

Table 1: Comparing JSRL with IL+RL baselines on D4RL tasks by using averaged normalized
scores for D4RL Ant Maze and Adroit tasks. Each method pretrains on an offline dataset and then
runs online finetuning for 1m steps. Our method IQL+JSRL is competitive with IL+RL baselines in
the full dataset setting, but performs significantly better in the small-data regime. For implementation
details and more detailed comparisons, see Appendix A.2.

Environment # Demos Qt-Opt AW-Opt BC Qt-Opt+JSRL (Ours)
Indiscriminate Grasping 20 0.0± 0.0 0.0± 0.0 0.19± 0.04 0.92± 0.00
Indiscriminate Grasping 200 0.93± 0.01 0.96± 0.02 0.23± 0.00 0.92± 0.01
Indiscriminate Grasping 2k 0.94± 0.01 0.97± 0.01 0.44± 0.05 0.94± 0.03
Indiscriminate Grasping 20k 0.94± 0.01 0.98± 0.01 0.91± 0.01 0.95± 0.00

Instance Grasping 20 0.23± 0.20 0.47± 0.04 0.05± 0.04 0.50± 0.09
Instance Grasping 200 0.47± 0.04 0.49± 0.02 0.15± 0.02 0.54± 0.03
Instance Grasping 2k 0.15± 0.26 0.43± 0.03 0.28± 0.04 0.57± 0.07
Instance Grasping 20k 0.28± 0.25 0.57± 0.01 0.49± 0.02 0.58± 0.02

Table 2: Limiting the initial number of demonstrations is challenging for IL+RL baselines on the
difficult robotic grasping tasks. Notably, only Qt-Opt+JSRL is able to learn in the smallest-data
regime of just 20 demonstrations, 100x less than the standard 2,000 demonstrations.

the quality of the guide-policy πg directly depends on the offline dataset when utilizing JSRL in an
IL+RL setting (i.e., when the guide-policy is pre-trained on an offline dataset). We study the offline
dataset sensitivity of IL+RL algorithms and JSRL on both D4RL tasks as well as the vision-based
robotic grasping tasks. The two settings presented in D4RL and Robotic Grasping are quite different:
IQL+JSRL in D4RL pretrains with an offline RL algorithm from a mixed quality offline dataset,
while Qt-Opt+JSRL pretrains with BC from a high quality dataset.

For D4RL, methods typically use 1 million transitions from mixed-quality policies from previous RL
training runs; as we reduce the size of the offline datasets in Table 1, IQL+JSRL performance degrades
less than the baseline IQL performance. For the robotic grasping tasks, we provided 2,000 high-
quality demonstrations. As we reduce the number of demonstrations, we find that JSRL efficiently
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learns better policies. Across both D4RL and the robotic grasping tasks, JSRL outperforms baselines
in the low-data regime, as shown in Table 1 and Table 2. In the high-data regime, when we increase the
number of demonstrations by 10x to 20,000 demonstrations, we notice that AW-Opt and BC perform
much more competitively, suggesting that the exploration challenge is no longer the bottleneck. While
starting with such large numbers of demonstrations is not typically a realistic setting, this results
suggests that the benefits of JSRL are most prominent when the offline dataset does not densely cover
good state-action pairs. This aligns with our analysis in Appendix A.1 that JSRL does not require
such assumptions about the dataset, but solely requires a prior policy.

5.4 JSRL-CURRICULUM VS. JSRL-RANDOM SWITCHING

In order to disentangle these two components, we propose an augmentation of our method, JSRL-
Random, that randomly selects the number of guide-steps every episode. Using the D4RL tasks
and the robotic grasping tasks, we compare JSRL-Random to JSRL and previous IL+RL baselines
and find that JSRL-Random performs quite competitively, as seen in Table 1 and Table 2. However,
when considering sample efficiency, Fig. 4 shows that JSRL is better than JSRL-Random in early
stages of training, while converged performance is comparable. These same trends hold when we
limit the quality of the guide-policy by constraining the initial dataset, as seen in Fig. 3. This
suggests that while a curriculum of guide-steps does help sample efficiency, the largest benefits of
JSRL may stem from the presence of good visitation states induced by the guide-policy as opposed
to the specific order of good visitation states, as suggested by our analysis in Appendix A.4.3. For
analyze hyperparameter sensitivity of JSRL-Curriculum and provide the specific implementation of
hyperparameters chosen for our experiments in Appendix A.3.

5.5 GUIDE-POLICY GENERALIZATION

In order to study how guide-policies from easier tasks can be used to efficiently explore more difficult
tasks, we train an indiscriminate grasping policy and use it as the guide-policy for JSRL on instance
grasping (Figure 13). While the performance when using the indiscriminate guide is worse than using
the instance guide, the performance for both JSRL versions outperform vanilla Qt-Opt. We also test
JSRL ’s generalization capabilities in the D4RL setting. We consider two variations of Ant mazes:
”play” and ”diverse”. In antmaze-*-play, the agent must reach a fixed set of goal locations from a
fixed set of starting locations. In antmaze-*-diverse, the agent must reach random goal locations
from random starting locations. Thus, the diverse environments present a greater challenge than
the corresponding play environments. In Figure 14, we see that JSRL is able to better generalize to
unseen goal and starting locations compared to vanilla IQL.

6 CONCLUSION

In this work, we propose Jump-Start Reinforcement Learning (JSRL), a method for leveraging a
prior policy of any form to bolster exploration in RL to increase sample efficiency. Our algorithm
creates a learning curriculum by rolling in a pre-existing guide-policy, which is then followed by
the self-improving exploration policy. The job of the exploration-policy is simplified, as it starts its
exploration from states closer to the goal. As the exploration policy improves, the effect of the guide-
policy diminishes, leading to a fully capable RL policy. Importantly, our approach is generic since
it can be used with any RL method including value-based RL approaches, which have traditionally
struggled in this setting. We showed the benefits of JSRL in a set of offline RL benchmark tasks
as well as more challenging vision-based robotic simulation tasks. Our experiments indicate that
JSRL is more sample efficient than more complex IL+RL approaches while being compatible with
other approaches’ benefits. In addition, we presented theoretical analysis of an upper bound on the
sample complexity of JSRL , which showed from-exponential-to-polynomial improvement in time
horizon from non-optimism exploration methods. In the future, we plan on deploying JSRL in the
real world in conjunction with various types of guide-policies to further investigate its ability to
bootstrap data efficient RL.
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Figure 6: Example ant maze (left) and adroit dexterous manipulation (right) tasks.

A APPENDIX

A.1 EXPERIMENT IMPLEMENTATION DETAILS

A.1.1 D4RL: ANT MAZE AND ADROIT

We evaluate on the Ant Maze and Adroit tasks, the most challenging tasks in the D4RL benchmark Fu
et al. (2020). For the baseline IL+RL method comparisons, we utilize implementations and reported
results from Kostrikov et al. (2021): we use the open-sourced version of IQL and the reported results
from for AWAC, BC, and CQL. While the standard initial offline datasets contain 1m transitions for
Ant Maze and 100k transitions for Adroit, we additionally ablate the datasets to evaluate settings with
100, 1k, 10k, and 100k transitions provided initially.

Figure 5: In the simulated vision-based
robotic grasping tasks, a robot arm must
grasp various objects placed in bins in
front of it. Full implementation details
are described in Appendix A.1.2.

For the implementation of IQL+JSRL, we build upon the
open-sourced IQL implementation Kostrikov et al. (2021).
First, to obtain a guide-policy, we use IQL without mod-
ification for pretraining on the offline dataset. Then, we
follow Algorithm 1 when finetuning online and use the
IQL online update as the TRAINPOLICY step from Al-
gorithm 1. The IQL neural network architecture follows
the original implementation of Kostrikov et al. (2021).
For finetuning, we maintain two replay buffers for offline
and online transitions. The offline buffer contains all the
demonstrations, and the online buffer is FIFO with a fixed
capacity of 100k transitions. For each gradient update dur-
ing finetuning, we sample minibatches such that 75% of
samples come from the online buffer, and 25% of samples
come from the offline buffer.

Our implementation of IQL+JSRL focused on two settings
when switching from offline pretraining to online finetun-
ing: Warm-starting and Cold-starting. When Warm-starting, we copy the actor, critic, target critic,
and value networks from the pre-trained guide-policy to the exploration-policy. When Cold-starting,
we instead start training the exploration-policy from scratch. Results for both variants are shown in
Appendix A.2. We find that empirically, the performance of these two variants is highly dependent on
task difficulty as well as the quality of the initial offline dataset. When initial datasets are very poor,
cold-starting usually performs better; when initial datasets are dense and high-quality, warm-starting
seems to perform better. For the results reported in Table 1, we utilize Cold-start results for both
IQL+JSRL-Curriculum and IQL+JSRL-Random.

Finally, the curriculum implementation for IQL+JSRL used policy evaluation every 10,000 steps to
gauge learning progress of the exploration-policy πe. When the moving average of πe’s performance
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increases over a few samples, we move on to the next curriculum stage. For the IQL+JSRL-Random
variant, we randomly sample the number of guide-steps for every single episode.

A.1.2 SIMULATED ROBOTIC MANIPULATION

We simulate a 7 DoF arm with an over-the-shoulder camera (see Figure 5) Three bins in front of
the robot are filled with various simulated objects to be picked up by the robot and a sparse binary
reward is assigned if any object is lifted above a bin at the end of an episode. States are represented
in the form of RGB images and actions are continuous Cartesian displacements of the gripper’s 3D
positions and yaw. In addition, the policy commands discrete gripper open and close actions and may
terminate an episode.

For the implementation of Qt-Opt+JSRL, we build upon the Qt-Opt algorithm described in Kalash-
nikov et al. (2018). First, to obtain a guide-policy we use a BC policy trained offline on the provided
demonstrations. Then, we follow Algorithm 1 when finetuning online and use the Qt-Opt online
update as the TRAINPOLICY step from Algorithm 1. The demonstrations are not added to the Qt-
Opt+JSRLreplay buffer. The Qt-Opt neural network architecture follows the original implementation
in Kalashnikov et al. (2018).

Finally, similar to Appendix A.1.1, the curriculum implementation for Qt-Opt+JSRLused policy
evaluation every 1,000 steps to gauge learning progress of the exploration-policy πe. When the
moving average of πe’s performance increases over a few samples, the number of guide-steps is
lowered, allowing the JSRL curriculum to continue. For the Qt-Opt+JSRL-Random variant, we
randomly sample the number of guide-steps for every single episode.

A.2 ADDITIONAL EXPERIMENTS

JSRL: Random Switching JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 27.18± 7.77 29.12± 7.62 25.10± 8.73 24.31± 12.05 18.80± 11.63
door-binary-v0 0.01± 0.04 0.06± 0.23 1.45± 4.67 0.40± 1.80 0.84± 3.76

relocate-binary-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.06 0.01± 0.03

Table 3: Adroit 100 Offline Transitions

JSRL: Random Switching JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 47.23± 3.96 46.30± 6.34 34.23± 7.22 36.74± 7.91 30.11± 10.22
door-binary-v0 0.15± 0.25 0.45± 1.22 0.44± 0.89 0.68± 1.02 0.53± 1.46

relocate-binary-v0 0.06± 0.08 0.01± 0.04 0.05± 0.09 0.04± 0.10 0.01± 0.03

Table 4: Adroit 1k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 51.78± 3.00 52.11± 3.30 38.04± 12.71 44.31± 6.22 38.41± 11.18
door-binary-v0 10.59± 11.78 22.32± 11.61 5.08± 7.60 4.33± 8.38 10.61± 14.11

relocate-binary-v0 1.99± 3.15 0.50± 0.65 4.39± 8.17 0.55± 1.60 0.19± 0.32

Table 5: Adroit 10k Offline Transitions
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Figure 7: A policy is first pre-trained on 100k offline transitions. Negative steps correspond to this
pre-training. We then roll out the pre-trained policy for 100k timesteps, and use these online samples
to warm-up the critic network. After warming up the critic, we continue with actor-critic fine-tuning
with the pre-trained policy and the warmed up critic.
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Figure 8: A policy is first pre-trained on one million offline transitions. Negative steps correspond
to this pre-training. We then roll out the pre-trained policy for 100k timesteps, and use these online
samples to warm-up the critic network. After warming up the critic, we continue with actor-critic
fine-tuning with the pre-trained policy and the warmed up critic. Allowing the critic to warm up
provides a stronger baseline to compare JSRL to, since in the case where we have a policy, but no
value function, we could use that policy to train a value function.
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Figure 9: QT-Opt+JSRL using guide-policies trained from-scratch online vs. guide-policies trained
with BC on demonstration data in the indiscriminate grasping environment. For each experiment, the
guide-policy trained offline and the guide-policy trained online are of equivalent performance.
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Figure 10: Comparing IL+RL methods with JSRL on the Indiscriminate Grasping task while adjusting
the initial demonstrations available. In addition, compare the sample efficiency
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Figure 11: Comparing IL+RL methods with JSRL on the Instance Grasping task while adjusting the
initial demonstrations available.
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IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 60.06± 2.94 60.58± 2.73 62.81± 2.79 62.59± 3.62 64.96± 2.87
door-binary-v0 27.23± 8.90 24.27± 11.47 38.70± 17.25 28.51± 19.54 50.21± 2.50

relocate-binary-v0 5.09± 4.39 4.69± 4.16 11.18± 11.69 0.04± 0.14 8.59± 7.70

Table 6: Adroit 100k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 0.10± 0.31 10.35± 9.59 0.40± 0.94 15.60± 19.87 0.20± 0.52
antmaze-umaze-diverse-v0 0.10± 0.31 1.90± 4.81 0.45± 1.23 3.05± 7.99 0.00± 0.00
antmaze-medium-play-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

antmaze-medium-diverse-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
antmaze-large-play-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

antmaze-large-diverse-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7: Ant Maze 1k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 56.00± 13.70 52.70± 26.71 57.25± 15.86 71.70± 14.49 55.50± 12.51
antmaze-umaze-diverse-v0 23.05± 10.96 39.35± 20.07 26.80± 12.03 72.55± 12.18 33.10± 10.74
antmaze-medium-play-v0 0.05± 0.22 3.75± 4.97 0.00± 0.00 16.65± 12.93 0.10± 0.31

antmaze-medium-diverse-v0 0.00± 0.00 5.10± 8.16 0.00± 0.00 16.60± 11.71 0.00± 0.00
antmaze-large-play-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.05± 0.22 0.00± 0.00

antmaze-large-diverse-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.05± 0.22 0.00± 0.00

Table 8: Ant Maze 10k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 73.35± 22.58 92.05± 2.76 71.35± 26.36 93.65± 4.21 74.15± 25.62
antmaze-umaze-diverse-v0 40.95± 13.34 82.25± 14.20 38.80± 21.96 81.30± 23.04 29.85± 23.08
antmaze-medium-play-v0 9.55± 14.42 56.15± 28.78 22.15± 29.82 86.85± 3.67 32.80± 32.64

antmaze-medium-diverse-v0 14.05± 13.30 67.00± 17.43 15.75± 16.48 81.50± 18.80 15.70± 17.69
antmaze-large-play-v0 0.35± 0.93 17.70± 13.35 0.45± 1.19 36.30± 16.41 2.55± 8.19

antmaze-large-diverse-v0 1.25± 2.31 22.40± 15.44 0.75± 1.16 34.35± 22.97 4.10± 10.37

Table 9: Ant Maze 100k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 95.35± 2.23 94.95± 2.95 96.70± 1.69 98.05± 1.43 97.60± 3.19
antmaze-umaze-diverse-v0 65.95± 27.00 89.80± 10.00 59.95± 33.90 88.55± 16.37 52.95± 30.48
antmaze-medium-play-v0 82.25± 4.88 87.80± 4.20 92.20± 2.84 91.05± 3.86 92.75± 2.73

antmaze-medium-diverse-v0 83.45± 4.64 86.25± 5.94 91.65± 2.98 93.05± 3.10 92.40± 4.50
antmaze-large-play-v0 50.35± 9.74 48.60± 10.01 72.15± 9.66 62.85± 11.31 62.35± 12.42

antmaze-large-diverse-v0 56.80± 9.15 58.30± 6.54 70.55± 17.43 68.25± 8.76 68.25± 8.85

Table 10: Ant Maze 1m Offline Transitions

A.3 HYPERPARAMETERS OF JSRL

JSRL introduces three hyperparameters: (1) the initial number of guide-steps that the guide-policy
takes at the beginning of fine-tuning (H1), (2) the number of curriculum stages (n), and (3) the
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Moving Average Horizon
1 5 10

0% 79.66 56.66 74.83
Tolerance 5% 51.12 78.8 79.78

15% 56.41 47.46 59.52

Table 11: We fix the number of curriculum stages at n = 10 for antmaze-large-diverse-v0, then vary
the moving average horizon and tolerance. Each number is the average reward after 5 million training
steps of one seed. As tolerance increases, the reward decreases since curriculum stages are not fully
mastered before moving on.

performance threshold that decides whether to move on to the next curriculum stage (β). Minimal
tuning was done for these hyperparameters.

IQL+JSRL: For offline pre-training and online fine-tuning, we use the same exact hyperparameters
as the default implementation of IQL [6].

Our reported results for vanilla IQL do differ from the original paper, but this is due to us running
more random seeds (20 vs. 5), which we also consulted with the authors of IQL. For Indiscriminate
and Instance Grasping experiments we utilize the same environment, task definition, and training
hyperparameters as Qt-Opt and AW-Opt.

Initial Number of Guide-Steps: H1:

For all X+JSRLexperiments, we train the guide-policy (IQL for D4RL and BC for grasping) then
evaluate it to determine how many steps it takes to solve the task on average. For D4RL, we evaluate
it over one hundred episodes. For grasping, we plot training metrics and observe the average episode
length after convergence. This average is then used as the initial number of guide-steps. Since H1 is
directly computed, no hyperparameter search is required.

Curriculum Stages: n

Once the number of curriculum stages was chosen, we computed the number of steps between
curriculum stages as H1

n . Then h varies from H1− H1

n , H1−2H1

n , . . . ,H1−(n−1)H1

n , 0. To decide
on an appropriate number of curriculum stages, we decreased n (increased H1

n and Hi − Hi−1),
starting from n = H , until the curriculum became too difficult for the agent to overcome (i.e., the
agent becomes ”stuck” on a curriculum stage). We then used the minimal value of n for which the
agent could still solve all stages. In practice, we did not try every value between H and 1, but chose
a very small subset of values to test in this range.

Performance Threshold β: For both grasping and D4RL tasks, we evaluated π between fixed
intervals and computed the moving average of these evaluations (5 for D4RL, 3 for grasping). If the
current moving average is close enough to the best previous moving average, then we move from
curriculum stage i to i+ 1. To define ”close enough”, we set a tolerance that let the agent move to
the next stage if the current moving average was within some percentage of the previous best. The
tolerance and moving average horizon were our ”β”, a generic parameter that is flexible based on
how costly it is to evaluate the performance of π. In Figure 12 and Table 11, we perform small studies
to determine how varying β affects JSRL’s performance.
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Figure 12: Ablation study for β in the indiscriminate grasping environment. We find that the moving
average horizon does not have a large impact on performance, but larger tolerance slightly hurts
performance. A larger tolerance around the best moving average makes it easier for JSRL to move on
to the next curriculum stage. This means that experiments with a larger tolerance could potentially
move on to the next curriculum stage before JSRL masters the previous curriculum stage, leading to
lower performance.

Figure 13: First, an indiscriminate grasping policy is trained using online QT-Opt to 90% indiscrimi-
nate grasping success and 5% instance grasping success (when the policy happens to randomly pick
the correct object). We compare this 90% indiscriminate grasping guide policy with a 8.4% success
instance grasping guide policy trained with BC on 2k demonstrations. While the performance for
using the indiscriminate guide is slightly worse than using the instance guide, the performance for
both JSRL versions are much better than vanilla Qt-Opt.
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Figure 14: First, a policy is trained offline on a simpler antmaze-*-play environment for one million
steps (depicted by negative steps). This policy is then used for initializing fine-tuning (depicted by
positive steps) in a more complex antmaze-*-diverse environment. We find that IQL+JSRL can better
generalize to the more difficult antmazes compared to IQL even when using guide-policies trained on
different tasks.
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A.4 THEORETICAL ANALYSIS FOR JSRL

A.4.1 SETUP AND NOTATIONS

Consider a finite-horizon time-inhomogeneous MDP with a fixed total horizon H and bounded reward
rh ∈ [0, 1],∀h ∈ [H]. The transition of state-action pair (s, a) in step h is denoted as Ph(· | s, a).
Assume that at step 0, the initial state follows a distribution p0.

For simplicity, we use π to denote the policy for H steps π = {πh}Hh=1. We let dπh(s) be the
marginalized state occupancy distribution in step h when we follow policy π.

A.4.2 PROOF SKETCH FOR THEOREM 4.1

Figure 15: Lower bound instance: combination lock

We construct a special instance, combination lock MDP, which is depicted in Figure 15 and works as
follows. The agent can only arrive at the red state s⋆h+1 in step h+ 1 when it takes action a⋆h at the
red state s⋆h at step h. Once it leaves state s⋆h, the agent stays in the blue states and can never get back
to red states again. At the last layer, one receives reward 1 when the agent is at state s⋆H and takes
action a⋆H . For all other cases, the reward is 0. In exploration from scratch, before seeing rH(s⋆, a⋆),
one only sees reward 0. Thus 0-initialized ϵ-greedy always takes each action with probability 1/2.
The probability of arriving at state s⋆H with uniform actions is 1/2H , which means that one needs at
least 2H samples in expectation to see rH(s⋆, a⋆).

A.4.3 UPPER BOUND OF JSRL

In this section, we restate Theorem 4.3 and its assumption in a formal way. First, we make assumption
on the quality of the guide-policy, which is the key assumption that helps improve the exploration
from exponential to polynomial sample complexity. One of the weakest assumption in theory of
offline learning literature is the single policy concentratability coefficient Rashidinejad et al. (2021);
Xie et al. (2021)1. Concretely, they assume that there exists a guide-policy πg such that

sup
s,a,h

dπ
⋆

h (s, a)

dπ
g

h (s, a)
≤ C. (1)

This means that for any state action pair that the optimal policy visits, the guide-policy shall also visit
with certain probability.

In the analysis, we impose a strictly weaker assumption. We only require that the guide-policy visits
all good states in the feature space instead of all good state and action pairs.
Assumption A.1 (Quality of guide-policy πg). Assume that the state is parametrized by some feature
mapping ϕ : S → Rd such that for any policy π, Qπ(s, a) and π(s) depends on s only through ϕ(s).
We assume that in the feature space, the guide-policy πg cover the states visited by the optimal policy:

sup
s,h

dπ
⋆

h (ϕ(s))

dπ
g

h (ϕ(s))
≤ C.

1The single policy concentratability assumption is already a weaker version of the traditional concentratability
coefficient assumption, which takes a supremum of the density ratio over all state-action pairs and all policies
(Scherrer, 2014; Chen & Jiang, 2019; Jiang, 2019; Wang et al., 2019; Liao et al., 2020; Liu et al., 2019; Zhang
et al., 2020a).
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Note that for the tabular case when ϕ(s) = s, one can easily prove that equation 1 implies Assump-
tion A.1. In real robotics, the assumption implies that the guide-policy at least sees the features of the
good states that the optimal policy also see. However, the guide-policy can be arbitrarily bad in terms
of choosing actions.

Before we proceed to the main theorem, we need to impose another assumption on the performance
of the exploration step, which requires to find an exploration algorithm that performs well in the case
of H = 1 (contextual bandit).
Assumption A.2 (Performance guarantee for ExplorationOracle CB). In (online) contextual bandit
with stochastic context s ∼ p0 and stochastic reward r(s, a) supported on [0, R], there exists some
ExplorationOracle CB which executes a policy πt in each round t ∈ [T ], such that the total regret is
bounded:

T∑
t=1

Es∼p0
[r(s, π⋆(s))− r(s, πt(s))] ≤ f(T,R).

This assumption is usually given for free since it is implied by a rich literature in contextual bandit,
including tabular Langford & Zhang (2007), linear Chu et al. (2011), general function approximation
with finite action Simchi-Levi & Xu (2020), neural networks and continuous actions Krishnamurthy
et al. (2019), either via optimism-based methods (UCB, Thompson sampling etc.) or non-optimism-
based methods (ϵ-greedy, inverse gap weighting etc.).

Now we are ready to present the algorithm and guarantee. The JSRL algorithm is summarized in
Algorithm 1. For the convenience of theoretical analysis, we make some simplification by only
considering curriculum case, replacing the step of EvaluatePolicy with a fixed iteration time, and
set the TrainPolicy in Algorithm 1 as follows: at iteration h, fix the policy πh+1:H unchanged, set
πh = ExplorationOracle CB(D), where the reward for contextual bandit is the cumulative reward∑

t=h:H rt. For concreteness, we show the pseudocode for the algorithm below.

Algorithm 2 Jump-Start Reinforcement Learning for Episodic MDP with CB oracle
1: Input: guide-policy πg , total time step T , horizon length H
2: Initialize exploration policy π = πg , online dataset D = ∅.
3: for iteration h = H − 1, H − 2, · · · , 0 do
4: Execute ExplorationOracle CB for ⌈T/H⌉ rounds, with the state-aciton-reward tuple for

contextual bandit derived as follows: at round t, first gather a trajectory {(stl , atl , stl+1, r
t
l )}l∈[H−1]

by rolling out policy π, then take {sth, ath,
∑H

l=h r
t
l} as the state-action-reward samples for

contextual bandit. Let πt be the executed policy at round t.
5: Set policy πh = Unif({πt}Tt=1}).
6: end for

Note that the Algorithm 2 is a special case of Algorithm 1 where the policies after current step h is
fixed. This coincides with the idea of Policy Search by Dynamic Programming (PSDP) in Bagnell
et al. (2003). Notably, although PSDP is mainly motivated from policy learning while JSRL is
motivated from efficient online exploration and fine-tuning, the following theorem follows mostly the
same line as that in Bagnell (2004). For completeness we provide the performance guarantee of the
algorithm as follows.
Theorem A.3. Under Assumption A.1 and A.2, the JSRL in Algorithm 2 guarantees that after T
rounds,

Es0∼p0 [V
∗
0 (s0)− V π

0 (s0)] ≤ C ·
H−1∑
h=0

f(T/H,H − h).

Theorem A.3 is quite general, and it depends on the choice of the exploration oracle. Below we give
concrete results for tabular RL and RL with function approximation.
Corollary A.4. For tabular case, when we take ExplorationOracle CB as ϵ-greedy, the rate achieved
is O(CH7/3S1/3A1/3/T 1/3) ; when we take ExplorationOracle CB as FALCON+, the rate becomes
O(CH5/2S1/2A/T 1/2). Here S can be relaxed to the maximum state size that πg visits among all
steps.
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The result above implies a polynomial sample complexity when combined with non-optimism
exploration techniques, including ϵ-greedy Langford & Zhang (2007) and FALCON+ Simchi-Levi &
Xu (2020). In contrast, they both suffer from a curse of horizon without such a guide-policy.

Next, we move to RL with general function approximation.

Corollary A.5. For general function approximation, when we take ExplorationOracle CB as FAL-
CON+, the rate becomes Õ(C

∑H
h=1

√
AEF (T/H)) under the following assumption.

Assumption A.6. Let π be an arbitrary policy. Given n training trajectories of the form
{(sjh, a

j
h, s

j
h+1, r

j
h)}j∈[n],h∈[H] drawn from following policy π in a given MDP, according to

sjh ∼ dπh, a
j
h|s

j
h ∼ πh(sh), r

j
h|(s

j
h, a

j
h) ∼ Rh(s

j
h, a

j
h), s

j
h+1|(s

j
h, a

j
h) ∼ Ph(·|sjh, a

j
h), there ex-

ists some offline regression oracle which returns a family of predictors Q̂h : S ×A → R, h ∈ [H],
such that for any h ∈ [H], we have

E
[
(Q̂h(s, a)−Qπ

h(s, a))
2
]
≤ EF (n).

As is shown in Simchi-Levi & Xu (2020), this assumption on offline regression oracle implies our
Assumption on regret bound in Assumption A.2. When EF is a polynomial function, the above rate
matches the worst-case lower bound for contextual bandit in Simchi-Levi & Xu (2020), up to a factor
of C · poly(H).

The results above show that under Assumption A.1, one can achieve polynomial and sometimes
near-optimal sample complexity up to polynomial factors of H without applying Bellman update,
but only with a contextual bandit oracle. In practice, we run Q-learning based exploration oracle,
which may be more robust to the violation of assumptions. We leave the analysis for Q-learning
based exploration oracle as a future work.
Remark A.7. The result generalizes to and is adaptive to the case when one has time-inhomogeneous
C, i.e.

∀h ∈ [H], sup
s

dπ
⋆

h (ϕ(s))

dπ
g

h (ϕ(s))
≤ C(h).

The rate becomes
∑H−1

h=0 C(h) · f(T/H,H − h) in this case.

In our current analysis, we heavily rely on the assumption of visitation and applied contextual bandit
based exploration techniques. In our experiments, we indeed run a Q-learning based exploration
algorithm which also explores the succinct states after we roll out the guide-policy. This also suggests
why setting K > 1 and even random switching in Algorithm 1 might achieve better performance
than the case of K = 1. We conjecture that with a Q-learning based exploration algorithm, JSRL still
works even when Assumption A.1 only holds partially. We leave the related analysis for JSRL with a
Q-learning based exploration oracle for future work.

A.4.4 PROOF OF THEOREM A.3 AND COROLLARIES

Proof. The analysis follows a same line as Bagnell (2004). For completeness we include here. By
the performance difference lemma Kakade & Langford (2002), one has

Es0∼d0
[V ⋆

0 (s0)− V π
0 (s0)] =

H−1∑
h=0

Es∼d⋆
h
[Qπ

h(s, π
⋆
h(s))−Qπ

h(s, πh(s))]. (2)

At iteration h, the algorithm adopts a policy π with πl = πg
l ,∀l < h, and fixed learned πl for l > h.

The algorithm only updates πh during this iteration. By taking the reward as
∑H

l=h rl, this presents a
contextual bandit problem with initial state distribution dπ

g

h , reward bounded in between [0, H − h],
and the expected reward for taking state action (s, a) is Qπ

h(s, a). Let π̂⋆
h be the optimal policy for

this contextual bandit problem. From Assumption A.2, we know that after T/H rounds at iteration h,
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one has
H−1∑
h=0

Es∼d⋆
h
[Qπ

h(s, π
⋆
h(s))−Qπ

h(s, πh(s))]
(i)

≤
H−1∑
h=0

Es∼d⋆
h
[Qπ

h(s, π̂
⋆
h(s))−Qπ

h(s, πh(s))]

(ii)
=

H−1∑
h=0

Es∼d⋆
h
[Qπ

h(ϕ(s), π̂
⋆
h(ϕ(s)))−Qπ

h(ϕ(s), πh(ϕ(s)))]

(iii)

≤ C ·
H−1∑
h=0

Es∼dπg

h
[Qπ

h(ϕ(s), π̂
⋆
h(ϕ(s)))−Qπ

h(ϕ(s), πh(ϕ(s)))]

(iv)

≤ C ·
H−1∑
h=0

f(T/H,H − h).

Here the inequality (i) uses the fact that π̂⋆ is the optimal policy for the contextual bandit problem.
The equality (ii) uses the fact that Q, π depends on s only through ϕ(s). The inequality (iii) comes
from Assumption A.1. The inequality (iv) comes from Assumption A.2. From Equation equation 2
we know that the conclusion holds true.

When ExplorationOracle CB is ϵ-greedy, the rate in Assumption A.2 becomes f(T,R) =
R · ((SA/T )1/3) Langford & Zhang (2007), which gives the rate for JSRL as
O(CH7/3S1/3A1/3/T 1/3); when we take ExplorationOracle CB as FALCON+ in tabular case,
the rate in Assumption A.2 becomes f(T,R) = R · ((SA2/T )1/2) Simchi-Levi & Xu (2020), the
final rate for JSRL becomes O(CH5/2S1/2A/T 1/2). When we take ExplorationOracle CB as FAL-
CON+ in general function approximation under Assumption A.6, the rate in Assumption A.2 becomes
f(T,R) = R · (AEF (T ))1/2, the final rate for JSRL becomes Õ(C

∑H
h=1

√
AEF (T/H)).
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