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Heterogeneous Graph Guided Contrastive Learning for Spatially
Resolved Transcriptomics Data
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ABSTRACT
Spatial transcriptomics provides revolutionary insights into cellular
interactions and disease development mechanisms by combining
high-throughput gene sequencing and spatially resolved imaging
technologies to analyze genes naturally associated with spatially
variable tissue genes. However, existing methods typically map ag-
gregated multi-view features into a unified representation, ignoring
the heterogeneity and view independence of genes and spatial in-
formation. To this end, we construct a heterogeneousGraph guided
Contrastive Learning (stGCL) for aggregating spatial transcrip-
tomics data. The method is guided by the inherent heterogeneity
of cellular molecules by dynamically coordinating triple-level node
attributes through comparative learning loss distributed across
view domains, thus maintaining view independence during the
aggregation process. In addition, we introduce a cross-view hierar-
chical feature alignment module employing a parallel approach to
decouple spatial and genetic views on molecular structures while
aggregating multi-view features according to information theory,
thereby enhancing the integrity of inter- and intra-views. Rigorous
experiments demonstrate that stGCL outperforms existing methods
in various tasks and related downstream applications.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Discrete space search; • Mathematics of com-
puting → Information theory.

KEYWORDS
multi-view learning, cluster, cross-modality

1 INTRODUCTION
Spatial transcriptomics is widely employed to explore the struc-
tural organization and functional roles of cells within tissues. This
approach seeks to elucidate the spatial patterns of gene expression
critical for applications, e.g., precision medicine, resolution of dis-
ease mechanisms, and discovery of disease biomarkers [3]. Unlike
single-cell multi-omics, spatial transcriptomics offers insights into
the spatial arrangements of cells, facilitating new perspectives on
cell-cell interactions in complex biological processes [2, 31].

Top performers have merged spatial transcriptomics with com-
putational vision, mathematical models, and graph convolution to
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Figure 1: (a) A spot in spatial transcriptomics indicates multi-
ple cellular genes. (b) Typicalmethods aggregatemulti-modal
data into a compact universal distribution. (c) Our proposed
mapping-to-expansion paradigm maximizes the preserva-
tion of the original modal molecular information.

identify spatially variable genes, intending to leverage morpho-
logical priors of spatial features for cellular discrimination [6, 35].
However, organisms are defined by the relationships between cel-
lular genes and cells with a regular spatial distribution in morphol-
ogy [19]. It is quite a challenging task to combine the best of both
perspectives, i.e., to integrate spatial and genetic information based
on a priori relationships [21].

Recent proposals for graph neural networks (GNNs) to integrate
spatial and genetic information, thereby processing multi-modal
data from various sensors and learning to discern associations be-
tween modalities and adaptively learn associations between modal-
ities [23]. SpaGCN [9] aggregates gene expression around each spot
through spatial graph convolution. DeepST [29] integrates node
features and positional information using denoising autoencoders
and GNNs. Li et al. [11] introduces an unsupervised cell clustering
method based on graph convolutional networks. GraphST [14] fur-
ther integrates multiple tissue sections vertically and horizontally
through spatial graph self-supervised contrast. MuSe-GNN [13]
combines weighted similarity and contrastive learning for regu-
larization, aiming to learn gene-gene relationships across datasets.
Furthermore, due to sensor limitations, genetic data for one locus
typically contains an average of more than a dozen cellular expres-
sions [4]. Thus, the independence of gene and spatial views of cells
is particularly critical for unbiasedly determining cell population
boundaries for categorization, i.e., returning to the basics.

As shown in Fig. 1, a cellular organization typically exhibits spa-
tial regularity resulting from cell expansion processes. However, the
aforementioned method ignores the potential heterogeneity of spa-
tial and gene associations for the expression of cellular categories,
resulting in the absence of inter-cellular associations during the
fusion process. There are two points: (1) Although spatial features
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at the boundaries of cell populations are highly correlated, cell cat-
egorization remains inconsistent and primarily dependent on gene
markers. This inconsistency can cause spatial features to overly
smooth representations at tissue boundaries, leading to confusion
in cell categorization. (2) From a multi-view alignment perspective,
previous studies have shown that fusion map distributions were
equivalent in size to the distributions of individual modalities, ob-
scuring the structural organization of spatial and genetic features
and contributing to modality collapse during the fusion process
(as depicted in Fig. 1). This is like shooting arrows; the larger the
target (i.e., for the projected feature distribution), the better the
arrow shot from each modality hits the bull’s eye.

To address the above issues, we propose an end-to-end frame-
work of heterogeneous graph Guided Contrastive Learning (stGCL)
for spatially resolved transcriptomics data. This framework con-
structs gene and spatial graphs utilizing features derived from in-
dependent parallel graph encoders, which are subsequently rep-
resented within latent distributions. To identify confusing orga-
nizational boundaries, we construct three levels based on spatial
and genetic heterogeneity relationships, i.e., the joint, gene, and
tissue levels, enabling the unbiased refinement of node attributes
through heterogeneous contrastive learning loss, leveraging the
independent a priori correlations among the three views.

On the other hand, to alleviate the modality collapse problem,
we design a cross-view hierarchical feature alignment (CHA) ag-
gregator designed to integrate cross-view features at the molecular
structure level while simultaneously tracing back to identify view-
specific structures. Inspired by information theory, the aggregated
features are refined to encompass heterogeneous and homogeneous
features, resulting in a comprehensive collection of coherent uni-
versal features with a consistent distribution size (as depicted in
Fig. 1c). stGCL incorporates a priori modeling for each view and im-
plements discriminative clustering techniques ranging from coarse
to fine, from tissue to molecular formulae. This integration ensures
a genetic representation of the functional similarity of morphology
across the views encompassed within the joint space.

Contributions: The main contributions of this paper are:

• We propose a stGCL for spatial transcriptomics data that
end-to-end combines the heterogeneity of genetic and spa-
tial a priori distributions to learn the intrinsic local organi-
zation of cells, providing a novel perspective on the mech-
anism of cellular interactions to address the coordination
between different views in tissue.

• ACHAmodule is designed to aggregate cross-view features
at the structure level, maintaining the independent struc-
tural integrity of the spatial and genetic views according to
information theory with a mapping-rescale paradigm.

• We introduce Contrastive Heterogeneous Molecular Learn-
ing to identify node attributes based on a priori correla-
tions of domain distributions at different levels to recognize
molecular latent spaces in an unbiased manner.

• We conduct comprehensive experiments on various three
datasets, demonstrating the quantitative and qualitative
superiority of our method. Its effectiveness was also con-
firmed in downstream ST tasks.

2 RELATEDWORK
2.1 Spatial transcriptomics
Spatial transcriptomics (ST) techniques are widely used in various
fields, including oncology, neuroscience, and developmental biology
[5], providing new insights not available from traditional transcrip-
tomics techniques that lack spatial resolution [4, 27]. Deciphering
the spatial organization of gene expression can facilitate the dis-
covery of new cell types [4], delineation of molecular pathways
[22], and the identification of targets for therapeutic interventions
[33], among other applications [16]. ST has unique spatial orga-
nization information relative to single-cell multi-omics, so some
excellent work has been done to construct representation learn-
ing networks based on spatial graphs to identify spatially variable
genes from a spatial perspective and to identify cells using the
morphological prior distribution of the spatial features [16]. Giotto
employs a Hidden Markov Random Field to model gene expression
at nodes, inspired by super-resolution in computer vision. SpaGCN
[9] uses GCN to identify spatial domains based on gene expression,
histology, and spatial location aggregation, identifying spatially
variable genes within each domain. SEDR [30] trains both a depth
self-encoder and a self-encoder to learn low-dimensional spatial
embedding of ST. Graph self-encoder to learn the low-dimensional
spatial embedding of ST. Squidpy [17] integrates omics and image
analysis tools to facilitate an expandable description of ST. Inspired
by the super-resolution technique in computer vision, BayesSpace
[34] has developed a comprehensive Bayesian statistical model
incorporating a Markov random field.

2.2 Multi-view Graph Learning
Many studies [24] have explored the application of graph neural
networks (GNNs) in partitioning and identifying spatial domains.
These studies treat spatial and genetic features as distinct sources
of multi-view information, aiming to facilitate adaptive learning
of inter-view associations [7, 8]. For instance, stLearn [18] em-
ploys neighbor-based smoothing and morphological adjustment
alongside a graph-based clustering approach to identify spatial
domains by normalizing ST data. SpaceFlow [20] introduces spa-
tially regularized deep graph networks to produce spatially coher-
ent low-dimensional embeddings. ThItoGene [10] utilizes dynamic
convolutional and capsule networks to detect potential molecular
signals in histological images adaptively. Spatial-MGCN [26] em-
ploys graph convolution to adaptively learn intricate relationships
between gene expression and spatial information. MuSe-GNN [13]
integrates weighted similarity learning and contrast learning for
regularization, enabling the exploration of gene-gene relationships
across datasets. In this study, we propose a multi-view contrast
learning framework based on spatial and gene views complemented
by a multi-level heterogeneous guided fusion strategy. This frame-
work aims to collaboratively mitigate the mismatch in cross-view
feature expression during fusion.

3 METHODOLOGY
3.1 Overview
Given spatial and gene features, a spatial graph 𝜓𝑠𝑝𝑎 = (𝜓𝑠 , 𝑋 ) is
constructed based on neighbor associations, where 𝜓𝑠 ∈ R𝑁×𝑁
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Figure 2: Illustration of the proposed spatial transcriptomics method stGCL. Cross-view aggregation for global structure
awareness of the graph (i.e., a low-pass filter) can filter redundant information from highly sparse biological data. According to
information theory, the cross-view generic embedding and alignment projections included in cross-view hierarchical feature
alignment (CHA) are designed to maximize the representation of spatially and genetically critical information in the final
features for application in various downstream tasks.

is the spatial adjacency matrix for 𝑁 points, and 𝑋 ∈ R𝑁×𝑀 rep-
resents the normalized gene expression matrix, with𝑀 being the
number of filtered genes. We set 𝜓 𝑖 𝑗𝑠 = 𝜓

𝑗𝑖
𝑠 = 1 if the Euclidean

distance 𝑆𝑖 𝑗 between points 𝑖 and 𝑗 is less than the predefined radius
𝑟 , otherwise, it is set to 0, which can be formalized as:

𝜓
𝑖 𝑗
𝑠 =

{
1, if 𝑆𝑖 𝑗 ≤ 𝑟

0, otherwise.
(1)

On the other hand, the gene expression graph is formed by measur-
ing the similarity of gene expressions using cosine distance. Specif-
ically, we construct the k-nearest neighbor graph𝜓𝑔𝑒𝑛𝑒 = (𝜓𝑓 , 𝑋 )
of the gene expression matrix 𝑋 , where𝜓𝑓 ∈ R𝑁×𝑁 is the feature
adjacency matrix. The adjacency matrix𝐴𝑓 for this graph is defined
using a binary classification system, where:

𝐴
𝑓

𝑖 𝑗
=

{
1 if 𝑗 is a neighbor of 𝑖,
0 otherwise.

(2)

ensure that only the first 𝑘 neighbors of each point based on the
gene cosine similarity are considered in the graph, and calculated
using the gene expression vectors x𝑖 and x𝑗 from 𝑋 to compute the
cosine similarity between the two points 𝑖 and 𝑗 , with the formula:
sim(x𝑖 , x𝑗 ) =

x𝑖 ·x𝑗
∥x𝑖 ∥ ∥x𝑗 ∥ .

The spatial and gene-view graphs are then processed separately
through graph convolutional encoders to maximize their potential

expression, formulated as follows:

𝐻 (𝑙+1) = 𝜎 (�̃�− 1
2𝜓�̃�− 1

2𝐻 (𝑙 )𝑊 (𝑙 ) ), (3)

where 𝐻 (𝑙+1) denotes the node embeddings at the (𝑙 + 1)-th layer,
𝐻 (𝑙 ) represents the node features at the 𝑙-th layer,𝜓 is the adjacency
matrix of the graph with added self-connections, �̃� is the degree
matrix of 𝜓 ,𝑊 (𝑙 ) is the weight matrix for the 𝑙-th layer, and 𝜎

denotes a ReLU function.
After refining the graphs and decoupling into inter- and intra-

view features by the CHA module, the node attributes are analyzed
at the genetic, spatial, and collaborative levels. Subsequently, the
resulting triple heterogeneity-aware graphs are globally aligned
and mapped to a unified representation as follows:

𝜓𝑟𝑠𝑝𝑎,𝜓
𝑟
𝑔𝑒𝑛𝑒 ,𝜓

𝑟
𝑗𝑜𝑖𝑛𝑡 = CHA

(
𝜓𝑠𝑝𝑎,𝜓𝑔𝑒𝑛𝑒

)
,

𝜓𝑟𝑒 𝑓 𝑖𝑛𝑒 = UAP
(
𝜓𝑟𝑠𝑝𝑎,𝜓

𝑟
𝑔𝑒𝑛𝑒 .𝜓

𝑟
𝑗𝑜𝑖𝑛𝑡

)
,

(4)

where UAP stands for universal aligned projection. The resulting
𝜓𝑟𝑒 𝑓 𝑖𝑛𝑒 is a comprehensive and well-constructed aggregated repre-
sentation that maximizes multi-view information expression in a
confined space. Thus, stGCL not only reveals spatial and genetic
associations at the molecular level, but also exhibits sound general-
izability across multiple downstream tasks.

3
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Figure 3: Structures of cross-view hierarchical feature align
module. Decoupling spatial and genetic features by inter- and
intra-view feature design, where spatial structure perception
uses𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 for feature spatial transformations to
obtain molecular structural affinities.

3.2 Cross-view Hierarchical Feature Align.
We first show that view heterogeneity informs the aggregation
strategy and then analyze it through information theory. After
obtaining genetic and spatial graphs with specific features de-
rived from independent parallel encoders, embedding them in
joint latent distributions, and identifying cell categories through
bi-determined expanded central cluster distributions, can be for-
mulated as:𝜓 𝑗𝑜𝑖𝑛𝑡 = C

(
𝜓𝑔𝑒𝑛𝑒 ,𝜓𝑠𝑝𝑎

)
. As shown in Fig. 3, we gener-

ate three layers of features to extract low-frequency information
through dynamic structure-aware attention respectively, which
helps to update 𝜓𝑔𝑒𝑛𝑒 and 𝜓𝑠𝑝𝑎 from the prior distribution in the
case of𝜓 𝑗𝑜𝑖𝑛𝑡 . This process can be expressed as:

𝜓𝑛+1𝑔𝑒𝑛𝑒 = 𝜓𝑛𝑔𝑒𝑛𝑒 + T
(
A

(
𝜓𝑛𝑔𝑒𝑛𝑒

))
,𝜓𝑛+1𝑠𝑝𝑎 = 𝜓𝑛𝑠𝑝𝑎 + T

(
A

(
𝜓𝑛𝑠𝑝𝑎

))
𝜓𝑛+1𝑗𝑜𝑖𝑛𝑡 = 𝜓𝑛𝑗𝑜𝑖𝑛𝑡 + T

(
A

(
𝜓𝑛𝑗𝑜𝑖𝑛𝑡

))
,

(5)
where T denotes the transformer block, C(·) indicates channel
concat, and the bi-directional attention is denoted as:

A (𝑋 ) = softmax
(
𝑋𝑊𝑄 · 𝑋𝑊𝐾√

𝑑

)
· 𝑋𝑊𝑉 , (6)

where
√
𝑑 is the scaling factor and𝑊 is the weight transformation

matrix. This cross-modality hierarchical decoupling guidance al-
lows the fused image to diffuse out of the constraints of the vanilla
distribution, ensuring that it encompasses the low-frequency di-
verse distributions of both modalities.
Universal Aigned Project We then obtain two intra-view spatial
and gene features and an inter-view collaborate feature. These are
aligned onto a distribution𝜓𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 , which possesses a larger size
compared to𝜓𝑔𝑒𝑛𝑒 +𝜓𝑠𝑝𝑎 +𝜓 𝑗𝑜𝑖𝑛𝑡 , formulated as:

𝜓𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 = P
(
C
(
𝜓𝑔𝑒𝑛𝑒 ,𝜓𝑠𝑝𝑎,𝜓 𝑗𝑜𝑖𝑛𝑡

) )
, (7)

where P comprises a stacked layer of transformer and MLP. Then,
𝜓𝑟𝑒 𝑓 𝑖𝑛𝑒 is condensed into a succinct and complete representation
of𝜓𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 , denoted as:

𝜓𝑟𝑒 𝑓 𝑖𝑛𝑒 = UAP (𝜓𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 ) , (8)

where UAP consists of three layers of MLP. Employing the mapping-
to-deflation strategy, we achieve a refined representation 𝐹 that
not only optimally restores spatial and genetic features but also
enhances downstream task analyses.

Next, we analyze the traditional fusion paradigm of spatial tran-
scriptomics from an information theory perspective.
Theorem 1. In the fusion of multiple views into a compact fusion
feature, the mapping to global spatial deflation strategy is better
expressed and more effective than direct fusion.
Proof. According to information theory [25], consider two non-
orthogonal modalities 𝑋 and 𝑌 with sizes 𝑥 and 𝑦, respectively, and
an aggregate mode 𝐹 of size 𝑓 . When 𝑓 ≥ 𝑥 + 𝑦, a model can be
learned that contains all information of 𝑋 and 𝑌 , that is,

𝐼 (𝐹 ;𝑋,𝑌 ) = 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑋,𝑌 |𝐹 ),

= −
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑝 (𝑥𝑖 , 𝑦 𝑗 ) log𝑝 (𝑥𝑖 , 𝑦 𝑗 ),
(9)

where 𝐼 denotes mutual information and 𝐻 denotes entropy.
Given the sparsity of gene data, the aggregation process should

satisfy 𝑓 < 𝑥 + 𝑦, aiming for a compact model that retains the con-
nection and original characteristics of 𝑋 and 𝑌 within a narrower
distribution. Typically, in spatial transcriptomics data, we often
find 𝑓 = 𝑥 = 𝑦. The mutual information acquired, 𝐼 (𝐹 ;𝑋 ) + 𝐼 (𝐹 ;𝑌 ),
represents the combined information about 𝑋 and 𝑌 retrievable
from 𝐹 . When 𝑓 < 𝑥 + 𝑦, the maximization tends to prioritize the
shared information of 𝑋 and 𝑌 , denoted as:

max{𝐼 (𝐹 ;𝑋 ) + 𝐼 (𝐹 ;𝑌 )},

where 𝐼 (𝐹 ;𝑋 ) =
∫
𝐹

∫
𝑋

𝑝 (𝑓 , 𝑥) log 𝑝 (𝑓 , 𝑥)
𝑝 (𝑓 )𝑝 (𝑥) 𝑑 𝑓 𝑑𝑥 .

(10)

This objective function ignores the orthogonal (independent, non-
overlapping) information components, resulting in a biased rep-
resentation of 𝐹 towards either 𝑋 or 𝑌 , leading to an inconsistent
expression of the combined modality.

Considering the heterogeneity of spatial and gene data in ST, the
joint entropy 𝐻 (𝑋,𝑌 ) is minimal and difficult to aggregate, com-
plicating the creation of a compact, efficient, and effective repre-
sentation. This complexity becomes especially apparent in various
downstream tasks, where a task might rely on the independent
information components of 𝑋 or 𝑌 , potentially causing the learned
modal aggregation information to collapse. As a result, the learned
𝑍 may lack the ability to adequately express 𝑋 and 𝑌 .

Inspired by archery in Fig. 1, our method leverages the prior
distributions 𝑃 (𝑇 | (𝑋,𝑌 )) of 𝑋 and 𝑌 through an intermediate dis-
tribution 𝑇 of size 𝑡 , where 𝑡 > 𝑥 + 𝑦 > 𝑓 , formulated as:

𝐻 (𝑇 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) + 𝐻 (𝐴), (11)

where 𝑋,𝑌,𝐴,𝑇 corresponds to 𝜓𝑔𝑒𝑛𝑒 ,𝜓𝑠𝑝𝑎,𝜓 𝑗𝑜𝑖𝑛𝑡 and 𝜓𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙
in the CHA module of Section 3.2, indicating that 𝑇 captures infor-
mation from both 𝑋 and 𝑌 . Subsequently, the information within
𝑇 undergoes low-pass filtering, and 𝑇 is compressed through a
low-pass filter to obtain unbiased estimates 𝐹 of 𝑋 and 𝑌 . This
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Figure 4: Identify spatial domains for comparison experiments between DLPFC and Human Breast Cancer datasets. The manual
annotation of the slice # 151507 in DLPFC.

strategy enables 𝐹 to learn multi-view orthogonality and shared
essential features by aggregating 𝑋 and 𝑌 through 𝑇 rather than
directly through 𝐹 , thereby facilitating the discovery of the align-
ment mapping of 𝑋 and 𝑌 within 𝐹 . More details are provided in
the Supplementary Material.

3.3 Contrastive Heterogeneous Molecular
Learning.

The spatial maps of cell populations exhibit high edge similarity, but
their type discrimination relies solely on genetic features, resulting
in spatial features blurring tissue boundaries. Therefore, we catego-
rize the obtained views into triple levels, synergistically identifying
cells in parallel. At the collaborative level, we distinguish nodes
identified as the same type by multiple views by comparing the loss
of cross-view features, thereby minimizing the disparity between
gene and spatial features. The loss can be defined as:

L𝑐𝑟𝑜𝑠𝑠 = −∑𝑁
𝑖=1

∑𝑀
𝑗=1𝑤𝑖 𝑗 [𝑦𝑖 𝑗 log

(
𝜎 (𝜓 𝑖𝑠𝑝𝑎,𝜓

𝑗
𝑔𝑒𝑛𝑒 )

)
+
(
1 − 𝑦𝑖 𝑗

)
log

(
1 − 𝜎 (𝜓 𝑖𝑠𝑝𝑎,𝜓

𝑗
𝑔𝑒𝑛𝑒 )

)
],

(12)

where 𝑁 and 𝑀 represent the spatial and gene data sample sizes,
respectively. 𝑠𝑖 and 𝑔 𝑗 represent the feature representations of the
𝑖𝑡ℎ spatial data sample and the 𝑗𝑡ℎ gene data sample. 𝑦𝑖 𝑗 serves as
a binary label indicating whether samples 𝑖 and 𝑗 belong to the
same category (e.g., 𝑦𝑖 𝑗 = 1 for same category, and 𝑦𝑖 𝑗 = 0 for dif-
ferent categories).𝑤𝑖 𝑗 dynamically assigns weights to spatial and
genetic information, using intra-view features (i.e., genes) to allevi-
ate category mixing issues at cell boundary locations. This process
leverages view heterogeneity relationships to drive𝜓𝑡𝑒𝑥𝑡𝑔𝑒𝑛𝑒 and
𝜓𝑡𝑒𝑥𝑡𝑠𝑝𝑎 closer together, guiding the cross-view feature𝜓𝑡𝑒𝑥𝑡 𝑗𝑜𝑖𝑛𝑡
to effectively differentiate between nodes universally recognized
as being of the same kind across multiple views.

As a single spot may represent the mean gene expression of
multiple cells at the gene level, we employ the zero-inflated neg-
ative binomial distribution [32] to capture crucial aspects of gene
expression data, including zero inflation (high sparsity) caused by
true and dropout zeros, discreteness, and over-dispersion (variance
greater than the mean). We model the distribution 𝑝 (𝜓𝑔𝑒𝑛𝑒 | 𝑍 ) as:

𝑝 (𝜓𝑔𝑒𝑛𝑒 | 𝑍 ) =
𝑛𝑠∏
𝑖=1

𝑝

(
𝜓𝑖 | 𝑧𝑖

)
=

𝑛𝑠∏
𝑖=1

𝑝

(
𝜓𝑖 | 𝜋𝑖 , 𝜇𝑖 , 𝜎2𝑖

)
, (13)

where 𝑝
(

ˆ𝜓𝑔𝑒𝑛𝑒𝑖 | 𝜋𝑖 , 𝜇𝑖 , 𝜎
2
𝑖

)
is the ZINB distribution parameterized

by 𝜋𝑖 , 𝜇𝑖 , 𝜎2𝑖 ∈ R𝑛𝑔 . Specifically, 𝜋𝑖 = sigmoid
(
𝑊𝜋𝑓

(2)
𝐷

(𝑧𝑖 )
)
repre-

sents the zero rate vector of this distribution, where𝑊𝜋 signifies
the weight matrix of 𝜋 . 𝜇𝑖 = exp

(
𝑊𝜇 𝑓

(2)
𝐷

(𝑧𝑖 )
)
denotes the mean of

the associated negative binomial, with𝑊𝜇 as the weight matrix of
𝜇. 𝜎2 = exp

(
𝑊𝜎 𝑓

(2)
𝐷

(𝑧𝑖 )
)
represents the variance of the negative

binomial, where𝑊𝜎 is the weight matrix of 𝜎2. The loss function of
the parameter estimation is defined as the negative log-likelihood
of the ZINB distribution:

L𝑧𝑖𝑛𝑏 = − log(p(𝜓𝑔𝑒𝑛𝑒 | 𝜋, 𝜃, 𝜇)) . (14)

On the other hand, spatially adjacent spots should be proximate,
whereas spatially non-adjacent spots should be distant in the latent
space. Thus, we incorporate both similarity and spatial neighbor
features to compute the spatial regularization constraint loss:

L𝑟𝑒𝑔 = −
𝑛∑︁
i=1

(
∑︁
𝑗∈Ri

log
(
𝜎
(
𝜓ij

) )
+
∑︁
𝑘∉Ri

log (1 − 𝜎 (𝜓𝑖𝑘 ))), (15)

where 𝑛 represents the number of spots, this method minimizes the
embedding distance between spatial neighbor spots through the
spatial regularization constraint, enhancing the informativeness
and discriminative power of the learned latent space.

Overall loss function. During the training process, the multi-
view GCN encoder, the ZINB decoder, and the spatial regularization
constraints are collectively optimized. The ultimate training objec-
tive of stGCL is defined as:

L𝑡𝑜𝑡𝑎𝑙 = 𝛼L𝑐𝑜𝑛 + 𝛽L𝑧𝑖𝑛𝑏 + 𝛾L𝑟𝑒𝑔 + 𝜆L𝑐𝑟𝑜𝑠𝑠 , (16)

where 𝛼 , 𝛽 , 𝛾 , and 𝜆 represent the weighting factors used to balance
the influences of reconstruction loss, consistency loss, and spatial
regularization constraint loss.

4 EXPERIMENTAL RESULTS
4.1 Datasets and Details
The DLPFC [15] dataset comprises 12 tissue slices obtained from
3 adult samples sourced from the dorsolateral prefrontal cortex of
individuals from the Lieber Institute for Brain Development (LIBD),
each containing four adjacent slices. These slices, obtained using
10x Visium, were manually labeled to identify DLPFC layers and
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Table 1: Comparison of ARI metrics between stGCL and other spatial transcriptomics approaches on DLPFC, Human Breast
Cancer, and Mouse Brain Anterior Tissue datasets. The 12 datasets in DLPFC are indicated by number. Boldface and under-line
show the best and second-best values, respectively.

Datasets DeepST GraphST SCANPY SCGDL SpaGCN Spatial-MGCN stGCL

151507 0.55 0.48 0.20 0.49 0.43 0.63 0.74
151508 0.42 0.49 0.15 0.34 0.33 0.46 0.53
151509 0.43 0.52 0.19 0.32 0.41 0.54 0.67
151510 0.50 0.50 0.14 0.31 0.37 0.51 0.73
151669 0.44 0.48 0.10 0.24 0.23 0.39 0.44
151670 0.33 0.46 0.09 0.26 0.21 0.35 0.48
151671 0.52 0.61 0.12 0.31 0.34 0.60 0.67
151672 0.48 0.63 0.12 0.34 0.38 0.77 0.82
151673 0.54 0.63 0.20 0.33 0.40 0.61 0.57
151674 0.58 0.43 0.22 0.29 0.31 0.60 0.62
151675 0.43 0.55 0.23 0.24 0.33 0.54 0.56
151676 0.54 0.61 0.22 0.21 0.28 0.58 0.58

Human Breast Cancer 0.53 0.54 0.49 0.35 0.56 0.64 0.68

Mouse Brain Anterior 0.25 0.41 0.23 0.26 0.32 0.42 0.45

Figure 5: Boxplots of ARI values for seven methods across
12 slices of DLPFC.

DeepST(ARI: 0.25) GraphST(ARI: 0.41)Manual annotation SCANPY(ARI: 0.23)

SCGDL(ARI: 0.26) Spatial-MGCN(ARI: 0.42) STGCL(ARI: 0.45)

(a) (b)Histopathological image

Figure 6: Identify spatial domains on Mouse Brain Anterior
Tissue dataset. (a) Manual annotation layer structure and the
histopathological image for human breast cancer dataset. (b)
Spatial domains are detected with stGCL and five methods.

white matter (WM). Within each slice, there were typically five
to seven manually labeled regions. The Human Breast Cancer
dataset includes the 10X Visium dataset for human breast cancer [1].
This dataset has been meticulously annotated into 20 distinct re-
gions, categorized into four principal morphological types: ductal

carcinoma in situ/lobular carcinoma in situ (DCIS/LCIS), invasive
ductal carcinoma (IDC), healthy tissue areas, and hypo malignant
tumor margins. TheMouse Brain Anterior Tissue dataset was
annotated with 52 different regions.
Implementation Details and Metrics. The complete model is
implemented using PyTorch version 1.12.1. For the training phase,
we set the learning rate to 0.001 and applied a weight decay 0.0005.
We conducted 200 training rounds in each experiment conducted
on the DLPFC, Human Breast Cancer, and Mouse Brain Anterior
Tissue datasets. For validation of spatial clustering, we employ the
Adjusted Rand Index (ARI) as our evaluationmetric. All experiments
were executed on an NVIDIA RTX 3090 GPU.

4.2 Comparison with SOTA methods
To demonstrate the superior performance of the proposed stGCL,
we have chosen six benchmark methods for comparative analysis,
including DeepST [29], GraphST [14], SCANPY [28], SCGDL [12],
SpaGCN [9], and Spatial-MGCN [26].

4.2.1 DLPFC dataset. Comparative tests between stGCL and six
other models across 12 DLPFC slices are presented in Table 1. Our
method outperforms the existing state-of-the-art on nine of these
datasets, achieving performance enhancements of over 5% in clus-
ters ranging from 151507 to 151672, particularly with a 22% im-
provement on #151510. Notably, many methods exhibit extreme
performance dips below 30% on specific datasets, which signifi-
cantly undermines the reliability and applicability of results in both
scientific research and clinical settings. In contrast, stGCL surpasses
the average performance of competing methods across all datasets,
with several clusters showing improvements above 40%, thereby
demonstrating its robustness and broad applicability.

Fig. 4a illustrates the clustering visualization results for sample
#151507. The stGCL algorithm effectively separates cell clusters and
clearly outlines tissue boundaries in elongated structures, where
spatial information is closely related. This result highlights the value
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Figure 7: The UMAP visualization of these results. UMAP indicates uniform manifold approximation and projection.

of stGCL’s hierarchical processing of ST data. Moreover, Fig. 5 show-
cases the overall performance of the algorithms, clearly indicating
that stGCL performs better than the competing algorithms.

4.2.2 10x Visium Human Breast Cancer dataset. Table 1 compares
our method with six other models. Although clustering perfor-
mance among these models is generally similar due to significant
differences in the sizes of small cell populations across 21 categories,
stGCL achieves a 4% improvement over the highest-performing
model, Spatial-MGCN, with an ARI of 68%. This indicates that
stGCL effectively addresses the challenges of category imbalance
between large and small cell clusters by leveraging heterogeneous
comparisons to identify ambiguous nodes.

Cluster visualization displays the situation of the human breast
cancer dataset, as shown in Figure 4b. Unlike SCGDL, DeepST,
and SCANPY, stGCL not only misclassifies fewer nodes but also
delineates small cell populations. Although most methods produce
visualizations with irregularly shaped cells and usually display new
negative sample categories in the center of cell clusters, particularly
in the top right and top left corners, stGCL successfully clarifies
the tissue shapes. This method enhances the distinction at cell
boundaries by shifting focus from inter-view to intra-view features,
leading to more accurate node classification.

4.2.3 Mouse Brain Anterior Tissue dataset. Fig. 6 6 and the last row
of Table 1 display the comparative results between stGCL and other
algorithms. Notably, stGCL uniquely and accurately delineates the
layer structure, achieving the highest ARI of 0.45, surpassing the
performance of alternative methods. In contrast, competing algo-
rithms such as DeepST, SCANPY, and SCGDL report lower ARI
scores of 0.25, 0.23, and 0.26, respectively. These methods tend to
amalgamate recognized layers, failing to represent the trustwor-
thy structural organization of the data accurately. This evidence
indicates that stGCL offers a more precise and dependable analysis
of ST data, enhancing the utility of spatial and genetic features
through optimized mutual information between views.

Table 2: Ablation studymeasured on DLPFC dataset. The ARI
metric uses the average of all datasets. SA denotes structure-
awaremodule, andUAP denotes universal aligned projection.

Methods CHA SA UAP L𝑐𝑟𝑜𝑠𝑠 ARI

Baseline - - - - 0.5175
w/o L𝑐𝑟𝑜𝑠𝑠 ✔ ✔ ✔ - 0.5864
w/o CHA - - - ✔ 0.5519
w/o UAP - ✔ - ✔ 0.5643
w/o SA - - ✔ ✔ 0.5946
stGCL ✔ ✔ ✔ ✔ 0.6175

A comprehensive analysis in Table 1 demonstrates that stGCL
exhibits state-of-the-art performance across various datasets, in-
cluding DLPFC, human breast cancer, and mouse brain anterior,
showcasing effective generalization.

4.3 Ablation studies
In this study, we conducted an ablation experiment using DLPFC
to evaluate the contributions of various components within our
proposed model. The results, presented in Table 2, elucidate the
individual and collective impacts of the Structure-Aware module
(SA), universal aligned projection (UAP) module, and cross-entropy
loss function (L𝑐𝑟𝑜𝑠𝑠 ) on the performance, as measured by the ARI.

Effect of CHAmodule.To verify the validity of our framework
and information theory, we remove the SA and UAP components
of CHA, respectively. It can be seen that w/o SA is 2% lower than
stGCL, indicating that global structure awareness is helpful for
highly sparse gene data.

Effect of UAP. Analysis of the third and fifth rows in Table 1
indicates that incorporating UAP enhances performance by over
4%, further validating the effectiveness of our mapping to deflation
strategy. Additionally, removing the UAP component while main-
taining SA and L𝑐𝑟𝑜𝑠𝑠 , the ARI of 0.5643 is 3% lower than w/o SA.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, Melbourne, Australia.,
Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ATP2B4

FKBP1A

CRYM

NEFH

RXFP1

B3GALT2

Layer NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7

ATP2B4

FKBP1A

CRYM

NEFH

RXFP1

B3GALT2

Layer NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7

0.0

0.5

1.0

M
ed

ia
n 

ex
pr

es
si

on
 in

 g
ro

up

0.7

0.5

1.2

M
ed

ia
n 

ex
pr

es
si

on
 in

 g
ro

up

RAW stGCL

(a)

(b) (c)
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Figure 8: (a) The visualization of raw expression of layer
marker genes and expression after stGCL imputation. (b)
The violin plots of raw cortical marker gene expression and
stGCL cortical marker gene expression. (c) The violin plot of
cortical marker gene expression imputed by stGCL.

This suggests that while the structure-aware module contributes
to model validity, its impact is not as critical as that of the UAP,
as evidenced by the higher ARI of 0.5946 obtained for the model
without SA, including UAP and L𝑐𝑟𝑜𝑠𝑠 . Hence, the UAP module
from mapping to deflation is more effective than the SA module’s
low-pass filter-like fusion paradigm, maximizing the retention of
essential information in multiple view features.

Effect of L𝑐𝑟𝑜𝑠𝑠 . As shown in the first and third rows of Table
I, independently incorporating L𝑐𝑟𝑜𝑠𝑠 leads to a 4% improvement,
proving that heterogeneity-based guided comparison learning is
indispensable. On the other hand, w/o L𝑐𝑟𝑜𝑠𝑠 and w/o CHA with
stCGL showed a performance difference of 3% and 6%, respectively.
This indicates that the CHAmodule and L𝑐𝑟𝑜𝑠𝑠 are complementary,
synergistically enhancing multi-view heterogeneity learning.

4.4 Downstream applications
4.4.1 UMAP visualization. We illustrate the uniform manifold ap-
proximation and projection (UMAP) visualization results of the
stGCLmethod alongside five othermethods applied to three datasets,
as depicted in Fig. 7. stGCL accurately delineates the orderly devel-
opment of individual cortical layers, including layers 1 through 6
and white matter (WM), outperforming the baseline methods. Inter-
estingly, the UMAP plots of most methods (e.g., GraphST, SCGDL)
exhibit insufficient point spacing between layers, which blurs the
distinction between them. In contrast, stGCL achieves greater sepa-
ration between clusters on all three datasets and exhibits a more
structured expansion in various directions, demonstrating how
heterogeneity modeling effectively enhances the differentiation
between categories by synergizing spatial and genetic clustering.
Compared to Spatial-MGCN, the class clusters of stGCL are more
compact, with branches more precisely arranged within the con-
strained space. This improvement stems from our approach of
employing comparative learning to effectively mitigate confound-
ing factors in the slightly mixed developmental trajectories typical

DCIS/LCIS_1 IDC_1

Figure 9: The Heatmap of the expression of the structural do-
mains on the top 10 DEGs between Healthy 1 and DCIS/LCIS.

of methods such as SCANPY. At the same time, stGCL’s embed-
dings display the expected cortical layer structure. Consequently,
stGCL enhances the spatial domain recognition of ST data while
preserving essential biological features.

4.4.2 Gene Imputation. Spatial transcriptomic data are frequently
compromised by noise and data loss, adversely affecting the ac-
curacy of gene expression analyses. To establish that stGCL em-
ploys heterogeneity-guided learning to preserve critical tissue dis-
tribution information from raw data efficiently, we introduced this
method, which utilizes positive and negative sample comparisons
guided by tissue heterogeneity. When applied to DLPFC, stGCL
enabled analysis of the spatial expression patterns of six primi-
tive layer marker genes (ATP2B4, FKBP1A, CRYM, NEFH, RXFP1,
B3GALT2). Fig. 8 illustrates how stGCLmitigates considerable noise
interference in slice #151507 of DLPFC raw data. The stGCL inter-
polation generates embeddings that accurately delineate cortical
layer boundaries.

These findings demonstrate that stGCL effectively eliminates
irrelevant noise and data loss artifacts, and dynamically captures
and reconstructs spatial transcriptomics data. This ensures that the
spatial distributions of these marker genes are consistent with prior
observations. Comparative analyses using violin plots of raw and
interpolated gene expressions reveal significant improvements in
spatial expression patterns, which more closely align with manu-
ally annotated organizational structures. Hence, stGCL excels in
interpolating gene expression, demonstrating its superior ability to
maintain critical spatial data integrity.

Furthermore, to further explore the heterogeneity of tumor tissue,
we focused on the DCIS/LCIS_1 and IDC_1 clusters to analyze the
expression of the top 10DEGs shown in Fig. 9. This analysis revealed
significant heterogeneity among the clusters.

5 CONCLUSIONS
We introduce the heterogeneous graph guided contrastive learning
(stGCL) method for aggregated ST data. This method effectively
merges gene and spatial information into unified potential dis-
tributions by dynamically refining node attributes across various
levels, leveraging cross-view heterogeneity. The cross-view hierar-
chical feature align module ensures structural integrity and optimal
feature aggregation, using information principles. Experimental
evaluations reveal that stGCL outperforms current methods in var-
ious tasks, showcasing its potential in complex biological analyses
through advanced contrastive learning.
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