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ABSTRACT

Inverse imaging problems often involve the reconstruction of high-fidelity signals
from noisy and incomplete measurements. Recent advances in diffusion models
have achieved promising results for these tasks, yet most approaches operate in
the spatial domain and struggle to preserve high-frequency details under noise. To
address this issue, we introduce Wavelet diffusion posterior sampling (WDPS),
a frequency domain framework that integrates wavelet transforms with posterior
sampling. By decomposing images into multiscale frequency subbands, WDPS
performs posterior updates adaptively across low- and high-frequency components,
enabling more stable sampling trajectories and improved detail recovery. To
further enhance robustness, we propose a wavelet-regularized diffusion strategy that
dynamically adjusts the influence of frequency-domain constraints during sampling.
We demonstrate our approach on both linear and nonlinear inverse problems. We
also extend our task to the lensless camera task to show the applicability of our
approach. Our results highlight the effectiveness of frequency-domain posterior
diffusion as a general and efficient solution to noisy inverse problems.

1 INTRODUCTION

Inverse problems Kawar et al. (2021; 2022); Chung et al. (2022a;b); Kim et al. (2023); Chung et al.
(2023); Daras et al. (2024) are central to computational imaging, where the goal is to reconstruct
a clean signal X⋆ from noisy and incomplete measurements Y = A(X⋆) + ϵ, with A denoting
the forward operator and ϵ representing measurement noise. Such problems arise in a wide range
of applications, including medical imaging Webber & Reader (2024), computational photography
Nehme & Michaeli (2025), and scientific visualization Yair et al. (2024). However, the inherent
ill-posedness of inverse problems Cardoso et al. (2023); Yang et al. (2024), together with the presence
of noise, makes high-fidelity recovery particularly challenging.

Recent advances in diffusion models Ho et al. (2020); Song et al. (2020) have demonstrated impressive
performance in image generation and inverse problems such as inpainting, super-resolution, and
deblurring Chung et al. (2022a;b); Kim et al. (2023); Chung et al. (2023); Daras et al. (2024). A
common strategy is diffusion posterior sampling (DPS) Chung et al. (2022a), which incorporates
measurement consistency constraints during the sampling process. While effective in noiseless or
linear cases, spatial-domain posterior sampling often struggles to preserve high-frequency structures
under noise Qian et al. (2024); Wan et al. (2023); Song et al. (2025); Li et al. (2025a). This limitation
results in blurry reconstructions, loss of fine textures, and unstable convergence when facing complex
forward operators. In particular, DPS applies posterior corrections uniformly in the image space,
where low- and high-frequency information are entangled. As a result, enforcing data consistency can
inadvertently suppress high-frequency structures, leading to a systematic trade-off between fidelity
and detail preservation. This motivates the need for a representation that disentangles frequencies
and allows more targeted posterior updates.

Images exhibit a natural multi-scale structure: low-frequency components capture global appearance,
while high-frequency components encode fine-grained details such as edges and textures. Wavelet
transforms Chen et al. (2024); Jin et al. (2025); Huang et al. (2024); Li et al. (2025b) provide an effec-
tive decomposition of these components into subbands (LL, LH, HL, HH), enabling frequency-aware
processing. Operating in the frequency domain offers the potential to decouple global consistency

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

from local detail restoration, making it particularly well-suited for inverse problems with strong noise
or nonlinear degradations.

In this work, we propose Wavelet Diffusion Posterior Sampling (WDPS), a frequency-domain
framework that integrates wavelet transforms with posterior sampling. WDPS decomposes inter-
mediate samples into wavelet subbands, performs posterior updates adaptively across low- and
high-frequency components, and reconstructs the image using the inverse wavelet transform. Fur-
thermore, we introduce a wavelet-regularized diffusion strategy, which dynamically adjusts the
influence of frequency-domain constraints during sampling, stabilizing the trajectory and improving
generalization. In summary, our main contributions can be summarized as follows:

• We introduce WDPS, the first framework that performs diffusion posterior sampling directly
in the wavelet frequency domain, enabling frequency-aware reconstructions that better
preserve fine details under noise.

• We propose a wavelet-regularized sampling scheme that adaptively controls frequency-
domain constraints, improving stability and convergence, and further analyze the stability of
dynamic wavelet-regularized sampling

• We conduct extensive experiments on FFHQ and ImageNet across diverse tasks (inpainting,
super-resolution, etc). We also extend our task to the lensless camera task to show general-
ization of our approach. WDPS consistently outperforms spatial-domain baselines such as
DPS, achieving sharper reconstructions and better quantitative scores (FID, LPIPS, PSNR,
and SSIM).

2 RELATED WORKS

In this section, we first introduce the Posterior Sampling method. Additional related works, including
the diffusion model in the frequency domain, Wavelet transforms, and the lensless camera task, are
presented in the Appendix.

Diffusion models Ho et al. (2020); Song et al. (2020) define a generative process as the reverse of a
noising process, typically described by a variance–preserving SDE

dXt = −
β(t)

2
Xt dt+

√
β(t) dw, (1)

whose reverse SDE includes the data score ∇Xt
log pt(Xt). In the Bayesian setting of an inverse

problem Y = A(X⋆) + ϵ, the goal is to sample from the posterior p(X0|Y ), which formally satisfies
Bayes’ rule

p(X0|Y ) =
p(Y |X0)p(X0)

p(Y )
. (2)

Naïvely, one might try to modify the reverse SDE to

dXt =
[
−β(t)

2
Xt − β(t)

(
∇Xt

log pt(Xt) +∇Xt
log pt(Y |Xt)

)]
dt+

√
β(t) dw, (3)

so that the drift contains both the prior and the likelihood gradients.

However, the likelihood term ∇Xt
log pt(Y |Xt) is analytically intractable at intermediate noise

levels t, so most existing works resort to alternating “unconditional diffusion + projection onto
the measurement subspace” (a POCS-style step) under the assumption of negligible noise. This
projection can amplify noise and fails for nonlinear operators.

Diffusion Posterior Sampling (DPS) Chung et al. (2022a) circumvents this difficulty by (i) using
Tweedie’s formula to compute the posterior mean of the clean sample

X̂0 =
1√
ᾱ(t)

(
Xt + (1− ᾱ(t))sθ(Xt, t)

)
, (4)
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which approximates E[X0|Xt]; and (ii) replacing the intractable expectation in p(Y |Xt) =∫
p(Y |X0)p(X0|Xt)dX0 with p(Y |X̂0), leading to a tractable surrogate likelihood. The gradient of

this surrogate gives the practical update

∇Xt
log pt(Xt|Y ) ≈ sθ(Xt, t)− ρ∇Xt

∥Y −A(X̂0)∥22, (5)

or with a weighted norm ∥ · ∥Λ for Poisson noise. Discretizing this yields the DPS algorithms for
both Gaussian and Poisson measurements.

While DPS already improves robustness to noise, it still operates entirely in the spatial domain,
applying the same posterior correction to all frequencies. In contrast, our proposed Wavelet Diffusion
Posterior Sampling (WDPS) decomposes intermediate samples into multi-scale wavelet subbands,
applies frequency-adaptive posterior updates and a dynamic wavelet regularizer, thereby addressing
the high-frequency suppression and instability observed in spatial-domain posterior sampling.

3 METHOD

Our method uses the wavelet transform to transfer the image from the spatial domain to the frequency
domain during the diffusion sampling process, and performs the posterior update directly in the
frequency domain.

3.1 WAVELET-BASED POSTERIOR

We denote byW : RH×W → RH/2×W/2×4 the discrete wavelet transform (DWT) Heil & Walnut
(1989); Sundararajan (2016); Othman & Zeebaree (2020), which decomposes an input image into
four sub-bands at each scale. Given an intermediate sample at step i, X ′

i−1 ∈ R1×3×H×W , as shown
in Figure 3, the wavelet coefficients are

Wi−1 =W(X ′
i−1) =

(
W LL

i−1,W
LH
i−1,W

HL
i−1,W

HH
i−1

)
, (6)

where

• W LL
i−1 (low–low) contains the low-frequency approximation coefficients representing global

structure and smooth regions,

• W LH
i−1 (low–high) captures vertical high-frequency details,

• WHL
i−1 (high–low) captures horizontal high-frequency details, and

• WHH
i−1 (high–high) captures diagonal high-frequency details such as edges and fine textures.

Mathematically, for a one-level separable 2-D wavelet transform, we define a low-pass filter h and a
corresponding high-pass filter g. For the simplest case of the Haar (Daubechies-1) wavelet, these
filters are

h = 1√
2
[1, 1], g = 1√

2
[1, −1]. (7)

Here, h extracts the smooth (low-frequency) components of the signal, while g extracts the detailed
(high-frequency) variations. Using these filters, the four sub-bands at each scale can be expressed as

W LL = (X ∗ h ∗ h⊤) ↓ 2, (8)

W LH = (X ∗ h ∗ g⊤) ↓ 2, (9)

WHL = (X ∗ g ∗ h⊤) ↓ 2, (10)

WHH = (X ∗ g ∗ g⊤) ↓ 2, (11)

where X is the input image, ∗ denotes convolution along rows/columns, and ↓ 2 indicates downsam-
pling by a factor of 2, i.e., retaining only every second sample along each spatial dimension. After
this filtering and downsampling, each sub-band has size H/2 ×W/2. Specifically, W LL contains
approximation coefficients capturing global structure, W LH and WHL encode vertical and horizontal
details, while WHH captures diagonal details.
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During our posterior update we operate directly on Wi−1 rather than on the raw spatial-domain tensor.
Each of the four sub-bands can be processed separately or with sub-band–dependent step sizes, which
allows frequency-aware adaptation of the likelihood gradient

W ′
i−1 = Wi−1 − ζi∇Wi ∥Y −A(X̂0)∥22, (12)

where X̂0 is the Tweedie estimate of the clean image at the current step.

After this frequency-domain posterior correction, we transform the updated coefficients back to the
spatial domain using the inverse wavelet transform (IDWT):

Xi−1 =W−1(W ′
i−1), (13)

whereW−1(·) denotes the inverse discrete wavelet transform. Given the four sub-bands W LL
i−1,

W LH
i−1, WHL

i−1 and WHH
i−1 (each of size H/2×W/2), the reconstruction can be written as

Xi−1 =
((
W LL

i−1↑ 2
)
∗ h̃ ∗ h̃⊤)+ ((

W LH
i−1↑ 2

)
∗ h̃ ∗ g̃⊤

)
+
((
WHL

i−1↑ 2
)
∗ g̃ ∗ h̃⊤)+ ((

WHH
i−1↑ 2

)
∗ g̃ ∗ g̃⊤

)
, (14)

where ↑ 2 denotes upsampling by inserting zeros between samples along each dimension, ∗ denotes
convolution, and h̃ and g̃ are the synthesis (inverse) low-pass and high-pass filters corresponding to h
and g used in the forward DWT. This reconstruction exactly reverses the DWT, producing a H ×W
spatial-domain image from the four H/2×W/2 sub-bands.

By explicitly separating low- and high-frequency components throughW(·) andW−1(·), our method
preserves significant features and fine details of X0 while suppressing noise and artifacts during
sampling. This description matches the detailed procedure summarized in Algorithm 1.

Algorithm 1 Wavelet Diffusion Posterior Sampling (WDPS)

Require: N , Y , {ζi}Ni=1, {σ̃i}Ni=1
1: XN ∼ N (0, I)
2: for i = N − 1 downto 0 do
3: ŝ← sθ(Xi, i)

4: X̂0 ← 1√
ᾱi

(
Xi + (1− ᾱi)ŝ

)
5: z ∼ N (0, I)

6: X ′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
Xi +

√
ᾱi−1βi

1−ᾱi
X̂0 + σ̃iz

7: Wi−1 ←W(X ′
i−1) ▷ forward wavelet transform

8: W ′
i−1 ←Wi−1 − ζi∇Wi∥Y −A(X̂0)∥22

9: Xi−1 ←W−1(W ′
i−1) ▷ inverse wavelet transform

10: end for
11: return X̂0

3.2 WAVELET-REGULARIZED DIFFUSION SAMPLING

Inverse problems are inherently ill-posed, and unconstrained diffusion sampling may accumulate
unstable high-frequency artifacts. To stabilize the trajectory, we introduce a wavelet-based regulariza-
tion that adaptively scales the wavelet coefficients at each reverse step using a time-varying strength
parameter.

Wavelet-strength schedule. For a reverse step index i ∈ {1, . . . , T}, the wavelet strength is defined
as

r(i; a, b) =
1

C + exp
(
i · ab

) , a > 0, b = T,C > 0 (15)

where T denotes the total number of diffusion steps, a controls the exponential decay rate, b nor-
malizes the horizon (default b = 1000), and C determines the baseline offset of the regularization
schedule. For different values of C, Figure 4 depicts the regularization schedule under varying
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baseline offsets. This function produces a smoothly decaying value over the course of sampling: at
the first step (i = 1), r ≈ 0.125, while towards the end of sampling r → 0. Thus, the effective regu-
larization is stronger in early steps—where the problem is highly underdetermined—and gradually
diminishes as the estimate stabilizes.

Subband update. Given the discrete wavelet transform (DWT) of an intermediate iterate X ′
i−1,

Wi−1 =
(
WLL

i−1,W
LH
i−1,W

HL
i−1,W

HH
i−1

)
, (16)

we preserve the low-frequency band and scale the high-frequency subbands by the wavelet strength:

WLL ′

i−1 = WLL
i−1, (17)

W s ′

i−1 = r(i; a, b) ·W s
i−1, s ∈ {LH,HL,HH}. (18)

The updated coefficients are then transformed back into the spatial domain:
Xi−1 =W−1(W ′

i−1). (19)

3.3 THEORETICAL JUSTIFICATION

The wavelet-strength schedule r(i) is motivated by three key observations. (1) Natural images are
approximately sparse in the wavelet domain (Donoho, 2006), where most high-frequency coefficients
are negligible or noise-dominated; suppressing them early removes instability without harming
structure. (2) The discrete wavelet transform provides a multiresolution analysis (Mallat, 2002), so a
decaying r(i) naturally enforces a coarse-to-fine trajectory: global structures first, then fine details.
(3) The dynamic schedule stabilizes sampling by imposing strong constraints when the problem
is most ill-posed and gradually relaxing them as convergence is reached. This balances stability
and detail recovery, justifying wavelet-regularized diffusion sampling. Next, we analyze dynamic
regularization stability in the wavelet domain.

Dynamic regularization stability. We analyze the reverse-time update in the wavelet domain
W ′

i−1 = Sri

(
Wi−1 − ζi∇W L

(
W−1(Wi−1); y

))
, i = T, . . . , 1, (20)

whereL(x; y) = ∥A(x)−y ∥22 is the data-fidelity loss,W is an orthonormal DWT (so ∥Wx∥ = ∥x∥),
and Sri is a wavelet-regularization operator parameterized by a decaying schedule ri = r(i; a, b).

Theorem 1 (Stability of dynamic wavelet-regularized sampling) Assume:

1. (Smooth forward model) A : RH×W×3 → Rm is LA-Lipschitz and has L∇-Lipschitz
Jacobian.

2. (Wavelet isometry)W is orthonormal, hence ∥Wx∥2 = ∥x∥2 and ∥∇WL(W−1(·); y)∥ ≤
L ∥ · ∥ for some L > 0.

3. (Nonexpansive regularizer) For every r ∈ [0, r1], the operator Sr : RH/2×W/2×4 →
RH/2×W/2×4 is nonexpansive: ∥Sr(u) − Sr(v)∥2 ≤ ∥u − v∥2. This holds for (i)
High-Frequency gating Sr(u) = (uLL, r uLH, r uHL, r uHH) with r ∈ [0, 1]; and (ii) soft-
thresholding Sr(u) = soft(u; τr), which is firmly nonexpansive as a proximal map.

4. (Step size) 0 < ζi ≤ 2/L for all i (e.g., ζi ≤ 1/L is sufficient), where L is a Lipschitz
constant of ∇WL(W−1(·); y).

Then each one-step map
Ti(· ; y) = Sri

(
Id− ζi∇WL(W−1(·); y)

)
(21)

is nonexpansive in the iterate and Lipschitz in the measurement:∥∥Ti(U ; y)− Ti(V ; y)
∥∥
2
≤ ∥U − V ∥2,

∥∥Ti(U ; y)− Ti(U ; y′)
∥∥
2
≤ ci ∥y − y′∥2, (22)

for some constants ci = ζi Lipy(∇WL). Consequently, for trajectories driven by the same noise XT

and two measurements y, y′,

∥X0(y)−X0(y
′)∥2 ≤

( T∑
i=1

ci

)
∥y − y′∥2, (23)
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Table 1: Quantitative results (FID ↓, LPIPS ↓) on FFHQ Dataset across different tasks.

Methods
Super Resolution Inpainting Gaussian Blur Motion Blur
FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

WDPS (ours) 32.74 0.1979 27.11 0.1106 26.12 0.1501 28.17 0.1804
DPS Chung et al. (2022a) 36.50 0.1932 34.16 0.1115 29.78 0.1461 31.68 0.1873
DDRM Kawar et al. (2022) 62.15 0.294 69.71 0.587 74.92 0.332 – –
MCG Chung et al. (2022b) 87.64 0.520 29.26 0.286 101.2 0.340 310.5 0.702
PnP-ADMM Chan et al. (2016) 66.52 0.353 123.6 0.692 90.42 0.441 89.08 0.405
Score-SDE Song et al. (2020) 96.72 0.563 76.54 0.612 109.0 0.403 292.2 0.657
ADMM-TV Wahlberg et al. (2012) 110.6 0.428 181.5 0.463 186.7 0.507 152.3 0.508

i.e., the final reconstruction is Lipschitz-stable with respect to perturbations in y. If, in addition, each
gradient step is strictly contractive (e.g., by strong convexity in a local basin or smaller ζi), the bound
tightens to a decaying product form.

Theorem 1 shows that the update rule is nonexpansive in the iterate and Lipschitz-stable with respect
to the measurement, i.e., small perturbations in y do not cause large deviations in the reconstruction.
The dynamic wavelet strength r(i) is central: large values in early steps suppress unstable high-
frequency components under the ill-posed forward operator, while its decay later permits fine details
to emerge without sacrificing stability. This justifies the coarse-to-fine behavior of our method—stable
against noise initially, yet flexible enough to refine textures and edges as sampling progresses.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate our Wavelet Diffusion Posterior Sampling (WDPS) framework on two widely used
datasets that exhibit diverging characteristics: FFHQ (256×256) (Karras et al., 2019) and ImageNet
(256×256) (Deng et al., 2009). For ImageNet, we adopt the pre-trained diffusion model released by
Dhariwal & Nichol (2021) and directly use it without task-specific finetuning. For FFHQ, we sample
with the pretrained model used in Chung et al. (2022a).

Forward measurement operators are specified as follows: (i) Inpainting: We use a 128×128 box
mask following Chung et al. (2022a), and in random-type inpainting we mask out 92% of the pixels
across all RGB channels. (ii) Super-resolution: Bicubic downsampling is applied. (iii) Gaussian
blur: Convolution with a Gaussian kernel of size 61×61 and standard deviation 3.0. (iv) Motion
blur: Convolution with randomly generated motion kernels of size 61×61 and intensity 0.5. (v)
Nonlinear deblurring: We employ a neural network-based forward model following Chung et al.
(2022a). (vi) Lensless camera: Following Antipa et al. (2017); Monakhova et al. (2019); Hung et al.
(2025), we apply a diffuser point spread function (PSF) as the forward operator to simulate lensless
measurements. For noise models, Gaussian noise with σ = 0.05 is added to the measurement domain,
and the Poisson noise level is set to λ = 1.0.

To assess reconstruction quality, we employ both pixel-level and perceptual metrics. Pixel-level
fidelity is measured using Peak Signal-to-Noise Ratio (PSNR, ↑) and Structural Similarity Index
Measure (SSIM, ↑). Perceptual quality is evaluated with Fréchet Inception Distance (FID, ↓) and
Learned Perceptual Image Patch Similarity (LPIPS, ↓). These complementary metrics ensure a
comprehensive comparison between WDPS and the baseline Diffusion Posterior Sampling (DPS).

4.2 RESULTS ON LINEAR INVERSE PROBLEM

We evaluate the proposed WDPS method against the DPS baseline as well as several representative
baselines, including DDRM Kawar et al. (2022), MCG Chung et al. (2022b), PnP-ADMM Chan
et al. (2016), Score-SDE Song et al. (2020), ADMM-TV Wahlberg et al. (2012), BKS-based ap-
proaches Tran et al. (2021), and FPS Dou & Song (2024). The quantitative results across five common
image restoration tasks on the FFHQ dataset are reported in Table 1, using Fréchet Inception Distance
(FID, ↓) and Learned Perceptual Image Patch Similarity (LPIPS, ↓). WDPS achieves consistently
lower FID than DPS across all tasks, with particularly large margins under motion blur (28.17
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Table 2: Quantitative results (FID ↓, LPIPS ↓) on ImageNet dataset across different tasks.

Methods
Motion Blur Gaussian Blur Inpainting Super Resolution

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
WDPS (ours) 42.80 0.2201 39.49 0.2548 39.62 0.1953 50.55 0.3319
DPS Chung et al. (2022a) 44.67 0.2450 44.93 0.2747 49.35 0.2073 54.10 0.3319
DDRM Kawar et al. (2022) – – 63.02 0.427 45.95 0.245 59.57 0.339
MCG Chung et al. (2022b) 186.9 0.758 95.04 0.550 39.74 0.330 144.5 0.637
PnP-ADMM Chan et al. (2016) 89.76 0.483 100.6 0.519 78.02 0.367 97.22 0.433
Score-SDE Song et al. (2020) 98.25 0.591 123.0 0.667 54.07 0.315 170.7 0.701
ADMM-TV Wahlberg et al. (2012) 138.8 0.525 155.7 0.588 87.69 0.319 130.9 0.523

vs. 31.68), Gaussian blur (26.12 vs. 29.78), and inpainting (27.11 vs. 34.16). Perceptual quality,
measured by LPIPS, is also generally improved (e.g., 0.1804 vs. 0.1873 for motion blur; 0.1106 vs.
0.1115 for inpainting). In super-resolution, WDPS shows a clear FID improvement (32.74 vs. 36.50),
while DPS attains a slightly better LPIPS.

We further evaluate WDPS on the ImageNet validation set with 1,000 images, using pre-trained
diffusion models without task-specific fine-tuning. The results across five restoration tasks are
reported in Table 2 and Table 3. WDPS consistently outperforms DPS across all metrics. In motion
blur, it improves PSNR by over 3 dB (27.68 vs. 24.63) while also yielding better SSIM and LPIPS.
Similar improvements are observed for Gaussian blur, where FID decreases from 44.93 to 39.49.

Methods FID ↓ LPIPS ↓

WDPS (ours) 65.68 0.3679
FPS Dou & Song (2024) 196.07 0.7423
DPS Chung et al. (2022a) 78.54 0.4190
MGPS Moufad et al. (2024a) 110 0.43

Table 3: Quantitative results on
ImageNet Nonlinear Blur task.

Inpainting shows a large perceptual gain (FID 39.62 vs.
49.35), despite DPS achieving a marginally higher PSNR.
Super-resolution further confirms the advantage, with
WDPS reducing FID (50.55 vs. 54.10) while maintaining
competitive LPIPS.

Overall, WDPS demonstrates a consistent advantage over
DPS and outperforms traditional baselines by a wide margin,
delivering reconstructions that are perceptually closer to
the ground truth. WDPS generalizes well beyond FFHQ,
consistently surpassing DPS on ImageNet, especially in perceptual metrics (FID and LPIPS), and
scaling effectively to diverse and challenging restoration tasks.

4.3 RESULTS ON NONLINEAR INVERSE PROBLEM

For nonlinear blur, WDPS achieves the best quantitative results, improving both FID (65.68 vs. 78.54)
and LPIPS (0.368 vs. 0.419), demonstrating robustness to complex degradations. In addition, WDPS
surpasses both DPS (35.11 vs. 38.50) and FPS (196.1 FID), highlighting its robustness to complex
degradations.

Overall, WDPS generalizes well beyond FFHQ, consistently surpassing DPS on ImageNet, especially
in perceptual metrics (FID and LPIPS), and scaling effectively to diverse and challenging restoration
tasks. Below, we provide potential explanations why our method excels in non-linear inverse
problems.

Methods FID ↓ LPIPS ↓

WDPS (ours) 35.11 0.2203
DPS Chung et al. (2022a) 38.50 0.2291
FPS Dou & Song (2024) 196.5 0.701
BKS-styleGAN2 Tran et al. (2021) 63.18 0.407
BKS-generic Tran et al. (2021) 141.0 0.640
MCG Chung et al. (2022b) 180.1 0.695
MGPS Moufad et al. (2024a) 50.8 0.23

Table 4: Quantitative results on FFHQ
Nonlinear Blur task.

(i) Subband-adaptive posterior corrections. WDPS com-
putes the posterior update in the wavelet domain, de-
composing x into low- and high-frequency subbands
and applying band-specific step sizes. This subband
conditioning decouples the ill-scaled directions induced
by∇A(x), preventing the likelihood gradient from dis-
proportionately damping high-frequency coefficients.
Edges and fine textures receive well-calibrated cor-
rections while low-frequency structure remains stable,
yielding better measurement fits.

(ii) Coarse-to-fine scheduling via dynamic wavelet reg-
ularization. Early diffusion steps are the most ill-posed:
noise levels are high, the posterior is broad, and nonlinearities in A(·) can amplify spurious detail.
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(a) Reconstructions comparing DPS and WDPS with ground-truth. (b) Visualization of PSF.

Figure 1: Evaluation on the DiffuserCam dataset. (a) Example reconstructions with DPS and
WDPS compared against ground truth. (b) Corresponding point spread function (PSF). The image is
enhanced for better visualization.

Table 5: Quantitative results (FID ↓, PSNR ↑, SSIM ↑, LPIPS ↓) on DiffuserCam Task.

Methods FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓
WDPS (ours) 36.77 16.30 0.4632 0.3693
DPS Chung et al. (2022a) 47.24 14.29 0.3842 0.4220
FPS-SMC Dou & Song (2024) 330.77 8.88 0.1915 0.8518
ADMM Wahlberg et al. (2012) 272.32 14.42 0.4572 0.6499
Wiener Deconvolution 261.10 15.38 0.5357 0.6451

WDPS introduces a time-varying wavelet regularizer that is strong at the beginning (suppressing
unstable high-frequency digressions) and is gradually relaxed to let fine-scale information emerge as
the noise level decays. This schedule acts as an implicit continuation method—first solving an easier,
smoothed problem and then homotopying to the fully detailed reconstruction—thereby reducing
artifacts that commonly plague nonlinear inverse solvers.

(iii) Improved gradient conditioning and stability. Performing the data-consistency correction on x̂0 in
the wavelet domain improves the conditioning of the update map. The resulting reverse dynamics are
less sensitive to local Lipschitz spikes of A(·) and to moderate operator/model mismatch. Empirically,
this manifests as lower variance across runs, fewer catastrophic samples, and improved sample
efficiency (fewer steps required to reach a given quality).

(iv) Robustness to model mismatch. Realistic nonlinear degradations rarely match the training-time
assumptions of baseline samplers. Because WDPS regularizes frequencies rather than pixels, it
tolerates moderate mismatches in the forward map by preserving the spectral statistics of natural
images even when the likelihood term is slightly mis-specified. Spatial-only corrections, in contrast,
tend to either oversmooth to satisfy data consistency or overfit noise amplified through A(·).

4.4 RESULTS ON LENSELESS IMAGE

We evaluate the proposed WDPS method against the DPS baseline on lensless imaging, where
measurements are formed by convolving the original image with a point spread function (PSF). The
PSF acts as a perturbation kernel that encodes the optical response of the lensless system, making the
inverse problem highly ill-posed. For this task, we adopt the PSF provided by Hung et al. (2025) and
apply it to FFHQ images using the same pre-trained model as in previous experiments. Quantitative
results are reported in Table 5 while qualitative reconstructions are shown in Figure 1. Under this
challenging forward operator, DPS produces severely distorted and unrealistic facial reconstructions.
In contrast, WDPS effectively suppresses these artifacts and yields reconstructions that closely
resemble the ground-truth images, demonstrating its robustness in lensless imaging scenarios.

The results confirm that the WDPS method outperforms the baseline methods in both quantitative
metrics and perceptual quality. The ability to leverage frequency-domain information through wavelet
transforms and posterior sampling enhances the reconstruction quality, especially for tasks requiring
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fine detail preservation such as nonlinear deblurring. Our approach sets a new benchmark for solving
inverse problems and opens avenues for future work in frequency-domain diffusion models.

4.5 ABLATION STUDY

We conduct an ablation study on the proposed dynamic wavelet regularization schedule. Results are
provided in Tables 2b.

On ImageNet, the dynamic schedule consistently improves performance across all metrics, con-
firming its effectiveness in stabilizing training and preserving high-frequency details in diverse and
challenging settings. On FFHQ, the gains are generally more modest for tasks such as blur or inpaint-
ing, since the dataset consists of high-quality, homogeneous face images where the diffusion prior
alone already provides strong reconstructions. An exception is super-resolution, where the task is
inherently ill-posed and requires recovery of high-frequency details; here the schedule plays a crucial
role, leading to dramatic improvements (e.g., FID 32.74 vs. 192.41). For physics-based imaging
(DiffuserCam), the benefits are smaller and task-dependent: WDPS improves FID and PSNR, while
SSIM and LPIPS may not always benefit. Due to page limits, additional ablation results are provided
in Appendix E.

(a) Gaussian Blur ablation on ImageNet—rows: Measurement,
No-strength, Strength, Ground Truth.

Task Method FID ↓ LPIPS ↓

Motion Blur
strength 48.2538 0.3354

no-strength 187.3271 0.7754

Gaussian Blur
strength 39.4935 0.2548

no-strength 182.6592 0.7586

Inpainting
strength 39.6198 0.1953

no-strength 128.5177 0.6185

(b) Quantitative results (FID, LPIPS) for
the first three tasks.

5 CONCLUSION

We present a frequency-domain-based posterior sampling approach that leverages frequency fea-
tures to improve performance on image inverse problems. By operating in the frequency domain,
this method enables more effective reconstruction and opens new avenues for future research into
frequency-aware image processing techniques. Our approach, Wavelet-based Diffusion Posterior
Sampling (WDPS), demonstrates strong performance compared to state-of-the-art methods on the
evaluated tasks, highlighting its potential for broad applicability across various domains.
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A ADDITIONAL RELATED WORKS

Figure 3: Wavelet Transform.

Figure 4: Regularization Schedule Under Different Baseline Offset.

A.1 DIFFUSION MODEL ON FREQUENCY DOMAIN

Recent research Qian et al. (2024); Wan et al. (2023); Song et al. (2025); Li et al. (2025a) has
highlighted the advantages of applying diffusion models in the frequency domain. Such frequency-
based diffusion models typically achieve superior generative performance compared to traditional
methods operating solely in the spatial (image) domain. For instance, Qian et al. (2024) reinterpret
iterative denoising as an optimization process and introduce Moving Average Sampling in the
Frequency domain (MASF): instead of simply averaging intermediate denoised samples, they first
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map them back to data space and then perform a moving average separately on different frequency
components. This frequency-aware ensembling stabilizes the sampling trajectory and improves
both unconditional and conditional diffusion models with negligible extra cost. Similarly, Wan
et al. (2023) present the first text-conditioned human motion generation method in the frequency
domain of motions, encoding motion sequences into a compact phase space that preserves high-
frequency periodic details and then using a conditional diffusion model to predict these parameters
from text, enabling smooth transitions and diverse long-term motion synthesis. Song et al. (2025)
tackle underwater image enhancement by proposing a two-stage frequency-domain latent diffusion
model (FD-LDM): a lightweight parameter estimation network first corrects color bias, and then
high- and low-frequency priors are extracted and fused with a refined latent diffusion model to
further enhance degraded underwater images. Li et al. (2025a) address change detection in remote
sensing by proposing DSFI-CD, which uses a conditional denoising diffusion model to generate
pseudo-images and introduces a spatial–frequency interaction module plus an edge-enhanced module
to better capture high-frequency edge information and improve robustness.

Utilizing frequency-domain methods naturally aligns with a divide-and-conquer approach, enabling
inverse problems to be addressed independently within distinct frequency bands—such as high-
frequency and low-frequency components. However, existing frequency-based approaches often
emphasize improvements in model architectures rather than exploring novel sampling techniques.

A.2 WAVELET TRANSFORMS

Wavelet transforms have been widely incorporated into generative modeling frameworks Chen et al.
(2024); Jin et al. (2025); Huang et al. (2024); Li et al. (2025b). For example, Chen et al. (2024)
use a discrete wavelet transform with a conditional diffusion model to generate accurate multi-
modal pedestrian trajectories. Similarly, Jin et al. (2025) proposes MWT-Diff for low-light image
enhancement, replacing convolutional up/down-sampling with multi-layer wavelet transforms in a
U-Net to extract high-order multi-scale features and fuse them for reconstruction. These works show
how wavelet–frequency representations can enhance diffusion models; however, our WDPS likewise
exploits multi-scale information but applies it to posterior updates for inverse imaging tasks.

A.3 LENSLESS CAMERA TASK

Mask-based lensless imaging systems Antipa et al. (2017); Monakhova et al. (2019); Pan et al. (2022);
Boominathan et al. (2020); Hung et al. (2025) provide an appealing alternative to traditional lensed
cameras due to their compact design, reduced weight, and mechanical simplicity. Instead of directly
forming an image through optical lenses, these systems capture multiplexed light patterns on a sensor,
which must then be computationally inverted to recover the scene. This inversion is inherently an
ill-posed problem, making lensless imaging a natural testbed for evaluating reconstruction algorithms.

In our experiments, we do not build a new physical system; instead, we adopt the forward operator
defined by a lensless camera point spread function (PSF) and apply it to standard datasets such
as FFHQ. This allows us to simulate realistic lensless measurements while retaining controlled
ground-truth references. Compared to conventional model-based reconstructions, which often require
heavy computation, precise calibration, and hand-crafted denoisers, our frequency-domain diffusion
framework provides a more generalizable and robust solution under these challenging lensless
conditions.

B DETAILED PROOF OF THEOREM 1.

We denote the loss by
L(x; y) = ∥A(x)− y∥22, x =W−1(W ), (24)

and the one-step operator as

Ti(·; y) = Sri

(
Id− ζi∇W L(W−1(·); y)

)
. (25)

HereW is an orthonormal discrete wavelet transform, and Sri denotes the dynamic wavelet regular-
ization operator (either High-Frequency gating or soft-thresholding). Our goal is to show: 1) Ti is
nonexpansive in its input; 2) Ti is Lipschitz with respect to the measurement y; 3) the composition of
T steps yields global Lipschitz stability of the reconstruction X0(y) with respect to y.
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Step 1. Wavelet isometry. SinceW is orthonormal, we have
∥W1 −W2∥2 = ∥W−1(W1)−W−1(W2)∥2, (26)

and by the chain rule
∇WL(W−1(W ); y) =W∇xL(x; y), x =W−1(W ). (27)

Thus the Lipschitz constant of∇WL equals that of∇xL.

Step 2. Lipschitz constant of the gradient. If A is linear, A(x) = Ax, then

L(x; y) = ∥Ax− y∥22, ∇xL(x; y) = 2A⊤(Ax− y). (28)
Therefore ∇xL is L-Lipschitz with L = 2∥A∥22. The same constant applies in the wavelet domain:
∇WL is L-Lipschitz.

Step 3. Nonexpansiveness of the gradient step. Define the gradient descent step
Gi(W ; y) = W − ζi∇WL(W−1(W ); y). (29)

By standard results (Baillon–Haddad or cocoercivity of smooth convex functions), if 0 < ζi ≤ 2/L,
then

∥Gi(U ; y)−Gi(V ; y)∥2 ≤ ∥U − V ∥2. (30)
Hence Gi(·; y) is nonexpansive.

Step 4. Nonexpansiveness of the regularizer. By assumption, Sri is nonexpansive:
∥Sri(U)− Sri(V )∥2 ≤ ∥U − V ∥2. (31)

This is satisfied both by (i) High-Frequency gating Sri(u) = (uLL, riu
LH, riu

HL, riu
HH) with

ri ∈ [0, 1]; (ii) Soft-thresholding, which is firmly nonexpansive as a proximal map.

Step 5. One-step nonexpansiveness and Lipschitz continuity in y. Since Ti = Sri ◦ Gi, both
operators being nonexpansive, their composition is nonexpansive:

∥Ti(U ; y)− Ti(V ; y)∥2 ≤ ∥U − V ∥2. (32)
For Lipschitz continuity in the measurement, consider

∥Ti(U ; y)− Ti(U ; y′)∥2 ≤ ζi ∥∇WL(W−1(U); y)−∇WL(W−1(U); y′)∥2. (33)
By the mean-value inequality, the RHS is bounded by ci∥y − y′∥2 for some constant ci =
ζi Lipy(∇WL).

Step 6. Stability over T steps. Let XT be the common initialization (noise) and X0(y), X0(y
′)

the final reconstructions under two measurements. Applying the nonexpansiveness and Lipschitz
property iteratively, we obtain

∥X0(y)−X0(y
′)∥2 ≤

( T∑
i=1

ci

)
∥y − y′∥2. (34)

Thus the reconstruction is Lipschitz-stable with respect to measurement perturbations.

Step 7. Strict contraction case. If each gradient step is strictly contractive (e.g., due to strong
convexity in a local basin or by taking smaller ζi), the bound improves to a product form via a discrete
Grönwall inequality, yielding exponentially decaying error propagation across steps.

□

Table 6: Quantitative results (PSNR ↑, SSIM ↑) on ImageNet dataset across different tasks.

Methods
Motion Blur Gaussian Blur Inpainting Super Resolution

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
WDPS (ours) 27.68 0.7654 23.96 0.6424 27.98 0.7762 22.63 0.6114
DPS Chung et al. (2022a) 24.63 0.6735 23.30 0.6126 28.09 0.7763 22.55 0.6019

Table 7: Quantitative results (PSNR ↑, SSIM ↑) on FFHQ dataset across different tasks.

Methods
Motion Blur Gaussian Blur Inpainting Super Resolution Nonlinear Blur

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
WDPS (ours) 23.34 0.6551 25.00 0.6894 29.48 0.8305 23.61 0.6615 23.15 0.6466
DPS Chung et al. (2022a) 22.54 0.6311 24.89 0.6884 29.39 0.8347 23.59 0.6622 22.82 0.6322
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C STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used a large language model strictly for editorial polishing of writing (e.g., grammar, concision,
and clarity). The tool was not used to generate substantive content including research ideas and
data analyses. No sensitive or identifying information was shared. All LLM-suggested edits were
screened by the authors for accuracy and appropriateness, and the final text reflects authors’ intent and
judgment. The authors accept full responsibility for the integrity and originality of the manuscript.

D RUNTIME COMPARISON

To further evaluate the efficiency of our method, we report the average runtime for sampling a single
image. All experiments are conducted on an NVIDIA A6000 GPU. As shown in Table 9, WDPS
runs slightly slower than DPS on both datasets. This additional cost comes from the wavelet-domain
regularization, but it is marginal compared to the overall runtime and is justified by the improvement
in reconstruction quality.

E ABLATION STUDY ON REGULARIZATION STRENGTH

We evaluate the proposed dynamic wavelet regularization schedule (reported in the first row of each
block) against a baseline without regularization (second row), with results presented in Tables 10, 11,
and 12. On ImageNet, the dynamic schedule consistently enhances performance across all metrics,
demonstrating its ability to stabilize training and preserve high-frequency details in complex and
varied scenarios. For FFHQ, improvements are generally more modest in tasks such as deblurring and
inpainting, since the dataset contains high-quality, homogeneous facial images where the diffusion
prior alone already yields strong reconstructions. A notable exception is super-resolution, where
recovering high-frequency structure is essential; in this setting the schedule is critical, producing
substantial gains (e.g., FID 32.74 vs. 192.41). For physics-based imaging (DiffuserCam), the impact
is more task-specific: WDPS boosts FID and PSNR, whereas SSIM and LPIPS do not always improve.
Taken together, these findings suggest that dynamic wavelet regularization provides broad benefits
for ill-posed inverse problems, delivering particularly large improvements in high-frequency recovery
tasks, while its advantages in physics-driven settings are more nuanced.

Table 10: Quantitative Results on FFHQ Dataset Across Different Tasks

Task Method FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Motion Blur strength 28.17 23.34 0.6551 0.1804

no-strength 27.6417 22.8215 0.6434 0.1843

Gaussian Blur strength 26.12 25.00 0.6894 0.1513
no-strength 26.0683 25.0087 0.6903 0.1508

Inpainting strength 27.11 29.39 0.8305 0.1106
no-strength 27.6930 28.6620 0.8201 0.1219

Super Resolution strength 32.74 23.61 0.6615 0.1979
no-strength 192.4145 6.8106 0.3532 0.6352

Nonlinear Blur strength 35.11 23.15 0.6466 0.2203
no-strength 38.7448 23.0002 0.6445 0.2195

Table 8: Quantitative results (PSNR ↑, SSIM ↑) on ImageNet Nonlinear Blur task.

Methods PSNR ↑ SSIM ↑
WDPS (ours) 21.94 0.5818
FPS Dou & Song (2024) 12.66 0.2947
DPS Chung et al. (2022a) 21.72 0.5512
MGPS Moufad et al. (2024b) 22.4 0.57
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Table 9: Average runtime for sampling a single image (minutes:seconds) on an NVIDIA A6000 GPU.

Method FFHQ ImageNet

DPS 1:02 3:19
WDPS 1:12 3:25

Table 11: Quantitative Results on ImageNet Dataset Across Different Tasks

Task Method FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Motion Blur strength 48.2538 21.3515 0.5706 0.3354

no-strength 187.3271 8.5685 0.3174 0.7754

Gaussian Blur strength 39.4935 23.9636 0.6424 0.2548
no-strength 182.6592 8.9774 0.3325 0.7586

Inpainting strength 39.6198 27.9836 0.7762 0.1953
no-strength 128.5177 13.2764 0.4284 0.6185

Super Resolution strength 50.5472 22.6251 0.6114 0.7569
no-strength 191.6817 5.4544 0.2952 0.8446

Nonlinear Blur strength 65.6763 21.9391 0.5818 0.3679
no-strength 187.5502 9.0486 0.3239 0.7541

Table 12: Quantitative Results on DiffuserCam Task(ablation)

Task Method FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DiffuserCam strength 36.77 16.30 0.4632 0.3693

no-strength 40.1778 16.2401 0.4648 0.3690

F SAMPLING EXAMPLES

In this section, we present qualitative sampling results to illustrate the performance of our method
across different inverse imaging tasks. We provide side-by-side comparisons on both FFHQ and
ImageNet datasets under various degradations, including motion blur, Gaussian blur, nonlinear blur,
super-resolution, and inpainting. Each figure shows the measurement, reconstructions from DPS and
WDPS, and the corresponding ground-truth image. The results highlight the superior visual fidelity
of WDPS, especially in challenging scenarios where fine structures and high-frequency details need
to be preserved.
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Figure 5: Motion Blur Ablation on ImageNet Dataset: Each row shows a sample, where the images
from left to right are Measurement, Non-strength, Strength, and Ground Truth.
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Figure 6: Nonlinear Blur Ablation on ImageNet Dataset: Each row shows a sample. From left to
right: Measurement, Strength, Non-strength, Ground Truth.
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Figure 7: Inpainting Ablation on ImageNet Dataset: Each row shows a sample. From left to right:
Measurement, Non-strength, Strength, and Ground Truth.
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Figure 8: Super-resolution Ablation on ImageNet Dataset: Each row shows a sample. From left to
right: Measurement, Non-strength, Strength, and Ground Truth.
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Figure 9: FFHQ DiffuserCam Ablation: Each row shows a sample. From left to right: Measurement,
Non-strength, Strength, and Ground Truth.
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Figure 10: FFHQ Super Resolution Ablation: Each row shows a sample. From left to right:
Measurement, Non-strength, Strength, and Ground Truth.
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Figure 11: FFHQ Nonlinear Blur Ablation: Each row shows a sample. From left to right: Measure-
ment, Non-strength, Strength, and Ground Truth.
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(a) FFHQ (b) ImageNet

Figure 12: Nonlinear Blur Ablation on ImageNet Dataset: Each row shows a sample. From left to
right: Measurement, DPS, WDPS, and Ground Truth.

(a) FFHQ (b) ImageNet

Figure 13: Motion Blur Ablation: Each row shows a sample. From left to right: Measurement, DPS,
WDPS, and Ground Truth.
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(a) FFHQ (b) ImageNet

Figure 14: Gaussian Blur Ablation: Each row shows a sample. From left to right: Measurement,
DPS, WDPS, and Ground Truth.

(a) FFHQ (b) ImageNet

Figure 15: Super Resolution Ablation: Each row shows a sample. From left to right: Measurement,
DPS, WDPS, and Ground Truth.
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(a) FFHQ (b) ImageNet

Figure 16: Inpainting Ablation: Each row shows a sample. From left to right: Measurement, DPS,
WDPS, and Ground Truth.
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