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ABSTRACT

Graph generation is a critical yet challenging task as empirical analyses require
a deep understanding of complex, non-Euclidean structures. Diffusion models
have recently made significant achievements in graph generation, but these mod-
els are typically adapted from image generation frameworks and overlook inherent
higher-order topology, leaving them ill-suited for capturing the topological prop-
erties of graphs. In this work, we propose Higher-order Guided Diffusion (HOG-
Diff), a principled framework that progressively generates plausible graphs with
inherent topological structures. HOG-Diff follows a coarse-to-fine generation cur-
riculum guided by higher-order topology and implemented via diffusion bridges.
We further prove that our model exhibits a stronger theoretical guarantee than clas-
sical diffusion frameworks. Extensive experiments on both molecular and generic
graph generation tasks demonstrate that our method consistently outperforms or
remains competitive with state-of-the-art baselines.

1 INTRODUCTION

Graphs provide an elegant abstraction for representing complex systems by encoding entities as ver-
tices and their relationships as pairwise edges. As such, they have played a key role in generative
modeling in unstructured domains, enabling the synthesis of novel graphs faithful to the data dis-
tribution. This representational power has positioned graph generative models as a crucial tool for
discovering new molecules, materials, and biostructures (Jumper et al., 2021; Vignac et al., 2023;
Qin et al., 2025; Siraudin et al., 2025).

Despite these advances, graph generation still lags behind its Euclidean counterparts. Classically,
oversmoothing and oversquashing limit expressive capacity, but an even deeper obstacle persists:
most generative frameworks treat graphs purely as collections of pairwise edges, overlooking the
higher-order structures that govern the organization of real-world systems, such as triangles, cliques,
rings, and motifs. These higher-order structures play a decisive role in fields ranging from chem-
istry to neuroscience: molecules function through coordinated multi-atom assemblies; collaborative
teams operate effectively only at specific group sizes; and neural populations exhibit coherent activ-
ity patterns that fundamentally rely on multi-unit interactions (Battiston et al., 2020; Gardner et al.,
2022; Papamarkou et al., 2024). A growing body of empirical and theoretical work underscores
that such higher-order topology is not an optional structure, but a defining characteristic of real
data (Segler et al., 2018; Ertl et al., 2025).

Recent studies make this picture even sharper. Drug molecules, for instance, inhabit only a few hun-
dred distinct ring and scaffold topologies (Ertl et al., 2025), far fewer than the astronomical chemical
space of plausible compounds (1023–1060) (Segler et al., 2018). Meanwhile, progress in topological
deep learning (TDL) (Hajij et al., 2022; Papamarkou et al., 2024; Liu et al., 2024; Battiloro et al.,
2025; Wang et al., 2025; Hajij et al., 2025) evidences that explicitly modeling complex structures
boosts the expressivity and stability of graph and molecular representation learning. Nevertheless,
no existing graph generative model integrates higher-order structure as an explicit guiding signal.

In this work, motivated by this gap, we propose the Higher-order Guided Diffusion (HOG-Diff)
framework, a principled, topology-aware framework that places higher-order topology at the core of
the generative process. As illustrated in Fig. 1, HOG-Diff implements a coarse-to-fine generation
curriculum: it first synthesizes the higher-order skeleton of a graph, its key 2-cells, faces, or other
motifs, and then refines these coarse structures into full pairwise connectivity. To realize this, we
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Figure 1: Overview of HOG-Diff framework and performance across multiple datasets. (left) The
dashed line above illustrates the classical generation process, where graphs quickly degrade into
random structures with uniformly distributed entries. In contrast, as shown in the coloured region
below, HOG-Diff adopts a coarse-to-fine generation curriculum based on the diffusion bridge, ex-
plicitly learning higher-order structures during intermediate steps with theoretical guarantees. Our
model outperforms the state-of-the-art both in classical, pairwise performance metrics (middle) and
on higher-order (right).

combine cell-complex filtering with a novel generalized Ornstein–Uhlenbeck (OU) diffusion bridge
in the spectral domain, enabling the diffusion process to transition smoothly between increasingly
detailed topological states while preserving the global structure implied by higher-order interactions.

This coordinated two-stage design brings several benefits. It aligns the generative trajectory with
the intrinsic hierarchical organization of real-world graphs; it avoids the collapse of intermediate
states into meaningless noisy adjacency matrices; and it allows us to leverage closed-form bridge
dynamics for stable, simulation-free training. Theoretically, we prove that HOG-Diff enjoys faster
convergence in score matching and tighter reconstruction error bounds than classical diffusion mod-
els. Practically, the explicit presence of topological guides enables interpretability: by varying the
guide structures, we can directly probe which topological motifs are most influential in determining
the generative process. Across molecular and generic graph benchmarks, HOG-Diff consistently
achieves state-of-the-art performance, sharply reducing both statistical and topological discrepan-
cies relative to real data. Our findings underscore a central message: higher-order topology is a
powerful generative signal and incorporating it transforms graph diffusion from an edge-level de-
noising procedure into a truly structure-aware generative paradigm. Our concrete contributions are:

• We introduce cell complex filtering, to extract higher-order skeletons from graphs, as valuable
generation guides.

• We propose a principled, coarse-to-fine graph generation framework guided by higher-order topo-
logical information and implemented via the generalized OU diffusion bridge.

• We theoretically show that HOG-Diff achieves faster convergence during score-matching and a
sharper reconstruction error bound compared to classical diffusion models.

• Extensive evaluations on small and large molecules, as well as generic graph datasets, show that
our topology-informed HOG-Diff achieves state-of-the-art performance in de novo generation.

We will make our implementation publicly available upon publication.

2 PRELIMINARIES

Higher-order Networks. Graphs are elegant and useful abstractions for various empirical objects.
Formally, a graph can be represented as G ≜ (V ,E,X), where V denotes the node set, E ⊆
V ×V the edges, and X the nodes feature matrix. However, many empirical systems exhibit group
interactions that go beyond simple pairwise relationships (Battiston et al., 2020). To capture these
complex interactions, higher-order networks—such as hypergraphs, simplicial complexes (SCs),
and cell complexes (CCs)—offer more expressive alternatives by capturing higher-order interactions
among multiple entities (Papamarkou et al., 2024). Among these, cell complexes are fundamental
in algebraic topology, offering a flexible generalization of pairwise graphs (Hatcher, 2001).

Definition 1 (Regular cell complex). A regular cell complex is a topological space S with a partition
into subspaces (cells) {xα}α∈PS , where PS is an index set, satisfying the following conditions:

1. For any x ∈ S , every sufficiently small neighborhood of x intersects finitely many cells.
2. Each cell xα is homeomorphic to Rnα , where nα = dim(xα) denotes the dimension of xα.
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3. For each cell xα, the boundary ∂xα is a finite union of cells of dimension less than dim(xα).
4. For every α ∈ PS , there exists a homeomorphism ϕα of a closed ball Bnα ⊂ Rnα to the closure

xα such that the restriction of ϕα to the interior of the ball is a homeomorphism onto xα.

Lifting: From Graphs to Cell Complexes. A cell complex can be constructed hierarchically
through a gluing procedure, which is known as lifting. It begins with a set of vertices (0-cells), to
which edges (1-cells) are attached by gluing the endpoints of closed line segments, thereby forming
a graph. This process can be extended by taking a two-dimensional closed disk and gluing its
boundary to a simple cycle in the graph, see Fig. 2 for illustration. While we typically focus on
dimensions up to two, this framework can be further generalized by gluing the boundary of n-
dimensional balls to specific (n− 1)-cells in the complex.

From the definition, we can derive that the cell complex S is the union of the interiors of all cells. In
this work, we also consider simplicial complexes (SCs), a class of topological spaces represented by
finite sets of elements that are closed under the inclusion of subsets. Intuitively, SCs can be viewed
as a more constrained subclass of cell complexes, where 2-cells are limited to triangle shapes. A
comprehensive introduction to higher-order networks can be found in App. B.1.

Score-based Diffusion Models. A fundamental goal of generative models is to produce plausible
samples from an unknown target data distribution p(x0). Score-based diffusion models (Song & Er-
mon, 2019; Song et al., 2021) achieve this by progressively corrupting the authentic data with noise
and subsequently training a neural network to reverse this corruption process, thereby generating
meaningful data from a tractable prior distribution, i.e., xgenerated ∼ p(x0).

Specifically, the time-dependent forward process of the diffusion model can be described by the
following stochastic differential equation (SDE):

dxt = ft (xt) dt+ gtdwt, (1)

where ft : Rn → Rn is a vector-valued drift function, gt : [0, T ] → R is a scalar diffusion
coefficient, and wt represents a Wiener process. Typically, p(x0) evolves over time t from 0 to a
sufficiently large T into p(xT ) through the SDE, such that p(xT ) will approximate a tractable prior
distribution, for example, a standard Gaussian distribution.

Starting from time T , p(xT ) can be progressively transformed back to p(x0) by following the tra-
jectory of the reverse-time SDE dxt = [ft(xt) − g2t∇xt

log pt(xt)] dt̄ + gtdw̄t (Anderson, 1982),
where pt(·) denotes the probability density function of xt and w̄ is a reverse-time Wiener process.

The term ∇xt log pt(xt), known as the score function, is typically parameterized by a neural network
sθ(xt, t) and trained using the conditional score-matching loss function (Vincent, 2011):

ℓ(θ) ≜ Et,xt

[
ω(t) ∥sθ(xt, t)−∇xt log pt(xt)∥2

]
∝ Et,x0,xt

[
ω(t) ∥sθ(xt, t)−∇xt log pt(xt|x0)∥2

]
,

where ω(t) is a weighting function. The second expression is more commonly used since the condi-
tional probability pt(xt|x0) is generally accessible. Ultimately, the generation process is complete
by first sampling xT from a tractable prior distribution p(xT ) ≈ pprior(x) and then generating x0

by numerically solving the reverse-time SDE.
Doob’s h-transform. Doob’s h-transform is a mathematical framework widely used to modify
stochastic processes, enabling the process to satisfy specific terminal conditions. By introducing
an h-function into the drift term of an SDE, this technique ensures that the process transitions to a
predefined endpoint while preserving the underlying probabilistic structure. Specifically, given the
SDE in Eq. (1), Doob’s h-transform alters the SDE to include an additional drift term, ensuring that
the process reaches a fixed terminal state at t = T . The modified SDE is expressed as:

dxt = [ft (xt) + g2th(xt, t,xT , T )]dt+ gtdwt, (2)

where h(xt, t,xT , T ) = ∇xt log p(xT |xt). Crucially, the construction drives the diffusion process
towards a Dirac distribution at xT , i.e., limt→T p(xt|x0,xT ) = δ(xt − xT ).

3 HIGHER-ORDER GUIDED DIFFUSION MODEL

We now present our Higher-order Guided Diffusion (HOG-Diff) model, which enhances graph gen-
eration by exploiting higher-order structures. We first describe our coarse-to-fine generation frame-
work, followed by an introduction to the supporting diffusion bridge technique. Finally, we provide
theoretical evidence to validate the efficacy of HOG-Diff.
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3.1 COARSE-TO-FINE FRAMEWORK WITH TOPOLOGICAL FILTERING

We draw inspiration from curriculum learning, a paradigm that mimics human learning by system-
atically organizing data in a progression from simple (coarse) to complex (fine) (Abbe et al., 2021;
Soviany et al., 2022). Specifically, we model coarse intermediary structures as higher-order cells,
which encapsulate rich structural properties beyond pairwise interactions (Battiston et al., 2020).
These cells can be obtained by lifting the original graph and retaining associated 2-faces as the
higher-order skeleton. Our generative processes then follow a curriculum to progressively generate
graphs, starting with higher-order cells and gradually refining them into the full complex graph.
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Figure 2: Cell Complex transfor-
mations. (a) An example graph.
(b) Lifting: closed 2D disks are
glued to the boundary of the rings
to form the 2-cell complex. (c) The
resulting cell complex and the cor-
responding homeomorphisms to
the closed balls for three rep-
resentative cells of different di-
mensions in the complex. (d)
Black elements represent higher-
order structures extracted through
2-cell filtering, while grey ele-
ments denote corresponding pe-
ripheral structures pruned by the
filtering operation.

To implement our coarse-to-fine generation framework, we
first introduce a key operation termed cell complex filtering
(CCF). The filtering operation decomposes the graph gener-
ation task into hierarchically structured and manageable sub-
tasks.
Proposition 2 (Cell complex filtering). Given a graph G =
(V ,E) and its associated cell complex S = ∪αxα (obtained
via lifting). The p-cell complex filtering operation defines a
filtered graph G[p] = (V[p],E[p]), where V[p] = {v ∈ V |
∃ xαwithdim(xα) = p : v ∈ xα}, and E[p] = {(u, v) ∈ E |
∃ xαwithdim(xα) = p : {u, v} ⊆ xα}. Here, xα denotes the
closure of xα.

As illustrated in Fig. 2, we first lift the graph to a cell complex
and then apply CCF to generate intermediate states by pruning
nodes and edges that do not belong to higher-order cells. In
practice, CCF offers a substantial speedup, as it avoids the ex-
pensive enumeration of all cells required by lifting, see App. D
for details. Based on the filtering results, the diffusion pro-
cess is structured into K hierarchical time windows, denoted
as {[τk−1, τk]}Kk=1, where 0 = τ0 < · · · < τk−1 < τk <
· · · < τK = T , with the filtered results serving as natural in-
termediaries in the hierarchical generation process.

The overall framework of HOG-Diff is depicted in Fig. 1. In
general, we first generate coarse-grained higher-order skele-
tons and subsequently refine them into finer pairwise relation-
ships, thereby simplifying the task of capturing complex graph
distributions. Formally, our generation process factorizes the
joint distribution of the final graph G0 into a product of con-
ditional distributions across these time windows:

p(G0) = p(G0|Gτ1)p(Gτ1 |Gτ2) · · · p(GτK−1
|GT ). (3)

Here, the intermediate states GτK−1
, · · · ,Gτ2 ,Gτ1 represent progressively finer cell complex fil-

tered graph representations, aligning intermediate diffusion stages with realistic hierarchical graph
structures. This coarse-to-fine approach enables our model to first focus on fundamental topolog-
ical structures and then add finer connectivity, inherently aligning with the hierarchical nature of
many empirical systems. Consequently, our model benefits from smoother training and improved
sampling performance (see Sec. 3.3 for theoretical analysis).

To ensure smooth transitions between intermediate states within each interval [τk−1, τk], the graph
evolves according to the general form of a diffusion bridge process (see Sec. 3.2 for details):

dG
(k)
t = fk,t(G

(k)
t )dt+ gk,tdWt, t ∈ [τk−1, τk]. (4)

The forward diffusion process introduces noise in a stepwise manner while preserving intermedi-
ate structural information. Reversing this process enables the model to generate authentic samples
with desirable higher-order information. Moreover, integrating higher-order structures into graph
generative models improves interpretability by allowing analysis of their significance in shaping the
graph’s properties. Rather than directly conditioning on higher-order information, HOG-Diff em-
ploys it incrementally as a guiding structure. This strategy allows the model to build complex graph
structures progressively, while maintaining meaningful structural integrity at each stage.
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3.2 GUIDED GENERATION VIA DIFFUSION BRIDGE PROCESS

As a building block of our generative framework, we leverage a class of diffusion processes with
fixed terminal states, namely the generalized Ornstein-Uhlenbeck (GOU) bridge, to realize the pro-
posed guided diffusion process in Eq. (4), while enabling simulation-free training.

The generalized Ornstein-Uhlenbeck (GOU) process (Ahmad, 1988; Luo et al., 2023b), also known
as the time-varying OU process, is a stationary, Gaussian-Markov process characterized by its mean-
reverting property. Specifically, the marginal distribution of the GOU process asymptotically ap-
proaches a fixed mean and variance. The GOU process is governed by the following SDE:

dGt = θt(µ−Gt)dt+ gtdWt, (5)

where µ is the target terminal state, θt denotes a scalar drift coefficient and gt represents the diffusion
coefficient. For analytical tractability, θt and gt are constrained by g2t /θt = 2σ2 (Luo et al., 2023b),
where σ2 is a fixed constant, yielding a closed-form transition probability:

p(Gt | Gs) = N (ms:t, v
2
s:tI) = N

(
µ+ (Gs − µ) e−θ̄s:t , σ2(1− e−2θ̄s:t)I

)
. (6)

Here, θ̄s:t =
∫ t

s
θzdz. For notional simplicity, θ̄0:t is replaced by θ̄t when s = 0.

Diffusion Bridge. Applying Doob’s h-transform (Doob & Doob, 1984) to the GOU process un-
der the terminal condition µ = Gτk , we can derive the GOU bridge process as follows (detailed
derivation of the bridge process provided in App. A.1):

dGt = θt

(
1 +

2

e2θ̄t:τk − 1

)
(Gτk −Gt)dt+ gk,tdWt. (7)

The conditional transition probability admits an analytical form p(Gt|Gτk−1
,Gτk) = N (m̄t, v̄

2
t I):

m̄t = Gτk + (Gτk−1
−Gτk)e

−θ̄τk−1:t
v2t:τk

v2τk−1:τk

, v̄2t = v2τk−1:t
v2t:τk/v

2
τk−1:τk

. (8)

Here, θ̄a:b =
∫ b

a
θsds, and va:b = σ2(1− e−2θ̄a:b).

The GOU bridge process eliminates variance in the terminal state by directing the diffusion toward
a Dirac distribution centered at Gτk , making it well-suited for stochastic modelling with terminal
constraints (Heng et al., 2021; Yue et al., 2024). Moreover, we can directly use the closed-form
solution for one-step forward sampling without expensive SDE simulation. Note that the Brownian
bridge process used in previous works (Wu et al., 2022) is a special case of the GOU bridge process
when θt → 0 (see App. A.1).

Training and Sampling. Classical graph diffusion approaches typically inject isotropic Gaussian
noise directly into the adjacency matrices A, leading to various fundamental challenges, such as
permutation ambiguity, sparsity-induced signal degradation, and poor scalability (see App. C.2 for
detailed discussion). To address these challenges, inspired by Luo et al. (2023a), we introduce noise
in the spectra of the graph Laplacian L = D − A, instead of the adjacency matrix A, where
D denotes the diagonal degree matrix. As a symmetric positive semi-definite matrix, the graph
Laplacian can be diagonalized as L = UΛU⊤. Here, the orthogonal matrix U = [u1, · · · ,un]
comprises the eigenvectors, and the diagonal matrix Λ = diag(λ1, · · · , λn) holds the corresponding
eigenvalues. Therefore, the target graph distribution p(G0) represents a joint distribution of X0 and
Λ0, exploiting the permutation invariance and structural robustness of the Laplacian spectrum.

Consequently, the GOU bridge process in Eq. (7), along with its time-reversed counterpart, can be
formulated as the following system of SDEs for graph G:{
dXt =fk,t(Xt)dt+ gk,tdW̄

1
t

dΛt =fk,t(Λt)dt+ gk,tdW̄
2
t

,

{
dXt =

[
fk,t(Xt)− g2k,t∇X log pt(Gt|Gτk)

]
dt̄+ gk,tdW̄

1
t

dΛt =
[
fk,t(Λt)− g2k,t∇Λ log pt(Gt|Gτk)

]
dt̄+ gk,tdW̄

2
t

.

Here, the reverse-time dynamics of the bridge process are derived using the theory of SDEs, the
superscript of X(k)

t and Λ
(k)
t are dropped for simplicity, and fk,t is determined according to Eq. (7).
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To approximate the score functions ∇Xt
log pt(Gt|Gτk) and ∇Λt

log pt(Gt|Gτk), we employ a
neural network s

(k)
θ (Gt,Gτk , t), which outputs predictions for both node-level (s(k)θ,X(Gt,Gτk , t))

and spectrum (s(k)θ,Λ(Gt,Gτk , t)) components. The network is optimized by minimizing:

ℓ(k)(θ) = Et,Gt,Gτk−1
,Gτk
{ω(t)[c1∥s(k)

θ,X−∇X log pt(Gt|Gτk )∥
2
2+c2||s(k)

θ,Λ−∇Λ log pt(Gt|Gτk )||
2
2]},
(9)

where ω(t) is a positive weighting function, and c1, c2 controls the relative importance of vertices
and spectrum. The training procedure is detailed in Alg. 1 in App. C.

In the inference procedure, we sample (X̂τK , Λ̂τK ) from the prior distribution and select Û0 as
an eigenbasis drawn from the training set. Reverse diffusion is then applied across multiple stages
to sequentially generate (X̂τK−1

, Λ̂τK−1
), · · · , (X̂τ1 , Λ̂τ1), (X̂0, Λ̂0), where each stage is imple-

mented via the diffusion bridge and initialized from the output of the previous step. Finally, plau-
sible samples with higher-order structures can be reconstructed as Ĝ0 = (X̂0, L̂0 = Û0Λ̂0Û

⊤
0 ).

Further details of the spectral diffusion process and the complete sampling procedure are provided
in App. C, while ablation studies comparing diffusion in the spectral domain versus the adjacency
matrix are presented in App. F.1.

Score Network Architecture. The score network plays a critical role in estimating the score func-
tions required to reverse the diffusion process. Standard graph neural networks designed for classi-
cal tasks such as graph classification and link prediction may be inappropriate for graph distribution
learning due to the complicated requirements. For example, an effective model for molecular graph
generation should capture local node-edge dependence for chemical valency rules and attempt to re-
cover global graph patterns like edge sparsity, frequent ring subgraphs, and atom-type distribution.

To achieve this, we introduce a unified score network that explicitly integrates node and spectral
representations. As illustrated in Fig. 7 of Appendix, the network comprises two different graph
processing modules: a standard graph convolution network (GCN) (Kipf & Welling, 2017) for local
feature aggregation and a graph transformer network (ATTN) (Dwivedi & Bresson, 2021; Vignac
et al., 2023) for global information extraction. The outputs of these modules are fused with time
information through a Feature-wise Linear Modulation (FiLM) layer (Perez et al., 2018), and the
resulting representations are concatenated to form a unified hidden embedding. This hidden em-
bedding is further processed by separate multilayer perceptrons (MLPs) to produce predictions for
∇X log p(Gt|Gτk) and ∇Λ log p(Gt|Gτk), respectively. It is worth noting that our score network
is permutation equivalent, as each component of our model avoids any node ordering-dependent
operations. Our model is detailed in App. C.3.

3.3 THEORETICAL ANALYSIS

We now provide theoretical evidence for the efficacy of HOG-Diff, demonstrating that the proposed
framework achieves faster convergence in score-matching and tighter reconstruction error bounds
compared to standard graph diffusion. We experimentally verify our theories in Sec. 4.4.

Theorem 3 (Informal). Suppose the loss function ℓ(k)(θ) in Eq. (9) is β-smooth and satisfies the
µ-PL condition in the ball B (θ0, R). Then, the expected loss at the i-th training iteration satisfies:

E
[
ℓ(k)(θi)

]
≤
(
1− bµ2

βN(βN2 + µ(b− 1))

)i

ℓ(k) (θ0) , (10)

where N denotes the size of the training dataset, and b is the mini-batch size. Furthermore, it
holds that βHOG-Diff ≤ βclassical, implying that the distribution learned by the proposed framework
converges to the target distribution faster than classical generative models.

Following Luo et al. (2023a), we define the expected reconstruction error at each generation process

as E(t) = E
∥∥∥Ḡt − Ĝt

∥∥∥2, where Ḡt represents the data reconstructed with the ground truth score

∇ log pt(·) and Ĝt denotes the data reconstructed with the learned score function sθ. Next, we
establish that the reconstruction error in HOG-Diff is bounded more tightly than in classical graph
generation models, thereby ensuring superior sample quality.
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Table 1: Comparison of different methods based on molecular datasets. We report the mean of 3
different runs. The best results for the first three metrics are highlighted in bold.

Method
QM9 ZINC250k

NSPDK↓ FCD↓ Val. w/o
corr.↑ Uni.↑ Nov.↑ NSPDK↓ FCD↓ Val. w/o

corr.↑ Uni.↑ Nov.↑

GraphAF 0.021 5.625 74.43 88.64 86.59 0.044 16.023 68.47 98.64 99.99
GraphDF 0.064 10.928 93.88 98.58 98.54 0.177 33.546 90.61 99.63 100.00
GraphArm 0.002 1.220 90.25 95.62 70.39 0.055 16.260 88.23 99.46 100.00
MiCaM 0.001 1.045 99.93 93.89 83.25 0.166 31.495 100.00 88.48 99.98

GraphEBM 0.030 6.143 8.22 97.90 97.01 0.212 35.471 5.29 98.79 100.00
SPECTRE 0.163 47.960 87.30 35.70 97.28 0.109 18.440 90.20 67.05 100.00
GSDM 0.003 2.650 99.90 - - 0.017 12.956 92.70 - -
EDP-GNN 0.005 2.680 47.52 99.25 86.58 0.049 16.737 82.97 99.79 100.00
GDSS 0.003 2.900 95.72 98.46 86.27 0.019 14.656 97.01 99.64 100.00
DiGress 0.0005 0.360 99.00 96.66 33.40 0.082 23.060 91.02 81.23 100.00
MoFlow 0.017 4.467 91.36 98.65 94.72 0.046 20.931 63.11 99.99 100.00
CatFlow - 0.441 99.81 99.95 - - 13.211 99.95 99.99 -
Cometh 0.0005 0.248 99.57 96.75 72.06 - - - - -
DeFoG 0.0005 0.268 99.26 96.61 72.57 0.002 2.030 94.97 99.98 100.00
HOG-Diff 0.0003 0.172 98.74 97.10 75.12 0.001 1.633 98.56 99.96 99.53

Theorem 4. Under appropriate Lipschitz and boundedness assumptions, the reconstruction error
of HOG-Diff satisfies the following bound:

Ehog(0) ≤ Ahog e
Thog , (11)

where Ahog = C2
∑K

k=1 ℓ
(k)(θ)

∫ τk
τk−1

g4k,sds and Thog =
∑K

k=1

∫ τk
τk−1

γk(s)ds +

C
∑K−1

k=1

∫ τk
τk−1

h2
k,sds. Furthermore, we can derive that the reconstruction error bound of HOG-

Diff is sharper than that of classical graph generation models.

The theorems above rely primarily on mild assumptions, such as smoothness and boundedness,
without imposing strict conditions like the target distribution being log-concave or satisfying the
log-Sobolev inequality. Their formal statements and detailed proofs are postponed to App. A.

4 EXPERIMENTS

We assess HOG-Diff against state-of-the-art baselines in both molecular and generic graph gener-
ation. Ablation studies are further conducted to analyze the impact of different topological guides.
Complexity analysis and experimental settings are deferred to Apps. D and E, while App. F presents
further results, including diffusion domain analysis, large-scale SBM experiments, the rationale for
filtering choices, variance statistics, and visualizations.

4.1 MOLECULE GENERATION

Molecular design is a prominent application of graph generation. We conduct evaluations on two
well-known molecular datasets: QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al.,
2012). Intermediate higher-order skeletons are extracted using 2-cell complex filtering; the rationale
for this choice is discussed in App. F.3. We evaluate the quality of 10,000 generated molecules
with five standard metrics as in Jo et al. (2022): Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) MMD (Costa & Grave, 2010), Fréchet ChemNet Distance (FCD) (Preuer et al., 2018),
Validity without correction (Val. w/o corr.), Uniqueness (Uni.), and Novelty (Nov.) (Jo et al., 2022).

For benchmarking, we include various representative molecular generation models. Autoregressive
models include GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021), and GraphArm (Kong
et al., 2023); the fragment-based MiCaM (Geng et al., 2023) creatively leverage motif information.
In contrast, the remaining methods adopt a one-shot generation paradigm: GraphEBM serves as an
energy-based model, SPECTRE (Martinkus et al., 2022) and GSDM (Luo et al., 2023a) incorporate
spectral conditioning within GAN and diffusion frameworks, respectively, while EDP-GNN (Niu
et al., 2020), GDSS (Jo et al., 2022), DiGress (Vignac et al., 2023), and Cometh (Siraudin et al.,
2025) represent diffusion-based generation models. We also compare against advanced flow-based
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Table 2: Generation performance on generic graph datasets. Best bold and second-best underlined.
Hyphen (-) indicates missing results in the original paper.

Method Community-small Enzymes Ego-small

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓
DeepGMG 0.220 0.950 0.400 0.523 - - - - 0.040 0.100 0.020 0.053
GraphRNN 0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.090 0.220 0.003 0.104
GraphAF 0.180 0.200 0.020 0.133 1.669 1.283 0.266 1.073 0.030 0.110 0.001 0.047
GraphDF 0.060 0.120 0.030 0.070 1.503 1.061 0.202 0.922 0.040 0.130 0.010 0.060

GraphVAE 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 0.130 0.170 0.050 0.117
GNF 0.200 0.200 0.110 0.170 - - - - 0.030 0.100 0.001 0.044
EDP-GNN 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.052 0.093 0.007 0.051
GPrinFlowNet 0.021 0.068 0.021 0.037 0.021 0.088 0.009 0.039 - - - -
SPECTRE 0.048 0.049 0.016 0.038 0.136 0.195 0.125 0.152 0.078 0.078 0.007 0.054
GDSS 0.045 0.086 0.007 0.046 0.026 0.061 0.009 0.032 0.021 0.024 0.007 0.017
DiGress 0.047 0.041 0.026 0.038 0.004 0.083 0.002 0.030 0.015 0.029 0.005 0.016
HOG-Diff 0.006 0.022 0.002 0.010 0.011 0.061 0.007 0.027 0.015 0.027 0.004 0.016

Method Deg.↓ Clus.↓ Orb.↓ Spec.↓ Avg.↓ V.U.N.↑

GraphRNN 0.0055 0.0584 0.0785 0.0065 0.0372 0.05
GRAN 0.0113 0.0553 0.0540 0.0054 0.0315 0.25
EDP-GNN 0.0011 0.0552 0.0520 0.0070 0.0288 -
SPECTRE 0.0015 0.0521 0.0412 0.0056 0.0251 0.53
HSpectre 0.0141 0.0528 0.0809 0.0071 0.0387 0.75
GDSS 0.0212 0.0646 0.0894 0.0128 0.0470 0.05
DiGress 0.0013 0.0498 0.0434 0.0400 0.0336 0.74
GruM 0.0015 0.0589 0.0450 0.0077 0.0283 0.85
DeFoG 0.0006 0.0517 0.0556 0.0054 0.0283 0.80
HOG-Diff 0.0028 0.0500 0.0428 0.0043 0.0249 0.83
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Figure 3: (left) Generation results on the SBM dataset, The best and second-best results are high-
lighted in bold and underlined, respectively. (right) Generative trajectories (left to right) on QM9,
ZINC250k, and MOSES, where HOG-Diff maintains topological integrity over intermediate steps.

models, including MoFlow (Zang & Wang, 2020), CatFlow (Eijkelboom et al., 2024), and De-
FoG (Qin et al., 2025).

We visualize the molecule generation process in Fig. 3(right) with more examples deferred
to App. F.5. It can be observed that our model explicitly preserves higher-order structures during the
generation process. Tab. 1 further shows that HOG-Diff generally outperforms both auto-regressive
and one-shot models. Notably, the dramatic decrease in NSPDK and FCD implies that HOG-Diff is
able to generate molecules with data distributions close to those of real molecules in both chemical
and graph spaces. Additional results on validity and variance are provided in App. F.4.

4.2 GENERIC GRAPH GENERATION

To display the ability of learning topology distributions, we assess HOG-Diff over four common
generic graph datasets: Community-small, Ego-small, Enzymes, and a larger-scale stochastic block
model (SBM) dataset. Intermediate higher-order skeletons are obtained via 3-simplicial complex
filtering. We employ the same train/test split as Jo et al. (2022) for a fair comparison. Maximum
mean discrepancy (MMD) is used to quantify the distribution differences across key graph statistics,
including degree (Deg.), clustering coefficient (Clus.), and 4-node orbit counts (Orbit). A low MMD
signifies a close alignment between the generated and evaluation datasets, suggesting superior gen-
erative performance. We also report the average MMD across all metrics as an overall indicator.
Notably, the SBM dataset follows an evaluation protocol distinct from the other three datasets, and
we describe its setup in detail in App. F.2.

We compare the following graph generative models: DeepGMG (Li et al., 2018) and
GraphRNN (You et al., 2018) are autoregressive models, while GraphVAE (Simonovsky & Ko-
modakis, 2018), GNF (Liu et al., 2019), and GPrinFlowNet (Mo et al., 2024) are one-shot models.
GraphAF, GraphDF, EDP-GNN, SPECTRE, GDSS, and DiGress are previously explained. The re-
sults in Tab. 2 and Fig. 3 (left) verify that HOG-Diff is not only suitable for molecular generation
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but also proficient in generic graph generation, demonstrating its ability to effectively capture the
intricate topological interdependencies.

4.3 TOPOLOGICAL PRESERVATION ANALYSIS Table 3: Quantitative evaluation of higher-
order topology preservation using Curvature
Filtrations. The best results are in bold.

Dataset Method κFR κOR

QM9

GDSS 0.925 0.601
DiGress 0.251 0.343
DoFoG 0.177 0.286
Cometh 0.216 0.314

HOG-Diff 0.077 0.098

ZINC
250k

MiCaM 9.436 7.251
GDSS 1.781 1.331
DoFoG 0.728 0.498

HOG-Diff 0.190 0.098

Moses DiGress 0.260 0.223
HOG-Diff 0.159 0.183

GuacaMol DiGress 0.862 0.075
HOG-Diff 0.083 0.057

SBM
DoFoG 3.998 5.206
Cometh 2.748 3.938

HOG-Diff 1.453 3.740
Comm.
-small

GDSS 12.515 14.949
HOG-Diff 6.734 6.522

Enzymes GDSS 13.031 12.399
HOG-Diff 12.114 9.830

Ego
-small

GDSS 2.311 1.301
HOG-Diff 1.679 1.042

To further verify the capability of HOG-Diff in pre-
serving higher-order structures, a critical aspect often
overlooked by standard metrics, we conduct a quanti-
tative evaluation using Curvature Filtrations (South-
ern et al., 2023). Unlike simple graph statistics,
curvature filtrations combine discrete curvature no-
tions with topological data analysis (TDA) to capture
multi-scale topological features.

Specifically, we compute the distance between the av-
erage persistence landscapes of the generated graphs
and the test set. We employ two distinct filtra-
tion functions: (1) Balanced Forman–Ricci Curvature
(κFR), which focuses on edge-based local clustering
and cycles, and (2) Ollivier-Ricci Curvature (κOR),
which captures global geometry and transport prop-
erties via Wasserstein distance. A lower distance in-
dicates a generated distribution that is topologically
closer to the test set.

The results are presented in Tab. 3. HOG-Diff consis-
tently achieves the lowest distance scores across both
molecular and generic graph datasets. Notably, on
complex molecular datasets, our method outperforms
strong baselines by a significant margin, suggesting
that while baseline models may capture basic chem-
ical validity, HOG-Diff is superior in reconstructing
the intrinsic topological backbone and higher-order
geometric relations. Even on generic graphs like SBM and Enzymes, which possess distinct com-
munity structures, HOG-Diff maintains better topological fidelity, verifying that the performance
improvement stems from the successful preservation of higher-order structures.

4.4 ABLATIONS: TOPOLOGICAL GUIDE ANALYSIS

0 0.3 0.6 0.9 1.2 1.5 1.8
Training Steps (×104)

0

2

4
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Coarse
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Figure 4: Training curves of the
score-matching process. The entire
process of HOG-Diff is divided into
two stages, i.e., K = 2, referred to
as coarse and fine, respectively. The
combined loss of these two stages is
labelled as Coarse+Fine.

Throughout the experiments, we observe that HOG-Diff ex-
hibits superior performance on complex datasets such as
QM9 and ZINC250k, but comparatively modest results on
the Ego-small dataset. Statistics and visualizations in Apps. E
and F.5 reveal that Ego contains the fewest higher-order struc-
tures among the datasets analyzed, suggesting that the choice
of guide plays a pivotal role in the effectiveness of generation.
To validate this hypothesis, we conduct further ablations us-
ing different types of topological information as guides.

We first compare two types of guides: structures derived from
2-cell filtering (Cell) and Gaussian random noise (Noise).
Employing noise as a guide aligns with classical diffusion
paradigms that generate samples by progressively denoising
noisy data. Fig. 4 visualizes how the spectrum loss changes
during the training process. It shows that our framework (red
curve) converges faster than the classical method (blue curve),
which is consistent with our theoretical results in Theorem 3.

In the sampling procedure, we further evaluate peripheral structures (Periph.), obtained by removing
cell components, as guides. As shown in Tab. 4, both peripheral and noise guides perform worse
than cell-based guides, providing empirical support for the tighter reconstruction error bound es-
tablished in Theorem 4. These results indicate that certain topologies, particularly cells, are more
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effective in guiding generation, highlighting the importance of selecting appropriate topological
structures to steer toward meaningful outputs. Moreover, this finding suggests that guides could
serve as diagnostic tools for assessing whether specific topologies are essential to the architecture.
Systematic analysis of different guides promises to enhance interpretability, clarify how topologies
affect generation, and inform the design of more effective graph generative models.

5 RELATED WORK

Table 4: Sampling results of various topo-
logical guides.

Dataset Guide NSPDK↓ FCD↓ Val. w/o
corr.↑

Noise 0.0015 0.829 91.52
QM9 Periph. 0.0009 0.305 97.58

Cell 0.0003 0.172 98.74

ZINC
250k

Noise 0.002 2.665 96.78
Periph. 0.002 2.641 97.93
Cell 0.001 1.633 98.56

We review graph and higher-order generation meth-
ods, with a more detailed discussion in App. B.

Graph Generative Models. Early work on graph
generative models dates back to random network mod-
els (Barabási & Albert, 1999), which offer founda-
tional insights but are too simplistic for capturing real-
world graph distributions. Recent advances in gener-
ative models have leveraged the power of deep neural
networks, significantly improving the ability to learn
graph distributions. Notable approaches include au-
toregressive or simultaneous models based on tech-
niques such as variational autoencoders (VAE) (Jin et al., 2018; Simonovsky & Komodakis, 2018),
recurrent neural networks (RNN) (You et al., 2018), normalizing flows (Zang & Wang, 2020; Shi
et al., 2020; Luo et al., 2021), and generative adversarial networks (GAN) (Martinkus et al., 2022).

Diffusion-based Graph Generation. A breakthrough in graph generative models has been marked
by the recent progress in diffusion-based generative models (Niu et al., 2020; Song et al., 2021; Ho
et al., 2020). Recent models employ various strategies to enhance the generation of complex graphs,
including capturing node-edge dependency (Jo et al., 2022), addressing discretization challenges
(Vignac et al., 2023; Huang et al., 2023; Siraudin et al., 2025), exploiting low-to-high frequency
generation curriculum (Mo et al., 2024), and improving computational efficiency through low-rank
diffusion processes (Luo et al., 2023a). CatFlow (Eijkelboom et al., 2024) and DeFoG (Qin et al.,
2025) adopt flow matching as an alternative to diffusion, achieving more efficient generation. Recent
studies have also enhanced diffusion-based generative models by incorporating diffusion bridge
processes, i.e., processes conditioned on the endpoints (Wu et al., 2022; Boget et al., 2024; Jo
et al., 2024). Despite these advances, existing methods either overlook or inadvertently disrupt
higher-order structures during graph generation, or struggle to model the topological properties,
as denoising the noisy samples does not explicitly preserve the intricate structural dependencies
required for generating realistic graphs. This highlights the need for a graph-friendly diffusion
framework that explicitly learns higher-order topology, preserves meaningful intermediate states
and trajectories, and avoids inappropriate noise injection.

Higher-order Generative Models. Generative modeling uses higher-order information mostly in
the form of motifs and hypergraphs. MiCaM (Geng et al., 2023) synthesizes molecules by iteratively
merging motifs. HypeBoy (Kim et al., 2024) learns hypergraph representation through hyperedge
filling, while Hygene (Gailhard et al., 2025) reduces hypergraph generation to bipartite graphs. To
the best of our knowledge, we are the first to consider higher-order guides for graph generation.

6 CONCLUSION

We introduce HOG-Diff, a coarse-to-fine generation framework that explicitly exploits higher-order
graph topology. It decomposes the complicated graph generation process into easier-to-learn sub-
steps, which are implemented using a cell complex lifting and GOU bridge process. Our theoretical
analysis justifies the effectiveness of HOG-Diff over classical diffusion-based approaches, which is
further validated by superior experimental results on both molecular and generic graph generation
tasks. This work is a key step in topological diffusion models, highlighting the importance of higher-
order features that are often overlooked by existing approaches and opening ample room for future
work.

Limitations and future work. The performance of HOG-Diff depends on the presence of explicit
higher-order structures, which certain graph types might lack. Nevertheless, higher-order motifs
are often deducible in realistic graphs. Our future work will explore various filtering mechanisms
beyond CCF. We will adaptively determine the order (dimension of the higher-order skeleton).
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ETHICS AND REPRODUCIBILITY STATEMENT

This paper presents work whose goal is to advance the field of deep generative models. Positive
applications include generating graph-structured data for scientific discovery and accelerating drug
discovery by generating novel molecular structures. However, like other generative technologies, our
work could potentially be misused to synthesize harmful molecules, counterfeit social interactions,
or deceptive network structures.

Experimental code related to this paper is provided in the Supplementary Material. Detailed theo-
retical derivations are provided in App. A. The complete architecture of HOG-Diff, along with the
training objectives and sampling procedures, is described in App. C. Details of the datasets, pre-
processing steps, and experimental settings are provided in App. E. Additional experimental results,
ablation studies, and visualizations can be found in App. F.

In this work, Large Language Models (LLMs) are used solely for language polishing.
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Appendix

Organization. The appendix is structured as follows: We first present the derivations excluded
from the main paper due to space limitations in Section A. Additional explanations of related work
are provided in Section B. Section C details the generation process, including the spectral diffusion
framework, the architecture of the proposed score network, and the training and sampling proce-
dures. Computational efficiency is discussed in Section D. Section E outlines the experimental
setup, and Section F reports additional experimental results, covering the impact of diffusion domain
choice, scalability to large graphs, standard deviation analysis, and visualizations of the generated
samples. Section G concludes with limitations.

A FORMAL STATEMENTS AND PROOFS

This section presents the formal statements of key theoretical results along with their detailed deriva-
tions. We will recall and more precisely state the theoretical claims before presenting the proof.

A.1 DIFFUSION BRIDGE PROCESS

Recall that the generalized Ornstein-Uhlenbeck (GOU) process, also known as the time-varying
OU process, is a stationary Gaussian-Markov process whose marginal distribution gradually tends
towards a stable mean and variance over time. The GOU process is generally defined as follows
(Ahmad, 1988; Luo et al., 2023b):

dGt = θt (µ−Gt) dt+ gtdWt, (12)

where µ is a given state vector, θt denotes a scalar drift coefficient, and gt represents the diffusion
coefficient. Additionally, we assume the relation g2t /θt = 2σ2, where σ2 is a given constant scalar.
As a result, its transition probability possesses a closed-form analytical solution:

p (Gt | Gs) = N (ms:t, v
2
s:tI),

ms:t = µ+ (Gs − µ) e−θ̄s:t ,

v2s:t = σ2
(
1− e−2θ̄s:t

)
.

(13)

Here, θ̄s:t =
∫ t

s
θzdz. When s = 0, we write θ̄t := θ̄0:t for notation simplicity.

The Doob’s h-transform can modify an SDE to pass through a specified endpoint (Doob & Doob,
1984). When applied to the GOU process, it eliminates variance in the terminal state by driving the
diffusion process toward a Dirac distribution centered at Gτk (Heng et al., 2021; Yue et al., 2024),
making it well-suited for stochastic modelling with terminal constraints.

In the following, we derive the generalized Ornstein–Uhlenbeck (GOU) bridge process using Doob’s
h-transform (Doob & Doob, 1984), and subsequently examine its relationship with the Brownian
bridge process.

Generalized Ornstein–Uhlenbeck (GOU) bridge. Let Gt evolve according to the generalized OU
process in Eq. (5), subject to the terminal conditional µ = Gτk . Applying Doob’s h-transform
(Doob & Doob, 1984), we can derive the GOU bridge process as follows:

dGt = θt

(
1 +

2

e2θ̄t:τk − 1

)
(Gτk −Gt)dt+ gk,tdWt. (14)

The conditional transition probability p(Gt | Gτk−1
,Gτk) admits an analytical expression:

p(Gt | Gτk−1
,Gτk) = N (m̄t, v̄

2
t I),

m̄t = Gτk + (Gτk−1
−Gτk)e

−θ̄τk−1:t
v2t:τk

v2τk−1:τk

,

v̄2t = v2τk−1:t
v2t:τk/v

2
τk−1:τk

.

(15)

Here, θ̄a:b =
∫ b

a
θsds, and va:b = σ2(1− e−2θ̄a:b).
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Proof. Without loss of generality, consider one generation interval [τk−1, τk] and denote T = τk,
xt = G

(k)
t , 0 = τk−1, and endpoints x0 = Gτk−1

, xT = Gτk .

From Eq. (6), we can derive the following conditional distribution

p(xT | xt) = N (xT + (xt − xT )e
θ̄t:T , v2t:T I). (16)

Hence, the h-function can be directly computed as:
h(xt, t,xT , T ) = ∇xt

log p(xT | xt)

= −∇xt

[
(xt − xT )

2e−2θ̄t:T

2v2t:T
+ const

]

= (xT − xt)
e−2θ̄t:T

v2t:T

= (xT − xt)σ
−2/(e2θ̄t:T − 1).

(17)

Following the approach in Yue et al. (2024), applying the Doob’s h-transform yields the representa-
tion of an endpoint xT conditioned process defined by the following SDE:

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gtdwt

=

(
θt +

g2t
σ2(e2θ̄t:T − 1)

)
(xT − xt)dt+ gtdwt

= θt

(
1 +

2

e2θ̄t:T − 1

)
(xT − xt)dt+ gtdwt.

(18)

Given that the joint distribution of [x0,xt,xT ] is multivariate normal, the conditional distribution
p(xt | x0,xT ) is also Gaussian:

p(xt | x0,xT ) = N (m̄t, v̄
2
t I), (19)

where the mean m̄t and variance v̄2t are determined using the conditional formulas for multivariate
normal variables:

m̄t = E[xt | x0 | xT ] = E[xt | x0] + Cov(xt,xT | x0)Var(xT | x0)
−1(xT − E[xT | x0]),

v̄2t = Var(xt | x0 | xT ) = Var(xt | x0)− Cov(xt,xT | x0)Var(xT | x0)
−1Cov(xT ,xt | x0).

(20)

Notice that

Cov(xt,xT | x0) = Cov
(
xt, (xt − xT )e

−θ̄t:T | x0

)
= e−θ̄t:TVar(xt | x0). (21)

By substituting this and the results in Eq. (6) into Eq. (20), we can obtain

m̄t =
(
xT + (x0 − xT )e

−θ̄t
)
+
(
e−θ̄t:T v2t

)
/v2T ·

(
xT − xT − (x0 − xT )e

−θ̄T
)

= xT + (x0 − xT )
(
e−θ̄t − e−θ̄t:T e−θ̄T v2t /v

2
T

)
= xT + (x0 − xT )e

−θ̄t

(
1− e−2θ̄T − e−2θ̄t:T (1− e−2θ̄t)

1− e−2θ̄T

)
= xT + (x0 − xT )e

−θ̄tv2t:T /v
2
T ,

(22)

and

v̄2t = v2t −
(
e−θ̄t:T v2t

)2
/v2T

=
v2t
v2T

(v2T − e−2θ̄t:T v2t )

=
v2t
v2T

σ2
(
1− e−2θ̄T − e−2θ̄t:T (1− e−2̄θt)

)
= v2t v

2
t:T /v

2
T .

(23)
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Finally, we conclude the proof by reverting to the original notations.

Note that the GOU bridge process, also referred to as the conditional GOU process, has been studied
theoretically in previous works (Salminen, 1984; Heng et al., 2021; Yue et al., 2024). However, we
are the first to demonstrate its effectiveness in explicitly learning higher-order structures within the
graph generation process.

Brownian Bridge Process. In the following, we demonstrate that the Brownian bridge process is a
particular case of the generalized OU bridge process when θt approaches zero.

Assuming θt = θ is a constant that tends to zero, we obtain

θ̄a:b =

∫ b

a

θs ds = θ(b− a) → 0. (24)

Consider the term e2θ̄t:τk − 1, we approximate the exponential function using a first-order Taylor
expansion for small θ̄t:τk :

e2θ̄t:τk − 1 ≈ 2θ̄t:τk → 2θ(τk − t). (25)
Hence, the drift term in the generalized OU bridge simplifies to

θt

(
1 +

2

e2θ̄t:τk − 1

)
≈ θ

(
1 +

2

2θ(τk − t)

)
→ 1

τk − t
. (26)

Consequently, in the limit θt → 0, the GOU bridge process described in Eq. (14) can be modelled
by the following SDE:

dGt =
Gτk −Gt

τk − t
dt+ gk,tdWt. (27)

This equation precisely corresponds to the SDE representation of the classical Brownian bridge
process.

In contrast to the GOU bridge process in Eq. (14), the evolution of the Brownian bridge is fully
determined by the noise schedule gk,t, resulting in a simpler SDE representation. However, this
constraint in the Brownian bridge reduces the flexibility in designing the generative process.

Note that the Brownian bridge is an endpoint-conditioned process relative to a reference Brownian
motion, which the SDE governs:

dGt = gtdWt. (28)
This equation describes a pure diffusion process without drift, making it a specific instance of the
GOU process.

A.2 PROOF OF THEOREM 3

To establish proof, we begin by introducing essential definitions and assumptions.
Definition 5 (β-smooth). A function f : Rm → Rn is said to be β-smooth if and only if

∥f(w)− f(v)−∇f(v)(w − v)∥ ≤ β

2
∥w − v∥2 ,∀w,v ∈ Rm. (29)

Theorem 3 (Formal). Let ℓ(k)(θ) be a loss function that is β-smooth and satisfies the µ-PL (Polyak-
Łojasiewicz) condition in the ball B (θ0, R) of radius R = 2N

√
2βℓ(k) (θ0)/(µδ), where δ > 0.

Then, with probability 1 − δ over the choice of mini-batch of size b, stochastic gradient descent
(SGD) with a learning rate η∗ = µN

Nβ(N2β+µ(b−1)) converges to a global solution in the ball B with
exponential convergence rage:

E
[
ℓ(k) (θi)

]
≤
(
1− bµ2

βN (βN2 + µ(b− 1))

)i

ℓ(k) (θ0) . (30)

Here, N denotes the size of the training dataset. Furthermore, the proposed generative model
yields a smaller smoothness constant βHOG-Diff compared to that of the classical model βclassical, i.e.,
βHOG-Diff ≤ βclassical, implying that the learned distribution in HOG-Diff converges to the target
distribution faster than classical generative models.
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Proof. Assume that the loss function ℓ(k)(θ) in Eq. (9) is minimized using standard Stochastic
Gradient Descent (SGD) on a training dataset S = {xi}Ni=1. At the i-th iteration, parameter θi is
updated using a mini-batch of size b as follows:

θi+1 ≜ θi − η∇ℓ(k)(θi), (31)

where η is the learning rate.

Following Liu et al. (2020) and Luo et al. (2023a), we assume that ℓ(k)(θ) is β-smooth and satisfies
the µ-PL condition in the ball B(θ0, R) with R = 2N

√
2βℓ(k)(θ0)/(µδ) where δ > 0. Then,

with probability 1 − δ over the choice of mini-batch of size b, SGD with a learning rate η∗ =
µN

Nβ(N2β+µ(b−1)) converges to a global solution in the ball B(θ0, R) with exponential convergence
rate (Liu et al., 2020):

E[ℓ(k)(θi)] ≤
(
1− bµη∗

N

)i

ℓ(k)(θ0) =

(
1− bµ2

βN(βN2 + µ(b− 1))

)i

ℓ(k)(θ0). (32)

Next, we show that the proposed framework has a smaller smoothness constant than the clas-
sical one-step model. Therefore, we focus exclusively on the spectral component ||s(k)θ,Λ −
∇Λ log pt(Gt|Gτk)||22 from the full loss function in Eq. (9), as the feature-related part of the loss
function in HOG-Diff aligns with that of the classical framework. For simplicity, we use the notation
ℓ̄(θ) = ||s(k)θ,Λ −∇Λ log pt(Gt|Gτk)||2 = ||sθ(xt)−∇x log pt(xt)||2 as the feature-related part of
the loss.

Next, we verify that ℓ̄(θ) is β-smooth under the assumptions given. Notice that the gradient of the
loss function is given by:

∇ℓ̄(θ) = 2E
[
(sθ(x)−∇ log p(x))⊤∇θsθ(x)

]
(33)

Hence,

∥∇ℓ̄(θ1)−∇ℓ̄(θ2)∥ = 2
∥∥E [(sθ1

(x)−∇ log p(x))⊤∇sθ1
(x)− (sθ2

(x)−∇ log p(x))⊤∇sθ2
(x)
]∥∥

≤ 2E[∥sθ1
(x)− sθ2

(x)∥ · ∥∇sθ1
(x)∥+ ∥sθ2

(x)−∇ log p(x)∥ · ∥∇sθ1
(x)−∇sθ2

(x)∥].
(34)

Suppose ∥∇θsθ(x)∥ ≤ C1 and ∥sθ(x)−∇ log p(x)∥ ≤ C2, then we can obtain

∥∇ℓ̄(θ1)−∇ℓ̄(θ2)∥ ≤ 2E [C1βsθ
∥θ1 − θ2∥+ C2β∇sθ

∥θ1 − θ2∥]
= 2(βsθ

C1 + C2β∇sθ
)∥θ1 − θ2∥.

(35)

To satisfy the β-smooth of ℓ̄(θ), we require that

2(C1βsθ
+ C2β∇sθ

) ≤ β. (36)

This implies that the distribution learned by the proposed framework can converge to the target
distribution. Therefore, following Chung et al. (2022), we further assume that sθ is a sufficiently
expressive parameterized score function so that βsθ

= β∇ log pt|τk−1
and β∇2sθ

= β∇2 log pt|τk−1
.

Consider the loss function of classical generative models goes as: ℓ̄(φ) = E||sφ(xt) −
∇xtqt(xt|x0)||2. To demonstrate that the proposed framework converges faster to the target
distribution compared to the classical one-step generation framework, it suffices to show that:
β∇pt|τk−1

≤ β∇qt|0 and β∇2pt|τk−1
≤ β∇2qt|0 .

Let x ∼ qt|0 and x′ ∼ pt|τk−1
. Since we inject topological information from x into x′, x′ can be

viewed as being obtained by adding noise to x. Hence, we can model x′ as x′ = x + ϵ where
ϵ ∼ N (0, σ2I). The variance of Gaussian noise σ2 controls the information remained in z′. Hence,
its distribution can be expressed as p(x′) =

∫
q(x′ − ϵ)π(ϵ) dϵ.
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Therefore, we can obtain

||∇k
x′p(x′

1)−∇k
x′p(x′

2)|| = ||∇k
x′

∫
(q(x′

1 − ϵ)− q(x′
2 − ϵ))π(ϵ) dϵ||

≤
∫

||∇k
x′q(x′

1 − ϵ)−∇k
x′q(x′

2 − ϵ)||π(ϵ) dϵ

≤ ||∇k
x′q(x′)||lip(x′

1 − x′
2)

∫
π(ϵ) dϵ

≤ ||∇k
x′q(x′)||lip(x′

1 − x′
2).

(37)

Hence, ||∇k
x′ log p(x′)||lip ≤ ||∇k

x′ log q(x′)||lip.

By setting k = 3 and k = 4, we can obtain β∇ log pt|τk−1
≤ β∇ log qt|0 and β∇2 log pt|τk−1

≤
β∇2 log qt|0 . Therefore βHOG-Diff ≤ βclassical, implying that the training process of HOG-Diff (sθ) will
converge faster than the classical generative framework (sφ).

A.3 PROOF OF THEOREM 4

Here, we denote the expected reconstruction error at each generation process as E(t) =

E
∥∥∥Ḡt − Ĝt

∥∥∥2.

Before comparing the reconstruction error bounds of HOG-Diff and the classical diffusion model,
we first relate their optimal score-matching losses at the function-class level.

Lemma 6. Let ℓ(k)(θ(k)) denote the score-matching loss of the k-th HOG-Diff stage on [τk−1, τk],
and let ℓcls(φ) be the classical single-stage loss on [0, T ]. Define the corresponding optimal values

ℓ
(k)
⋆ := inf

θ(k)
ℓ(k)(θ(k)), ℓcls,⋆ := inf

φ
ℓcls(φ). (38)

Assume that, for each k, the score network used in HOG-Diff on [τk−1, τk] is instantiated from the
same backbone architecture as the classical score network on [0, T ] (with the coarse graph Gτk
provided as an additional input that can be ignored by a suitable parameter choice). Under this
construction, the classical score class is contained in each stage-wise score class, and we have

K∑
k=1

ℓ
(k)
⋆ ≤ ℓcls,⋆. (39)

Proof. Fix any parameter φ of the classical model and consider the associated score network
sφ(Gt, t) on [0, T ]. By the expressivity assumption, for each k there exists a parameter vector θ(k)

such that the HOG-Diff score network on [τk−1, τk] can represent exactly the same score function
while ignoring the coarse guide:

s
(k)

θ(k)(Gt,Gτk , t) = sφ(Gt, t), t ∈ [τk−1, τk]. (40)

By definition, the stage-wise loss ℓ(k)(θ(k)) is obtained by restricting the classical objective ℓcls(φ)
to the time window [τk−1, τk] and using the same score function on that interval. Therefore, under
the above parameter choice we have

ℓ(k)(θ(k)) = ℓ
(k)
cls (φ), (41)

where ℓ(k)cls (φ) denotes the contribution of the interval [τk−1, τk] to the classical loss. Summing over
all disjoint windows yields the exact decomposition

K∑
k=1

ℓ(k)(θ(k)) =

K∑
k=1

ℓ
(k)
cls (φ) = ℓcls(φ). (42)
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Taking the infimum over (θ(1), . . . ,θ(K)) on the left-hand side and over φ on the right-hand side
gives

K∑
k=1

ℓ
(k)
⋆ =

K∑
k=1

inf
θ(k)

ℓ(k)(θ(k)) ≤ inf
φ

ℓcls(φ) = ℓcls,⋆. (43)

Lemma 6 reflects the structural fact that the classical model is a special case of the multi-stage archi-
tecture when all stages share the same backbone and the coarse graph input is ignored. Intuitively,
each HOG-Diff stage only needs to approximate a smoother conditional score (given the coarse
graph), whereas the classical model has to fit the full marginal score in a single stage. For a fixed
network capacity, decomposing the problem into these easier conditional subproblems is therefore
not expected to deteriorate the overall score-matching accuracy.
Theorem 4. Under appropriate Lipschitz and boundedness assumptions, the reconstruction error
of HOG-Diff satisfies the following bound:

Ehog(0) ≤ Ahog e
Thog , (44)

where Ahog = C2
∑K

k=1 ℓ
(k)(θ)

∫ τk
τk−1

g4k,sds and Thog =
∑K

k=1

∫ τk
τk−1

γk(s)ds +

C
∑K−1

k=1

∫ τk
τk−1

h2
k,sds. Furthermore, we can derive that the reconstruction error bound of HOG-

Diff is sharper than that of classical graph generation models.

Proof. Recall that E(t) = E
∥∥∥Ḡt − Ĝt

∥∥∥2 reflects the expected error between the data reconstructed

with the ground truth score ∇ log pt(·) and the learned scores sθ(·). In particular, Ḡ is obtained by
solving the following oracle reversed time SDE:

dḠt =
(
fk,t(Ḡt)− g2k,t∇G log pt(Ḡt)

)
dt̄+ gk,t dW̄t, t ∈ [τk−1, τk], (45)

whereas Ĝt is governed based on the corresponding estimated reverse time SDE:

dĜt =
(
fk,t(Ĝt)− g2k,tsθ(Ĝt, t)

)
dt̄+ gk,t dW̄t, t ∈ [τk−1, τk]. (46)

Here, fk,t is the drift function of the Ornstein–Uhlenbeck bridge. For simplicity, we denote the

Lipschitz norm by || · ||lip and fk,s(Gs) = hk,s(Gτk −Gs), where hk,s = θs

(
1 + 2

e
2θ̄s:τk −1

)
.

Step 1: Single stage error bound.

To bound the expected reconstruction error E
∥∥∥Ḡτk−1

− Ĝτk−1

∥∥∥2 at each generation process, we

begin by analyzing how E
∥∥∥Ḡt − Ĝt

∥∥∥2 evolves as time t is reversed from τk to τk−1. The recon-
struction error goes as follows

E(t) ≤ E
∫ t

τk

∥∥∥(fk,s(Ḡs)− fk,s(Ĝs)
)
+ g2k,s

(
sθ(Ĝs, s)−∇G log ps(Ḡs)

)∥∥∥2 ds̄
≤ CE

∫ t

τk

∥∥∥fk,s(Ḡs)− fk,s(Ĝs)
∥∥∥2 ds̄+ CE

∫ t

τk

g4k,s

∥∥∥sθ(Ĝs, s)−∇G log ps(Ḡs)
∥∥∥2 ds̄

≤ C

∫ t

τk

∥hk,s∥2lip · E(s)ds̄+ CE(τk)
∫ t

τk

h2
k,sds̄

+ C2

∫ t

τk

g4k,s · E
∥∥∥sθ(Ĝs, s)− sθ(Ḡs, s)

∥∥∥2 + g4k,s · E
∥∥sθ(Ḡs, s)−∇G log ps(Ḡs)

∥∥2 ds̄
≤ C2ℓ(k)(θ)

∫ t

τk

g4k,sds̄+ CE(τk)
∫ t

τk

h2
k,sds̄︸ ︷︷ ︸

αk(t)

+

∫ t

τk

(
C2g4k,s∥sθ(·, s)∥2lip + C∥hk,s∥2lip

)︸ ︷︷ ︸
γk(s)

E(s)ds̄

= αk(t) +

∫ t

τk

γk(s)E(s)ds̄.

(47)
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Let v(t) = E(τk − t) and s′ = τk − s, it can be derived that

v(t) = E(τk − t) ≤ αk(τk − t) +

∫ t

0

γk(τk − s′)v(s′) ds′. (48)

Here, αk(τk − t) is a non-decreasing function. By applying Grönwall’s inequality, we can derive
that

v(t) ≤ αk(τk − t) exp

∫ t

0

γk(τk − s′)ds′ (49)

= αk(τk − t) exp

∫ τk

τk−t

γk(s)ds. (50)

Hence,

E(t) ≤ αk(t) exp

∫ τk

t

γk(s)ds. (51)

Evaluating the bound at the beginning of the k-th reverse stage, that is t = τk−1, yields

E(τk−1) ≤ αk(τk−1) exp

(∫ τk

τk−1

γk(s)ds

)

=

[
C2ℓ(k)(θ)

∫ τk

τk−1

g4k,sds+ CE(τk)
∫ τk

τk−1

h2
k,sds

]
exp

(∫ τk

τk−1

γk(s)ds

)
.

(52)

For later convenience, we introduce the nonnegative stage-wise coefficients

Ak = C2ℓ(k)(θ)

∫ τk

τk−1

g4k,sds, Dk = C

∫ τk

τk−1

h2
k,sds, Tk =

∫ τk

τk−1

γk(s)ds. (53)

Then the error bound can be written compactly as

E(τk−1) ≤
(
Ak +DkE(τk)

)
eTk , k = 1, · · · ,K. (54)

The classical diffusion model corresponds to a single reverse stage on [0, T ], and its error bound can
be formulated in the same functional form as

Ecls(0) ≤ Acls e
Tcls , (55)

where Acls := C2ℓcls(φ)
∫ T

0
g4s ds and Tcls :=

∫ T

0
γcls(s)ds+ C

∫ T

0
h2
sds.

Step 2: Multi-stage accumulated error bound.

The reverse process starts from the same prior for both oracle and learned SDEs, hence E(τK) = 0.
Unrolling the recursion Eq. (54) backward from k = K yields

E(τK−1) ≤ AKeTK , (56)

and

E(τK−2) ≤ (AK−1 +DK−1E(τK−1)) e
TK−1 ≤

(
AK−1 +DK−1AKeTK

)
eTK−1 . (57)

Continuing inductively, one obtains for the initial time t = 0 = τ0 the general bound

Ehog(0) ≤
K∑

k=1

Ak exp

(
k∑

m=1

Tm

)
k−1∏
j=1

Dj , (58)

with the empty product is defined as
∏0

j=1 Dj := 1.

Since each Dj is nonnegative, the elementary inequality Dj ≤ eDj for all x ≥ 0 implies

Ehog(0) ≤
K∑

k=1

Ak exp

 k∑
m=1

Tm +

k−1∑
j=1

Dj

 ≤

(
K∑

k=1

Ak

)
exp

 K∑
m=1

Tm +

K−1∑
j=1

Dj

 . (59)
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The latter inequality holds as all quantities in the exponent are nonnegative, so enlarging the sum-
mation ranges can only increase the exponent.

Therefore, we obtain the compact multi-stage error bound

Ehog(0) ≤ Ahog e
Thog , (60)

where Ahog :=
∑K

k=1 Ak, and Thog :=
∑K

m=1 Tm +
∑K−1

j=1 Dj . This bound admits the same
functional form as in Eq. (55) but accumulates the contributions of all K reverse stages from T = τK
to 0 = τ0.

Step 3: Comparing the two error bounds.

We now compare (Acls, Tcls) in Eq. (55) with (Ahog, Thog) in Eq. (60).

First, by construction each subinterval [τk−1, τk] lies inside [0, T ] and the OU bridge horizon of
the k-th HOG-Diff stage satisfies τk ≤ T . The corresponding drift and diffusion coefficients are
therefore pointwise dominated by those of the classical bridge:

g4k,s ≤ g4s , h2
k,s ≤ h2

s, γk(s) ≤ γcls(s), s ∈ [τk−1, τk]. (61)

Since all these quantities are nonnegative, their integrals over a subinterval are bounded by the
integrals over the full horizon:

K∑
k=1

∫ τk

τk−1

g4k,sds ≤
∫ T

0

g4sds,

K∑
k=1

∫ τk

τk−1

γk(s)ds ≤
∫ T

0

γcls(s)ds, (62)

and
K∑

k=1

∫ τk

τk−1

h2
k,sds ≤

∫ T

0

h2
s ds. (63)

For the coefficient Ahog, using the definition in Eq. (53) we have

Ahog = C2
K∑

k=1

ℓ(k)(θ)

∫ τk

τk−1

g4k,s ds ≤ C2

(
K∑

k=1

ℓ(k)(θ)

)∫ T

0

g4s ds. (64)

At the level of optimal score-matching losses, Lemma 6 shows that the coarse-to-fine curriculum of
HOG-Diff cannot be intrinsically worse than the single-stage formulation:

∑K
k=1 ℓ

(k)
⋆ ≤ ℓcls,⋆. In

the regime where the optimization error is negligible and the loss is dominated by approximation
error, it is natural to focus on solutions for which the curriculum does not increase the total score-
matching loss, namely

K∑
k=1

ℓ(k)(θ) ≤ ℓcls(φ). (65)

In our experiments, this condition is clearly satisfied: for K = 2, the sum of the “Coarse” and
“Fine” spectrum losses (labelled as “Coarse+Fine” in Fig. 4) is below the loss of the classical model
(“Classical (Noise)”), providing empirical support for the above comparison.

Hence, we can bound Ahog as

Ahog ≤ C2ℓcls(φ)

∫ T

0

g4sds = Acls. (66)

For the exponent Thog in Eq. (60), we use the same domination to obtain

Thog =

K∑
k=1

Tk +

K−1∑
k=1

Dk =

K∑
k=1

∫ τk

τk−1

γk(s)ds+ C

K−1∑
k=1

∫ τk

τk−1

h2
k,sds

≤
∫ T

0

γcls(s)ds+ C

∫ T

0

h2
sds

= Tcls.

(67)
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Together with the bounds in Eq. (55) and Eq. (60), we obtain

Ahoge
Thog ≤ Aclse

Tcls . (68)

Combining these inequalities, we can finally conclude Ehog(0) ≤ Ecls(0), which shows that the
reconstruction error bound of HOG-Diff over the full trajectory T → 0 is no worse, and can be
strictly sharper, than the corresponding bound for the classical diffusion model.

B ADDITIONAL EXPLANATION ON RELATED WORKS

B.1 HIGHER-ORDER NETWORKS

Graphs are elegant and useful abstractions for modeling irregular relationships in empirical systems,
transforming unstructured data into analyzable representations. However, their inherent limitation
to pairwise interactions restricts their representation of group dynamics (Battiston et al., 2020). For
example, cyclic structures like benzene rings and functional groups play a holistic role in molec-
ular networks; densely interconnected structures, like simplices, often have a collective influence
on social networks; and functional brain networks exhibit higher-order dependencies. To address
this, various topological models have been employed to describe data in terms of its higher-order
relations, including simplicial complexes, cell complexes, and combinatorial complexes (Hajij et al.,
2023). As such, the study of higher-order networks has gained increasing attention for their capacity
to capture higher-order interactions, with broad applications across domains such as social network
analysis (Zeng et al., 2024), graph signal processing (Roddenberry et al., 2022; Sardellitti et al.,
2021), and topological deep learning (Bodnar et al., 2021; Huang et al., 2024; Papamarkou et al.,
2024).

Given the broad applicability and theoretical richness of higher-order networks, the following delves
deeper into two key frameworks for modelling such interactions: simplicial complexes and cell
complexes.

Simplicial Complexes. Simplicial complexes (SCs) are fundamental concepts in algebraic topology
that flexibly subsume pairwise graphs (Hatcher, 2001). Specifically, simplices generalize funda-
mental geometric structures such as points, lines, triangles, and tetrahedra, enabling the modelling
of higher-order interactions in networks. They offer a robust framework for capturing multi-way
relationships that extend beyond pairwise connections typically represented in classical networks.

A simplicial complex X consists of a set of simplices of varying dimensions, including vertices
(dimension 0), edges (dimension 1), and triangles (dimension 2).

A d-dimensional simplex is formed by a set of (d+1) interacting nodes and includes all the subsets
of δ + 1 nodes (with δ < d), which are called the δ-dimensional faces of the simplex. A simplicial
complex of dimension d is formed by simplices of dimension at most d glued along their faces.
Definition 7 (Simplicial complexes). A simplicial complex X is a finite collection of node subsets
closed under the operation of taking nonempty subsets, and such a node subset σ ∈ X is called a
simplex.

We can obtain a clique complex, a particular kind of SCs, by extracting all cliques from a given
graph and regarding them as simplices. This implies that an empty triangle (owning [v1, v2], [v1, v3],
[v2, v3] but without [v1, v2, v3]) cannot occur in clique complexes.

Cell Complexes. Cell complexes (CCs) generalize simplicial complexes by incorporating gener-
alized building blocks called cells instead of relying solely on simplices (Hatcher, 2001). This
broader approach allows for the representation of many-body interactions that do not adhere to the
strict requirements of simplicial complexes. For example, a square can be interpreted as a cell of
four-body interactions whose faces are just four links. This flexibility is advantageous in scenarios
such as social networks, where, for instance, a discussion group might not involve all-to-all pairwise
interactions, or in protein interaction networks, where proteins in a complex may not bind pairwise.

Formally, a cell complex is termed regular if each attaching map is a homeomorphism onto the clo-
sure of the associated cell’s image. Regular cell complexes generalize graphs, simplicial complexes,
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(a)

Triangle

(b)

Tetrahedron

(d)

Torus

(c)

Sphere

Figure 5: Visual illustration of cell complexes. (a) Triangle. (b) Tetrahedron. (c) Sphere. (d) Torus.

and polyhedral complexes while retaining many desirable combinatorial and intuitive properties of
these simpler structures. In this paper, all cell complexes will be regular and consist of finitely many
cells.

As shown in Fig. 5 (a) and (b), triangles and tetrahedra are two particular types of cell complexes
called simplicial complexes (SCs). The only 2-cells they allow are triangle-shaped. The sphere
shown in Fig. 5 (c) is a 2-dimensional cell complex. It is constructed using two 0-cells (i.e., nodes),
connected by two 1-cells (i.e., the edges forming the equator). The equator serves as the boundary
for two 2-dimensional disks (the hemispheres), which are glued together along the equator to form
the sphere. The torus in Fig. 5 (d) is a 2-dimensional cell complex formed by attaching a single 1-
cell to itself in two directions to form the loops of the torus. The resulting structure is then completed
by attaching a 2-dimensional disk, forming the surface of the torus. Note that this is just one way to
represent the torus as a cell complex, and other decompositions might lead to different numbers of
cells and faces.

These topological frameworks provide the mathematical foundation for capturing multi-way inter-
actions beyond pairwise graphs. Building upon this background, we next review advances in graph
generative models, highlighting how existing approaches attempt to learn graph distributions and
where they fall short in preserving such higher-order structures.

B.2 GRAPH GENERATIVE MODELS

The study of graph generation seeks to synthesize graphs that align with the observed distribution.
Graph generation has been extensively studied, which dates back to the early works of the random
network models, such as the Erdős–Rényi (ER) model (Erdős et al., 1960) and the Barabási-Albert
(BA) model (Barabási & Albert, 1999). While these models offer foundational insights, they are
often too simplistic to capture the complexity of graph distributions we encounter in practice.

Recent graph generative models have made great progress in graph distribution learning by exploit-
ing the capacity of deep neural networks. GraphRNN (You et al., 2018) and GraphVAE (Simonovsky
& Komodakis, 2018) adopt sequential strategies to generate nodes and edges. MolGAN (De Cao &
Kipf, 2018) integrates generative adversarial networks (GANs) with reinforcement learning objec-
tives to synthesize molecules with desired chemical properties. Shi et al. (2020) generates molecu-
lar graphs using a flow-based approach, while GraphDF (Luo et al., 2021) adopts an autoregressive
flow-based model with discrete latent variables. Additionally, GraphEBM (Liu et al., 2021) em-
ploys an energy-based model for molecular graph generation. However, the end-to-end structure of
these methods often makes them more challenging to train compared to diffusion-based generative
models.

Diffusion-based Generative Models. A leap in graph generative models has been marked by the re-
cent progress in diffusion-based generative models (Song et al., 2021). EDP-GNN (Niu et al., 2020)
generates the adjacency matrix by learning the score function of the denoising diffusion process,
while GDSS (Jo et al., 2022) extends this framework by simultaneously generating node features and
an adjacency matrix with a joint score function capturing the node-edge dependency. DiGress (Vi-
gnac et al., 2023) addresses the discretization challenge due to Gaussian noise, while CDGS (Huang
et al., 2023) designs a conditional diffusion model based on discrete graph structures. GSDM (Luo
et al., 2023a) introduces an efficient graph diffusion model driven by low-rank diffusion SDEs on
the spectrum of adjacency matrices. HypDiff (Fu et al., 2024) introduces a geometrically latent
diffusion on hyperbolic space to preserve the anisotropy of the graph. Despite these advancements,
current methods are ineffective at modeling the topological properties of higher-order systems since
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learning to denoise the noisy samples does not explicitly lead to preserving the intricate structural
dependencies required for generating realistic graphs.

Diffusion Bridge. Diffusion bridge processes, i.e., processes conditioned to the endpoints, have
been widely adopted in image-related domains, including image generation (De Bortoli et al., 2021),
image translation (Zhou et al., 2024), and image restoration (Luo et al., 2023b; Yue et al., 2024).
Recently, several studies have improved the graph generative framework of diffusion models by
leveraging the diffusion bridge processes. Wu et al. (2022) inject physical information into the
process by incorporating informative prior to the drift. GLAD (Boget et al., 2024) employs the
Brownian bridge on a discrete latent space with endpoints conditioned on data samples. GruM (Jo
et al., 2024) utilizes the OU bridge to condition the diffusion endpoint as the weighted mean of
all possible final graphs. However, existing methods often overlook or inadvertently disrupt the
higher-order topological structures in the graph generation process.

Hierarchical and Fragment-based Generation. Several recent studies have also explored hierar-
chical and fragment-based generative frameworks. HiGen (Karami, 2024) decomposes graph gener-
ation into multiple layers of abstraction, using separate neural networks to model intra-community
structures and inter-community connections at each level. GPrinFlowNet (Mo et al., 2024) proposes
a semantic-preserving framework based on a low-to-high frequency generation curriculum, where
the k-th intermediate generation state corresponds to the k smallest principal components of the
adjacency matrices. Dymond (Zeno et al., 2021) focuses on temporal motifs in dynamic graph gen-
eration. HierDiff (Qiang et al., 2023) progressively generates fragment-level 3D geometries, refines
them into fine-grained fragments, and then assembles these fragments into complete molecules. Mi-
CaM (Geng et al., 2023) synthesizes molecules by iteratively merging motifs.

Higher-order Generative Models. Since higher-order structures are intrinsic to many real-world
systems, incorporating them into generative models could yield more faithful representations of
complex phenomena. Existing efforts have primarily explored higher-order information through
hypergraphs. HypeBoy (Kim et al., 2024) introduces a self-supervised hypergraph representation
framework based on a hyperedge filling task, which enhances embeddings rather than perform-
ing direct generation. Hygene (Gailhard et al., 2025) reduces hypergraph generation to standard
graph generation via a bipartite representation. However, no prior approach has explicitly integrated
higher-order topology due to the stricter challenges of modeling multi-way rather than pairwise
dependencies.

C DETAILS OF HOG-DIFF

This section elucidates our spectral diffusion methodology, the parameterization of the score net-
work, and the associated training and sampling procedures.

C.1 OVERVIEW

As shown in Fig. 6, HOG-Diff employs a hierarchical, coarse-to-fine generation curriculum, where
both forward diffusion and reverse denoising processes are decomposed into K easy-to-learn sub-
processes. Each subprocess is realized using the GOU bridge process.

𝑮!𝒌"𝟏𝑮𝟎 ⋯⋯ 𝑮𝑲𝑮!𝒌 ⋯⋯

d𝑮! = 𝜃! 1 + "

#!"
‾ $:&'$%

𝑮&' − 𝑮! d𝑡 + 𝑔',!d𝑾!

d𝑮! = 𝐟',! 𝑮! − 𝑔',!" ∇𝑮$log	𝑝 𝑮! ∣ 𝑮&' d𝑡‾ + 𝑔',!d𝑾!

Score function

Forward diffusion
Reverse denoising

Higher-order Structures

Authentic Random

Figure 6: Illustration of the coarse-to-fine generation process in HOG-Diff using the generalized OU
bridge.
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C.2 SPECTRAL DIFFUSION

Classical graph diffusion approaches typically inject isotropic Gaussian noise directly into adjacency
matrices A, leading to various fundamental challenges. Firstly, the inherent non-uniqueness of
graph representations implies that a graph with n vertices can be equivalently modelled by up to n!
distinct adjacency matrices. This ambiguity requires a generative model that assigns probabilities
uniformly across all equivalent adjacencies to accurately capture the graph’s inherent symmetry.
Additionally, unlike densely distributed image data, graphs typically follow a Pareto distribution
and exhibit sparsity (Ghavasieh & De Domenico, 2024), so that adjacency score functions lie on
a low-dimensional manifold. Consequently, noise injected into out-of-support regions of the full
adjacency space severely degrades the signal-to-noise ratio, impairing the training of the score-
matching process. Even for densely connected graphs, isotropic noise distorts global message-
passing patterns by encouraging message-passing on sparsely connected regions. Moreover, the
adjacency matrix scales quadratically with the number of nodes, making the direct generation of
adjacency matrices computationally prohibitive for large-scale graphs.

To address these challenges, inspired by Martinkus et al. (2022) and Luo et al. (2023a), we introduce
noise in the eigenvalue domain of the graph Laplacian matrix L = D−A, instead of the adjacency
matrix A, where D denotes the diagonal degree matrix. As a symmetric positive semi-definite
matrix, the graph Laplacian can be diagonalized as L = UΛU⊤. Here, the orthogonal matrix U =
[u1, · · · ,un] comprises the eigenvectors, and the diagonal matrix Λ = diag(λ1, · · · , λn) holds
the corresponding eigenvalues. The relationship between the Laplacian spectrum and the graph’s
topology has been extensively explored (Chung, 1997). For instance, the low-frequency components
of the spectrum capture the global structural properties such as connectivity and clustering, whereas
the high-frequency components are crucial for reconstructing local connectivity patterns. Therefore,
the target graph distribution p(G0) represents a joint distribution of X0 and Λ0, exploiting the
permutation invariance and structural robustness of the Laplacian spectrum.

Consequently, we split the reverse-time SDE into two parts that share drift and diffusion coefficients
as {

dXt =
[
fk,t(Xt)− g2k,t∇X log pt(Gt|Gτk)

]
dt̄+ gk,tdW̄

1
t

dΛt =
[
fk,t(Λt)− g2k,t∇Λ log pt(Gt|Gτk)

]
dt̄+ gk,tdW̄

2
t

. (69)

Here, the superscript of X(k)
t and Λ

(k)
t are dropped for simplicity, and fk,t is determined according

to Eq. (7).

In addition, we conduct a comparative evaluation of HOG-Diff under two generative settings: one
operating directly in the adjacency matrix domain, and the other in the Laplacian spectral domain.
Using a consistent hyperparameter search space, the results summarized in Tab. 8 show that gen-
eration in the spectral domain generally achieves comparable performance across most evaluation
metrics. We adopt the Laplacian spectral domain as the default diffusion space in HOG-Diff, as the
spectral approach is more efficient and better aligned with theoretical principles such as permutation
invariance and signal concentration on low-dimensional manifolds.

C.3 SCORE NETWORK PARAMETRIZATION

The score network in HOG-Diff is a critical component responsible for estimating the score func-
tions required to reverse the diffusion process effectively. The architecture of the proposed score
network is depicted in Fig. 7. The input At is computed from U0 and Λ

(k)
t using the relation

At = D
(k)
t − L

(k)
t , where the Laplacian matrix is given by L

(k)
t = U0Λ

(k)
t U⊤

0 and the diagonal
degree matrix is given by D

(k)
t = diag

(
L

(k)
t

)
. To enhance the input to the Attention module,

we derive enriched node and edge features using the l-step random walk matrix obtained from the
binarized At. Specifically, the arrival probability vector is incorporated as additional node features,
while the truncated shortest path distance derived from the same matrix is employed as edge fea-
tures. Temporal information is integrated into the outputs of the Attention and GCN modules using
Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) layers, following sinusoidal position
embeddings (Waswani et al., 2017).
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Figure 7: Score Network Architecture of HOG-Diff. The score network integrates GCN and At-
tention blocks to capture both local and global features, and further incorporates time information
through FiLM layers. These enriched outputs are subsequently concatenated and processed by sepa-
rate feed-forward networks to produce predictions for ∇Xt

log p(Gt|Gτk) and ∇Λt
log p(Gt|Gτk),

respectively.

A graph processing module is considered permutation invariant if its output remains unchanged
under any permutation of its input, formally expressed as f(G) = x ⇐⇒ f(π(G)) = x, where
π(G) represents a permutation of the input graph G. It is permutation equivariant when the output
undergoes the same permutation as the input, formally defined as f(π(G)) = π(f(G)). It is worth
noting that our score network model is permutation equivalent, as each model component avoids any
node ordering-dependent operations.

C.4 TRAINING AND SAMPLING PROCEDURE

The diffusion process in HOG-Diff is divided into K hierarchical intervals, denoted by
{[τk−1, τk]}Kk=1, where 0 = τ0 < · · · < τk−1 < τk < · · · < τK = T . Within each interval
[τk−1, τk], we employ the GOU bridge process to ensure smooth transitions between intermediate
states Gτk−1

and Gτk . We apply the cell complex filtering (CCF) operation at each interval to obtain
structured, topologically meaningful intermediate states Gτk := CCF(G,S, p). Specifically, CCF
prunes nodes and edges that are not contained in the closure of any p-cell within a given cell com-
plex S. At the initial state, the filtering operation is defined as CCF(G,S, 0) = G, i.e., the filtering
operation leaves the input unchanged. A special case arises at the final step, where the intermediate
state is initialized from Gaussian noise, i.e., CCF(G,S,K) ∼ N (0, I). Since the GOU bridge
process naturally reduces to a standard diffusion process when the terminal distribution is Gaussian
noise, we omit the GOU bridge in the final segment [τK−1, τK ], and instead use the Variance Pre-
serving (VP) SDE (Ho et al., 2020; Song et al., 2021). In our experiments, we adopt a two-stage
generation process, i.e., K = 2. The intermediate state Gτ1 is obtained via 2-cell complex filtering
for molecule generation tasks, or via the 3-simplicial complex filtering for generic graph generation
tasks. The rationale for this choice of filtering strategy is discussed in App. F.3.

To approximate the score functions ∇Xt
log pt(Gt|Gτk) and ∇Λt

log pt(Gt|Gτk), we employ
a neural network s

(k)
θ (Gt,Gτk , t), as introduced in App. C.3. This model consists of a node

(s(k)θ,X(Gt,Gτk , t)) and a spectrum (s(k)θ,Λ(Gt,Gτk , t)) output. The network is trained by mini-
mizing the following score-matching loss:

ℓ(k)(θ) = Et,Gt,Gτk−1
,Gτk

{ω(t)[c1∥s(k)θ,X −∇X log pt(Gt|Gτk)∥22
+c2||s(k)θ,Λ −∇Λ log pt(Gt|Gτk)||22]},

(70)

where ω(t) is a positive weighting function, and c1, c2 controls the relative importance of vertices
and spectrum.

The overall generation procedure is as follows. We sample (X̂τK , Λ̂τK ) from the prior distribu-
tion and select Û0 as an eigenbasis drawn from the training set. Reverse diffusion is then ap-
plied across multiple stages, sequentially generating (X̂τK−1

, Λ̂τK−1
), . . . , (X̂1, Λ̂1), (X̂0, Λ̂0),

where each stage is implemented via the diffusion bridge and initialized from the output of the
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previous step. Finally, plausible samples with higher-order structures can be reconstructed as
Ĝ0 = (X̂0, L̂0 = Û0Λ̂0Û

⊤
0 ).

We provide the pseudo-code of the training and sampling process in Alg. 1 and Alg. 2, respectively.

Algorithm 1 Training Algorithm of HOG-Diff

Input: Score network s
(k)
θ , training graph dataset G, training epochs Mk.

For the k-th step:
1: for m = 1 to Mk do
2: Sample G0 = (X0,A0) ∼ G
3: S ← lifting(G0)
4: Gτk ← CCF(G0,S, k), and Gτk−1 ← CCF(G0,S, k − 1) ▷ Cell complex filtering
5: U0 ← EigenVectors(D0 −A0)
6: Λτk ← EigenDecomposition(Dτk −Aτk )
7: Λτk−1 ← EigenDecomposition(Dτk−1 −Aτk−1)
8: Sample t ∼ Unif([0, τk − τk−1])

9: X
(k)
t ∼ p(Xt |Xτk−1 ,Xτk ) ▷ Eq. (6)

10: Λ
(k)
t ∼ p(Λt | Λτk−1 ,Λτk ) ▷ Eq. (6)

11: L
(k)
t ← U0Λ

(k)
t U⊤

0

12: A
(k)
t ←D

(k)
t −L

(k)
t

13: ℓ(k)(θ)← c1∥s(k)
θ,X −∇X log pt(Gt|Gτk )∥

2 + c2||s(k)
θ,Λ −∇Λ log pt(Gt|Gτk )||

2

14: θ ← optimizer(ℓ(k)(θ))
15: end for
16: Return: s(k)

θ

Algorithm 2 Sampling Algorithm of HOG-Diff

Input: Trained score network s
(k)
θ , diffusion time split {τ0, · · · , τK}, number of sampling steps

Mk

1: t← τK
2: X̂τK ∼ N (0, I) and Λ̂τK ∼ N (0, I)

3: Û0 ∼ Unif
(
{U0 ≜ EigenVectors(L0)}

)
4: ĜτK ← (X̂τK , Λ̂τK , D̂τK − Û0Λ̂τK Û⊤

0 )
5: for k = K to 1 do
6: for m = Mk − 1 to 0 do
7: SX ,SΛ ← s

(k)
θ (Ĝt, Ĝτk , t)

8: X̂t ← X̂t −
[
θt

(
1 + 2

e
2θ̄t:τk −1

)
(X̂τk − X̂t)− g2k,tSX

]
δt+ gk,t

√
δtwX , wX ∼ N (0, I)

9: Λ̂t ← Λ̂t −
[
θt

(
1 + 2

e
2θ̄t:τk −1

)
(Λ̂τk − Λ̂t)− g2k,tSΛ

]
δt+ gk,t

√
δtwΛ, wΛ ∼ N (0, I)

10: L̂t ← Û0Λ̂tÛ
⊤
0

11: Ât ← D̂t − L̂t

12: t← t− δt
13: end for
14: Âτk−1 = quantize(Ât) ▷ Quantize if necessary
15: Ĝτk−1 ← (X̂t, Λ̂t, Ât)
16: end for
17: Return: X̂0, Â0 ▷ τ0 = 0
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D COMPLEXITY ANALYSIS

When the targeted graph is not in the desired higher-order forms, one should also consider the
one-time preprocessing procedure for cell filtering. Unlike cell lifting, which enumerates all cell
structures and can incur substantial computational overhead, cell filtering can be performed much
more efficiently. This is because filtering does not require the explicit enumeration of all cells;
instead, it only checks whether individual nodes and edges participate in a cell. For instance, the
2-cell filter requires only checking whether each edge belongs to some cycle.

One method to achieve the 2-cell filter is to use a depth-first search (DFS) strategy. Starting from
the adjacency matrix, we temporarily remove the edge (i, j) and initiate a DFS from node i, keeping
track of the path length. If the target node j is visited within a path length of l, the edge (i, j) is
marked as belonging to a 2-cell of length at most l. In sparse graphs with n nodes and m edges,
the time complexity of a single DFS is O(m + n). With the path length limited to l, the DFS may
traverse up to l layers of recursion in the worst case. Therefore, the complexity of a single DFS is
O(min(m + n, l · kmax)), where kmax is the maximum degree of the graph. For all m edges, the
total complexity is O (m ·min(m+ n, l · kmax)).

Alternatively, matrix operations can be utilized to accelerate this process. By removing the edge
(i, j) from the adjacency matrix A to obtain Ā, the presence of a path of length l between i and
j can be determined by checking whether Āl

i,j > 0. This indicates that the edge (i, j) belongs
to a 2-cell with a maximum length of l + 1. Assuming the graph has n nodes and m edges, the
complexity of sparse matrix multiplication is O(mn). Since l matrix multiplications are required,
the total complexity is: O(l · m2 · n). While this complexity is theoretically higher than the DFS
approach, matrix methods can benefit from significant parallel acceleration on modern hardware,
such as GPUs and TPUs. In practice, this makes the matrix-based method competitive, especially
for large-scale graphs or cases where l is large.
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Figure 8: Empirical scalability of the lifting procedure. We report the wall-clock time required for
the lifting (preprocessing) operation across datasets of varying sizes. The results show that the one-
time preprocessing cost remains tractable even for large-scale datasets.

Table 5: Sampling time (s).

Method Community-small Enzymes Ego-small

GDSS 41 110 28
DiGress 8 301 13
HOG-Diff 11 26 15
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For simplicial complexes, the number of p-simplices in a graph with n nodes and m edges is upper-
bounded by O(np−1), and they can be enumerated in O(a (G)p−3

m) time (Chiba & Nishizeki,
1985), where a (G) is the arboricity of the graph G, a measure of graph sparsity. Since arboricity is
demonstrated to be at most O(m1/2) and m ≤ n2, all p-simplices can thus be listed in O

(
np−3m

)
.

Besides, the complexity of finding 2-simplex is estimated to be O(⟨k⟩m) with the Bron–Kerbosch
algorithm (Bron & Kerbosch, 1973), where ⟨k⟩ denotes the average node degree, typically a small
value for empirical networks.

To complement the theoretical analysis, we empirically evaluate the scalability of our approach on
standard benchmarks of varying scales. As shown in Fig. 8, we record the wall-clock time for the
lifting procedure on datasets ranging from small community graphs to large-scale molecular datasets
such as ZINC250k and MOSES. The results indicate that the lifting time scales reasonably with data
size. Given that this is a one-time preprocessing cost, it confirms that HOG-Diff is computationally
feasible for large-scale graph generation tasks.

After preprocessing, the training loop is identical to that of standard diffusion-based generative
models. The proposed coarse-to-fine strategy splits a long diffusion trajectory into shorter segments,
each trained with a smaller smoothness constant, which by Theorem 3 provably leads to faster
convergence than classical models in idealized settings. Furthermore, since the sub-processes are
independent, they can be trained in parallel for additional efficiency gains. In practice, we observe
no measurable slowdown relative to GDSS or DiGress.

For inference, Tab. 5 shows that the extra guidance logic does not slow sampling. HOG-Diff matches
DiGress on smaller graphs and achieves up to 12×speedup over both baselines on the protein-scale
Enzymes dataset.

In short, the only scaling cost is a one-off preprocessing pass; both training and sampling remain
GPU-bound and on par with, or even faster than, existing diffusion models.

Table 6: Training time comparison between GDSS and HOG-Diff.

Method Community-small Ego-small Enzymes QM9 ZINC250k

GDSS 13 min 19 min 1.9 h 1.2 h 14.0 h
HOG-Diff 20 min 12 min 0.5 h 3.1 h 6.5 h

E EXPERIMENTAL SETUP

E.1 COMPUTING RESOURCES

In this work, all experiments are conducted using PyTorch (Paszke, 2019) on a single NVIDIA L40S
GPU with 46 GB memory and AMD EPYC 9374F 32-Core Processor.

E.2 MOLECULE GENERATION

Early efforts in molecule generation introduce sequence-based generative models and represent
molecules as SMILES strings (Kusner et al., 2017). Nevertheless, this representation frequently
encounters challenges related to long dependency modelling and low validity issues, as the SMILES
string fails to ensure absolute validity. Therefore, in recent studies, graph representations are more
commonly employed for molecule structures where atoms are represented as nodes and chemical
bonds as connecting edges (Jo et al., 2022). Consequently, this shift has driven the development of
graph-based methodologies for molecule generation, which aim to produce valid, meaningful, and
diverse molecules.

We evaluate the quality of generated molecules on two well-known molecular datasets: QM9 (Ra-
makrishnan et al., 2014) and ZINC250k (Irwin et al., 2012), and obtain the intermediate higher-order
skeletons using the 2-cell complex filtering. In experiments, each molecule is preprocessed into a
graph comprising adjacency matrix A ∈ {0, 1, 2, 3}n×n and node feature matrix X ∈ {0, 1}n×d,
where n denotes the maximum number of atoms in a molecule of the dataset, and d is the number
of possible atom types. The entries of A indicate the bond types: 0 for no bound, 1 for the single
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bond, 2 for the double bond, and 3 for the triple bond. Further, we scale A with a constant scale of
3 in order to bound the input of the model in the interval [0, 1], and rescale the final sample of the
generation process to recover the bond types. Following the standard procedure (Shi et al., 2020;
Luo et al., 2021), all molecules are kekulized by the RDKit library (Landrum et al., 2016) with
hydrogen atoms removed. In addition, we make use of the valency correction proposed by Zang &
Wang (2020). After generating samples by simulating the reverse diffusion process, the adjacency
matrix entries are quantized to discrete values 0, 1, 2, 3 by by applying value clipping. Specifically,
values in (−∞, 0.5) are mapped to 0, [0.5, 1.5) to 1, [1.5, 2.5) to 2, and [2.5,+∞) to 3, ensuring
the bond types align with their respective categories.

To comprehensively assess the quality of the generated molecules across datasets, we evaluate
10,000 generated samples using several key metrics: validity, validity w/o check, Frechet ChemNet
Distance (FCD) (Preuer et al., 2018), Neighborhood Subgraph Pairwise Distance Kernel (NSPDK)
MMD (Costa & Grave, 2010), uniqueness, and novelty (Jo et al., 2022). FCD quantifies the simi-
larity between generated and test molecules by leveraging the activations of ChemNet’s penultimate
layer, assessing the generation quality within the chemical space. In contrast, NSPDK-MMD eval-
uates the generation quality from the graph topology perspective by computing the MMD between
the generated and test sets while considering both node and edge features. Validity is measured as
the fraction of valid molecules to all generated molecules after applying post-processing corrections
such as valency adjustments or edge resampling, while validity w/o correction, following Jo et al.
(2022), computes the fraction of valid molecules before any corrections, providing insight into the
intrinsic quality of the generative process. Whether molecules are valid is generally determined by
compliance with the valence rules in RDKit (Landrum et al., 2016). Novelty assesses the model’s
ability to generalize by calculating the percentage of generated graphs that are not subgraphs of the
training set, with two graphs considered identical if isomorphic. Uniqueness quantifies the diversity
of generated molecules as the ratio of unique samples to valid samples, removing duplicates that are
subgraph-isomorphic, ensuring variety in the output. We report the baseline results taken from Jo
et al. (2022) and Kong et al. (2023).

E.3 GENERIC GRAPH GENERATION

To display the topology distribution learning ability, we assess HOG-Diff over four common generic
graph datasets: (1) Community-small, containing 100 randomly generated community graphs; (2)
Ego-small, comprising 200 small ego graphs derived from the Citeseer network dataset; (3) En-
zymes, featuring 587 protein graphs representing tertiary structures of enzymes from the BRENDA
database; (4) Stochastic Block Model (SBM), a larger-scale dataset discussed separately in App. F.2
due to its distinct evaluation protocol.

We follow the standard experimental and evaluation settings from Jo et al. (2022), including the
same train/test splits and the use of the Gaussian Earth Mover’s Distance (EMD) kernel for MMD
computation, to ensure fair comparisons with baseline models — except for the Stochastic Block
Model (SBM) dataset. We use node degree and spectral features of the graph Laplacian decompo-
sition as hand-crafted input features. Baseline results are sourced from Jo et al. (2022); Kong et al.
(2023) or reproduced using the corresponding publicly available code.

Tab. 7 summarizes the key characteristics of the datasets utilized in this study. The table outlines
the type of dataset, the total number of graphs, and the range of graph sizes (|V |). Additionally,
it also provides the number of distinct node types and edge types for each dataset. Notably, the
Community-small and Ego-small datasets contain relatively small graphs, whereas Enzymes, SBM
and the molecular datasets (QM9 and ZINC250k) exhibit greater diversity in terms of graph size and
complexity.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ANALYSIS OF DIFFUSION DOMAIN CHOICE

To investigate the impact of diffusion domain choice, we perform ablation experiments comparing
two variants of HOG-Diff: one that operates directly in the adjacency matrix domain, and another
in the Laplacian spectral domain. Both variants are trained under the same hyperparameter search
space for a fair comparison.
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Table 7: Dataset summary.

Dataset Graph type #Graphs #Nodes Node
types

Edge
types

Community-small Synthetic 100 12 ≤ |V | ≤ 20 1 1
Ego-small Citation 200 4 ≤ |V | ≤ 18 1 1
Enzymes Protein 587 10 ≤ |V | ≤ 125 1 1
SBM Synthetic 200 44 ≤ |V | ≤ 187 1 1

QM9 Molecule 133,885 1 ≤ |V | ≤ 9 4 3
ZINC250k Molecule 249,455 6 ≤ |V | ≤ 38 9 3
GuacaMol Molecule 1,398,223 2 ≤ |V | ≤ 88 12 3
MOSES Molecule 1,936,962 8 ≤ |V | ≤ 27 7 3

As shown in Tab. 8, the spectral variant achieves comparable performance to the adjacency-based ap-
proach across most evaluation metrics on QM9 and ZINC250k. Despite similar results, we adopt the
Laplacian spectral domain as the default diffusion space in HOG-Diff due to its theoretical and prac-
tical advantages. Specifically, the spectral domain offers greater efficiency and aligns naturally with
core graph principles such as permutation invariance and signal concentration on low-dimensional
manifolds.

Table 8: Comparison of diffusion domains in HOG-Diff.

Dataset Domain NSPDK↓ FCD↓ Val. w/o corr.↑ Val.↑ Uni.↑ Nov.↑

QM9 Adjacency matrix 0.0004 0.264 99.08 100.00 95.90 67.78

Laplacian spectrum 0.0003 0.172 98.74 100.00 97.10 75.12

ZINC250k Adjacency matrix 0.006 4.259 96.75 100.00 99.78 99.98
Laplacian spectrum 0.001 1.633 98.56 100.00 99.96 99.53

F.2 SCALABILITY EVALUATION ON LARGE BENCHMARKS

To address concerns regarding scalability and performance on larger benchmarks, we extended our
evaluation to encompass both large-scale molecular datasets and generic graph benchmarks.

Evaluation on MOSES. We conducted experiments on the MOSES dataset (Polykovskiy et al.,
2020), a refinement of the ZINC database for molecular generation containing approximately 1.9
million lead-like molecules. This dataset serves as a rigorous testbed for assessing whether the
proposed higher-order guidance remains computationally feasible and effective at scale. Following
Vignac et al. (2023), the reported scores for FCD, SNN, and Scaffold similarity are computed on the
dataset made of separate scaffolds, which measures the ability of the networks to predict new ring
structures.

The results are presented in Tab. 9. HOG-Diff demonstrates superior performance in terms of dis-
tribution learning, achieving the lowest FCD score. This indicates that our method more accurately
captures the underlying chemical and topological distribution of the large-scale training set.

Evaluation on GuacaMol. GuacaMol (Brown et al., 2019) is derived from the ChEMBL database
and contains 1.4M molecules, from which 1.1M are used for training. We apply a preprocessing
step similar to Vignac et al. (2023), filtering out molecules that cannot be mapped from SMILES
to a graph and back to SMILES. In Tab. 10, we report the scores of the FCD and KL metrics
following Brown et al. (2019). Note that, unlike other settings, the FCD score is normalized using
exp(−0.2 ·FCD) to obtain a final value between 0 and 1, meaning that higher values indicate better
performance.

For the KL score, we compute the following descriptors for both the generated and reference
molecules: BertzCT, MolLogP, MolWt, TPSA, NumHAcceptors, NumHDonors, NumRotatable-
Bonds, NumAliphaticRings, NumAromaticRings, and the ECFP4 fingerprint-based similarity to the
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Table 9: Generation performance on the large-scale MOSES dataset. Top results are highlighted in
bold.

Method Val. ↑ Unique. ↑ Nov. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
GraphINVENT (Mercado et al., 2021) 96.4 99.8 - 95.0 1.22 0.54 12.7
DiGress (Vignac et al., 2023) 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2025) 90.5 99.9 92.6 99.1 1.27 0.54 16.0
HOG-Diff (Ours) 97.6 100.0 92.7 93.1 1.09 0.51 10.0

nearest neighbor. The KL divergence DKL,i is computed for each descriptor to measure the dif-
ference between the two molecular sets. These divergences are then combined to produce a final
normalized score S = 1

k

∑k
i=1 exp(−DKL,i).

Table 10: Generation performance on the GuacaMol dataset. Top results are highlighted in bold.

Model Val. ↑ V.U.↑ V.U.N.↑ KL div ↑ FCD ↑
DiGress (Vignac et al., 2023) 85.2 85.2 85.1 92.9 68.0
Disco (Xu et al., 2024) 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2025) 98.9 98.9 97.6 96.7 72.7

HOG-Diff (Ours) 99.1 99.1 97.0 96.9 78.0

Evaluation on SBMs. To further evaluate the scalability and robustness of HOG-Diff, we report
results on the Stochastic Block Model (SBM) dataset in Fig. 3 (left), which comprises graphs of
larger scale and is evaluated under a distinct experimental protocol from that used in Sec. 4.2. The
dataset consists of 200 synthetic graphs generated using the stochastic block model. The number
of communities is uniformly sampled between 2 and 5, and the number of nodes within each com-
munity is uniformly sampled between 20 and 40. Edges are created with probabilities of 0.3 for
intra-community connections and 0.05 for inter-community connections.

We adopt the evaluation setting introduced by Martinkus et al. (2022), including the same data splits,
feature initialization, and the use of Total Variation (TV) distance to compute the MMDs. The TV
kernel is adopted since it offers higher computational efficiency compared to the Earth Mover’s
Distance (EMD) kernel, especially for large graphs. We also report the percentage of valid, unique,
and novel (V.U.N.) samples among the generated graphs to further assess the ability of our model
to capture the properties of the targeted distributions correctly. Baseline results are sourced from
Vignac et al. (2023); Jo et al. (2024) or reproduced using the corresponding publicly available code.
As shown in Fig. 3 (left), HOG-Diff achieves competitive performance compared to the state-of-the-
art.

F.3 RATIONALE FOR SELECTING TOPOLOGICAL FILTERS

The filtering strategy in HOG-Diff is primarily driven by data statistics and complemented by do-
main knowledge to ensure meaningful choices.

In molecular generation experiments, we employ 2-cells as guides because they are ubiquitous in
molecular graphs and capture critical chemical information, e.g., functional groups. In particular,
2-cells play a crucial role in determining the three-dimensional conformation, electron distribution,
and target binding mode of compounds, making them highly informative. Consequently, Tab. 1
shows that conditioning on 2-cells alone provides strong guidance and achieves competitive results
across all metrics.

In contrast, cells with dimension > 2 are extremely sparse in the standard benchmarks (see Tab. 11).
Identifying them requires increasingly complex preprocessing, such as detecting candidate higher-
order topological structures and verifying their validity, which introduces non-trivial computational
overhead. Moreover, given that these benchmarks contain only a few hundred nodes, guides with

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

higher-dimensional cells would cover less than 0.05% of possible structures, introducing both un-
necessary computation and a risk of overfitting without evident benefit. In practice, 2-cells already
capture virtually all of the higher-order structure present in these datasets.

We further tested guiding molecular generation with 2-simplices but observed worse performance.
This is expected, as summarized in Tab. 11, higher-dimensional simplices are extremely rare in
molecular datasets (i.e., QM9 and ZINC250k), while 2-cells are comparatively more abundant.
Moreover, most functional structures in molecules do not satisfy the requirements of simplices.
These findings confirm that aligning the guide with the natural higher-order structures of the data
improves both training efficiency and sample quality, whereas mismatched guides provide limited
benefit.

In contrast, generic graphs (particularly those in social or biological domains) often exhibit diverse
simplicial structures, making simplicial filtering more suitable. This demonstrates the adaptability
of HOG-Diff across domains.

Overall, the proposed framework is most effective when the intermediate skeletons reflect structures
naturally present in the data. This aligns with prior work in graph representation learning, which
shows that the benefits of higher-order representations are most pronounced in datasets rich in such
structures (Huang et al., 2024). Indeed, many real-world networks—including social, biological,
and citation networks—exhibit abundant higher-order cells/simplices. Thus, many real-world tasks
naturally fall into the “topologically rich” regime where our method is particularly advantageous.

Table 11: Average counts of simplices and cells across datasets. “-” indicates computation exceeded
10h.

Dataset 0-simplices 1-simplices 2-simplices 3-simplices 4-simplices 2-cells 3-cells

Community-small 15.28 35.15 27.45 8.24 0.76 40.92 0.00
Ego-small 6.41 8.70 4.61 1.64 0.35 5.66 0.00
Enzymes 33.03 63.27 25.93 3.05 0.01 – –
SBM 104.01 500.41 441.25 90.88 4.42 – –
QM9 8.80 9.40 0.47 0.00 0.00 1.84 0.10
ZINC250k 23.15 24.90 0.06 0.00 0.00 2.77 0.00

F.4 DE NOVO MOLECULE GENERATION

(a) (b) (c)

Figure 9: Visualization of chemical space distributions. Molecular representations are obtained us-
ing Morgan fingerprints and subsequently visualized through dimensionality reduction with Uniform
Manifold Approximation and Projection (UMAP). Contour lines denote the probability distributions
of reference (ref) and generated (gen) molecules. (a) illustrates the distributional shift across QM9
(green) and ZINC250k (blue), while (b) and (c) show that our generative model faithfully captures
the distinct distributions of each dataset.

To visually assess the capability of the proposed method in molecular generation, Fig. 9 compares
distributional results on the molecular datasets. Specifically, we first calculate the Morgan finger-
prints (Rogers & Hahn, 2010) of all molecules, which have been widely utilized in drug discovery
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Figure 10: Visualization of molecular graphs at different stages of the reverse generative process.
Model trained on the ZINC250k dataset.

for capturing structural information. Subsequently, we apply Uniform Manifold Approximation and
Projection (UMAP), a nonlinear dimensionality-reduction method that preserves local similarities,
to embed the fingerprints into two dimensions and plot the resulting distributions.

On the QM9 dataset, the distributions generated by our model closely align with those of the refer-
ence set. On the more complex ZINC250k dataset, the generated distributions show slight deviations
but remain well aligned. These results provide an intuitive demonstration of strong generative per-
formance and complement the findings in Tab. 1.

We provide the standard deviation results and the additional validity (Val.) metric in Tabs. 12 and 13.
Baseline results are sourced from Jo et al. (2022); Kong et al. (2023) or reproduced using the corre-
sponding publicly available code.

Table 12: Comparison of different methods on QM9. We report the means and standard deviations
of 3 runs. Asterisks (*) indicate that the source did not report standard deviations. The best results
for the first three metrics are highlighted in bold.

Method NSPDK↓ FCD↓ Val. w/o
corr.↑ Val.↑ Uni.↑ Nov.↑

GraphAF 0.021±0.003 5.625±0.259 74.43±2.55 100.00±0.00 88.64±2.37 86.59±1.95
GraphDF 0.064±0.000 10.928±0.038 93.88±4.76 100.00±0.00 98.58±0.25 98.54±0.48
GraphArm* 0.002 1.220 90.25 100.00 95.62 70.39
MiCaM* 0.001 1.045 99.93 100.00 93.89 83.25

GraphEBM 0.030±0.004 6.143±0.411 8.22±2.24 100.00±0.00 97.90±0.05 97.01±0.17
SPECTRE* 0.163 47.960 87.30 100.00 35.70 97.28
GSDM* 0.003 2.650 99.90 100.00 - -
EDP-GNN 0.005±0.001 2.680±0.221 47.52±3.60 100.00±0.00 99.25±0.05 86.58±1.85
GDSS 0.003±0.000 2.900±0.282 95.72±1.94 100.00±0.00 98.46±0.61 86.27±2.29
DiGress* 0.0005 0.360 99.00 100.00 96.66 33.40
MoFlow 0.017±0.003 4.467±0.595 91.36±1.23 100.00±0.00 98.65±0.57 94.72±0.77
CatFlow* - 0.441 99.81 100.00 99.95 -
DeFoG 0.0005±0.0001 0.268±0.006 99.26±0.10 100.00±0.00 96.61±0.30 72.57±1.89
HOG-Diff 0.0003±0.0001 0.172±0.005 98.74±0.08 100.00±0.00 97.10±0.10 75.12±0.39
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Table 13: Comparison of different methods on ZINC250k. We report the means and standard devi-
ations of 3 runs. Asterisks (*) indicate that the source did not report standard deviations. The best
results for the first three metrics are highlighted in bold.

Method NSPDK↓ FCD↓ Val. w/o
corr.↑ Val.↑ Uni.↑ Nov.↑

GraphAF 0.044±0.005 16.023±0.451 68.47±0.99 100.00±0.00 98.64±0.69 99.99±0.01
GraphDF 0.177±0.001 33.546±0.150 90.61±4.30 100.00±0.00 99.63±0.01 100.00±0.00
GraphArm* 0.055 16.260 88.23 100.00 99.46 100.00
MiCaM* 0.166 31.495 100.00 100.00 88.48 99.98

GraphEBM 0.212±0.075 35.471±5.331 5.29±3.83 99.96±0.02 98.79±0.15 100.00±0.00
SPECTRE* 0.109 18.440 90.20 100.00 67.05 100.00
GSDM* 0.017 12.956 92.70 100.00 - -
EDP-GNN 0.049±0.006 16.737±1.300 82.97±2.73 100.00±0.00 99.79±0.08 100.00±0.00
GDSS 0.019±0.001 14.656±0.680 97.01±0.77 100.00±0.00 99.64±0.13 100.00±0.00
DiGress* 0.082 23.060 91.02 100.00 81.23 100.00
MoFlow 0.046±0.002 20.931±0.184 63.11±5.17 100.00±0.00 99.99±0.01 100.00±0.00
CatFlow* - 13.211 99.95 99.99 100.00 -
DeFoG 0.002±0.001 2.030±0.031 94.97±0.026 99.99±0.01 99.98±0.02 100.00±0.00
HOG-Diff 0.001±0.001 1.633±0.012 98.56±0.12 100.00±0.00 99.96±0.02 99.53±0.07

F.5 VISUALIZATION RESULTS

In this section, we additionally provide the visualizations of the generated graphs for both molecule
generation tasks and generic graph generation tasks. Figs. 11-16 illustrate non-curated generated
samples. HOG-Diff demonstrates the capability to generate high-quality samples that closely re-
semble the topological properties of empirical data while preserving essential structural details.

(a) Training set (b) HOG-Diff (Ours)

Figure 11: Visualization of random samples taken from the HOG-Diff trained on the QM9 dataset.
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(a) Training set (b) HOG-Diff (Ours)

Figure 12: Visualization of random samples taken from the HOG-Diff trained on the ZINC250k
dataset.

(a) Training set (b) HOG-Diff (Ours)

Figure 13: Visual comparison between training set graph samples and generated graph samples
produced by HOG-Diff on the Community-small dataset.
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(a) Training set (b) HOG-Diff (Ours)

Figure 14: Visual comparison between training set graph samples and generated graph samples
produced by HOG-Diff on the Ego-small dataset.

(a) Training set (b) HOG-Diff (Ours)

Figure 15: Visual comparison between training set graph samples and generated graph samples
produced by HOG-Diff on the Enzymes dataset.
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(a) Training set (b) HOG-Diff (Ours)

Figure 16: Visual comparison between training set graph samples and generated graph samples
produced by HOG-Diff on the SBM dataset.

G LIMITATIONS AND FURTHER WORK

We propose a principled graph generation framework that explicitly exploits higher-order topologi-
cal cues to guide the generative process. This design enables HOG-Diff to achieve strong empirical
performance across various tasks, including molecule and generic graph generation. While HOG-
Diff shows superior performance, future work would benefit from improving our framework.

As discussed in Sec. 4.2, the performance of the proposed framework depends on the presence of ex-
plicit higher-order structures. While previous studies have shown the prevalence of such structures in
empirical systems, certain types of graphs, such as the ego-small dataset, lack this topological rich-
ness. In these cases, the benefits of higher-order diffusion guidance diminish, and the performance
advantage becomes less pronounced.

In addition, our framework is built around the use of higher-order structures as diffusion guides,
enabled by the Cell Complex Filtering (CCF) mechanism. As detailed in App. D, we introduce a
simplified computational formulation of the CCF that facilitates efficient implementation of both
cell complex and simplicial complex filters. However, extending this framework to capture more
intricate topological elements, such as motifs, higher-order cells (beyond second order), and topo-
logical cavities, poses significant computational challenges. We leave this scalability bottleneck as
future work.
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