
HOG-DIFF: HIGHER-ORDER GUIDED DIFFUSION FOR GRAPH GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Graph generation is a critical yet challenging task as empirical analyses require
012 a deep understanding of complex, non-Euclidean structures. Diffusion models
013 have recently made significant achievements in graph generation, but these mod-
014 els are typically adapted from image generation frameworks and overlook inherent
015 higher-order topology, leaving them ill-suited for capturing the topological prop-
016 erties of graphs. In this work, we propose Higher-order Guided Diffusion (HOG-
017 Diff), a principled framework that progressively generates plausible graphs with
018 inherent topological structures. HOG-Diff follows a coarse-to-fine generation cur-
019 riculum guided by higher-order topology and implemented via diffusion bridges.
020 We further prove that our model exhibits a stronger theoretical guarantee than clas-
021 sical diffusion frameworks. Extensive experiments on both molecular and generic
022 graph generation tasks demonstrate that our method consistently outperforms or
023 remains competitive with state-of-the-art baselines.

1 INTRODUCTION

027 Graphs provide an elegant abstraction for representing complex systems by encoding entities as ver-
028 tices and their relationships as pairwise edges. As such, they have played a key role in generative
029 modeling in unstructured domains, enabling the synthesis of novel graphs faithful to the data dis-
030 tribution. This representational power has positioned graph generative models as a crucial tool for
031 discovering new molecules, materials, and biostructures (Jumper et al., 2021; Vignac et al., 2023;
032 Qin et al., 2025; Siraudin et al., 2025).

033 Despite these advances, graph generation still lags behind its Euclidean counterparts. Classically,
034 oversmoothing and oversquashing limit expressive capacity, but an even deeper obstacle persists:
035 most generative frameworks treat graphs purely as collections of pairwise edges, overlooking the
036 higher-order structures that govern the organization of real-world systems, such as triangles, cliques,
037 rings, and motifs. These higher-order structures play a decisive role in fields ranging from chem-
038 istry to neuroscience: molecules function through coordinated multi-atom assemblies; collabora-
039 tive teams operate effectively only at specific group sizes; and neural populations exhibit coherent activ-
040 ity patterns that fundamentally rely on multi-unit interactions (Battiston et al., 2020; Gardner et al.,
041 2022; Papamarkou et al., 2024). A growing body of empirical and theoretical work underscores
042 that such higher-order topology is not an optional structure, but a defining characteristic of real
043 data (Segler et al., 2018; Ertl et al., 2025).

044 Recent studies make this picture even sharper. Drug molecules, for instance, inhabit only a few hun-
045 dred distinct ring and scaffold topologies (Ertl et al., 2025), far fewer than the astronomical chemical
046 space of plausible compounds (10^{23} – 10^{60}) (Segler et al., 2018). Meanwhile, progress in topological
047 deep learning (TDL) (Hajij et al., 2022; Papamarkou et al., 2024; Liu et al., 2024; Battiloro et al.,
048 2025; Wang et al., 2025; Hajij et al., 2025) evidences that explicitly modeling complex structures
049 boosts the expressivity and stability of graph and molecular representation learning. Nevertheless,
050 no existing graph generative model integrates higher-order structure as an explicit guiding signal.

051 In this work, motivated by this gap, we propose the **Higher-order Guided Diffusion** (HOG-Diff)
052 framework, a principled, topology-aware framework that places higher-order topology at the core of
053 the generative process. As illustrated in Fig. 1, HOG-Diff implements a coarse-to-fine generation
054 curriculum: it first synthesizes the higher-order skeleton of a graph, its key 2-cells, faces, or other
055 motifs, and then refines these coarse structures into full pairwise connectivity. To realize this, we

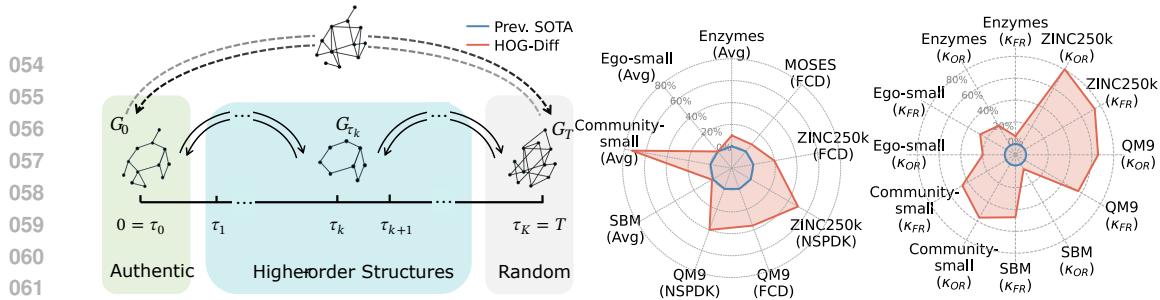


Figure 1: Overview of **HOG-Diff** framework and performance across multiple datasets. **(left)** The dashed line above illustrates the classical generation process, where graphs quickly degrade into random structures with uniformly distributed entries. In contrast, as shown in the coloured region below, HOG-Diff adopts a coarse-to-fine generation curriculum based on the diffusion bridge, explicitly learning higher-order structures during intermediate steps with theoretical guarantees. **Our model outperforms the state-of-the-art both in classical, pairwise performance metrics (middle) and on higher-order (right).**

combine cell-complex filtering with a novel *generalized Ornstein–Uhlenbeck (OU) diffusion bridge* in the spectral domain, enabling the diffusion process to transition smoothly between increasingly detailed topological states while preserving the global structure implied by higher-order interactions.

This coordinated two-stage design brings several benefits. It aligns the generative trajectory with the intrinsic hierarchical organization of real-world graphs; it avoids the collapse of intermediate states into meaningless noisy adjacency matrices; and it allows us to leverage closed-form bridge dynamics for stable, simulation-free training. Theoretically, we prove that HOG-Diff enjoys faster convergence in score matching and tighter reconstruction error bounds than classical diffusion models. Practically, the explicit presence of topological guides enables interpretability: by varying the guide structures, we can directly probe which topological motifs are most influential in determining the generative process. Across molecular and generic graph benchmarks, HOG-Diff consistently achieves state-of-the-art performance, sharply reducing both statistical and topological discrepancies relative to real data. Our findings underscore a central message: higher-order topology is a powerful generative signal and incorporating it transforms graph diffusion from an edge-level denoising procedure into a truly structure-aware generative paradigm. Our concrete contributions are:

- We introduce *cell complex filtering*, to extract higher-order skeletons from graphs, as valuable generation guides.
- We propose a principled, coarse-to-fine graph generation framework guided by higher-order topological information and implemented via the generalized OU diffusion bridge.
- We theoretically show that HOG-Diff achieves faster convergence during score-matching and a sharper reconstruction error bound compared to classical diffusion models.
- Extensive evaluations on small and large molecules, as well as generic graph datasets, show that our topology-informed HOG-Diff achieves state-of-the-art performance in *de novo* generation.

We will make our implementation publicly available upon publication.

2 PRELIMINARIES

Higher-order Networks. Graphs are elegant and useful abstractions for various empirical objects. Formally, a graph can be represented as $\mathbf{G} \triangleq (\mathbf{V}, \mathbf{E}, \mathbf{X})$, where \mathbf{V} denotes the node set, $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$ the edges, and \mathbf{X} the nodes feature matrix. However, many empirical systems exhibit group interactions that go beyond simple pairwise relationships (Battiston et al., 2020). To capture these complex interactions, higher-order networks—such as hypergraphs, simplicial complexes (SCs), and cell complexes (CCs)—offer more expressive alternatives by capturing higher-order interactions among multiple entities (Papamarkou et al., 2024). Among these, cell complexes are fundamental in algebraic topology, offering a flexible generalization of pairwise graphs (Hatcher, 2001).

Definition 1 (Regular cell complex). *A regular cell complex is a topological space \mathcal{S} with a partition into subspaces (cells) $\{x_\alpha\}_{\alpha \in P_{\mathcal{S}}}$, where $P_{\mathcal{S}}$ is an index set, satisfying the following conditions:*

1. *For any $x \in \mathcal{S}$, every sufficiently small neighborhood of x intersects finitely many cells.*
2. *Each cell x_α is homeomorphic to \mathbb{R}^{n_α} , where $n_\alpha = \dim(x_\alpha)$ denotes the dimension of x_α .*

108 3. For each cell x_α , the boundary ∂x_α is a finite union of cells of dimension less than $\dim(x_\alpha)$.
 109 4. For every $\alpha \in P_S$, there exists a homeomorphism ϕ_α of a closed ball $\mathbb{B}^{n_\alpha} \subset \mathbb{R}^{n_\alpha}$ to the closure
 110 $\overline{x_\alpha}$ such that the restriction of ϕ_α to the interior of the ball is a homeomorphism onto x_α .

111 **Lifting: From Graphs to Cell Complexes.** A cell complex can be constructed hierarchically
 112 through a gluing procedure, which is known as *lifting*. It begins with a set of vertices (0-cells), to
 113 which edges (1-cells) are attached by gluing the endpoints of closed line segments, thereby forming
 114 a graph. This process can be extended by taking a two-dimensional closed disk and gluing its
 115 boundary to a simple cycle in the graph, see Fig. 2 for illustration. While we typically focus on
 116 dimensions up to two, this framework can be further generalized by gluing the boundary of n -
 117 dimensional balls to specific $(n-1)$ -cells in the complex.

118 From the definition, we can derive that the cell complex S is the union of the interiors of all cells. In
 119 this work, we also consider simplicial complexes (SCs), a class of topological spaces represented by
 120 finite sets of elements that are closed under the inclusion of subsets. Intuitively, SCs can be viewed
 121 as a more constrained subclass of cell complexes, where 2-cells are limited to triangle shapes. A
 122 comprehensive introduction to higher-order networks can be found in App. B.1.

123 **Score-based Diffusion Models.** A fundamental goal of generative models is to produce plausible
 124 samples from an unknown target data distribution $p(\mathbf{x}_0)$. Score-based diffusion models (Song & Er-
 125 mon, 2019; Song et al., 2021) achieve this by progressively corrupting the authentic data with noise
 126 and subsequently training a neural network to reverse this corruption process, thereby generating
 127 meaningful data from a tractable prior distribution, *i.e.*, $\mathbf{x}_{\text{generated}} \sim p(\mathbf{x}_0)$.

128 Specifically, the time-dependent forward process of the diffusion model can be described by the
 129 following stochastic differential equation (SDE):
 130

$$d\mathbf{x}_t = \mathbf{f}_t(\mathbf{x}_t) dt + g_t d\mathbf{w}_t, \quad (1)$$

132 where $\mathbf{f}_t : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a vector-valued drift function, $g_t : [0, T] \rightarrow \mathbb{R}$ is a scalar diffusion
 133 coefficient, and \mathbf{w}_t represents a Wiener process. Typically, $p(\mathbf{x}_0)$ evolves over time t from 0 to a
 134 sufficiently large T into $p(\mathbf{x}_T)$ through the SDE, such that $p(\mathbf{x}_T)$ will approximate a tractable prior
 135 distribution, for example, a standard Gaussian distribution.

136 Starting from time T , $p(\mathbf{x}_T)$ can be progressively transformed back to $p(\mathbf{x}_0)$ by following the tra-
 137 jectory of the reverse-time SDE $d\mathbf{x}_t = [\mathbf{f}_t(\mathbf{x}_t) - g_t^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)] dt + g_t d\bar{\mathbf{w}}_t$ (Anderson, 1982),
 138 where $p_t(\cdot)$ denotes the probability density function of \mathbf{x}_t and $\bar{\mathbf{w}}$ is a reverse-time Wiener process.

139 The term $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$, known as the score function, is typically parameterized by a neural network
 140 $\mathbf{s}_\theta(\mathbf{x}_t, t)$ and trained using the conditional score-matching loss function (Vincent, 2011):
 141

$$\ell(\theta) \triangleq \mathbb{E}_{t, \mathbf{x}_t} \left[\omega(t) \|\mathbf{s}_\theta(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)\|^2 \right] \propto \mathbb{E}_{t, \mathbf{x}_0, \mathbf{x}_t} \left[\omega(t) \|\mathbf{s}_\theta(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{x}_0)\|^2 \right],$$

144 where $\omega(t)$ is a weighting function. The second expression is more commonly used since the condi-
 145 tional probability $p_t(\mathbf{x}_t | \mathbf{x}_0)$ is generally accessible. Ultimately, the generation process is complete
 146 by first sampling \mathbf{x}_T from a tractable prior distribution $p(\mathbf{x}_T) \approx p_{\text{prior}}(\mathbf{x})$ and then generating \mathbf{x}_0
 147 by numerically solving the reverse-time SDE.

148 **Doob's h -transform.** Doob's h -transform is a mathematical framework widely used to modify
 149 stochastic processes, enabling the process to satisfy specific terminal conditions. By introducing
 150 an h -function into the drift term of an SDE, this technique ensures that the process transitions to a
 151 predefined endpoint while preserving the underlying probabilistic structure. Specifically, given the
 152 SDE in Eq. (1), Doob's h -transform alters the SDE to include an additional drift term, ensuring that
 153 the process reaches a fixed terminal state at $t = T$. The modified SDE is expressed as:

$$d\mathbf{x}_t = [\mathbf{f}_t(\mathbf{x}_t) + g_t^2 \mathbf{h}(\mathbf{x}_t, t, \mathbf{x}_T, T)] dt + g_t d\mathbf{w}_t, \quad (2)$$

154 where $\mathbf{h}(\mathbf{x}_t, t, \mathbf{x}_T, T) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_T | \mathbf{x}_t)$. Crucially, the construction drives the diffusion process
 155 towards a Dirac distribution at \mathbf{x}_T , *i.e.*, $\lim_{t \rightarrow T} p(\mathbf{x}_t | \mathbf{x}_0, \mathbf{x}_T) = \delta(\mathbf{x}_t - \mathbf{x}_T)$.

157

3 HIGHER-ORDER GUIDED DIFFUSION MODEL

159 We now present our *Higher-order Guided Diffusion* (HOG-Diff) model, which enhances graph gen-
 160 eration by exploiting higher-order structures. We first describe our coarse-to-fine generation frame-
 161 work, followed by an introduction to the supporting diffusion bridge technique. Finally, we provide
 162 theoretical evidence to validate the efficacy of HOG-Diff.

162
163

3.1 COARSE-TO-FINE FRAMEWORK WITH TOPOLOGICAL FILTERING

164
165
166
167
168
169
170

We draw inspiration from *curriculum learning*, a paradigm that mimics human learning by systematically organizing data in a progression from simple (coarse) to complex (fine) (Abbe et al., 2021; Soviany et al., 2022). Specifically, we model coarse intermediary structures as *higher-order cells*, which encapsulate rich structural properties beyond pairwise interactions (Battiston et al., 2020). These cells can be obtained by *lifting* the original graph and retaining associated 2-faces as the higher-order skeleton. Our generative processes then follow a curriculum to progressively generate graphs, starting with higher-order cells and gradually refining them into the full complex graph.

171
172
173
174

To implement our coarse-to-fine generation framework, we first introduce a key operation termed *cell complex filtering* (CCF). The filtering operation decomposes the graph generation task into hierarchically structured and manageable sub-tasks.

175
176
177
178
179
180
181
182

Proposition 2 (Cell complex filtering). *Given a graph $G = (V, E)$ and its associated cell complex $\mathcal{S} = \cup_{\alpha} x_{\alpha}$ (obtained via lifting). The p -cell complex filtering operation defines a filtered graph $G_{[p]} = (V_{[p]}, E_{[p]})$, where $V_{[p]} = \{v \in V \mid \exists x_{\alpha} \text{ with } \dim(x_{\alpha}) = p : v \in \overline{x_{\alpha}}\}$, and $E_{[p]} = \{(u, v) \in E \mid \exists x_{\alpha} \text{ with } \dim(x_{\alpha}) = p : \{u, v\} \subseteq \overline{x_{\alpha}}\}$. Here, $\overline{x_{\alpha}}$ denotes the closure of x_{α} .*

183
184
185
186
187
188
189
190
191

As illustrated in Fig. 2, we first lift the graph to a cell complex and then apply CCF to generate intermediate states by pruning nodes and edges that do not belong to higher-order cells. In practice, CCF offers a substantial speedup, as it avoids the expensive enumeration of all cells required by lifting, see App. D for details. Based on the filtering results, the diffusion process is structured into K hierarchical time windows, denoted as $\{[\tau_{k-1}, \tau_k]\}_{k=1}^K$, where $0 = \tau_0 < \dots < \tau_{k-1} < \tau_k < \dots < \tau_K = T$, with the filtered results serving as natural intermediaries in the hierarchical generation process.

192
193
194
195
196
197
198

The overall framework of HOG-Diff is depicted in Fig. 1. In general, we first generate coarse-grained higher-order skeletons and subsequently refine them into finer pairwise relationships, thereby simplifying the task of capturing complex graph distributions. Formally, our generation process factorizes the joint distribution of the final graph G_0 into a product of conditional distributions across these time windows:

$$p(G_0) = p(G_0|G_{\tau_1})p(G_{\tau_1}|G_{\tau_2}) \cdots p(G_{\tau_{K-1}}|G_T). \quad (3)$$

199
200
201
202
203
204
205

Here, the intermediate states $G_{\tau_{K-1}}, \dots, G_{\tau_2}, G_{\tau_1}$ represent progressively finer cell complex filtered graph representations, aligning intermediate diffusion stages with realistic hierarchical graph structures. This coarse-to-fine approach enables our model to first focus on fundamental topological structures and then add finer connectivity, inherently aligning with the hierarchical nature of many empirical systems. Consequently, our model benefits from smoother training and improved sampling performance (see Sec. 3.3 for theoretical analysis).

206
207
208
209

To ensure smooth transitions between intermediate states within each interval $[\tau_{k-1}, \tau_k]$, the graph evolves according to the general form of a diffusion bridge process (see Sec. 3.2 for details):

$$dG_t^{(k)} = \mathbf{f}_{k,t}(G_t^{(k)})dt + g_{k,t}dW_t, t \in [\tau_{k-1}, \tau_k]. \quad (4)$$

210
211
212
213
214
215

The forward diffusion process introduces noise in a stepwise manner while preserving intermediate structural information. Reversing this process enables the model to generate authentic samples with desirable higher-order information. Moreover, integrating higher-order structures into graph generative models improves interpretability by allowing analysis of their significance in shaping the graph’s properties. Rather than directly conditioning on higher-order information, HOG-Diff employs it incrementally as a guiding structure. This strategy allows the model to build complex graph structures progressively, while maintaining meaningful structural integrity at each stage.

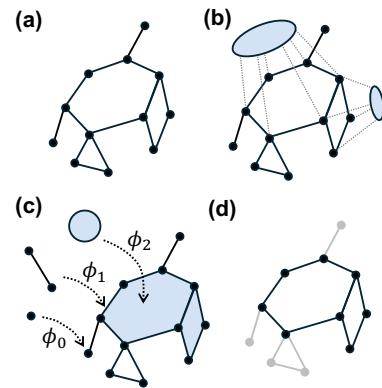


Figure 2: Cell Complex transformations. (a) An example graph. (b) Lifting: closed 2D disks are glued to the boundary of the rings to form the 2-cell complex. (c) The resulting cell complex and the corresponding homeomorphisms to the closed balls for three representative cells of different dimensions in the complex. (d) Black elements represent higher-order structures extracted through 2-cell filtering, while grey elements denote corresponding peripheral structures pruned by the filtering operation.

216 3.2 GUIDED GENERATION VIA DIFFUSION BRIDGE PROCESS
 217

218 As a building block of our generative framework, we leverage a class of diffusion processes with
 219 fixed terminal states, namely the *generalized Ornstein-Uhlenbeck (GOU) bridge*, to realize the pro-
 220 posed guided diffusion process in Eq. (4), while enabling simulation-free training.

221 The generalized Ornstein-Uhlenbeck (GOU) process (Ahmad, 1988; Luo et al., 2023b), also known
 222 as the time-varying OU process, is a stationary, Gaussian-Markov process characterized by its mean-
 223 reverting property. Specifically, the marginal distribution of the GOU process asymptotically ap-
 224 proaches a fixed mean and variance. The GOU process is governed by the following SDE:

225
$$d\mathbf{G}_t = \theta_t(\boldsymbol{\mu} - \mathbf{G}_t)dt + g_t d\mathbf{W}_t, \quad (5)$$

 226

227 where $\boldsymbol{\mu}$ is the target terminal state, θ_t denotes a scalar drift coefficient and g_t represents the diffusion
 228 coefficient. For analytical tractability, θ_t and g_t are constrained by $g_t^2/\theta_t = 2\sigma^2$ (Luo et al., 2023b),
 229 where σ^2 is a fixed constant, yielding a closed-form transition probability:

231
$$p(\mathbf{G}_t | \mathbf{G}_s) = \mathcal{N}(\mathbf{m}_{s:t}, v_{s:t}^2 \mathbf{I}) = \mathcal{N}\left(\boldsymbol{\mu} + (\mathbf{G}_s - \boldsymbol{\mu}) e^{-\bar{\theta}_{s:t}}, \sigma^2(1 - e^{-2\bar{\theta}_{s:t}}) \mathbf{I}\right). \quad (6)$$

 232

233 Here, $\bar{\theta}_{s:t} = \int_s^t \theta_z dz$. For notional simplicity, $\bar{\theta}_{0:t}$ is replaced by $\bar{\theta}_t$ when $s = 0$.

234 **Diffusion Bridge.** Applying Doob's h -transform (Doob & Doob, 1984) to the GOU process un-
 235 der the terminal condition $\boldsymbol{\mu} = \mathbf{G}_{\tau_k}$, we can derive the GOU bridge process as follows (detailed
 236 derivation of the bridge process provided in App. A.1):
 237

238
$$d\mathbf{G}_t = \theta_t \left(1 + \frac{2}{e^{2\bar{\theta}_{t:\tau_k}} - 1}\right) (\mathbf{G}_{\tau_k} - \mathbf{G}_t)dt + g_{k,t} d\mathbf{W}_t. \quad (7)$$

 239

240 The conditional transition probability admits an analytical form $p(\mathbf{G}_t | \mathbf{G}_{\tau_{k-1}}, \mathbf{G}_{\tau_k}) = \mathcal{N}(\bar{\mathbf{m}}_t, \bar{v}_t^2 \mathbf{I})$:

243
$$\bar{\mathbf{m}}_t = \mathbf{G}_{\tau_k} + (\mathbf{G}_{\tau_{k-1}} - \mathbf{G}_{\tau_k}) e^{-\bar{\theta}_{\tau_{k-1}:t}} \frac{v_{t:\tau_k}^2}{v_{\tau_{k-1}:\tau_k}^2}, \quad \bar{v}_t^2 = v_{\tau_{k-1}:t}^2 v_{t:\tau_k}^2 / v_{\tau_{k-1}:\tau_k}^2. \quad (8)$$

 244

245 Here, $\bar{\theta}_{a:b} = \int_a^b \theta_s ds$, and $v_{a:b} = \sigma^2(1 - e^{-2\bar{\theta}_{a:b}})$.

247 The GOU bridge process eliminates variance in the terminal state by directing the diffusion toward
 248 a Dirac distribution centered at \mathbf{G}_{τ_k} , making it well-suited for stochastic modelling with terminal
 249 constraints (Heng et al., 2021; Yue et al., 2024). Moreover, we can directly use the closed-form
 250 solution for one-step forward sampling without expensive SDE simulation. Note that the Brownian
 251 bridge process used in previous works (Wu et al., 2022) is a special case of the GOU bridge process
 252 when $\theta_t \rightarrow 0$ (see App. A.1).

253 **Training and Sampling.** Classical graph diffusion approaches typically inject isotropic Gaussian
 254 noise directly into the adjacency matrices \mathbf{A} , leading to various fundamental challenges, such as
 255 permutation ambiguity, sparsity-induced signal degradation, and poor scalability (see App. C.2 for
 256 detailed discussion). To address these challenges, inspired by Luo et al. (2023a), we introduce noise
 257 in the spectra of the graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$, instead of the adjacency matrix \mathbf{A} , where
 258 \mathbf{D} denotes the diagonal degree matrix. As a symmetric positive semi-definite matrix, the graph
 259 Laplacian can be diagonalized as $\mathbf{L} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$. Here, the orthogonal matrix $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n]$
 260 comprises the eigenvectors, and the diagonal matrix $\boldsymbol{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_n)$ holds the corresponding
 261 eigenvalues. Therefore, the target graph distribution $p(\mathbf{G}_0)$ represents a joint distribution of \mathbf{X}_0 and
 262 $\boldsymbol{\Lambda}_0$, exploiting the permutation invariance and structural robustness of the Laplacian spectrum.

263 Consequently, the GOU bridge process in Eq. (7), along with its time-reversed counterpart, can be
 264 formulated as the following system of SDEs for graph \mathbf{G} :

265
$$\begin{cases} d\mathbf{X}_t = \mathbf{f}_{k,t}(\mathbf{X}_t)dt + g_{k,t} d\bar{\mathbf{W}}_t^1 \\ d\boldsymbol{\Lambda}_t = \mathbf{f}_{k,t}(\boldsymbol{\Lambda}_t)dt + g_{k,t} d\bar{\mathbf{W}}_t^2 \end{cases}, \quad \begin{cases} d\mathbf{X}_t = [\mathbf{f}_{k,t}(\mathbf{X}_t) - g_{k,t}^2 \nabla_{\mathbf{X}} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})] d\bar{t} + g_{k,t} d\bar{\mathbf{W}}_t^1 \\ d\boldsymbol{\Lambda}_t = [\mathbf{f}_{k,t}(\boldsymbol{\Lambda}_t) - g_{k,t}^2 \nabla_{\boldsymbol{\Lambda}} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})] d\bar{t} + g_{k,t} d\bar{\mathbf{W}}_t^2 \end{cases}.$$

 266

267 Here, the reverse-time dynamics of the bridge process are derived using the theory of SDEs, the
 268 superscript of $\mathbf{X}_t^{(k)}$ and $\boldsymbol{\Lambda}_t^{(k)}$ are dropped for simplicity, and $\mathbf{f}_{k,t}$ is determined according to Eq. (7).

To approximate the score functions $\nabla_{\mathbf{X}_t} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})$ and $\nabla_{\mathbf{\Lambda}_t} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})$, we employ a neural network $s_{\theta}^{(k)}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t)$, which outputs predictions for both node-level ($s_{\theta, \mathbf{X}}^{(k)}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t)$) and spectrum ($s_{\theta, \mathbf{\Lambda}}^{(k)}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t)$) components. The network is optimized by minimizing:

$$\ell^{(k)}(\theta) = \mathbb{E}_{t, \mathbf{G}_t, \mathbf{G}_{\tau_{k-1}}, \mathbf{G}_{\tau_k}} \{ \omega(t) [c_1 \|s_{\theta, \mathbf{X}}^{(k)} - \nabla_{\mathbf{X}} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})\|_2^2 + c_2 \|s_{\theta, \mathbf{\Lambda}}^{(k)} - \nabla_{\mathbf{\Lambda}} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})\|_2^2] \}, \quad (9)$$

where $\omega(t)$ is a positive weighting function, and c_1, c_2 controls the relative importance of vertices and spectrum. The training procedure is detailed in Alg. 1 in App. C.

In the inference procedure, we sample $(\hat{\mathbf{X}}_{\tau_K}, \hat{\mathbf{\Lambda}}_{\tau_K})$ from the prior distribution and select $\hat{\mathbf{U}}_0$ as an eigenbasis drawn from the training set. Reverse diffusion is then applied across multiple stages to sequentially generate $(\hat{\mathbf{X}}_{\tau_{K-1}}, \hat{\mathbf{\Lambda}}_{\tau_{K-1}}), \dots, (\hat{\mathbf{X}}_{\tau_1}, \hat{\mathbf{\Lambda}}_{\tau_1}), (\hat{\mathbf{X}}_0, \hat{\mathbf{\Lambda}}_0)$, where each stage is implemented via the diffusion bridge and initialized from the output of the previous step. Finally, plausible samples with higher-order structures can be reconstructed as $\hat{\mathbf{G}}_0 = (\hat{\mathbf{X}}_0, \hat{\mathbf{L}}_0 = \hat{\mathbf{U}}_0 \hat{\mathbf{\Lambda}}_0 \hat{\mathbf{U}}_0^\top)$. Further details of the spectral diffusion process and the complete sampling procedure are provided in App. C, while ablation studies comparing diffusion in the spectral domain versus the adjacency matrix are presented in App. F.1.

Score Network Architecture. The score network plays a critical role in estimating the score functions required to reverse the diffusion process. Standard graph neural networks designed for classical tasks such as graph classification and link prediction may be inappropriate for graph distribution learning due to the complicated requirements. For example, an effective model for molecular graph generation should capture local node-edge dependence for chemical valency rules and attempt to recover global graph patterns like edge sparsity, frequent ring subgraphs, and atom-type distribution.

To achieve this, we introduce a unified score network that explicitly integrates node and spectral representations. As illustrated in Fig. 7 of Appendix, the network comprises two different graph processing modules: a standard graph convolution network (GCN) (Kipf & Welling, 2017) for local feature aggregation and a graph transformer network (ATTN) (Dwivedi & Bresson, 2021; Vignac et al., 2023) for global information extraction. The outputs of these modules are fused with time information through a Feature-wise Linear Modulation (FiLM) layer (Perez et al., 2018), and the resulting representations are concatenated to form a unified hidden embedding. This hidden embedding is further processed by separate multilayer perceptrons (MLPs) to produce predictions for $\nabla_{\mathbf{X}} \log p(\mathbf{G}_t | \mathbf{G}_{\tau_k})$ and $\nabla_{\mathbf{\Lambda}} \log p(\mathbf{G}_t | \mathbf{G}_{\tau_k})$, respectively. It is worth noting that our score network is permutation equivalent, as each component of our model avoids any node ordering-dependent operations. Our model is detailed in App. C.3.

3.3 THEORETICAL ANALYSIS

We now provide theoretical evidence for the efficacy of HOG-Diff, demonstrating that the proposed framework achieves faster convergence in score-matching and tighter reconstruction error bounds compared to standard graph diffusion. We experimentally verify our theories in Sec. 4.4.

Theorem 3 (Informal). Suppose the loss function $\ell^{(k)}(\theta)$ in Eq. (9) is β -smooth and satisfies the μ -PL condition in the ball $B(\theta_0, R)$. Then, the expected loss at the i -th training iteration satisfies:

$$\mathbb{E} \left[\ell^{(k)}(\theta_i) \right] \leq \left(1 - \frac{b\mu^2}{\beta N(\beta N^2 + \mu(b-1))} \right)^i \ell^{(k)}(\theta_0), \quad (10)$$

where N denotes the size of the training dataset, and b is the mini-batch size. Furthermore, it holds that $\beta_{\text{HOG-Diff}} \leq \beta_{\text{classical}}$, implying that the distribution learned by the proposed framework converges to the target distribution faster than classical generative models.

Following Luo et al. (2023a), we define the expected reconstruction error at each generation process as $\mathcal{E}(t) = \mathbb{E} \left\| \bar{\mathbf{G}}_t - \hat{\mathbf{G}}_t \right\|^2$, where $\bar{\mathbf{G}}_t$ represents the data reconstructed with the ground truth score $\nabla \log p_t(\cdot)$ and $\hat{\mathbf{G}}_t$ denotes the data reconstructed with the learned score function s_{θ} . Next, we establish that the reconstruction error in HOG-Diff is bounded more tightly than in classical graph generation models, thereby ensuring superior sample quality.

324 Table 1: Comparison of different methods based on molecular datasets. We report the mean of 3
 325 different runs. The **best** results for the first three metrics are highlighted in bold.

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	QM9						ZINC250k					
	NSPDK↓	FCD↓	Val. w/o corr.↑	Uni.↑	Nov.↑	NSPDK↓	FCD↓	Val. w/o corr.↑	Uni.↑	Nov.↑		
GraphAF	0.021	5.625	74.43	88.64	86.59	0.044	16.023	68.47	98.64	99.99		
GraphDF	0.064	10.928	93.88	98.58	98.54	0.177	33.546	90.61	99.63	100.00		
GraphArm	0.002	1.220	90.25	95.62	70.39	0.055	16.260	88.23	99.46	100.00		
MiCaM	0.001	1.045	99.93	93.89	83.25	0.166	31.495	100.00	88.48	99.98		
GraphEBM	0.030	6.143	8.22	97.90	97.01	0.212	35.471	5.29	98.79	100.00		
SPECTRE	0.163	47.960	87.30	35.70	97.28	0.109	18.440	90.20	67.05	100.00		
GSDM	0.003	2.650	99.90	-	-	0.017	12.956	92.70	-	-		
EDP-GNN	0.005	2.680	47.52	99.25	86.58	0.049	16.737	82.97	99.79	100.00		
GDSS	0.003	2.900	95.72	98.46	86.27	0.019	14.656	97.01	99.64	100.00		
DiGress	0.0005	0.360	99.00	96.66	33.40	0.082	23.060	91.02	81.23	100.00		
MoFlow	0.017	4.467	91.36	98.65	94.72	0.046	20.931	63.11	99.99	100.00		
CatFlow	-	0.441	99.81	99.95	-	-	13.211	99.95	99.99	-		
Cometh	0.0005	0.248	99.57	96.75	72.06	-	-	-	-	-		
DeFoG	0.0005	0.268	99.26	96.61	72.57	0.002	2.030	94.97	99.98	100.00		
HOG-Diff	0.0003	0.172	98.74	97.10	75.12	0.001	1.633	98.56	99.96	99.53		

Theorem 4. *Under appropriate Lipschitz and boundedness assumptions, the reconstruction error of HOG-Diff satisfies the following bound:*

$$\mathcal{E}_{\text{hog}}(0) \leq A_{\text{hog}} e^{T_{\text{hog}}}, \quad (11)$$

where $A_{\text{hog}} = C^2 \sum_{k=1}^K \ell^{(k)}(\theta) \int_{\tau_{k-1}}^{\tau_k} g_{k,s}^4 ds$ and $T_{\text{hog}} = \sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds + C \sum_{k=1}^{K-1} \int_{\tau_{k-1}}^{\tau_k} h_{k,s}^2 ds$. Furthermore, we can derive that the reconstruction error bound of HOG-Diff is sharper than that of classical graph generation models.

The theorems above rely primarily on mild assumptions, such as smoothness and boundedness, without imposing strict conditions like the target distribution being log-concave or satisfying the log-Sobolev inequality. Their formal statements and detailed proofs are postponed to App. A.

4 EXPERIMENTS

We assess HOG-Diff against state-of-the-art baselines in both molecular and generic graph generation. Ablation studies are further conducted to analyze the impact of different topological guides. Complexity analysis and experimental settings are deferred to Apps. D and E, while App. F presents further results, including diffusion domain analysis, large-scale SBM experiments, the rationale for filtering choices, variance statistics, and visualizations.

4.1 MOLECULE GENERATION

Molecular design is a prominent application of graph generation. We conduct evaluations on two well-known molecular datasets: QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al., 2012). Intermediate higher-order skeletons are extracted using 2-cell complex filtering; the rationale for this choice is discussed in App. F.3. We evaluate the quality of 10,000 generated molecules with five standard metrics as in Jo et al. (2022): Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) MMD (Costa & Grave, 2010), Fréchet ChemNet Distance (FCD) (Preuer et al., 2018), Validity without correction (Val. w/o corr.), Uniqueness (Uni.), and Novelty (Nov.) (Jo et al., 2022).

For benchmarking, we include various representative molecular generation models. Autoregressive models include GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021), and GraphArm (Kong et al., 2023); the fragment-based MiCaM (Geng et al., 2023) creatively leverage motif information. In contrast, the remaining methods adopt a one-shot generation paradigm: GraphEBM serves as an energy-based model, SPECTRE (Martinkus et al., 2022) and GSDM (Luo et al., 2023a) incorporate spectral conditioning within GAN and diffusion frameworks, respectively, while EDP-GNN (Niu et al., 2020), GDSS (Jo et al., 2022), DiGress (Vignac et al., 2023), and **Cometh** (Sirauidin et al., 2025) represent diffusion-based generation models. We also compare against advanced flow-based

Table 2: Generation performance on generic graph datasets. Best **bold** and second-best underlined. Hyphen (-) indicates missing results in the original paper.

Method	Community-small				Enzymes				Ego-small			
	Deg. \downarrow	Clus. \downarrow	Orbit \downarrow	Avg. \downarrow	Deg. \downarrow	Clus. \downarrow	Orbit \downarrow	Avg. \downarrow	Deg. \downarrow	Clus. \downarrow	Orbit \downarrow	Avg. \downarrow
DeepGMG	0.220	0.950	0.400	0.523	-	-	-	-	0.040	0.100	0.020	0.053
GraphRNN	0.080	0.120	0.040	0.080	0.017	0.062	0.046	0.042	0.090	0.220	0.003	0.104
GraphAF	0.180	0.200	0.020	0.133	1.669	1.283	0.266	1.073	0.030	0.110	0.001	0.047
GraphDF	0.060	0.120	0.030	0.070	1.503	1.061	0.202	0.922	0.040	0.130	0.010	0.060
GraphVAE	0.350	0.980	0.540	0.623	1.369	0.629	0.191	0.730	0.130	0.170	0.050	0.117
GNF	0.200	0.200	0.110	0.170	-	-	-	-	0.030	0.100	0.001	0.044
EDP-GNN	0.053	0.144	0.026	0.074	0.023	0.268	0.082	0.124	0.052	0.093	0.007	0.051
GPrinFlowNet	0.021	0.068	0.021	0.037	0.021	0.088	0.009	0.039	-	-	-	-
SPECTRE	0.048	0.049	0.016	0.038	0.136	0.195	0.125	0.152	0.078	0.078	0.007	0.054
GDSS	0.045	0.086	<u>0.007</u>	0.046	0.026	0.061	0.009	0.032	0.021	0.024	0.007	0.017
DiGress	0.047	<u>0.041</u>	0.026	0.038	0.004	0.083	0.002	<u>0.030</u>	0.015	0.029	0.005	0.016
HOG-Diff	0.006	0.022	0.002	0.010	<u>0.011</u>	0.061	0.007	0.027	0.015	0.027	0.004	0.016

Method	Deg. \downarrow	Clus. \downarrow	Orb. \downarrow	Spec. \downarrow	Avg. \downarrow	V.U.N. \uparrow	QM9	ZINC250k	MOSES	HOG-Diff
GraphRNN	0.0055	0.0584	0.0785	0.0065	0.0372	0.05				
GRAN	0.0113	0.0553	0.0540	<u>0.0054</u>	0.0315	0.25				
EDP-GNN	<u>0.0011</u>	0.0552	0.0520	0.0070	0.0288	-				
SPECTRE	0.0015	0.0521	0.0412	0.0056	<u>0.0251</u>	0.53				
HSpectre	0.0141	0.0528	0.0809	0.0071	0.0387	0.75				
GDSS	0.0212	0.0646	0.0894	0.0128	0.0470	0.05				
DiGress	0.0013	0.0498	0.0434	0.0400	0.0336	0.74				
GruM	0.0015	0.0589	0.0450	0.0077	0.0283	0.85				
DeFoG	0.0006	0.0517	0.0556	<u>0.0054</u>	0.0283	0.80				
HOG-Diff	0.0028	<u>0.0500</u>	0.0428	0.0043	0.0249	0.83				

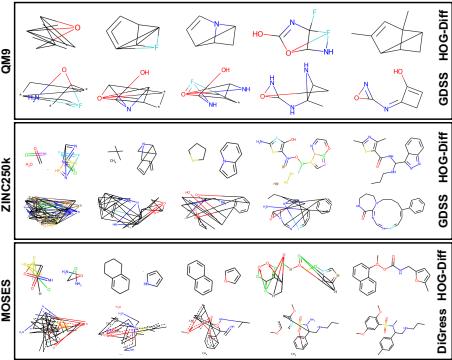


Figure 3: (left) Generation results on the SBM dataset, The **best** and second-best results are highlighted in bold and underlined, respectively. (right) Generative trajectories (left to right) on QM9, ZINC250k, and MOSES, where HOG-Diff maintains topological integrity over intermediate steps.

models, including MoFlow (Zang & Wang, 2020), CatFlow (Eijkelboom et al., 2024), and DeFoG (Qin et al., 2025).

We visualize the molecule generation process in Fig. 3(right) with more examples deferred to App. F.5. It can be observed that our model explicitly preserves higher-order structures during the generation process. Tab. 1 further shows that HOG-Diff generally outperforms both auto-regressive and one-shot models. Notably, the dramatic decrease in NSPDK and FCD implies that HOG-Diff is able to generate molecules with data distributions close to those of real molecules in both chemical and graph spaces. Additional results on validity and variance are provided in App. F.4.

4.2 GENERIC GRAPH GENERATION

To display the ability of learning topology distributions, we assess HOG-Diff over four common generic graph datasets: Community-small, Ego-small, Enzymes, and a larger-scale stochastic block model (SBM) dataset. Intermediate higher-order skeletons are obtained via 3-simplicial complex filtering. We employ the same train/test split as Jo et al. (2022) for a fair comparison. Maximum mean discrepancy (MMD) is used to quantify the distribution differences across key graph statistics, including degree (Deg.), clustering coefficient (Clus.), and 4-node orbit counts (Orbit). A low MMD signifies a close alignment between the generated and evaluation datasets, suggesting superior generative performance. We also report the average MMD across all metrics as an overall indicator. Notably, the SBM dataset follows an evaluation protocol distinct from the other three datasets, and we describe its setup in detail in App. F.2.

We compare the following graph generative models: DeepGMG (Li et al., 2018) and GraphRNN (You et al., 2018) are autoregressive models, while GraphVAE (Simonovsky & Komodakis, 2018), GNF (Liu et al., 2019), and GPrinFlowNet (Mo et al., 2024) are one-shot models. GraphAF, GraphDF, EDP-GNN, SPECTRE, GDSS, and DiGress are previously explained. The results in Tab. 2 and Fig. 3 (left) verify that HOG-Diff is not only suitable for molecular generation

432 but also proficient in generic graph generation, demonstrating its ability to effectively capture the
 433 intricate topological interdependencies.
 434

435 4.3 TOPOLOGICAL PRESERVATION ANALYSIS

436 To further verify the capability of HOG-Diff in pre-
 437 serving higher-order structures, a critical aspect often
 438 overlooked by standard metrics, we conduct a quanti-
 439 tative evaluation using *Curvature Filtrations* (South-
 440 ern et al., 2023). Unlike simple graph statistics,
 441 curvature filtrations combine discrete curvature no-
 442 tions with topological data analysis (TDA) to capture
 443 multi-scale topological features.

444 Specifically, we compute the distance between the av-
 445 erage persistence landscapes of the generated graphs
 446 and the test set. We employ two distinct filtra-
 447 tion functions: (1) Balanced Forman–Ricci Curvature
 448 (κ_{FR}), which focuses on edge-based local clustering
 449 and cycles, and (2) Ollivier–Ricci Curvature (κ_{OR}),
 450 which captures global geometry and transport prop-
 451 erties via Wasserstein distance. A lower distance in-
 452 dicates a generated distribution that is topologically
 453 closer to the test set.

454 The results are presented in Tab. 3. HOG-Diff con-
 455 sistently achieves the lowest distance scores across both
 456 molecular and generic graph datasets. Notably, on
 457 complex molecular datasets, our method outperforms
 458 strong baselines by a significant margin, suggesting
 459 that while baseline models may capture basic chem-
 460 ical validity, HOG-Diff is superior in reconstructing
 461 the intrinsic topological backbone and higher-order
 462 geometric relations. Even on generic graphs like SBM and Enzymes, which possess distinct com-
 463 munity structures, HOG-Diff maintains better topological fidelity, verifying that the performance
 464 improvement stems from the successful preservation of higher-order structures.

465 4.4 ABLATIONS: TOPOLOGICAL GUIDE ANALYSIS

466 Throughout the experiments, we observe that HOG-Diff ex-
 467 hibits superior performance on complex datasets such as
 468 QM9 and ZINC250k, but comparatively modest results on
 469 the Ego-small dataset. Statistics and visualizations in Apps. E
 470 and F.5 reveal that Ego contains the fewest higher-order struc-
 471 tures among the datasets analyzed, suggesting that the choice
 472 of guide plays a pivotal role in the effectiveness of generation.
 473 To validate this hypothesis, we conduct further ablations us-
 474 ing different types of topological information as guides.

475 We first compare two types of guides: structures derived from
 476 2-cell filtering (Cell) and Gaussian random noise (Noise).
 477 Employing noise as a guide aligns with classical diffusion
 478 paradigms that generate samples by progressively denoising
 479 noisy data. Fig. 4 visualizes how the spectrum loss changes
 480 during the training process. It shows that our framework (red
 481 curve) converges faster than the classical method (blue curve),
 482 which is consistent with our theoretical results in Theorem 3.

483 In the sampling procedure, we further evaluate peripheral structures (Periph.), obtained by removing
 484 cell components, as guides. As shown in Tab. 4, both peripheral and noise guides perform worse
 485 than cell-based guides, providing empirical support for the tighter reconstruction error bound es-
 486 tablished in Theorem 4. These results indicate that certain topologies, particularly cells, are more

Table 3: Quantitative evaluation of higher-order topology preservation using Curvature Filtrations. The **best** results are in **bold**.

Dataset	Method	κ_{FR}	κ_{OR}
QM9	GDSS	0.925	0.601
	DiGress	0.251	0.343
	DoFoG	0.177	0.286
	Cometh	0.216	0.314
	HOG-Diff	0.077	0.098
ZINC 250k	MiCaM	9.436	7.251
	GDSS	1.781	1.331
	DoFoG	0.728	0.498
	HOG-Diff	0.190	0.098
Moses	DiGress	0.260	0.223
	HOG-Diff	0.159	0.183
GuacaMol	DiGress	0.862	0.075
	HOG-Diff	0.083	0.057
SBM	DoFoG	3.998	5.206
	Cometh	2.748	3.938
	HOG-Diff	1.453	3.740
Comm. -small	GDSS	12.515	14.949
	HOG-Diff	6.734	6.522
Enzymes	GDSS	13.031	12.399
	HOG-Diff	12.114	9.830
Ego -small	GDSS	2.311	1.301
	HOG-Diff	1.679	1.042

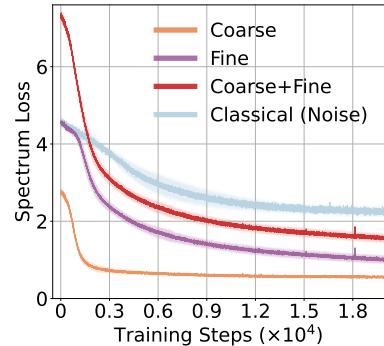


Figure 4: Training curves of the score-matching process. The entire process of HOG-Diff is divided into two stages, *i.e.*, $K = 2$, referred to as coarse and fine, respectively. The combined loss of these two stages is labelled as Coarse+Fine.

486 effective in guiding generation, highlighting the importance of selecting appropriate topological
487 structures to steer toward meaningful outputs. Moreover, this finding suggests that guides could
488 serve as diagnostic tools for assessing whether specific topologies are essential to the architecture.
489 Systematic analysis of different guides promises to enhance interpretability, clarify how topologies
490 affect generation, and inform the design of more effective graph generative models.

491 5 RELATED WORK

493 We review graph and higher-order generation meth-
494 ods, with a more detailed discussion in App. B.

495 **Graph Generative Models.** Early work on graph
496 generative models dates back to random network models
497 (Barabási & Albert, 1999), which offer founda-
498 tional insights but are too simplistic for capturing real-
499 world graph distributions. Recent advances in gener-
500 ative models have leveraged the power of deep neural
501 networks, significantly improving the ability to learn
502 graph distributions. Notable approaches include au-
503 toregressive or simultaneous models based on tech-
504 niques such as variational autoencoders (VAE) (Jin et al., 2018; Simonovsky & Komodakis, 2018),
505 recurrent neural networks (RNN) (You et al., 2018), normalizing flows (Zang & Wang, 2020; Shi
506 et al., 2020; Luo et al., 2021), and generative adversarial networks (GAN) (Martinkus et al., 2022).

507 **Diffusion-based Graph Generation.** A breakthrough in graph generative models has been marked
508 by the recent progress in diffusion-based generative models (Niu et al., 2020; Song et al., 2021; Ho
509 et al., 2020). Recent models employ various strategies to enhance the generation of complex graphs,
510 including capturing node-edge dependency (Jo et al., 2022), addressing discretization challenges
511 (Vignac et al., 2023; Huang et al., 2023; Siraudin et al., 2025), exploiting low-to-high frequency
512 generation curriculum (Mo et al., 2024), and improving computational efficiency through low-rank
513 diffusion processes (Luo et al., 2023a). CatFlow (Eijkelboom et al., 2024) and DeFoG (Qin et al.,
514 2025) adopt flow matching as an alternative to diffusion, achieving more efficient generation. Recent
515 studies have also enhanced diffusion-based generative models by incorporating diffusion bridge
516 processes, *i.e.*, processes conditioned on the endpoints (Wu et al., 2022; Boget et al., 2024; Jo
517 et al., 2024). Despite these advances, existing methods either overlook or inadvertently disrupt
518 higher-order structures during graph generation, or struggle to model the topological properties,
519 as denoising the noisy samples does not explicitly preserve the intricate structural dependencies
520 required for generating realistic graphs. **This highlights the need for a graph-friendly diffusion**
521 **framework that explicitly learns higher-order topology, preserves meaningful intermediate states**
522 **and trajectories, and avoids inappropriate noise injection.**

523 **Higher-order Generative Models.** Generative modeling uses higher-order information mostly in
524 the form of motifs and hypergraphs. MiCaM (Geng et al., 2023) synthesizes molecules by iteratively
525 merging motifs. HypeBoy (Kim et al., 2024) learns hypergraph representation through hyperedge
526 filling, while Hygene (Gailhard et al., 2025) reduces hypergraph generation to bipartite graphs. To
527 the best of our knowledge, we are the first to consider higher-order guides for graph generation.

528 6 CONCLUSION

529 We introduce HOG-Diff, a coarse-to-fine generation framework that explicitly exploits higher-order
530 graph topology. It decomposes the complicated graph generation process into easier-to-learn sub-
531 steps, which are implemented using a cell complex lifting and GOU bridge process. Our theoretical
532 analysis justifies the effectiveness of HOG-Diff over classical diffusion-based approaches, which is
533 further validated by superior experimental results on both molecular and generic graph generation
534 tasks. This work is a key step in topological diffusion models, highlighting the importance of higher-
535 order features that are often overlooked by existing approaches and opening ample room for future
536 work.

537 **Limitations and future work.** The performance of HOG-Diff depends on the presence of explicit
538 higher-order structures, which certain graph types might lack. Nevertheless, higher-order motifs
539 are often deducible in realistic graphs. Our future work will explore various filtering mechanisms
beyond CCF. We will adaptively determine the order (dimension of the higher-order skeleton).

Table 4: Sampling results of various topo-
logical guides.

Dataset	Guide	NSPDK↓	FCD↓	Val. w/o corr.↑
QM9	Noise	0.0015	0.829	91.52
	Periph.	0.0009	0.305	97.58
	Cell	0.0003	0.172	98.74
ZINC 250k	Noise	0.002	2.665	96.78
	Periph.	0.002	2.641	97.93
	Cell	0.001	1.633	98.56

540 ETHICS AND REPRODUCIBILITY STATEMENT
541

542 This paper presents work whose goal is to advance the field of deep generative models. Positive
543 applications include generating graph-structured data for scientific discovery and accelerating drug
544 discovery by generating novel molecular structures. However, like other generative technologies, our
545 work could potentially be misused to synthesize harmful molecules, counterfeit social interactions,
546 or deceptive network structures.

547 Experimental code related to this paper is provided in the Supplementary Material. Detailed theo-
548 retical derivations are provided in App. A. The complete architecture of HOG-Diff, along with the
549 training objectives and sampling procedures, is described in App. C. Details of the datasets, pre-
550 processing steps, and experimental settings are provided in App. E. Additional experimental results,
551 ablation studies, and visualizations can be found in App. F.

552 In this work, Large Language Models (LLMs) are used solely for language polishing.
553

554 REFERENCES
555

556 Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and Dheeraj Nagaraj. The
557 staircase property: How hierarchical structure can guide deep learning. In *Proceedings of Ad-*
558 *vances in Neural Information Processing Systems (NeurIPS)*, pp. 26989–27002, 2021.

559 R Ahmad. Introduction to stochastic differential equations. *Journal of the Royal Statistical Society*
560 *Series C*, 37(3):446–446, 1988.
561

562 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Ap-*
563 *plications*, 12(3):313–326, 1982.

564 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *Science*, 286
565 (5439):509–512, 1999.
566

567 Claudio Battiloro, Ege Karaismailoglu, Mauricio Tec, George Dasoulas, Michelle Audirac, and
568 Francesca Dominici. E(n) equivariant topological neural networks. In *Proceedings of Interna-*
569 *tional Conference on Learning Representations (ICLR)*, 2025.

570 Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
571 Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: Structure and
572 dynamics. *Physics Reports*, 874:1–92, 2020. ISSN 0370-1573.
573

574 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
575 Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. In *Proceedings of Advances*
576 *in Neural Information Processing Systems (NeurIPS)*, pp. 2625–2640, 2021.

577 Yoann Boget, Frantzeska Lavda, Alexandros Kalousis, et al. Glad: Improving latent graph gener-
578 ative modeling with simple quantization. In *ICML 2024 Workshop on Structured Probabilistic*
579 *Inference & Generative Modeling*, 2024.
580

581 Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected graph. *Com-*
582 *munications of the ACM*, 16(9):575–577, sep 1973.

583 Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
584 models for de novo molecular design. *Journal of chemical information and modeling*, 59(3):
585 1096–1108, 2019.
586

587 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. *SIAM Journal*
588 *on computing*, 14(1):210–223, 1985.

589 Fan RK Chung. *Spectral graph theory*, volume 92. American Mathematical Soc., 1997.
590

591 Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating con-
592 ditional diffusion models for inverse problems through stochastic contraction. In *Proceedings*
593 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12413–
12422, 2022.

594 Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In *Inter-
595 national Conference on Machine Learning (ICML)*, pp. 255–262, 2010.
596

597 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
598 bridge with applications to score-based generative modeling. In *Proceedings of Advances in
599 Neural Information Processing Systems (NeurIPS)*, volume 34, pp. 17695–17709, 2021.

600 Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
601 In *ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Mod-
602 els*, 2018.
603

604 Joseph L Doob and JI Doob. *Classical potential theory and its probabilistic counterpart*, volume
605 262. Springer, 1984.

606 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. In
607 *AAAI Workshop on Deep Learning on Graphs: Methods and Applications*, 2021.
608

609 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
610 van de Meent. Variational flow matching for graph generation. *Proceedings of Advances in Neural
611 Information Processing Systems (NeurIPS)*, 37:11735–11764, 2024.

612 Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. *Publ. Math. Inst. Hung. Acad.
613 Sci*, 5(1):17–60, 1960.
614

615 Peter Ertl, Eva Altmann, and Rainer Wilcken. Ring systems in medicinal chemistry: A cheminfor-
616 matics analysis of ring popularity in drug discovery over time. *European Journal of Medicinal
617 Chemistry*, pp. 118178, 2025.

618 Xingcheng Fu, Yisen Gao, Yuecen Wei, Qingyun Sun, Hao Peng, Jianxin Li, and Xianxian Li.
619 Hyperbolic geometric latent diffusion model for graph generation. In *International Conference
620 on Machine Learning (ICML)*, pp. 14102–14124. PMLR, 2024.
621

622 Dorian Gailhard, Enzo Tartaglione, Lirida Naviner, and Jhony H Giraldo. Hygene: A diffusion-
623 based hypergraph generation method. In *Proceedings of the AAAI Conference on Artificial Intel-
624 ligence (AAAI)*, volume 39, pp. 16682–16690, 2025.

625 Richard J Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A Baas, Benjamin A
626 Dunn, May-Britt Moser, and Edvard I Moser. Toroidal topology of population activity in grid
627 cells. *Nature*, 602(7895):123–128, 2022.
628

629 Zijie Geng, Shufang Xie, Yingce Xia, Lijun Wu, Tao Qin, Jie Wang, Yongdong Zhang, Feng Wu, and
630 Tie-Yan Liu. De novo molecular generation via connection-aware motif mining. In *Proceedings
631 of International Conference on Learning Representations (ICLR)*, 2023.

632 Arsham Ghavasieh and Manlio De Domenico. Diversity of information pathways drives sparsity in
633 real-world networks. *Nature Physics*, 20(3):512–519, 2024.
634

635 Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,
636 Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K Dey, Soham Mukherjee, Shreyas N
637 Samaga, et al. Topological deep learning: Going beyond graph data. *arXiv preprint
638 arXiv:2206.00606*, 2022.

639 Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Aldo Guzman-Saenz, Tolga Birdal, and
640 Michael T Schaub. Combinatorial complexes: bridging the gap between cell complexes and
641 hypergraphs. In *Asilomar Conference on Signals, Systems, and Computers*, pp. 799–803. IEEE,
642 2023.

643 Mustafa Hajij, Lennart Bastian, Sarah Osentoski, Hardik Kabaria, John L Davenport, Sheik Da-
644 wood, Balaji Cherukuri, Joseph G Kocheemoolayil, Nastaran Shahmansouri, Adrian Lew, et al.
645 Copresheaf topological neural networks: A generalized deep learning framework. In *Proceedings
646 of Advances in Neural Information Processing Systems (NeurIPS)*, 2025.
647

Allen Hatcher. *Algebraic topology*. Cambridge University Press, 2001.

648 Jeremy Heng, Valentin De Bortoli, Arnaud Doucet, and James Thornton. Simulating diffusion
649 bridges with score matching. *arXiv preprint arXiv:2111.07243*, 2021.
650
651 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceed-
652 ings of Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 6840–
653 6851, 2020.
654 Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
655 structures for molecular graph generation. In *Proceedings of the AAAI Conference on Artificial
656 Intelligence (AAAI)*, volume 37, pp. 4302–4311, 2023.
657 Yiming Huang, Yujie Zeng, Qiang Wu, and Linyuan Lü. Higher-order graph convolutional network
658 with flower-petals laplacians on simplicial complexes. In *Proceedings of the AAAI Conference on
659 Artificial Intelligence (AAAI)*, pp. 12653–12661, 2024.
660
661 John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
662 a free tool to discover chemistry for biology. *Journal of chemical information and modeling*, 52
663 (7):1757–1768, 2012.
664 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
665 molecular graph generation. In *International Conference on Machine Learning (ICML)*, pp.
666 2323–2332, 2018.
667 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
668 system of stochastic differential equations. In *International Conference on Machine Learning
669 (ICML)*, pp. 10362–10383, 2022.
670
671 Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In
672 *International Conference on Machine Learning (ICML)*, 2024.
673 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
674 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
675 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
676
677 Mahdi Karami. Higen: Hierarchical graph generative networks. In *Proceedings of International
678 Conference on Learning Representations (ICLR)*, 2024.
679 Sunwoo Kim, Shinhwan Kang, Fanchen Bu, Soo Yong Lee, Jaemin Yoo, and Kijung Shin. Hy-
680 peboy: Generative self-supervised representation learning on hypergraphs. In *Proceedings of
681 International Conference on Learning Representations (ICLR)*, 2024.
682
683 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
684 works. In *Proceedings of International Conference on Learning Representations (ICLR)*, 2017.
685
686 Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
687 Autoregressive diffusion model for graph generation. In *International Conference on Machine
688 Learning (ICML)*, pp. 17391–17408, 2023.
689
690 Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoen-
691 coder. In *International Conference on Machine Learning (ICML)*, volume 70 of *Proceedings of
692 Machine Learning Research*, pp. 1945–1954, 2017.
693
694 Greg Landrum et al. Rdkit: Open-source cheminformatics software, 2016. *URL* <http://www.rdkit.org/>, <https://github.com/rdkit/rdkit>, 2016.
695
696 Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
697 models of graphs. In *International Conference on Machine Learning (ICML)*, 2018.
698
699 Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-
700 parameterized systems of non-linear equations: the lessons of deep learning. *arXiv preprint
701 arXiv:2003.00307*, 7, 2020.
702
703 Cong Liu, David Ruhe, Floor Eijkelboom, and Patrick Forré. Clifford group equivariant simplicial
704 message passing networks. In *Proceedings of International Conference on Learning Representa-
705 tions (ICLR)*, 2024.

702 Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows. In
703 *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, volume 32, 2019.
704

705 Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation
706 with energy-based models. In *Energy Based Models Workshop-ICLR*, 2021.

707 Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. *IEEE*
708 *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2023a.

709

710 Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
711 generation. In *International Conference on Machine Learning (ICML)*, pp. 7192–7203, 2021.

712 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image restora-
713 tion with mean-reverting stochastic differential equations. In *International Conference on Ma-
714 chine Learning (ICML)*, pp. 23045–23066, 2023b.

715

716 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
717 conditioning helps to overcome the expressivity limits of one-shot graph generators. In *Interna-
718 tional Conference on Machine Learning (ICML)*, pp. 15159–15179, 2022.

719

720 Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
721 Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. *Machine Learning:
722 Science and Technology*, 2(2):025023, 2021.

723

724 Zhanfeng Mo, Tianze Luo, and Sinno Jialin Pan. Graph principal flow network for conditional graph
725 generation. In *Proceedings of the ACM on Web Conference 2024*, pp. 768–779, 2024.

726

727 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
728 mutation invariant graph generation via score-based generative modeling. In *International Con-
729 ference on Artificial Intelligence and Statistics*, pp. 4474–4484, 2020.

730

731 Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue
732 Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Mi-
733 olane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane,
734 Michael T Schaub, Petar Veličković, Bei Wang, Yusu Wang, Guowei Wei, and Ghada Zamzmi.
735 Position: Topological deep learning is the new frontier for relational learning. In *International
736 Conference on Machine Learning (ICML)*, volume 235, pp. 39529–39555, 2024.

737

738 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint
739 arXiv:1912.01703*, 2019.

740

741 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
742 reasoning with a general conditioning layer. In *Proceedings of the AAAI Conference on Artificial
743 Intelligence (AAAI)*, volume 32, 2018.

744

745 Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
746 Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
747 Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
748 *Frontiers in pharmacology*, 11:565644, 2020.

749

750 Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
751 Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. *Journal
752 of chemical information and modeling*, 58(9):1736–1741, 2018.

753

754 Bo Qiang, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, Wei-Ying Ma, and
755 Yanyan Lan. Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3d. In
756 *International conference on machine learning*, pp. 28277–28299. PMLR, 2023.

757

758 Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
759 for graph generation. In *International Conference on Machine Learning (ICML)*, 2025.

760

761 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
762 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

756 T Mitchell Roddenberry, Michael T Schaub, and Mustafa Hajij. Signal processing on cell com-
757 plexes. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal*
758 *Processing (ICASSP)*, pp. 8852–8856. IEEE, 2022.

759

760 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical informa-*
761 *tion and modeling*, 50(5):742–754, 2010.

762 Paavo Salminen. On conditional ornstein–uhlenbeck processes. *Advances in applied probability*, 16
763 (4):920–922, 1984.

764

765 Stefania Sardellitti, Sergio Barbarossa, and Lucia Testa. Topological signal processing over cell
766 complexes. In *2021 55th Asilomar Conference on Signals, Systems, and Computers*, pp. 1558–
767 1562. IEEE, 2021.

768

769 Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
770 molecule libraries for drug discovery with recurrent neural networks. *ACS central science*, 4(1):
771 120–131, 2018.

772

773 Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
774 flow-based autoregressive model for molecular graph generation. In *Proceedings of International*
775 *Conference on Learning Representations (ICLR)*, 2020.

776

777 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
778 variational autoencoders. In *International Conference on Artificial Neural Networks*, pp. 412–
779 422, 2018.

780

781 Antoine Siraudin, Fragkiskos D Malliaros, and Christopher Morris. Cometh: A continuous-time
782 discrete-state graph diffusion model. *Transactions on Machine Learning Research*, 2025.

783

784 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
785 In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, volume 32,
786 2019.

787

788 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
789 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings*
790 *of International Conference on Learning Representations (ICLR)*, 2021.

791

792 Joshua Southern, Jeremy Wayland, Michael Bronstein, and Bastian Rieck. Curvature filtrations for
793 graph generative model evaluation. In *Proceedings of Advances in Neural Information Processing*
794 *Systems (NeurIPS)*, volume 36, pp. 63036–63061, 2023.

795

796 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
797 *International Journal of Computer Vision*, 130(6):1526–1565, 2022.

798

799 Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
800 Frossard. Digress: Discrete denoising diffusion for graph generation. In *Proceedings of In-*
801 *ternational Conference on Learning Representations (ICLR)*, 2023.

802

803 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-*
804 *tion*, 23(7):1661–1674, 2011.

805

806 Zhiyu Wang, Arian Jamasb, Mustafa Hajij, Alex Morehead, Luke Braithwaite, and Pietro Liò.
807 Topotein: Topological deep learning for protein representation learning. *arXiv preprint*
808 *arXiv:2509.03885*, 2025.

809

810 A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, and I Polosukhin.
811 Attention is all you need. In *Proceedings of Advances in Neural Information Processing Systems*
812 *(NeurIPS)*, 2017.

813

814 Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
815 generation with informative prior bridges. *Proceedings of Advances in Neural Information Pro-*
816 *cessing Systems (NeurIPS)*, 35:36533–36545, 2022.

810 Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
811 Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gen-
812 eration. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, vol-
813 ume 37, pp. 79704–79740, 2024.

814 Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
815 ing realistic graphs with deep auto-regressive models. In *International Conference on Machine*
816 *Learning (ICML)*, pp. 5708–5717, 2018.

817 Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, and Dongyu Zhang. Im-
818 age restoration through generalized ornstein-uhlenbeck bridge. In *International Conference on*
819 *Machine Learning (ICML)*, 2024.

820 Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
821 *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data*
822 *mining*, pp. 617–626, 2020.

823 Yujie Zeng, Yiming Huang, Qiang Wu, and Linyuan Lü. Influential simplices mining via simplicial
824 convolutional networks. *Information Processing & Management*, 61(5):103813, 2024.

825 Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-nodes network
826 generative model. In *Proceedings of the Web Conference 2021*, pp. 718–729, 2021.

827 Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models. In
828 *Proceedings of International Conference on Learning Representations (ICLR)*, 2024.

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Appendix

Organization. The appendix is structured as follows: We first present the derivations excluded from the main paper due to space limitations in Section A. Additional explanations of related work are provided in Section B. Section C details the generation process, including the spectral diffusion framework, the architecture of the proposed score network, and the training and sampling procedures. Computational efficiency is discussed in Section D. Section E outlines the experimental setup, and Section F reports additional experimental results, covering the impact of diffusion domain choice, scalability to large graphs, standard deviation analysis, and visualizations of the generated samples. Section G concludes with limitations.

A FORMAL STATEMENTS AND PROOFS

This section presents the formal statements of key theoretical results along with their detailed derivations. We will recall and more precisely state the theoretical claims before presenting the proof.

A.1 DIFFUSION BRIDGE PROCESS

Recall that the generalized Ornstein-Uhlenbeck (GOU) process, also known as the time-varying OU process, is a stationary Gaussian-Markov process whose marginal distribution gradually tends towards a stable mean and variance over time. The GOU process is generally defined as follows (Ahmad, 1988; Luo et al., 2023b):

$$d\mathbf{G}_t = \theta_t (\boldsymbol{\mu} - \mathbf{G}_t) dt + g_t d\mathbf{W}_t, \quad (12)$$

where $\boldsymbol{\mu}$ is a given state vector, θ_t denotes a scalar drift coefficient, and g_t represents the diffusion coefficient. Additionally, we assume the relation $g_t^2/\theta_t = 2\sigma^2$, where σ^2 is a given constant scalar. As a result, its transition probability possesses a closed-form analytical solution:

$$\begin{aligned} p(\mathbf{G}_t | \mathbf{G}_s) &= \mathcal{N}(\mathbf{m}_{s:t}, v_{s:t}^2 \mathbf{I}), \\ \mathbf{m}_{s:t} &= \boldsymbol{\mu} + (\mathbf{G}_s - \boldsymbol{\mu}) e^{-\bar{\theta}_{s:t}}, \\ v_{s:t}^2 &= \sigma^2 \left(1 - e^{-2\bar{\theta}_{s:t}}\right). \end{aligned} \quad (13)$$

Here, $\bar{\theta}_{s:t} = \int_s^t \theta_z dz$. When $s = 0$, we write $\bar{\theta}_t := \bar{\theta}_{0:t}$ for notation simplicity.

The Doob's h -transform can modify an SDE to pass through a specified endpoint (Doob & Doob, 1984). When applied to the GOU process, it eliminates variance in the terminal state by driving the diffusion process toward a Dirac distribution centered at \mathbf{G}_{τ_k} (Heng et al., 2021; Yue et al., 2024), making it well-suited for stochastic modelling with terminal constraints.

In the following, we derive the generalized Ornstein–Uhlenbeck (GOU) bridge process using Doob's h -transform (Doob & Doob, 1984), and subsequently examine its relationship with the Brownian bridge process.

Generalized Ornstein–Uhlenbeck (GOU) bridge. Let \mathbf{G}_t evolve according to the generalized OU process in Eq. (5), subject to the terminal conditional $\boldsymbol{\mu} = \mathbf{G}_{\tau_k}$. Applying Doob's h -transform (Doob & Doob, 1984), we can derive the GOU bridge process as follows:

$$d\mathbf{G}_t = \theta_t \left(1 + \frac{2}{e^{2\bar{\theta}_{t:\tau_k}} - 1}\right) (\mathbf{G}_{\tau_k} - \mathbf{G}_t) dt + g_{k,t} d\mathbf{W}_t. \quad (14)$$

The conditional transition probability $p(\mathbf{G}_t | \mathbf{G}_{\tau_{k-1}}, \mathbf{G}_{\tau_k})$ admits an analytical expression:

$$\begin{aligned} p(\mathbf{G}_t | \mathbf{G}_{\tau_{k-1}}, \mathbf{G}_{\tau_k}) &= \mathcal{N}(\bar{\mathbf{m}}_t, \bar{v}_t^2 \mathbf{I}), \\ \bar{\mathbf{m}}_t &= \mathbf{G}_{\tau_k} + (\mathbf{G}_{\tau_{k-1}} - \mathbf{G}_{\tau_k}) e^{-\bar{\theta}_{\tau_{k-1}:t}} \frac{v_{t:\tau_k}^2}{v_{\tau_{k-1}:\tau_k}^2}, \\ \bar{v}_t^2 &= v_{\tau_{k-1}:t}^2 v_{t:\tau_k}^2 / v_{\tau_{k-1}:\tau_k}^2. \end{aligned} \quad (15)$$

Here, $\bar{\theta}_{a:b} = \int_a^b \theta_s ds$, and $v_{a:b} = \sigma^2(1 - e^{-2\bar{\theta}_{a:b}})$.

918 *Proof.* Without loss of generality, consider one generation interval $[\tau_{k-1}, \tau_k]$ and denote $T = \tau_k$,
919 $\mathbf{x}_t = \mathbf{G}_t^{(k)}$, $0 = \tau_{k-1}$, and endpoints $\mathbf{x}_0 = \mathbf{G}_{\tau_{k-1}}$, $\mathbf{x}_T = \mathbf{G}_{\tau_k}$.
920

921 From Eq. (6), we can derive the following conditional distribution

$$922 \quad p(\mathbf{x}_T \mid \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_T + (\mathbf{x}_t - \mathbf{x}_T)e^{\bar{\theta}_{t:T}}, v_{t:T}^2 \mathbf{I}). \quad (16)$$

923 Hence, the h -function can be directly computed as:

$$924 \quad \begin{aligned} \mathbf{h}(\mathbf{x}_t, t, \mathbf{x}_T, T) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_T \mid \mathbf{x}_t) \\ 925 &= -\nabla_{\mathbf{x}_t} \left[\frac{(\mathbf{x}_t - \mathbf{x}_T)^2 e^{-2\bar{\theta}_{t:T}}}{2v_{t:T}^2} + \text{const} \right] \\ 926 &= (\mathbf{x}_T - \mathbf{x}_t) \frac{e^{-2\bar{\theta}_{t:T}}}{v_{t:T}^2} \\ 927 &= (\mathbf{x}_T - \mathbf{x}_t) \sigma^{-2} / (e^{2\bar{\theta}_{t:T}} - 1). \end{aligned} \quad (17)$$

928 Following the approach in Yue et al. (2024), applying the Doob's h -transform yields the representation
929 of an endpoint \mathbf{x}_T conditioned process defined by the following SDE:
930

$$931 \quad \begin{aligned} \mathrm{d}\mathbf{x}_t &= [f(\mathbf{x}_t, t) + g_t^2 \mathbf{h}(\mathbf{x}_t, t, \mathbf{x}_T, T)] \mathrm{d}t + g_t \mathrm{d}\mathbf{w}_t \\ 932 &= \left(\theta_t + \frac{g_t^2}{\sigma^2(e^{2\bar{\theta}_{t:T}} - 1)} \right) (\mathbf{x}_T - \mathbf{x}_t) \mathrm{d}t + g_t \mathrm{d}\mathbf{w}_t \\ 933 &= \theta_t \left(1 + \frac{2}{e^{2\bar{\theta}_{t:T}} - 1} \right) (\mathbf{x}_T - \mathbf{x}_t) \mathrm{d}t + g_t \mathrm{d}\mathbf{w}_t. \end{aligned} \quad (18)$$

934 Given that the joint distribution of $[\mathbf{x}_0, \mathbf{x}_t, \mathbf{x}_T]$ is multivariate normal, the conditional distribution
935 $p(\mathbf{x}_t \mid \mathbf{x}_0, \mathbf{x}_T)$ is also Gaussian:

$$936 \quad p(\mathbf{x}_t \mid \mathbf{x}_0, \mathbf{x}_T) = \mathcal{N}(\bar{\mathbf{m}}_t, \bar{v}_t^2 \mathbf{I}), \quad (19)$$

937 where the mean $\bar{\mathbf{m}}_t$ and variance \bar{v}_t^2 are determined using the conditional formulas for multivariate
938 normal variables:
939

$$940 \quad \begin{aligned} \bar{\mathbf{m}}_t &= \mathbb{E}[\mathbf{x}_t \mid \mathbf{x}_0 \mid \mathbf{x}_T] = \mathbb{E}[\mathbf{x}_t \mid \mathbf{x}_0] + \text{Cov}(\mathbf{x}_t, \mathbf{x}_T \mid \mathbf{x}_0) \text{Var}(\mathbf{x}_T \mid \mathbf{x}_0)^{-1} (\mathbf{x}_T - \mathbb{E}[\mathbf{x}_T \mid \mathbf{x}_0]), \\ 941 &\bar{v}_t^2 = \text{Var}(\mathbf{x}_t \mid \mathbf{x}_0 \mid \mathbf{x}_T) = \text{Var}(\mathbf{x}_t \mid \mathbf{x}_0) - \text{Cov}(\mathbf{x}_t, \mathbf{x}_T \mid \mathbf{x}_0) \text{Var}(\mathbf{x}_T \mid \mathbf{x}_0)^{-1} \text{Cov}(\mathbf{x}_T, \mathbf{x}_t \mid \mathbf{x}_0). \end{aligned} \quad (20)$$

942 Notice that

$$943 \quad \text{Cov}(\mathbf{x}_t, \mathbf{x}_T \mid \mathbf{x}_0) = \text{Cov} \left(\mathbf{x}_t, (\mathbf{x}_t - \mathbf{x}_T)e^{-\bar{\theta}_{t:T}} \mid \mathbf{x}_0 \right) = e^{-\bar{\theta}_{t:T}} \text{Var}(\mathbf{x}_t \mid \mathbf{x}_0). \quad (21)$$

944 By substituting this and the results in Eq. (6) into Eq. (20), we can obtain

$$945 \quad \begin{aligned} \bar{\mathbf{m}}_t &= \left(\mathbf{x}_T + (\mathbf{x}_0 - \mathbf{x}_T)e^{-\bar{\theta}_t} \right) + \left(e^{-\bar{\theta}_{t:T}} v_t^2 \right) / v_T^2 \cdot \left(\mathbf{x}_T - \mathbf{x}_T - (\mathbf{x}_0 - \mathbf{x}_T)e^{-\bar{\theta}_T} \right) \\ 946 &= \mathbf{x}_T + (\mathbf{x}_0 - \mathbf{x}_T) \left(e^{-\bar{\theta}_t} - e^{-\bar{\theta}_{t:T}} e^{-\bar{\theta}_T} v_t^2 / v_T^2 \right) \\ 947 &= \mathbf{x}_T + (\mathbf{x}_0 - \mathbf{x}_T) e^{-\bar{\theta}_t} \left(\frac{1 - e^{-2\bar{\theta}_T} - e^{-2\bar{\theta}_{t:T}} (1 - e^{-2\bar{\theta}_t})}{1 - e^{-2\bar{\theta}_T}} \right) \\ 948 &= \mathbf{x}_T + (\mathbf{x}_0 - \mathbf{x}_T) e^{-\bar{\theta}_t} v_{t:T}^2 / v_T^2, \end{aligned} \quad (22)$$

949 and

$$950 \quad \begin{aligned} \bar{v}_t^2 &= v_t^2 - \left(e^{-\bar{\theta}_{t:T}} v_t^2 \right)^2 / v_T^2 \\ 951 &= \frac{v_t^2}{v_T^2} (v_T^2 - e^{-2\bar{\theta}_{t:T}} v_t^2) \\ 952 &= \frac{v_t^2}{v_T^2} \sigma^2 \left(1 - e^{-2\bar{\theta}_T} - e^{-2\bar{\theta}_{t:T}} (1 - e^{-2\bar{\theta}_t}) \right) \\ 953 &= v_t^2 v_{t:T}^2 / v_T^2. \end{aligned} \quad (23)$$

972 Finally, we conclude the proof by reverting to the original notations. \square
 973

974 Note that the GOU bridge process, also referred to as the conditional GOU process, has been studied
 975 theoretically in previous works (Salminen, 1984; Heng et al., 2021; Yue et al., 2024). However, we
 976 are the first to demonstrate its effectiveness in explicitly learning higher-order structures within the
 977 graph generation process.

978 **Brownian Bridge Process.** In the following, we demonstrate that the Brownian bridge process is a
 979 particular case of the generalized OU bridge process when θ_t approaches zero.
 980

981 Assuming $\theta_t = \theta$ is a constant that tends to zero, we obtain

$$982 \bar{\theta}_{a:b} = \int_a^b \theta_s \, ds = \theta(b-a) \rightarrow 0. \quad (24)$$

983 Consider the term $e^{2\bar{\theta}_{t:\tau_k}} - 1$, we approximate the exponential function using a first-order Taylor
 984 expansion for small $\bar{\theta}_{t:\tau_k}$:

$$985 e^{2\bar{\theta}_{t:\tau_k}} - 1 \approx 2\bar{\theta}_{t:\tau_k} \rightarrow 2\theta(\tau_k - t). \quad (25)$$

986 Hence, the drift term in the generalized OU bridge simplifies to

$$987 \theta_t \left(1 + \frac{2}{e^{2\bar{\theta}_{t:\tau_k}} - 1} \right) \approx \theta \left(1 + \frac{2}{2\theta(\tau_k - t)} \right) \rightarrow \frac{1}{\tau_k - t}. \quad (26)$$

988 Consequently, in the limit $\theta_t \rightarrow 0$, the GOU bridge process described in Eq. (14) can be modelled
 989 by the following SDE:

$$990 d\mathbf{G}_t = \frac{\mathbf{G}_{\tau_k} - \mathbf{G}_t}{\tau_k - t} dt + g_{k,t} d\mathbf{W}_t. \quad (27)$$

991 This equation precisely corresponds to the SDE representation of the classical Brownian bridge
 992 process.

993 In contrast to the GOU bridge process in Eq. (14), the evolution of the Brownian bridge is fully
 994 determined by the noise schedule $g_{k,t}$, resulting in a simpler SDE representation. However, this
 995 constraint in the Brownian bridge reduces the flexibility in designing the generative process.

996 Note that the Brownian bridge is an endpoint-conditioned process relative to a reference Brownian
 997 motion, which the SDE governs:

$$1000 d\mathbf{G}_t = g_t d\mathbf{W}_t. \quad (28)$$

1001 This equation describes a pure diffusion process without drift, making it a specific instance of the
 1002 GOU process.

1003 A.2 PROOF OF THEOREM 3

1004 To establish proof, we begin by introducing essential definitions and assumptions.

1005 **Definition 5** (β -smooth). A function $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is said to be β -smooth if and only if

$$1006 \|f(\mathbf{w}) - f(\mathbf{v}) - \nabla f(\mathbf{v})(\mathbf{w} - \mathbf{v})\| \leq \frac{\beta}{2} \|\mathbf{w} - \mathbf{v}\|^2, \forall \mathbf{w}, \mathbf{v} \in \mathbb{R}^m. \quad (29)$$

1007 **Theorem 3** (Formal). Let $\ell^{(k)}(\boldsymbol{\theta})$ be a loss function that is β -smooth and satisfies the μ -PL (Polyak-
 1008 Lojasiewicz) condition in the ball $B(\boldsymbol{\theta}_0, R)$ of radius $R = 2N\sqrt{2\beta\ell^{(k)}(\boldsymbol{\theta}_0)}/(\mu\delta)$, where $\delta > 0$.
 1009 Then, with probability $1 - \delta$ over the choice of mini-batch of size b , stochastic gradient descent
 1010 (SGD) with a learning rate $\eta^* = \frac{\mu N}{N\beta(N^2\beta + \mu(b-1))}$ converges to a global solution in the ball B with
 1011 exponential convergence rate:

$$1012 \mathbb{E} \left[\ell^{(k)}(\boldsymbol{\theta}_i) \right] \leq \left(1 - \frac{b\mu^2}{\beta N(\beta N^2 + \mu(b-1))} \right)^i \ell^{(k)}(\boldsymbol{\theta}_0). \quad (30)$$

1013 Here, N denotes the size of the training dataset. Furthermore, the proposed generative model
 1014 yields a smaller smoothness constant $\beta_{\text{HOG-Diff}}$ compared to that of the classical model $\beta_{\text{classical}}$, i.e.,
 1015 $\beta_{\text{HOG-Diff}} \leq \beta_{\text{classical}}$, implying that the learned distribution in HOG-Diff converges to the target
 1016 distribution faster than classical generative models.

1026 *Proof.* Assume that the loss function $\ell^{(k)}(\boldsymbol{\theta})$ in Eq. (9) is minimized using standard Stochastic
 1027 Gradient Descent (SGD) on a training dataset $\mathcal{S} = \{\mathbf{x}^i\}_{i=1}^N$. At the i -th iteration, parameter $\boldsymbol{\theta}_i$ is
 1028 updated using a mini-batch of size b as follows:

$$1029 \quad \boldsymbol{\theta}_{i+1} \triangleq \boldsymbol{\theta}_i - \eta \nabla \ell^{(k)}(\boldsymbol{\theta}_i), \quad (31)$$

1030 where η is the learning rate.

1031 Following Liu et al. (2020) and Luo et al. (2023a), we assume that $\ell^{(k)}(\boldsymbol{\theta})$ is β -smooth and satisfies
 1032 the μ -PL condition in the ball $B(\boldsymbol{\theta}_0, R)$ with $R = 2N\sqrt{2\beta\ell^{(k)}(\boldsymbol{\theta}_0)}/(\mu\delta)$ where $\delta > 0$. Then,
 1033 with probability $1 - \delta$ over the choice of mini-batch of size b , SGD with a learning rate $\eta^* =$
 1034 $\frac{\mu N}{N\beta(N^2\beta + \mu(b-1))}$ converges to a global solution in the ball $B(\boldsymbol{\theta}_0, R)$ with exponential convergence
 1035 rate (Liu et al., 2020):

$$1036 \quad \mathbb{E}[\ell^{(k)}(\boldsymbol{\theta}_i)] \leq \left(1 - \frac{b\mu\eta^*}{N}\right)^i \ell^{(k)}(\boldsymbol{\theta}_0) = \left(1 - \frac{b\mu^2}{\beta N(\beta N^2 + \mu(b-1))}\right)^i \ell^{(k)}(\boldsymbol{\theta}_0). \quad (32)$$

1037 Next, we show that the proposed framework has a smaller smoothness constant than the clas-
 1038 sical one-step model. Therefore, we focus exclusively on the spectral component $\|\mathbf{s}_{\boldsymbol{\theta}, \Lambda}^{(k)} -$
 1039 $\nabla_{\Lambda} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})\|_2^2$ from the full loss function in Eq. (9), as the feature-related part of the loss
 1040 function in HOG-Diff aligns with that of the classical framework. For simplicity, we use the notation
 1041 $\bar{\ell}(\boldsymbol{\theta}) = \|\mathbf{s}_{\boldsymbol{\theta}, \Lambda}^{(k)} - \nabla_{\Lambda} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})\|^2 = \|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t) - \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)\|^2$ as the feature-related part of
 1042 the loss.

1043 Next, we verify that $\bar{\ell}(\boldsymbol{\theta})$ is β -smooth under the assumptions given. Notice that the gradient of the
 1044 loss function is given by:

$$1045 \quad \nabla \bar{\ell}(\boldsymbol{\theta}) = 2\mathbb{E}[(\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla \log p(\mathbf{x}))^\top \nabla_{\boldsymbol{\theta}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})] \quad (33)$$

1046 Hence,

$$1047 \quad \begin{aligned} \|\nabla \bar{\ell}(\boldsymbol{\theta}_1) - \nabla \bar{\ell}(\boldsymbol{\theta}_2)\| &= 2\|\mathbb{E}[(\mathbf{s}_{\boldsymbol{\theta}_1}(\mathbf{x}) - \nabla \log p(\mathbf{x}))^\top \nabla \mathbf{s}_{\boldsymbol{\theta}_1}(\mathbf{x}) - (\mathbf{s}_{\boldsymbol{\theta}_2}(\mathbf{x}) - \nabla \log p(\mathbf{x}))^\top \nabla \mathbf{s}_{\boldsymbol{\theta}_2}(\mathbf{x})]\| \\ 1048 &\leq 2\mathbb{E}[\|\mathbf{s}_{\boldsymbol{\theta}_1}(\mathbf{x}) - \mathbf{s}_{\boldsymbol{\theta}_2}(\mathbf{x})\| \cdot \|\nabla \mathbf{s}_{\boldsymbol{\theta}_1}(\mathbf{x})\| + \|\mathbf{s}_{\boldsymbol{\theta}_2}(\mathbf{x}) - \nabla \log p(\mathbf{x})\| \cdot \|\nabla \mathbf{s}_{\boldsymbol{\theta}_1}(\mathbf{x}) - \nabla \mathbf{s}_{\boldsymbol{\theta}_2}(\mathbf{x})\|]. \end{aligned} \quad (34)$$

1049 Suppose $\|\nabla_{\boldsymbol{\theta}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})\| \leq C_1$ and $\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla \log p(\mathbf{x})\| \leq C_2$, then we can obtain

$$1050 \quad \begin{aligned} \|\nabla \bar{\ell}(\boldsymbol{\theta}_1) - \nabla \bar{\ell}(\boldsymbol{\theta}_2)\| &\leq 2\mathbb{E}[C_1 \beta_{\mathbf{s}_{\boldsymbol{\theta}}} \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\| + C_2 \beta_{\nabla \mathbf{s}_{\boldsymbol{\theta}}} \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|] \\ 1051 &= 2(\beta_{\mathbf{s}_{\boldsymbol{\theta}}} C_1 + C_2 \beta_{\nabla \mathbf{s}_{\boldsymbol{\theta}}}) \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|. \end{aligned} \quad (35)$$

1052 To satisfy the β -smooth of $\bar{\ell}(\boldsymbol{\theta})$, we require that

$$1053 \quad 2(C_1 \beta_{\mathbf{s}_{\boldsymbol{\theta}}} + C_2 \beta_{\nabla \mathbf{s}_{\boldsymbol{\theta}}}) \leq \beta. \quad (36)$$

1054 This implies that the distribution learned by the proposed framework can converge to the target
 1055 distribution. Therefore, following Chung et al. (2022), we further assume that $\mathbf{s}_{\boldsymbol{\theta}}$ is a sufficiently
 1056 expressive parameterized score function so that $\beta_{\mathbf{s}_{\boldsymbol{\theta}}} = \beta_{\nabla \log p_{t|\tau_{k-1}}}$ and $\beta_{\nabla^2 \mathbf{s}_{\boldsymbol{\theta}}} = \beta_{\nabla^2 \log p_{t|\tau_{k-1}}}$.

1057 Consider the loss function of classical generative models goes as: $\bar{\ell}(\boldsymbol{\varphi}) = \mathbb{E}\|\mathbf{s}_{\boldsymbol{\varphi}}(\mathbf{x}_t) -$
 1058 $\nabla_{\mathbf{x}_t} q_t(\mathbf{x}_t | \mathbf{x}_0)\|^2$. To demonstrate that the proposed framework converges faster to the target
 1059 distribution compared to the classical one-step generation framework, it suffices to show that:
 1060 $\beta_{\nabla p_{t|\tau_{k-1}}} \leq \beta_{\nabla q_{t|0}}$ and $\beta_{\nabla^2 p_{t|\tau_{k-1}}} \leq \beta_{\nabla^2 q_{t|0}}$.

1061 Let $\mathbf{x} \sim q_{t|0}$ and $\mathbf{x}' \sim p_{t|\tau_{k-1}}$. Since we inject topological information from \mathbf{x} into \mathbf{x}' , \mathbf{x}' can be
 1062 viewed as being obtained by adding noise to \mathbf{x} . Hence, we can model \mathbf{x}' as $\mathbf{x}' = \mathbf{x} + \boldsymbol{\epsilon}$ where
 1063 $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$. The variance of Gaussian noise σ^2 controls the information remained in \mathbf{x}' . Hence,
 1064 its distribution can be expressed as $p(\mathbf{x}') = \int q(\mathbf{x}' - \boldsymbol{\epsilon}) \pi(\boldsymbol{\epsilon}) d\boldsymbol{\epsilon}$.

1080 Therefore, we can obtain
1081

$$\begin{aligned}
1082 \|\nabla_{\mathbf{x}'}^k p(\mathbf{x}'_1) - \nabla_{\mathbf{x}'}^k p(\mathbf{x}'_2)\| &= \|\nabla_{\mathbf{x}'}^k \int (q(\mathbf{x}'_1 - \epsilon) - q(\mathbf{x}'_2 - \epsilon)) \pi(\epsilon) d\epsilon\| \\
1083 &\leq \int \|\nabla_{\mathbf{x}'}^k q(\mathbf{x}'_1 - \epsilon) - \nabla_{\mathbf{x}'}^k q(\mathbf{x}'_2 - \epsilon)\| \pi(\epsilon) d\epsilon \\
1084 &\leq \|\nabla_{\mathbf{x}'}^k q(\mathbf{x}')\|_{\text{lip}} (\mathbf{x}'_1 - \mathbf{x}'_2) \int \pi(\epsilon) d\epsilon \\
1085 &\leq \|\nabla_{\mathbf{x}'}^k q(\mathbf{x}')\|_{\text{lip}} (\mathbf{x}'_1 - \mathbf{x}'_2).
\end{aligned} \tag{37}$$

1090 Hence, $\|\nabla_{\mathbf{x}'}^k \log p(\mathbf{x}')\|_{\text{lip}} \leq \|\nabla_{\mathbf{x}'}^k \log q(\mathbf{x}')\|_{\text{lip}}$.
1091

1092 By setting $k = 3$ and $k = 4$, we can obtain $\beta_{\nabla \log p_{t|\tau_{k-1}}} \leq \beta_{\nabla \log q_{t|0}}$ and $\beta_{\nabla^2 \log p_{t|\tau_{k-1}}} \leq$
1093 $\beta_{\nabla^2 \log q_{t|0}}$. Therefore $\beta_{\text{HOG-Diff}} \leq \beta_{\text{classical}}$, implying that the training process of HOG-Diff (\mathbf{s}_{θ}) will
1094 converge faster than the classical generative framework (\mathbf{s}_{φ}).
1095 \square
1096

1097 A.3 PROOF OF THEOREM 4

1098 Here, we denote the expected reconstruction error at each generation process as $\mathcal{E}(t) =$
1099 $\mathbb{E} \|\bar{\mathbf{G}}_t - \hat{\mathbf{G}}_t\|^2$.
1100

1101 Before comparing the reconstruction error bounds of HOG-Diff and the classical diffusion model,
1102 we first relate their optimal score-matching losses at the function-class level.
1103

1104 **Lemma 6.** *Let $\ell^{(k)}(\theta^{(k)})$ denote the score-matching loss of the k -th HOG-Diff stage on $[\tau_{k-1}, \tau_k]$,
1105 and let $\ell_{\text{cls}}(\varphi)$ be the classical single-stage loss on $[0, T]$. Define the corresponding optimal values*

$$1107 \ell_{\star}^{(k)} := \inf_{\theta^{(k)}} \ell^{(k)}(\theta^{(k)}), \quad \ell_{\text{cls}, \star} := \inf_{\varphi} \ell_{\text{cls}}(\varphi). \tag{38}$$

1108 Assume that, for each k , the score network used in HOG-Diff on $[\tau_{k-1}, \tau_k]$ is instantiated from the
1109 same backbone architecture as the classical score network on $[0, T]$ (with the coarse graph \mathbf{G}_{τ_k}
1110 provided as an additional input that can be ignored by a suitable parameter choice). Under this
1111 construction, the classical score class is contained in each stage-wise score class, and we have
1112

$$1114 \sum_{k=1}^K \ell_{\star}^{(k)} \leq \ell_{\text{cls}, \star}. \tag{39}$$

1115 *Proof.* Fix any parameter φ of the classical model and consider the associated score network
1116 $\mathbf{s}_{\varphi}(\mathbf{G}_t, t)$ on $[0, T]$. By the expressivity assumption, for each k there exists a parameter vector $\theta^{(k)}$
1117 such that the HOG-Diff score network on $[\tau_{k-1}, \tau_k]$ can represent exactly the same score function
1118 while ignoring the coarse guide:
1119

$$1122 \mathbf{s}_{\theta^{(k)}}^{(k)}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t) = \mathbf{s}_{\varphi}(\mathbf{G}_t, t), \quad t \in [\tau_{k-1}, \tau_k]. \tag{40}$$

1124 By definition, the stage-wise loss $\ell^{(k)}(\theta^{(k)})$ is obtained by restricting the classical objective $\ell_{\text{cls}}(\varphi)$
1125 to the time window $[\tau_{k-1}, \tau_k]$ and using the same score function on that interval. Therefore, under
1126 the above parameter choice we have
1127

$$1128 \ell^{(k)}(\theta^{(k)}) = \ell_{\text{cls}}^{(k)}(\varphi), \tag{41}$$

1129 where $\ell_{\text{cls}}^{(k)}(\varphi)$ denotes the contribution of the interval $[\tau_{k-1}, \tau_k]$ to the classical loss. Summing over
1130 all disjoint windows yields the exact decomposition
1131

$$1132 \sum_{k=1}^K \ell^{(k)}(\theta^{(k)}) = \sum_{k=1}^K \ell_{\text{cls}}^{(k)}(\varphi) = \ell_{\text{cls}}(\varphi). \tag{42}$$

1134 Taking the infimum over $(\boldsymbol{\theta}^{(1)}, \dots, \boldsymbol{\theta}^{(K)})$ on the left-hand side and over φ on the right-hand side
 1135 gives

$$1136 \quad \sum_{k=1}^K \ell_{\star}^{(k)} = \sum_{k=1}^K \inf_{\boldsymbol{\theta}^{(k)}} \ell^{(k)}(\boldsymbol{\theta}^{(k)}) \leq \inf_{\varphi} \ell_{\text{cls}}(\varphi) = \ell_{\text{cls},\star}. \quad (43)$$

1139 \square

1140

1141 Lemma 6 reflects the structural fact that the classical model is a special case of the multi-stage architecture
 1142 when all stages share the same backbone and the coarse graph input is ignored. Intuitively,
 1143 each HOG-Diff stage only needs to approximate a smoother conditional score (given the coarse
 1144 graph), whereas the classical model has to fit the full marginal score in a single stage. For a fixed
 1145 network capacity, decomposing the problem into these easier conditional subproblems is therefore
 1146 not expected to deteriorate the overall score-matching accuracy.

1147 **Theorem 4.** *Under appropriate Lipschitz and boundedness assumptions, the reconstruction error
 1148 of HOG-Diff satisfies the following bound:*

$$1149 \quad \mathcal{E}_{\text{hog}}(0) \leq A_{\text{hog}} e^{T_{\text{hog}}}, \quad (44)$$

1150 where $A_{\text{hog}} = C^2 \sum_{k=1}^K \ell^{(k)}(\boldsymbol{\theta}) \int_{\tau_{k-1}}^{\tau_k} g_{k,s}^4 ds$ and $T_{\text{hog}} = \sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds +$
 1151 $C \sum_{k=1}^{K-1} \int_{\tau_{k-1}}^{\tau_k} h_{k,s}^2 ds$. Furthermore, we can derive that the reconstruction error bound of HOG-
 1152 Diff is sharper than that of classical graph generation models.

1153
 1154 *Proof.* Recall that $\mathcal{E}(t) = \mathbb{E} \left\| \bar{\mathbf{G}}_t - \hat{\mathbf{G}}_t \right\|^2$ reflects the expected error between the data reconstructed
 1155 with the ground truth score $\nabla \log p_t(\cdot)$ and the learned scores $\mathbf{s}_{\boldsymbol{\theta}}(\cdot)$. In particular, $\bar{\mathbf{G}}$ is obtained by
 1156 solving the following oracle reversed time SDE:
 1157

$$1158 \quad d\bar{\mathbf{G}}_t = (\mathbf{f}_{k,t}(\bar{\mathbf{G}}_t) - g_{k,t}^2 \nabla_{\mathbf{G}} \log p_t(\bar{\mathbf{G}}_t)) d\bar{t} + g_{k,t} d\bar{\mathbf{W}}_t, t \in [\tau_{k-1}, \tau_k], \quad (45)$$

1159 whereas $\hat{\mathbf{G}}_t$ is governed based on the corresponding estimated reverse time SDE:

$$1160 \quad d\hat{\mathbf{G}}_t = (\mathbf{f}_{k,t}(\hat{\mathbf{G}}_t) - g_{k,t}^2 \mathbf{s}_{\boldsymbol{\theta}}(\hat{\mathbf{G}}_t, t)) d\bar{t} + g_{k,t} d\bar{\mathbf{W}}_t, t \in [\tau_{k-1}, \tau_k]. \quad (46)$$

1161 Here, $\mathbf{f}_{k,t}$ is the drift function of the Ornstein–Uhlenbeck bridge. For simplicity, we denote the
 1162 Lipschitz norm by $\|\cdot\|_{\text{lip}}$ and $\mathbf{f}_{k,s}(\mathbf{G}_s) = h_{k,s}(\mathbf{G}_{\tau_k} - \mathbf{G}_s)$, where $h_{k,s} = \theta_s \left(1 + \frac{2}{e^{2\theta_{s:\tau_k}} - 1} \right)$.

1163 **Step 1: Single stage error bound.**

1164 To bound the expected reconstruction error $\mathbb{E} \left\| \bar{\mathbf{G}}_{\tau_{k-1}} - \hat{\mathbf{G}}_{\tau_{k-1}} \right\|^2$ at each generation process, we
 1165 begin by analyzing how $\mathbb{E} \left\| \bar{\mathbf{G}}_t - \hat{\mathbf{G}}_t \right\|^2$ evolves as time t is reversed from τ_k to τ_{k-1} . The recon-
 1166 struction error goes as follows

$$1167 \quad \begin{aligned} \mathcal{E}(t) &\leq \mathbb{E} \int_{\tau_k}^t \left\| (\mathbf{f}_{k,s}(\bar{\mathbf{G}}_s) - \mathbf{f}_{k,s}(\hat{\mathbf{G}}_s)) + g_{k,s}^2 (\mathbf{s}_{\boldsymbol{\theta}}(\hat{\mathbf{G}}_s, s) - \nabla_{\mathbf{G}} \log p_s(\bar{\mathbf{G}}_s)) \right\|^2 d\bar{s} \\ 1168 &\leq C \mathbb{E} \int_{\tau_k}^t \left\| \mathbf{f}_{k,s}(\bar{\mathbf{G}}_s) - \mathbf{f}_{k,s}(\hat{\mathbf{G}}_s) \right\|^2 d\bar{s} + C \mathbb{E} \int_{\tau_k}^t g_{k,s}^4 \left\| \mathbf{s}_{\boldsymbol{\theta}}(\hat{\mathbf{G}}_s, s) - \nabla_{\mathbf{G}} \log p_s(\bar{\mathbf{G}}_s) \right\|^2 d\bar{s} \\ 1169 &\leq C \int_{\tau_k}^t \|h_{k,s}\|_{\text{lip}}^2 \cdot \mathcal{E}(s) d\bar{s} + C \mathcal{E}(\tau_k) \int_{\tau_k}^t h_{k,s}^2 d\bar{s} \\ 1170 &\quad + C^2 \int_{\tau_k}^t g_{k,s}^4 \cdot \mathbb{E} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\hat{\mathbf{G}}_s, s) - \mathbf{s}_{\boldsymbol{\theta}}(\bar{\mathbf{G}}_s, s) \right\|^2 + g_{k,s}^4 \cdot \mathbb{E} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\bar{\mathbf{G}}_s, s) - \nabla_{\mathbf{G}} \log p_s(\bar{\mathbf{G}}_s) \right\|^2 d\bar{s} \\ 1171 &\leq \underbrace{C^2 \ell^{(k)}(\boldsymbol{\theta}) \int_{\tau_k}^t g_{k,s}^4 d\bar{s}}_{\alpha_k(t)} + C \mathcal{E}(\tau_k) \int_{\tau_k}^t h_{k,s}^2 d\bar{s} + \underbrace{\int_{\tau_k}^t (C^2 g_{k,s}^4 \|\mathbf{s}_{\boldsymbol{\theta}}(\cdot, s)\|_{\text{lip}}^2 + C \|h_{k,s}\|_{\text{lip}}^2) \mathcal{E}(s) d\bar{s}}_{\gamma_k(s)} \\ 1172 &= \alpha_k(t) + \int_{\tau_k}^t \gamma_k(s) \mathcal{E}(s) d\bar{s}. \end{aligned} \quad (47)$$

1188 Let $v(t) = \mathcal{E}(\tau_k - t)$ and $s' = \tau_k - s$, it can be derived that
1189

$$1190 \quad v(t) = \mathcal{E}(\tau_k - t) \leq \alpha_k(\tau_k - t) + \int_0^t \gamma_k(\tau_k - s') v(s') ds'. \quad (48)$$

1192 Here, $\alpha_k(\tau_k - t)$ is a non-decreasing function. By applying Grönwall's inequality, we can derive
1193 that

$$1195 \quad v(t) \leq \alpha_k(\tau_k - t) \exp \int_0^t \gamma_k(\tau_k - s') ds' \quad (49)$$

$$1197 \quad = \alpha_k(\tau_k - t) \exp \int_{\tau_k - t}^{\tau_k} \gamma_k(s) ds. \quad (50)$$

1200 Hence,

$$1201 \quad \mathcal{E}(t) \leq \alpha_k(t) \exp \int_t^{\tau_k} \gamma_k(s) ds. \quad (51)$$

1203 Evaluating the bound at the beginning of the k -th reverse stage, that is $t = \tau_{k-1}$, yields
1204

$$1205 \quad \mathcal{E}(\tau_{k-1}) \leq \alpha_k(\tau_{k-1}) \exp \left(\int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds \right) \quad (52)$$

$$1208 \quad = \left[C^2 \ell^{(k)}(\boldsymbol{\theta}) \int_{\tau_{k-1}}^{\tau_k} g_{k,s}^4 ds + C \mathcal{E}(\tau_k) \int_{\tau_{k-1}}^{\tau_k} h_{k,s}^2 ds \right] \exp \left(\int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds \right).$$

1211 For later convenience, we introduce the nonnegative stage-wise coefficients

$$1213 \quad A_k = C^2 \ell^{(k)}(\boldsymbol{\theta}) \int_{\tau_{k-1}}^{\tau_k} g_{k,s}^4 ds, \quad D_k = C \int_{\tau_{k-1}}^{\tau_k} h_{k,s}^2 ds, \quad T_k = \int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds. \quad (53)$$

1215 Then the error bound can be written compactly as

$$1216 \quad \mathcal{E}(\tau_{k-1}) \leq (A_k + D_k \mathcal{E}(\tau_k)) e^{T_k}, \quad k = 1, \dots, K. \quad (54)$$

1218 The classical diffusion model corresponds to a single reverse stage on $[0, T]$, and its error bound can
1219 be formulated in the same functional form as
1220

$$1221 \quad \mathcal{E}_{\text{cls}}(0) \leq A_{\text{cls}} e^{T_{\text{cls}}}, \quad (55)$$

1222 where $A_{\text{cls}} := C^2 \ell_{\text{cls}}(\boldsymbol{\varphi}) \int_0^T g_s^4 ds$ and $T_{\text{cls}} := \int_0^T \gamma_{\text{cls}}(s) ds + C \int_0^T h_s^2 ds$.

1224 Step 2: Multi-stage accumulated error bound.

1225 The reverse process starts from the same prior for both oracle and learned SDEs, hence $\mathcal{E}(\tau_K) = 0$.
1226 Unrolling the recursion Eq. (54) backward from $k = K$ yields

$$1228 \quad \mathcal{E}(\tau_{K-1}) \leq A_K e^{T_K}, \quad (56)$$

1229 and

$$1230 \quad \mathcal{E}(\tau_{K-2}) \leq (A_{K-1} + D_{K-1} \mathcal{E}(\tau_{K-1})) e^{T_{K-1}} \leq (A_{K-1} + D_{K-1} A_K e^{T_K}) e^{T_{K-1}}. \quad (57)$$

1232 Continuing inductively, one obtains for the initial time $t = 0 = \tau_0$ the general bound

$$1234 \quad \mathcal{E}_{\text{hog}}(0) \leq \sum_{k=1}^K A_k \exp \left(\sum_{m=1}^k T_m \right) \prod_{j=1}^{k-1} D_j, \quad (58)$$

1236 with the empty product is defined as $\prod_{j=1}^0 D_j := 1$.

1238 Since each D_j is nonnegative, the elementary inequality $D_j \leq e^{D_j}$ for all $x \geq 0$ implies
1239

$$1240 \quad \mathcal{E}_{\text{hog}}(0) \leq \sum_{k=1}^K A_k \exp \left(\sum_{m=1}^k T_m + \sum_{j=1}^{k-1} D_j \right) \leq \left(\sum_{k=1}^K A_k \right) \exp \left(\sum_{m=1}^K T_m + \sum_{j=1}^{K-1} D_j \right). \quad (59)$$

The latter inequality holds as all quantities in the exponent are nonnegative, so enlarging the summation ranges can only increase the exponent.

Therefore, we obtain the compact multi-stage error bound

$$\mathcal{E}_{\text{hog}}(0) \leq A_{\text{hog}} e^{T_{\text{hog}}}, \quad (60)$$

where $A_{\text{hog}} := \sum_{k=1}^K A_k$, and $T_{\text{hog}} := \sum_{m=1}^K T_m + \sum_{j=1}^{K-1} D_j$. This bound admits the same functional form as in Eq. (55) but accumulates the contributions of all K reverse stages from $T = \tau_K$ to $0 = \tau_0$.

Step 3: Comparing the two error bounds.

We now compare $(A_{\text{cls}}, T_{\text{cls}})$ in Eq. (55) with $(A_{\text{hog}}, T_{\text{hog}})$ in Eq. (60).

First, by construction each subinterval $[\tau_{k-1}, \tau_k]$ lies inside $[0, T]$ and the OU bridge horizon of the k -th HOG-Diff stage satisfies $\tau_k \leq T$. The corresponding drift and diffusion coefficients are therefore pointwise dominated by those of the classical bridge:

$$g_{k,s}^4 \leq g_s^4, \quad h_{k,s}^2 \leq h_s^2, \quad \gamma_k(s) \leq \gamma_{\text{cls}}(s), \quad s \in [\tau_{k-1}, \tau_k]. \quad (61)$$

Since all these quantities are nonnegative, their integrals over a subinterval are bounded by the integrals over the full horizon:

$$\sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} g_{k,s}^4 ds \leq \int_0^T g_s^4 ds, \quad \sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds \leq \int_0^T \gamma_{\text{cls}}(s) ds, \quad (62)$$

and

$$\sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} h_{k,s}^2 ds \leq \int_0^T h_s^2 ds. \quad (63)$$

For the coefficient A_{hog} , using the definition in Eq. (53) we have

$$A_{\text{hog}} = C^2 \sum_{k=1}^K \ell^{(k)}(\boldsymbol{\theta}) \int_{\tau_{k-1}}^{\tau_k} g_{k,s}^4 ds \leq C^2 \left(\sum_{k=1}^K \ell^{(k)}(\boldsymbol{\theta}) \right) \int_0^T g_s^4 ds. \quad (64)$$

At the level of optimal score-matching losses, Lemma 6 shows that the coarse-to-fine curriculum of HOG-Diff cannot be intrinsically worse than the single-stage formulation: $\sum_{k=1}^K \ell_{\star}^{(k)} \leq \ell_{\text{cls},\star}$. In the regime where the optimization error is negligible and the loss is dominated by approximation error, it is natural to focus on solutions for which the curriculum does not increase the total score-matching loss, namely

$$\sum_{k=1}^K \ell^{(k)}(\boldsymbol{\theta}) \leq \ell_{\text{cls}}(\boldsymbol{\varphi}). \quad (65)$$

In our experiments, this condition is clearly satisfied: for $K = 2$, the sum of the ‘‘Coarse’’ and ‘‘Fine’’ spectrum losses (labelled as ‘‘Coarse+Fine’’ in Fig. 4) is below the loss of the classical model (‘‘Classical (Noise)’’), providing empirical support for the above comparison.

Hence, we can bound A_{hog} as

$$A_{\text{hog}} \leq C^2 \ell_{\text{cls}}(\boldsymbol{\varphi}) \int_0^T g_s^4 ds = A_{\text{cls}}. \quad (66)$$

For the exponent T_{hog} in Eq. (60), we use the same domination to obtain

$$\begin{aligned} T_{\text{hog}} &= \sum_{k=1}^K T_k + \sum_{k=1}^{K-1} D_k = \sum_{k=1}^K \int_{\tau_{k-1}}^{\tau_k} \gamma_k(s) ds + C \sum_{k=1}^{K-1} \int_{\tau_{k-1}}^{\tau_k} h_{k,s}^2 ds \\ &\leq \int_0^T \gamma_{\text{cls}}(s) ds + C \int_0^T h_s^2 ds \\ &= T_{\text{cls}}. \end{aligned} \quad (67)$$

1296 Together with the bounds in Eq. (55) and Eq. (60), we obtain
1297

$$A_{\text{hog}} e^{T_{\text{hog}}} \leq A_{\text{cls}} e^{T_{\text{cls}}}. \quad (68)$$

1299 Combining these inequalities, we can finally conclude $\mathcal{E}_{\text{hog}}(0) \leq \mathcal{E}_{\text{cls}}(0)$, which shows that the
1300 reconstruction error bound of HOG-Diff over the full trajectory $T \rightarrow 0$ is no worse, and can be
1301 strictly sharper, than the corresponding bound for the classical diffusion model.
1302

□

1305 B ADDITIONAL EXPLANATION ON RELATED WORKS

1307 B.1 HIGHER-ORDER NETWORKS

1309 Graphs are elegant and useful abstractions for modeling irregular relationships in empirical systems,
1310 transforming unstructured data into analyzable representations. However, their inherent limitation
1311 to pairwise interactions restricts their representation of group dynamics (Battiston et al., 2020). For
1312 example, cyclic structures like benzene rings and functional groups play a holistic role in molec-
1313 ular networks; densely interconnected structures, like simplices, often have a collective influence
1314 on social networks; and functional brain networks exhibit higher-order dependencies. To address
1315 this, various topological models have been employed to describe data in terms of its higher-order
1316 relations, including simplicial complexes, cell complexes, and combinatorial complexes (Hajij et al.,
1317 2023). As such, the study of higher-order networks has gained increasing attention for their capacity
1318 to capture higher-order interactions, with broad applications across domains such as social network
1319 analysis (Zeng et al., 2024), graph signal processing (Roddenberry et al., 2022; Sardellitti et al.,
1320 2021), and topological deep learning (Bodnar et al., 2021; Huang et al., 2024; Papamarkou et al.,
1321 2024).

1321 Given the broad applicability and theoretical richness of higher-order networks, the following delves
1322 deeper into two key frameworks for modelling such interactions: simplicial complexes and cell
1323 complexes.

1324 **Simplicial Complexes.** Simplicial complexes (SCs) are fundamental concepts in algebraic topology
1325 that flexibly subsume pairwise graphs (Hatcher, 2001). Specifically, simplices generalize funda-
1326 mental geometric structures such as points, lines, triangles, and tetrahedra, enabling the modelling
1327 of higher-order interactions in networks. They offer a robust framework for capturing multi-way
1328 relationships that extend beyond pairwise connections typically represented in classical networks.

1329 A simplicial complex \mathcal{X} consists of a set of simplices of varying dimensions, including vertices
1330 (dimension 0), edges (dimension 1), and triangles (dimension 2).

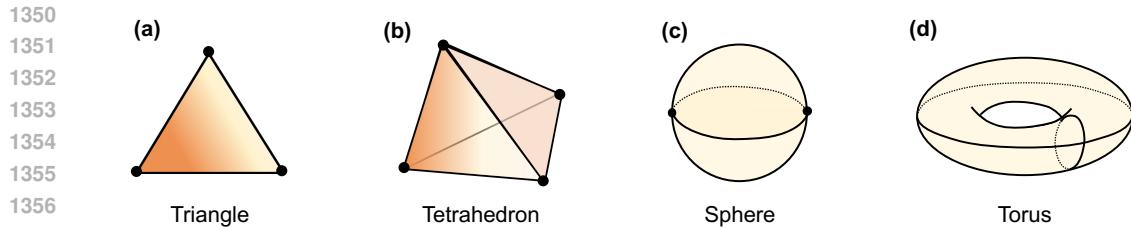
1332 A d -dimensional simplex is formed by a set of $(d + 1)$ interacting nodes and includes all the subsets
1333 of $\delta + 1$ nodes (with $\delta < d$), which are called the δ -dimensional faces of the simplex. A simplicial
1334 complex of dimension d is formed by simplices of dimension at most d glued along their faces.

1335 **Definition 7** (Simplicial complexes). *A simplicial complex \mathcal{X} is a finite collection of node subsets
1336 closed under the operation of taking nonempty subsets, and such a node subset $\sigma \in \mathcal{X}$ is called a
1337 simplex.*

1338 We can obtain a clique complex, a particular kind of SCs, by extracting all cliques from a given
1339 graph and regarding them as simplices. This implies that an empty triangle (owning $[v_1, v_2]$, $[v_1, v_3]$,
1340 $[v_2, v_3]$ but without $[v_1, v_2, v_3]$) cannot occur in clique complexes.

1342 **Cell Complexes.** Cell complexes (CCs) generalize simplicial complexes by incorporating gener-
1343 alized building blocks called cells instead of relying solely on simplices (Hatcher, 2001). This
1344 broader approach allows for the representation of many-body interactions that do not adhere to the
1345 strict requirements of simplicial complexes. For example, a square can be interpreted as a cell of
1346 four-body interactions whose faces are just four links. This flexibility is advantageous in scenarios
1347 such as social networks, where, for instance, a discussion group might not involve all-to-all pairwise
1348 interactions, or in protein interaction networks, where proteins in a complex may not bind pairwise.

1349 Formally, a cell complex is termed regular if each attaching map is a homeomorphism onto the clo-
1350 sure of the associated cell's image. Regular cell complexes generalize graphs, simplicial complexes,



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Figure 5: Visual illustration of cell complexes. (a) Triangle. (b) Tetrahedron. (c) Sphere. (d) Torus.

and polyhedral complexes while retaining many desirable combinatorial and intuitive properties of these simpler structures. In this paper, all cell complexes will be regular and consist of finitely many cells.

As shown in Fig. 5 (a) and (b), triangles and tetrahedra are two particular types of cell complexes called simplicial complexes (SCs). The only 2-cells they allow are triangle-shaped. The sphere shown in Fig. 5 (c) is a 2-dimensional cell complex. It is constructed using two 0-cells (*i.e.*, nodes), connected by two 1-cells (*i.e.*, the edges forming the equator). The equator serves as the boundary for two 2-dimensional disks (the hemispheres), which are glued together along the equator to form the sphere. The torus in Fig. 5 (d) is a 2-dimensional cell complex formed by attaching a single 1-cell to itself in two directions to form the loops of the torus. The resulting structure is then completed by attaching a 2-dimensional disk, forming the surface of the torus. Note that this is just one way to represent the torus as a cell complex, and other decompositions might lead to different numbers of cells and faces.

These topological frameworks provide the mathematical foundation for capturing multi-way interactions beyond pairwise graphs. Building upon this background, we next review advances in graph generative models, highlighting how existing approaches attempt to learn graph distributions and where they fall short in preserving such higher-order structures.

B.2 GRAPH GENERATIVE MODELS

The study of graph generation seeks to synthesize graphs that align with the observed distribution. Graph generation has been extensively studied, which dates back to the early works of the random network models, such as the Erdős–Rényi (ER) model (Erdős et al., 1960) and the Barabási–Albert (BA) model (Barabási & Albert, 1999). While these models offer foundational insights, they are often too simplistic to capture the complexity of graph distributions we encounter in practice.

Recent graph generative models have made great progress in graph distribution learning by exploiting the capacity of deep neural networks. GraphRNN (You et al., 2018) and GraphVAE (Simonovsky & Komodakis, 2018) adopt sequential strategies to generate nodes and edges. MolGAN (De Cao & Kipf, 2018) integrates generative adversarial networks (GANs) with reinforcement learning objectives to synthesize molecules with desired chemical properties. Shi et al. (2020) generates molecular graphs using a flow-based approach, while GraphDF (Luo et al., 2021) adopts an autoregressive flow-based model with discrete latent variables. Additionally, GraphEBM (Liu et al., 2021) employs an energy-based model for molecular graph generation. However, the end-to-end structure of these methods often makes them more challenging to train compared to diffusion-based generative models.

Diffusion-based Generative Models. A leap in graph generative models has been marked by the recent progress in diffusion-based generative models (Song et al., 2021). EDP-GNN (Niu et al., 2020) generates the adjacency matrix by learning the score function of the denoising diffusion process, while GDSS (Jo et al., 2022) extends this framework by simultaneously generating node features and an adjacency matrix with a joint score function capturing the node-edge dependency. DiGress (Vignac et al., 2023) addresses the discretization challenge due to Gaussian noise, while CDGS (Huang et al., 2023) designs a conditional diffusion model based on discrete graph structures. GSDM (Luo et al., 2023a) introduces an efficient graph diffusion model driven by low-rank diffusion SDEs on the spectrum of adjacency matrices. HypDiff (Fu et al., 2024) introduces a geometrically latent diffusion on hyperbolic space to preserve the anisotropy of the graph. Despite these advancements, current methods are ineffective at modeling the topological properties of higher-order systems since

learning to denoise the noisy samples does not explicitly lead to preserving the intricate structural dependencies required for generating realistic graphs.

Diffusion Bridge. Diffusion bridge processes, *i.e.*, processes conditioned to the endpoints, have been widely adopted in image-related domains, including image generation (De Bortoli et al., 2021), image translation (Zhou et al., 2024), and image restoration (Luo et al., 2023b; Yue et al., 2024). Recently, several studies have improved the graph generative framework of diffusion models by leveraging the diffusion bridge processes. Wu et al. (2022) inject physical information into the process by incorporating informative prior to the drift. GLAD (Boget et al., 2024) employs the Brownian bridge on a discrete latent space with endpoints conditioned on data samples. GruM (Jo et al., 2024) utilizes the OU bridge to condition the diffusion endpoint as the weighted mean of all possible final graphs. However, existing methods often overlook or inadvertently disrupt the higher-order topological structures in the graph generation process.

Hierarchical and Fragment-based Generation. Several recent studies have also explored hierarchical and fragment-based generative frameworks. HiGen (Karami, 2024) decomposes graph generation into multiple layers of abstraction, using separate neural networks to model intra-community structures and inter-community connections at each level. GPrinFlowNet (Mo et al., 2024) proposes a semantic-preserving framework based on a low-to-high frequency generation curriculum, where the k -th intermediate generation state corresponds to the k smallest principal components of the adjacency matrices. Dymond (Zeno et al., 2021) focuses on temporal motifs in dynamic graph generation. HierDiff (Qiang et al., 2023) progressively generates fragment-level 3D geometries, refines them into fine-grained fragments, and then assembles these fragments into complete molecules. MiCaM (Geng et al., 2023) synthesizes molecules by iteratively merging motifs.

Higher-order Generative Models. Since higher-order structures are intrinsic to many real-world systems, incorporating them into generative models could yield more faithful representations of complex phenomena. Existing efforts have primarily explored higher-order information through hypergraphs. HypeBoy (Kim et al., 2024) introduces a self-supervised hypergraph representation framework based on a hyperedge filling task, which enhances embeddings rather than performing direct generation. Hygene (Gailhard et al., 2025) reduces hypergraph generation to standard graph generation via a bipartite representation. However, no prior approach has explicitly integrated higher-order topology due to the stricter challenges of modeling multi-way rather than pairwise dependencies.

C DETAILS OF HOG-DIFF

This section elucidates our spectral diffusion methodology, the parameterization of the score network, and the associated training and sampling procedures.

C.1 OVERVIEW

As shown in Fig. 6, HOG-Diff employs a hierarchical, coarse-to-fine generation curriculum, where both forward diffusion and reverse denoising processes are decomposed into K easy-to-learn subprocesses. Each subprocess is realized using the GOU bridge process.

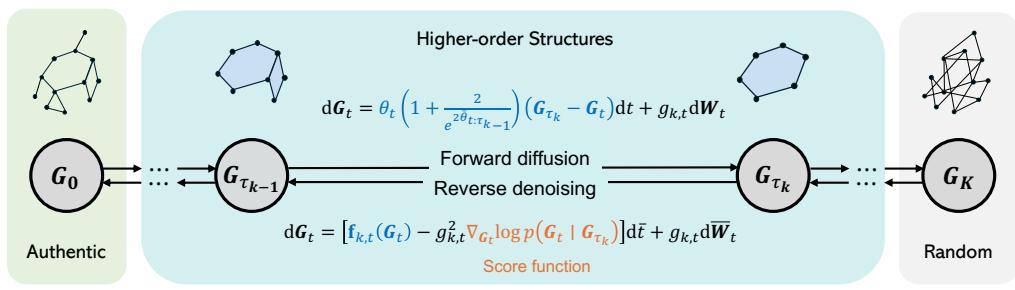


Figure 6: Illustration of the coarse-to-fine generation process in HOG-Diff using the generalized OU bridge.

1458 C.2 SPECTRAL DIFFUSION
1459

1460 Classical graph diffusion approaches typically inject isotropic Gaussian noise directly into adjacency
1461 matrices \mathbf{A} , leading to various fundamental challenges. Firstly, the inherent non-uniqueness of
1462 graph representations implies that a graph with n vertices can be equivalently modelled by up to $n!$
1463 distinct adjacency matrices. This ambiguity requires a generative model that assigns probabilities
1464 uniformly across all equivalent adjacencies to accurately capture the graph's inherent symmetry.
1465 Additionally, unlike densely distributed image data, graphs typically follow a Pareto distribution
1466 and exhibit sparsity (Ghavasieh & De Domenico, 2024), so that adjacency score functions lie on
1467 a low-dimensional manifold. Consequently, noise injected into out-of-support regions of the full
1468 adjacency space severely degrades the signal-to-noise ratio, impairing the training of the score-
1469 matching process. Even for densely connected graphs, isotropic noise distorts global message-
1470 passing patterns by encouraging message-passing on sparsely connected regions. Moreover, the
1471 adjacency matrix scales quadratically with the number of nodes, making the direct generation of
1472 adjacency matrices computationally prohibitive for large-scale graphs.
1473

1474 To address these challenges, inspired by Martinkus et al. (2022) and Luo et al. (2023a), we introduce
1475 noise in the eigenvalue domain of the graph Laplacian matrix $\mathbf{L} = \mathbf{D} - \mathbf{A}$, instead of the adjacency
1476 matrix \mathbf{A} , where \mathbf{D} denotes the diagonal degree matrix. As a symmetric positive semi-definite
1477 matrix, the graph Laplacian can be diagonalized as $\mathbf{L} = \mathbf{U}\Lambda\mathbf{U}^\top$. Here, the orthogonal matrix $\mathbf{U} =$
1478 $[\mathbf{u}_1, \dots, \mathbf{u}_n]$ comprises the eigenvectors, and the diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ holds
1479 the corresponding eigenvalues. The relationship between the Laplacian spectrum and the graph's
1480 topology has been extensively explored (Chung, 1997). For instance, the low-frequency components
1481 of the spectrum capture the global structural properties such as connectivity and clustering, whereas
1482 the high-frequency components are crucial for reconstructing local connectivity patterns. Therefore,
1483 the target graph distribution $p(\mathbf{G}_0)$ represents a joint distribution of \mathbf{X}_0 and Λ_0 , exploiting the
1484 permutation invariance and structural robustness of the Laplacian spectrum.
1485

1486 Consequently, we split the reverse-time SDE into two parts that share drift and diffusion coefficients
1487 as
1488

$$\begin{cases} d\mathbf{X}_t = [\mathbf{f}_{k,t}(\mathbf{X}_t) - g_{k,t}^2 \nabla_{\mathbf{X}} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})] d\bar{t} + g_{k,t} d\bar{\mathbf{W}}_t^1 \\ d\Lambda_t = [\mathbf{f}_{k,t}(\Lambda_t) - g_{k,t}^2 \nabla_{\Lambda} \log p_t(\mathbf{G}_t | \mathbf{G}_{\tau_k})] d\bar{t} + g_{k,t} d\bar{\mathbf{W}}_t^2 \end{cases} \quad (69)$$

1489 Here, the superscript of $\mathbf{X}_t^{(k)}$ and $\Lambda_t^{(k)}$ are dropped for simplicity, and $\mathbf{f}_{k,t}$ is determined according
1490 to Eq. (7).
1491

1492 In addition, we conduct a comparative evaluation of HOG-Diff under two generative settings: one
1493 operating directly in the adjacency matrix domain, and the other in the Laplacian spectral domain.
1494 Using a consistent hyperparameter search space, the results summarized in Tab. 8 show that gen-
1495 eration in the spectral domain generally achieves comparable performance across most evaluation
1496 metrics. We adopt the Laplacian spectral domain as the default diffusion space in HOG-Diff, as the
1497 spectral approach is more efficient and better aligned with theoretical principles such as permutation
1498 invariance and signal concentration on low-dimensional manifolds.
1499

1500 C.3 SCORE NETWORK PARAMETRIZATION
1501

1502 The score network in HOG-Diff is a critical component responsible for estimating the score func-
1503 tions required to reverse the diffusion process effectively. The architecture of the proposed score
1504 network is depicted in Fig. 7. The input \mathbf{A}_t is computed from \mathbf{U}_0 and $\Lambda_t^{(k)}$ using the relation
1505 $\mathbf{A}_t = \mathbf{D}_t^{(k)} - \mathbf{L}_t^{(k)}$, where the Laplacian matrix is given by $\mathbf{L}_t^{(k)} = \mathbf{U}_0 \Lambda_t^{(k)} \mathbf{U}_0^\top$ and the diagonal
1506 degree matrix is given by $\mathbf{D}_t^{(k)} = \text{diag}(\mathbf{L}_t^{(k)})$. To enhance the input to the Attention module,
1507 we derive enriched node and edge features using the l -step random walk matrix obtained from the
1508 binarized \mathbf{A}_t . Specifically, the arrival probability vector is incorporated as additional node features,
1509 while the truncated shortest path distance derived from the same matrix is employed as edge fea-
1510 tures. Temporal information is integrated into the outputs of the Attention and GCN modules using
1511 Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) layers, following sinusoidal position
1512 embeddings (Waswani et al., 2017).
1513

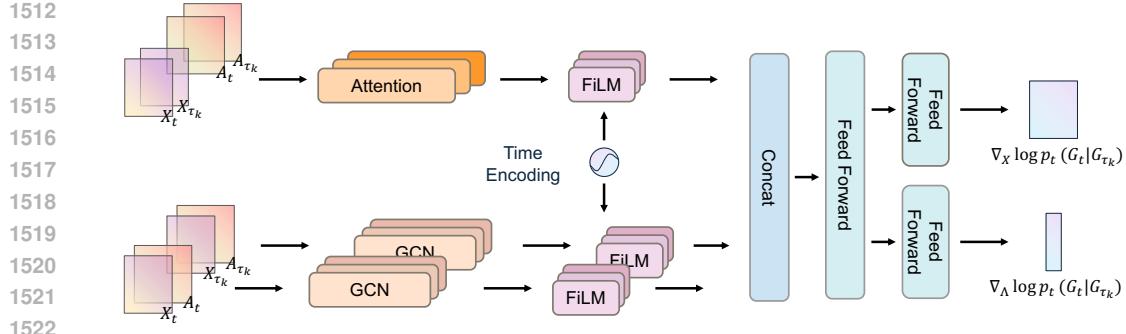


Figure 7: Score Network Architecture of HOG-Diff. The score network integrates GCN and Attention blocks to capture both local and global features, and further incorporates time information through FiLM layers. These enriched outputs are subsequently concatenated and processed by separate feed-forward networks to produce predictions for $\nabla_X \log p_t(G_t|G_{\tau_k})$ and $\nabla_A \log p_t(G_t|G_{\tau_k})$, respectively.

A graph processing module is considered permutation invariant if its output remains unchanged under any permutation of its input, formally expressed as $f(\mathbf{G}) = x \iff f(\pi(\mathbf{G})) = x$, where $\pi(\mathbf{G})$ represents a permutation of the input graph \mathbf{G} . It is permutation equivariant when the output undergoes the same permutation as the input, formally defined as $f(\pi(\mathbf{G})) = \pi(f(\mathbf{G}))$. It is worth noting that our score network model is permutation equivalent, as each model component avoids any node ordering-dependent operations.

C.4 TRAINING AND SAMPLING PROCEDURE

The diffusion process in HOG-Diff is divided into K hierarchical intervals, denoted by $\{[\tau_{k-1}, \tau_k]\}_{k=1}^K$, where $0 = \tau_0 < \dots < \tau_{k-1} < \tau_k < \dots < \tau_K = T$. Within each interval $[\tau_{k-1}, \tau_k]$, we employ the GOU bridge process to ensure smooth transitions between intermediate states $\mathbf{G}_{\tau_{k-1}}$ and \mathbf{G}_{τ_k} . We apply the cell complex filtering (CCF) operation at each interval to obtain structured, topologically meaningful intermediate states $\mathbf{G}_{\tau_k} := \text{CCF}(\mathbf{G}, \mathcal{S}, p)$. Specifically, CCF prunes nodes and edges that are not contained in the closure of any p -cell within a given cell complex \mathcal{S} . At the initial state, the filtering operation is defined as $\text{CCF}(\mathbf{G}, \mathcal{S}, 0) = \mathbf{G}$, *i.e.*, the filtering operation leaves the input unchanged. A special case arises at the final step, where the intermediate state is initialized from Gaussian noise, *i.e.*, $\text{CCF}(\mathbf{G}, \mathcal{S}, K) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Since the GOU bridge process naturally reduces to a standard diffusion process when the terminal distribution is Gaussian noise, we omit the GOU bridge in the final segment $[\tau_{K-1}, \tau_K]$, and instead use the Variance Preserving (VP) SDE (Ho et al., 2020; Song et al., 2021). In our experiments, we adopt a two-stage generation process, *i.e.*, $K = 2$. The intermediate state \mathbf{G}_{τ_1} is obtained via 2-cell complex filtering for molecule generation tasks, or via the 3-simplicial complex filtering for generic graph generation tasks. The rationale for this choice of filtering strategy is discussed in App. F.3.

To approximate the score functions $\nabla_X \log p_t(G_t|G_{\tau_k})$ and $\nabla_A \log p_t(G_t|G_{\tau_k})$, we employ a neural network $s_{\theta}^{(k)}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t)$, as introduced in App. C.3. This model consists of a node $(s_{\theta, \mathbf{X}}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t))$ and a spectrum $(s_{\theta, \mathbf{A}}^{(k)}(\mathbf{G}_t, \mathbf{G}_{\tau_k}, t))$ output. The network is trained by minimizing the following score-matching loss:

$$\ell^{(k)}(\theta) = \mathbb{E}_{t, \mathbf{G}_t, \mathbf{G}_{\tau_{k-1}}, \mathbf{G}_{\tau_k}} \{ \omega(t) [c_1 \|s_{\theta, \mathbf{X}}^{(k)} - \nabla_X \log p_t(\mathbf{G}_t|G_{\tau_k})\|_2^2 + c_2 \|s_{\theta, \mathbf{A}}^{(k)} - \nabla_A \log p_t(\mathbf{G}_t|G_{\tau_k})\|_2^2] \}, \quad (70)$$

where $\omega(t)$ is a positive weighting function, and c_1, c_2 controls the relative importance of vertices and spectrum.

The overall generation procedure is as follows. We sample $(\hat{\mathbf{X}}_{\tau_K}, \hat{\mathbf{A}}_{\tau_K})$ from the prior distribution and select $\hat{\mathbf{U}}_0$ as an eigenbasis drawn from the training set. Reverse diffusion is then applied across multiple stages, sequentially generating $(\hat{\mathbf{X}}_{\tau_{K-1}}, \hat{\mathbf{A}}_{\tau_{K-1}}), \dots, (\hat{\mathbf{X}}_1, \hat{\mathbf{A}}_1), (\hat{\mathbf{X}}_0, \hat{\mathbf{A}}_0)$, where each stage is implemented via the diffusion bridge and initialized from the output of the

1566 previous step. Finally, plausible samples with higher-order structures can be reconstructed as
1567 $\hat{\mathbf{G}}_0 = (\hat{\mathbf{X}}_0, \hat{\mathbf{L}}_0 = \hat{\mathbf{U}}_0 \hat{\mathbf{\Lambda}}_0 \hat{\mathbf{U}}_0^\top)$.
1568

1569 We provide the pseudo-code of the training and sampling process in Alg. 1 and Alg. 2, respectively.
1570

1571 **Algorithm 1** Training Algorithm of HOG-Diff

1573 **Input:** Score network $s_\theta^{(k)}$, training graph dataset \mathcal{G} , training epochs M_k .
1574 **For the k -th step:**

- 1575 1: **for** $m = 1$ **to** M_k **do**
- 1576 2: Sample $\mathbf{G}_0 = (\mathbf{X}_0, \mathbf{A}_0) \sim \mathcal{G}$
- 1577 3: $\mathcal{S} \leftarrow \text{lifting}(\mathbf{G}_0)$
- 1578 4: $\mathbf{G}_{\tau_k} \leftarrow \text{CCF}(\mathbf{G}_0, \mathcal{S}, k)$, and $\mathbf{G}_{\tau_{k-1}} \leftarrow \text{CCF}(\mathbf{G}_0, \mathcal{S}, k-1)$ ▷ Cell complex filtering
- 1579 5: $\mathbf{U}_0 \leftarrow \text{EigenVectors}(\mathbf{D}_0 - \mathbf{A}_0)$
- 1580 6: $\mathbf{\Lambda}_{\tau_k} \leftarrow \text{EigenDecomposition}(\mathbf{D}_{\tau_k} - \mathbf{A}_{\tau_k})$
- 1581 7: $\mathbf{\Lambda}_{\tau_{k-1}} \leftarrow \text{EigenDecomposition}(\mathbf{D}_{\tau_{k-1}} - \mathbf{A}_{\tau_{k-1}})$
- 1582 8: Sample $t \sim \text{Unif}([0, \tau_k - \tau_{k-1}])$
- 1583 9: $\mathbf{X}_t^{(k)} \sim p(\mathbf{X}_t \mid \mathbf{X}_{\tau_{k-1}}, \mathbf{X}_{\tau_k})$ ▷ Eq. (6)
- 1584 10: $\mathbf{\Lambda}_t^{(k)} \sim p(\mathbf{\Lambda}_t \mid \mathbf{\Lambda}_{\tau_{k-1}}, \mathbf{\Lambda}_{\tau_k})$ ▷ Eq. (6)
- 1585 11: $\mathbf{L}_t^{(k)} \leftarrow \mathbf{U}_0 \mathbf{\Lambda}_t^{(k)} \mathbf{U}_0^\top$
- 1586 12: $\mathbf{A}_t^{(k)} \leftarrow \mathbf{D}_t^{(k)} - \mathbf{L}_t^{(k)}$
- 1587 13: $\ell^{(k)}(\theta) \leftarrow c_1 \|\mathbf{s}_{\theta, \mathbf{X}}^{(k)} - \nabla_{\mathbf{X}} \log p_t(\mathbf{G}_t \mid \mathbf{G}_{\tau_k})\|^2 + c_2 \|\mathbf{s}_{\theta, \mathbf{\Lambda}}^{(k)} - \nabla_{\mathbf{\Lambda}} \log p_t(\mathbf{G}_t \mid \mathbf{G}_{\tau_k})\|^2$
- 1588 14: $\theta \leftarrow \text{optimizer}(\ell^{(k)}(\theta))$
- 1589 15: **end for**
- 1590 16: **Return:** $s_\theta^{(k)}$

1591 **Algorithm 2** Sampling Algorithm of HOG-Diff

1593 **Input:** Trained score network $s_\theta^{(k)}$, diffusion time split $\{\tau_0, \dots, \tau_K\}$, number of sampling steps
1594 M_k

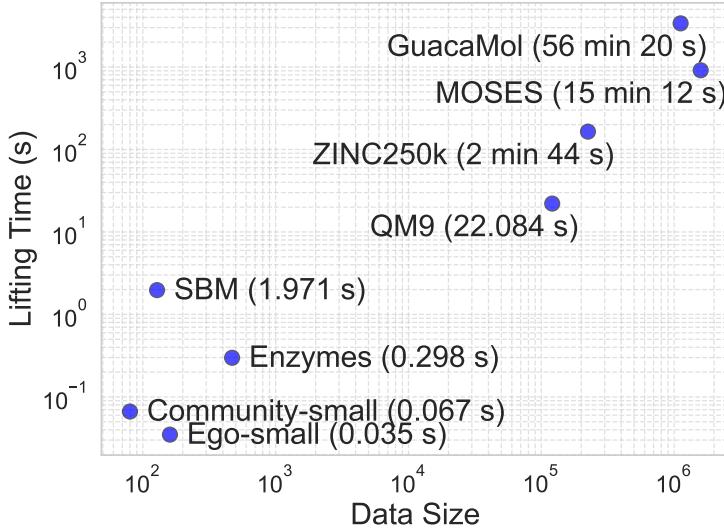
- 1595 1: $t \leftarrow \tau_K$
- 1596 2: $\hat{\mathbf{X}}_{\tau_K} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\hat{\mathbf{\Lambda}}_{\tau_K} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 1597 3: $\hat{\mathbf{U}}_0 \sim \text{Unif}(\{\mathbf{U}_0 \triangleq \text{EigenVectors}(\mathbf{L}_0)\})$
- 1598 4: $\hat{\mathbf{G}}_{\tau_K} \leftarrow (\hat{\mathbf{X}}_{\tau_K}, \hat{\mathbf{\Lambda}}_{\tau_K}, \hat{\mathbf{D}}_{\tau_K} - \hat{\mathbf{U}}_0 \hat{\mathbf{\Lambda}}_{\tau_K} \hat{\mathbf{U}}_0^\top)$
- 1599 5: **for** $k = K$ **to** 0 **do**
- 1600 6: **for** $m = M_k - 1$ **to** 0 **do**
- 1601 7: $\mathbf{S}_{\mathbf{X}}, \mathbf{S}_{\mathbf{\Lambda}} \leftarrow s_\theta^{(k)}(\hat{\mathbf{G}}_t, \hat{\mathbf{G}}_{\tau_k}, t)$
- 1602 8: $\hat{\mathbf{X}}_t \leftarrow \hat{\mathbf{X}}_t - \left[\theta_t \left(1 + \frac{2}{e^{2\theta_t: \tau_k} - 1} \right) (\hat{\mathbf{X}}_{\tau_k} - \hat{\mathbf{X}}_t) - g_{k, t}^2 \mathbf{S}_{\mathbf{X}} \right] \delta t + g_{k, t} \sqrt{\delta t} \mathbf{w}_{\mathbf{X}}, \mathbf{w}_{\mathbf{X}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 1603 9: $\hat{\mathbf{\Lambda}}_t \leftarrow \hat{\mathbf{\Lambda}}_t - \left[\theta_t \left(1 + \frac{2}{e^{2\theta_t: \tau_k} - 1} \right) (\hat{\mathbf{\Lambda}}_{\tau_k} - \hat{\mathbf{\Lambda}}_t) - g_{k, t}^2 \mathbf{S}_{\mathbf{\Lambda}} \right] \delta t + g_{k, t} \sqrt{\delta t} \mathbf{w}_{\mathbf{\Lambda}}, \mathbf{w}_{\mathbf{\Lambda}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 1604 10: $\hat{\mathbf{L}}_t \leftarrow \hat{\mathbf{U}}_0 \hat{\mathbf{\Lambda}}_t \hat{\mathbf{U}}_0^\top$
- 1605 11: $\hat{\mathbf{A}}_t \leftarrow \hat{\mathbf{D}}_t - \hat{\mathbf{L}}_t$
- 1606 12: $t \leftarrow t - \delta t$
- 1607 13: **end for**
- 1608 14: $\hat{\mathbf{A}}_{\tau_{k-1}} = \text{quantize}(\hat{\mathbf{A}}_t)$ ▷ Quantize if necessary
- 1609 15: $\hat{\mathbf{G}}_{\tau_{k-1}} \leftarrow (\hat{\mathbf{X}}_t, \hat{\mathbf{\Lambda}}_t, \hat{\mathbf{A}}_t)$
- 1610 16: **end for**
- 1611 17: **Return:** $\hat{\mathbf{X}}_0, \hat{\mathbf{A}}_0$ ▷ $\tau_0 = 0$

1612
1613
1614
1615
1616
1617
1618
1619

1620 **D COMPLEXITY ANALYSIS**
1621

1622 When the targeted graph is not in the desired higher-order forms, one should also consider the
1623 one-time preprocessing procedure for cell filtering. Unlike *cell lifting*, which enumerates all cell
1624 structures and can incur substantial computational overhead, cell filtering can be performed much
1625 more efficiently. This is because filtering does not require the explicit enumeration of all cells;
1626 instead, it only checks whether individual nodes and edges participate in a cell. For instance, the
1627 2-cell filter requires only checking whether each edge belongs to some cycle.

1628 One method to achieve the 2-cell filter is to use a depth-first search (DFS) strategy. Starting from
1629 the adjacency matrix, we temporarily remove the edge (i, j) and initiate a DFS from node i , keeping
1630 track of the path length. If the target node j is visited within a path length of l , the edge (i, j) is
1631 marked as belonging to a 2-cell of length at most l . In sparse graphs with n nodes and m edges,
1632 the time complexity of a single DFS is $\mathcal{O}(m + n)$. With the path length limited to l , the DFS may
1633 traverse up to l layers of recursion in the worst case. Therefore, the complexity of a single DFS is
1634 $\mathcal{O}(\min(m + n, l \cdot k_{max}))$, where k_{max} is the maximum degree of the graph. For all m edges, the
1635 total complexity is $\mathcal{O}(m \cdot \min(m + n, l \cdot k_{max}))$.

1636 Alternatively, matrix operations can be utilized to accelerate this process. By removing the edge
1637 (i, j) from the adjacency matrix A to obtain \bar{A} , the presence of a path of length l between i and
1638 j can be determined by checking whether $\bar{A}_{i,j}^l > 0$. This indicates that the edge (i, j) belongs
1639 to a 2-cell with a maximum length of $l + 1$. Assuming the graph has n nodes and m edges, the
1640 complexity of sparse matrix multiplication is $\mathcal{O}(mn)$. Since l matrix multiplications are required,
1641 the total complexity is: $\mathcal{O}(l \cdot m^2 \cdot n)$. While this complexity is theoretically higher than the DFS
1642 approach, matrix methods can benefit from significant parallel acceleration on modern hardware,
1643 such as GPUs and TPUs. In practice, this makes the matrix-based method competitive, especially
1644 for large-scale graphs or cases where l is large.

1663 Figure 8: Empirical scalability of the lifting procedure. We report the wall-clock time required for
1664 the lifting (preprocessing) operation across datasets of varying sizes. The results show that the one-
1665 time preprocessing cost remains tractable even for large-scale datasets.

1667 **Table 5: Sampling time (s).**

1670

1671

Method	Community-small	Enzymes	Ego-small
GDSS	41	110	28
DiGress	8	301	13
HOG-Diff	11	26	15

1674 For simplicial complexes, the number of p -simplices in a graph with n nodes and m edges is upper-
1675 bounded by $\mathcal{O}(n^{p-1})$, and they can be enumerated in $\mathcal{O}(a(\mathcal{G})^{p-3}m)$ time (Chiba & Nishizeki,
1676 1985), where $a(\mathcal{G})$ is the arboricity of the graph \mathcal{G} , a measure of graph sparsity. Since arboricity is
1677 demonstrated to be at most $\mathcal{O}(m^{1/2})$ and $m \leq n^2$, all p -simplices can thus be listed in $\mathcal{O}(n^{p-3}m)$.
1678 Besides, the complexity of finding 2-simplex is estimated to be $\mathcal{O}(\langle k \rangle m)$ with the Bron–Kerbosch
1679 algorithm (Bron & Kerbosch, 1973), where $\langle k \rangle$ denotes the average node degree, typically a small
1680 value for empirical networks.
1681

1682 To complement the theoretical analysis, we empirically evaluate the scalability of our approach on
1683 standard benchmarks of varying scales. As shown in Fig. 8, we record the wall-clock time for the
1684 lifting procedure on datasets ranging from small community graphs to large-scale molecular datasets
1685 such as ZINC250k and MOSES. The results indicate that the lifting time scales reasonably with data
1686 size. Given that this is a one-time preprocessing cost, it confirms that HOG-Diff is computationally
1687 feasible for large-scale graph generation tasks.
1688

1689 After preprocessing, the training loop is identical to that of standard diffusion-based generative
1690 models. The proposed coarse-to-fine strategy splits a long diffusion trajectory into shorter segments,
1691 each trained with a smaller smoothness constant, which by Theorem 3 provably leads to faster
1692 convergence than classical models in idealized settings. Furthermore, since the sub-processes are
1693 independent, they can be trained in parallel for additional efficiency gains. In practice, we observe
1694 no measurable slowdown relative to GDSS or DiGress.
1695

1696 For inference, Tab. 5 shows that the extra guidance logic does not slow sampling. HOG-Diff matches
1697 DiGress on smaller graphs and achieves up to 12× speedup over both baselines on the protein-scale
1698 Enzymes dataset.
1699

1700 In short, the only scaling cost is a one-off preprocessing pass; both training and sampling remain
1701 GPU-bound and on par with, or even faster than, existing diffusion models.
1702

1703 Table 6: Training time comparison between GDSS and HOG-Diff.
1704

Method	Community-small	Ego-small	Enzymes	QM9	ZINC250k
GDSS	13 min	19 min	1.9 h	1.2 h	14.0 h
HOG-Diff	20 min	12 min	0.5 h	3.1 h	6.5 h

1705 E EXPERIMENTAL SETUP 1706

1707 E.1 COMPUTING RESOURCES 1708

1709 In this work, all experiments are conducted using PyTorch (Paszke, 2019) on a single NVIDIA L40S
1710 GPU with 46 GB memory and AMD EPYC 9374F 32-Core Processor.
1711

1712 E.2 MOLECULE GENERATION 1713

1714 Early efforts in molecule generation introduce sequence-based generative models and represent
1715 molecules as SMILES strings (Kusner et al., 2017). Nevertheless, this representation frequently
1716 encounters challenges related to long dependency modelling and low validity issues, as the SMILES
1717 string fails to ensure absolute validity. Therefore, in recent studies, graph representations are more
1718 commonly employed for molecule structures where atoms are represented as nodes and chemical
1719 bonds as connecting edges (Jo et al., 2022). Consequently, this shift has driven the development of
1720 graph-based methodologies for molecule generation, which aim to produce valid, meaningful, and
1721 diverse molecules.
1722

1723 We evaluate the quality of generated molecules on two well-known molecular datasets: QM9 (Ra-
1724 makrishnan et al., 2014) and ZINC250k (Irwin et al., 2012), and obtain the intermediate higher-order
1725 skeletons using the 2-cell complex filtering. In experiments, each molecule is preprocessed into a
1726 graph comprising adjacency matrix $\mathbf{A} \in \{0, 1, 2, 3\}^{n \times n}$ and node feature matrix $\mathbf{X} \in \{0, 1\}^{n \times d}$,
1727 where n denotes the maximum number of atoms in a molecule of the dataset, and d is the number
1728 of possible atom types. The entries of \mathbf{A} indicate the bond types: 0 for no bond, 1 for the single

1728 bond, 2 for the double bond, and 3 for the triple bond. Further, we scale \mathbf{A} with a constant scale of
1729 3 in order to bound the input of the model in the interval $[0, 1]$, and rescale the final sample of the
1730 generation process to recover the bond types. Following the standard procedure (Shi et al., 2020;
1731 Luo et al., 2021), all molecules are kekulized by the RDKit library (Landrum et al., 2016) with
1732 hydrogen atoms removed. In addition, we make use of the valency correction proposed by Zang &
1733 Wang (2020). After generating samples by simulating the reverse diffusion process, the adjacency
1734 matrix entries are quantized to discrete values 0, 1, 2, 3 by applying value clipping. Specifically,
1735 values in $(-\infty, 0.5)$ are mapped to 0, $[0.5, 1.5)$ to 1, $[1.5, 2.5)$ to 2, and $[2.5, +\infty)$ to 3, ensuring
1736 the bond types align with their respective categories.

1737 To comprehensively assess the quality of the generated molecules across datasets, we evaluate
1738 10,000 generated samples using several key metrics: validity, validity w/o check, Frechet ChemNet
1739 Distance (FCD) (Preuer et al., 2018), Neighborhood Subgraph Pairwise Distance Kernel (NSPDK)
1740 MMD (Costa & Grave, 2010), uniqueness, and novelty (Jo et al., 2022). **FCD** quantifies the simi-
1741 larity between generated and test molecules by leveraging the activations of ChemNet’s penultimate
1742 layer, assessing the generation quality within the chemical space. In contrast, **NSPDK-MMD** eval-
1743 uates the generation quality from the graph topology perspective by computing the MMD between
1744 the generated and test sets while considering both node and edge features. **Validity** is measured as
1745 the fraction of valid molecules to all generated molecules after applying post-processing corrections
1746 such as valency adjustments or edge resampling, while **validity w/o correction**, following Jo et al.
1747 (2022), computes the fraction of valid molecules before any corrections, providing insight into the
1748 intrinsic quality of the generative process. Whether molecules are valid is generally determined by
1749 compliance with the valence rules in RDKit (Landrum et al., 2016). **Novelty** assesses the model’s
1750 ability to generalize by calculating the percentage of generated graphs that are not subgraphs of the
1751 training set, with two graphs considered identical if isomorphic. **Uniqueness** quantifies the diversity
1752 of generated molecules as the ratio of unique samples to valid samples, removing duplicates that are
1753 subgraph-isomorphic, ensuring variety in the output. We report the baseline results taken from Jo
1754 et al. (2022) and Kong et al. (2023).

1755 E.3 GENERIC GRAPH GENERATION

1756 To display the topology distribution learning ability, we assess HOG-Diff over four common generic
1757 graph datasets: **(1)** Community-small, containing 100 randomly generated community graphs; **(2)**
1758 Ego-small, comprising 200 small ego graphs derived from the Citeseer network dataset; **(3)** En-
1759 zymes, featuring 587 protein graphs representing tertiary structures of enzymes from the BRENDA
1760 database; **(4)** Stochastic Block Model (SBM), a larger-scale dataset discussed separately in App. F.2
1761 due to its distinct evaluation protocol.

1762 We follow the standard experimental and evaluation settings from Jo et al. (2022), including the
1763 same train/test splits and the use of the Gaussian Earth Mover’s Distance (EMD) kernel for MMD
1764 computation, to ensure fair comparisons with baseline models — except for the Stochastic Block
1765 Model (SBM) dataset. We use node degree and spectral features of the graph Laplacian decompo-
1766 sition as hand-crafted input features. Baseline results are sourced from Jo et al. (2022); Kong et al.
1767 (2023) or reproduced using the corresponding publicly available code.

1768 Tab. 7 summarizes the key characteristics of the datasets utilized in this study. The table outlines
1769 the type of dataset, the total number of graphs, and the range of graph sizes ($|V|$). Additionally,
1770 it also provides the number of distinct node types and edge types for each dataset. Notably, the
1771 Community-small and Ego-small datasets contain relatively small graphs, whereas Enzymes, SBM
1772 and the molecular datasets (QM9 and ZINC250k) exhibit greater diversity in terms of graph size and
1773 complexity.

1774 F ADDITIONAL EXPERIMENTAL RESULTS

1775 F.1 ANALYSIS OF DIFFUSION DOMAIN CHOICE

1776 To investigate the impact of diffusion domain choice, we perform ablation experiments comparing
1777 two variants of HOG-Diff: one that operates directly in the adjacency matrix domain, and another
1778 in the Laplacian spectral domain. Both variants are trained under the same hyperparameter search
1779 space for a fair comparison.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
Table 7: Dataset summary.

Dataset	Graph type	#Graphs	#Nodes	Node types	Edge types
Community-small	Synthetic	100	$12 \leq V \leq 20$	1	1
Ego-small	Citation	200	$4 \leq V \leq 18$	1	1
Enzymes	Protein	587	$10 \leq V \leq 125$	1	1
SBM	Synthetic	200	$44 \leq V \leq 187$	1	1
QM9	Molecule	133,885	$1 \leq V \leq 9$	4	3
ZINC250k	Molecule	249,455	$6 \leq V \leq 38$	9	3
GuacaMol	Molecule	1,398,223	$2 \leq V \leq 88$	12	3
MOSES	Molecule	1,936,962	$8 \leq V \leq 27$	7	3

As shown in Tab. 8, the spectral variant achieves comparable performance to the adjacency-based approach across most evaluation metrics on QM9 and ZINC250k. Despite similar results, we adopt the Laplacian spectral domain as the default diffusion space in HOG-Diff due to its theoretical and practical advantages. Specifically, the spectral domain offers greater efficiency and aligns naturally with core graph principles such as permutation invariance and signal concentration on low-dimensional manifolds.

Table 8: Comparison of diffusion domains in HOG-Diff.

Dataset	Domain	NSPDK \downarrow	FCD \downarrow	Val. w/o corr. \uparrow	Val. \uparrow	Uni. \uparrow	Nov. \uparrow
QM9	Adjacency matrix	0.0004	0.264	99.08	100.00	95.90	67.78
	Laplacian spectrum	0.0003	0.172	98.74	100.00	97.10	75.12
ZINC250k	Adjacency matrix	0.006	4.259	96.75	100.00	99.78	99.98
	Laplacian spectrum	0.001	1.633	98.56	100.00	99.96	99.53

F.2 SCALABILITY EVALUATION ON LARGE BENCHMARKS

To address concerns regarding scalability and performance on larger benchmarks, we extended our evaluation to encompass both large-scale molecular datasets and generic graph benchmarks.

Evaluation on MOSES. We conducted experiments on the MOSES dataset (Polykovskiy et al., 2020), a refinement of the ZINC database for molecular generation containing approximately 1.9 million lead-like molecules. This dataset serves as a rigorous testbed for assessing whether the proposed higher-order guidance remains computationally feasible and effective at scale. Following Vignac et al. (2023), the reported scores for FCD, SNN, and Scaffold similarity are computed on the dataset made of separate scaffolds, which measures the ability of the networks to predict new ring structures.

The results are presented in Tab. 9. HOG-Diff demonstrates superior performance in terms of distribution learning, achieving the lowest FCD score. This indicates that our method more accurately captures the underlying chemical and topological distribution of the large-scale training set.

Evaluation on GuacaMol. GuacaMol (Brown et al., 2019) is derived from the ChEMBL database and contains 1.4M molecules, from which 1.1M are used for training. We apply a preprocessing step similar to Vignac et al. (2023), filtering out molecules that cannot be mapped from SMILES to a graph and back to SMILES. In Tab. 10, we report the scores of the FCD and KL metrics following Brown et al. (2019). Note that, unlike other settings, the FCD score is normalized using $\exp(-0.2 \cdot FCD)$ to obtain a final value between 0 and 1, meaning that higher values indicate better performance.

For the KL score, we compute the following descriptors for both the generated and reference molecules: BertzCT, MolLogP, MolWt, TPSA, NumHAcceptors, NumHDonors, NumRotatableBonds, NumAliphaticRings, NumAromaticRings, and the ECFP4 fingerprint-based similarity to the

1836 Table 9: Generation performance on the large-scale MOSES dataset. Top results are highlighted in
 1837 **bold**.

Method	Val. \uparrow	Unique. \uparrow	Nov. \uparrow	Filters \uparrow	FCD \downarrow	SNN \uparrow	Scaf \uparrow
GraphINVENT (Mercado et al., 2021)	96.4	99.8	-	95.0	1.22	0.54	12.7
DiGress (Vignac et al., 2023)	85.7	100.0	95.0	97.1	1.19	0.52	14.8
DisCo (Xu et al., 2024)	88.3	100.0	97.7	95.6	1.44	0.50	15.1
Cometh (Sirauidin et al., 2025)	90.5	99.9	92.6	99.1	1.27	0.54	16.0
HOG-Diff (Ours)	97.6	100.0	92.7	93.1	1.09	0.51	10.0

1846
 1847 nearest neighbor. The KL divergence $D_{KL,i}$ is computed for each descriptor to measure the difference
 1848 between the two molecular sets. These divergences are then combined to produce a final
 1849 normalized score $S = \frac{1}{k} \sum_{i=1}^k \exp(-D_{KL,i})$.

1851 Table 10: Generation performance on the GuacaMol dataset. Top results are highlighted in **bold**.

Model	Val. \uparrow	V.U. \uparrow	V.U.N. \uparrow	KL div \uparrow	FCD \uparrow
DiGress (Vignac et al., 2023)	85.2	85.2	85.1	92.9	68.0
Disco (Xu et al., 2024)	86.6	86.6	86.5	92.6	59.7
Cometh (Sirauidin et al., 2025)	98.9	98.9	97.6	96.7	72.7
HOG-Diff (Ours)	99.1	99.1	97.0	96.9	78.0

1860 **Evaluation on SBMs.** To further evaluate the scalability and robustness of HOG-Diff, we report
 1861 results on the **Stochastic Block Model (SBM)** dataset in Fig. 3 (left), which comprises graphs of
 1862 larger scale and is evaluated under a distinct experimental protocol from that used in Sec. 4.2. The
 1863 dataset consists of 200 synthetic graphs generated using the stochastic block model. The number
 1864 of communities is uniformly sampled between 2 and 5, and the number of nodes within each com-
 1865 munity is uniformly sampled between 20 and 40. Edges are created with probabilities of 0.3 for
 1866 intra-community connections and 0.05 for inter-community connections.

1867 We adopt the evaluation setting introduced by Martinkus et al. (2022), including the same data splits,
 1868 feature initialization, and the use of Total Variation (TV) distance to compute the MMDs. The TV
 1869 kernel is adopted since it offers higher computational efficiency compared to the Earth Mover’s
 1870 Distance (EMD) kernel, especially for large graphs. **We also report the percentage of valid, unique,**
 1871 **and novel (V.U.N.) samples among the generated graphs to further assess the ability of our model**
 1872 **to capture the properties of the targeted distributions correctly.** Baseline results are sourced from
 1873 Vignac et al. (2023); Jo et al. (2024) or reproduced using the corresponding publicly available code.
 1874 As shown in Fig. 3 (left), HOG-Diff achieves competitive performance compared to the state-of-the-
 1875 art.

1876 F.3 RATIONALE FOR SELECTING TOPOLOGICAL FILTERS

1879 The filtering strategy in HOG-Diff is primarily driven by data statistics and complemented by do-
 1880 main knowledge to ensure meaningful choices.

1881 In molecular generation experiments, we employ 2-cells as guides because they are ubiquitous in
 1882 molecular graphs and capture critical chemical information, *e.g.*, functional groups. In particular,
 1883 2-cells play a crucial role in determining the three-dimensional conformation, electron distribution,
 1884 and target binding mode of compounds, making them highly informative. Consequently, Tab. 1
 1885 shows that conditioning on 2-cells alone provides strong guidance and achieves competitive results
 1886 across all metrics.

1887 In contrast, cells with dimension > 2 are extremely sparse in the standard benchmarks (see Tab. 11).
 1888 Identifying them requires increasingly complex preprocessing, such as detecting candidate higher-
 1889 order topological structures and verifying their validity, which introduces non-trivial computational
 overhead. Moreover, given that these benchmarks contain only a few hundred nodes, guides with

higher-dimensional cells would cover less than 0.05% of possible structures, introducing both unnecessary computation and a risk of overfitting without evident benefit. In practice, 2-cells already capture virtually all of the higher-order structure present in these datasets.

We further tested guiding molecular generation with 2-simplices but observed worse performance. This is expected, as summarized in Tab. 11, higher-dimensional simplices are extremely rare in molecular datasets (*i.e.*, QM9 and ZINC250k), while 2-cells are comparatively more abundant. Moreover, most functional structures in molecules do not satisfy the requirements of simplices. These findings confirm that aligning the guide with the natural higher-order structures of the data improves both training efficiency and sample quality, whereas mismatched guides provide limited benefit.

In contrast, generic graphs (particularly those in social or biological domains) often exhibit diverse simplicial structures, making simplicial filtering more suitable. This demonstrates the adaptability of HOG-Diff across domains.

Overall, the proposed framework is most effective when the intermediate skeletons reflect structures naturally present in the data. This aligns with prior work in graph representation learning, which shows that the benefits of higher-order representations are most pronounced in datasets rich in such structures (Huang et al., 2024). Indeed, many real-world networks—including social, biological, and citation networks—exhibit abundant higher-order cells/simplices. Thus, many real-world tasks naturally fall into the “topologically rich” regime where our method is particularly advantageous.

Table 11: Average counts of simplices and cells across datasets. “-” indicates computation exceeded 10h.

Dataset	0-simplices	1-simplices	2-simplices	3-simplices	4-simplices	2-cells	3-cells
Community-small	15.28	35.15	27.45	8.24	0.76	40.92	0.00
Ego-small	6.41	8.70	4.61	1.64	0.35	5.66	0.00
Enzymes	33.03	63.27	25.93	3.05	0.01	—	—
SBM	104.01	500.41	441.25	90.88	4.42	—	—
QM9	8.80	9.40	0.47	0.00	0.00	1.84	0.10
ZINC250k	23.15	24.90	0.06	0.00	0.00	2.77	0.00

F.4 DE NOVO MOLECULE GENERATION

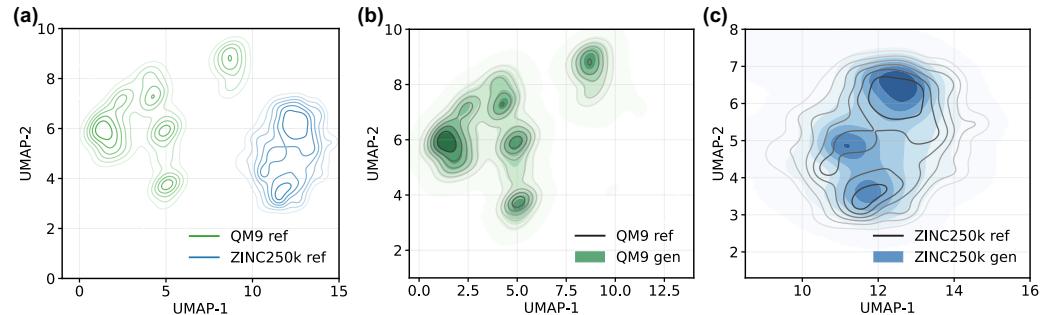


Figure 9: Visualization of chemical space distributions. Molecular representations are obtained using Morgan fingerprints and subsequently visualized through dimensionality reduction with Uniform Manifold Approximation and Projection (UMAP). Contour lines denote the probability distributions of reference (ref) and generated (gen) molecules. (a) illustrates the distributional shift across QM9 (green) and ZINC250k (blue), while (b) and (c) show that our generative model faithfully captures the distinct distributions of each dataset.

To visually assess the capability of the proposed method in molecular generation, Fig. 9 compares distributional results on the molecular datasets. Specifically, we first calculate the Morgan fingerprints (Rogers & Hahn, 2010) of all molecules, which have been widely utilized in drug discovery

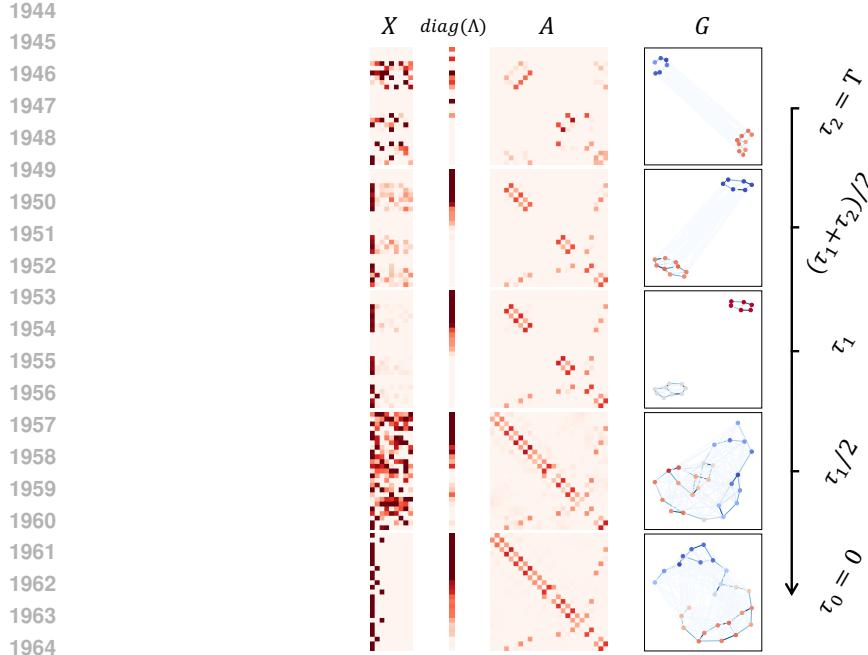


Figure 10: Visualization of molecular graphs at different stages of the reverse generative process.
Model trained on the ZINC250k dataset.

for capturing structural information. Subsequently, we apply Uniform Manifold Approximation and Projection (UMAP), a nonlinear dimensionality-reduction method that preserves local similarities, to embed the fingerprints into two dimensions and plot the resulting distributions.

On the QM9 dataset, the distributions generated by our model closely align with those of the reference set. On the more complex ZINC250k dataset, the generated distributions show slight deviations but remain well aligned. These results provide an intuitive demonstration of strong generative performance and complement the findings in Tab. 1.

We provide the standard deviation results and the additional validity (Val.) metric in Tabs. 12 and 13. Baseline results are sourced from Jo et al. (2022); Kong et al. (2023) or reproduced using the corresponding publicly available code.

Table 12: Comparison of different methods on QM9. We report the means and standard deviations of 3 runs. Asterisks (*) indicate that the source did not report standard deviations. The **best** results for the first three metrics are highlighted in bold.

Method	NSPDK \downarrow	FCD \downarrow	Val. w/o corr. \uparrow	Val. \uparrow	Uni. \uparrow	Nov. \uparrow
GraphAF	0.021 ± 0.003	5.625 ± 0.259	74.43 ± 2.55	100.00 ± 0.00	88.64 ± 2.37	86.59 ± 1.95
GraphDF	0.064 ± 0.000	10.928 ± 0.038	93.88 ± 4.76	100.00 ± 0.00	98.58 ± 0.25	98.54 ± 0.48
GraphArm*	0.002	1.220	90.25	100.00	95.62	70.39
MiCaM*	0.001	1.045	99.93	100.00	93.89	83.25
GraphEBM	0.030 ± 0.004	6.143 ± 0.411	8.22 ± 2.24	100.00 ± 0.00	97.90 ± 0.05	97.01 ± 0.17
SPECTRE*	0.163	47.960	87.30	100.00	35.70	97.28
GSDM*	0.003	2.650	99.90	100.00	-	-
EDP-GNN	0.005 ± 0.001	2.680 ± 0.221	47.52 ± 3.60	100.00 ± 0.00	99.25 ± 0.05	86.58 ± 1.85
GDSS	0.003 ± 0.000	2.900 ± 0.282	95.72 ± 1.94	100.00 ± 0.00	98.46 ± 0.61	86.27 ± 2.29
DiGress*	0.0005	0.360	99.00	100.00	96.66	33.40
MoFlow	0.017 ± 0.003	4.467 ± 0.595	91.36 ± 1.23	100.00 ± 0.00	98.65 ± 0.57	94.72 ± 0.77
CatFlow*	-	0.441	99.81	100.00	99.95	-
DeFoG	0.0005 ± 0.0001	0.268 ± 0.006	99.26 ± 0.10	100.00 ± 0.00	96.61 ± 0.30	72.57 ± 1.89
HOG-Diff	0.0003 ± 0.0001	0.172 ± 0.005	98.74 ± 0.08	100.00 ± 0.00	97.10 ± 0.10	75.12 ± 0.39

1998 Table 13: Comparison of different methods on ZINC250k. We report the means and standard deviations of 3 runs. Asterisks (*) indicate that the source did not report standard deviations. The **best**
1999 results for the first three metrics are highlighted in bold.
2000

2001

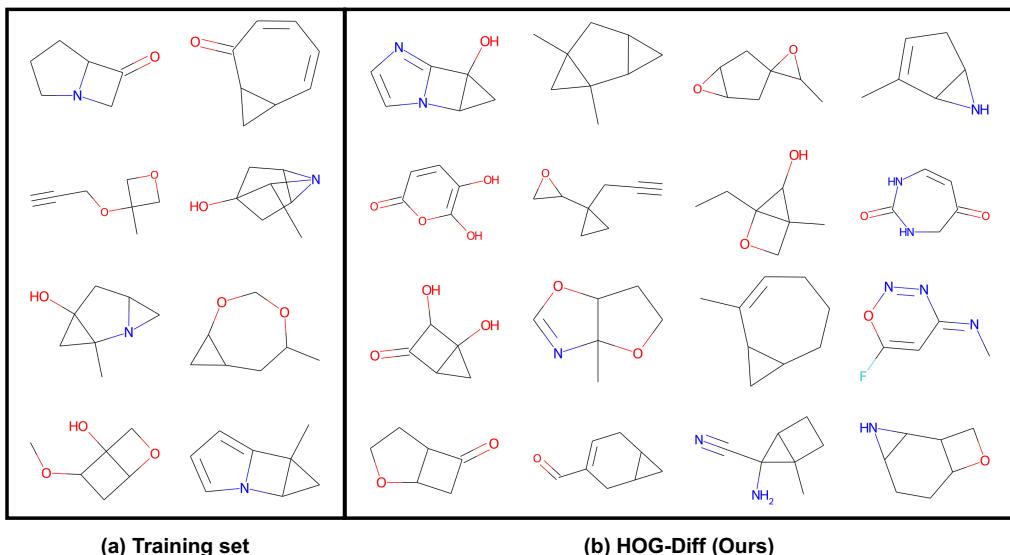
2002	Method	NSPDK \downarrow	FCD \downarrow	Val. w/o corr. \uparrow	Val. \uparrow	Uni. \uparrow	Nov. \uparrow
2003	GraphAF	0.044 \pm 0.005	16.023 \pm 0.451	68.47 \pm 0.99	100.00 \pm 0.00	98.64 \pm 0.69	99.99 \pm 0.01
2004	GraphDF	0.177 \pm 0.001	33.546 \pm 0.150	90.61 \pm 4.30	100.00 \pm 0.00	99.63 \pm 0.01	100.00 \pm 0.00
2005	GraphArm*	0.055	16.260	88.23	100.00	99.46	100.00
2006	MiCaM*	0.166	31.495	100.00	100.00	88.48	99.98
2007	GraphEBM	0.212 \pm 0.075	35.471 \pm 5.331	5.29 \pm 3.83	99.96 \pm 0.02	98.79 \pm 0.15	100.00 \pm 0.00
2008	SPECTRE*	0.109	18.440	90.20	100.00	67.05	100.00
2009	GSDM*	0.017	12.956	92.70	100.00	-	-
2010	EDP-GNN	0.049 \pm 0.006	16.737 \pm 1.300	82.97 \pm 2.73	100.00 \pm 0.00	99.79 \pm 0.08	100.00 \pm 0.00
2011	GDSS	0.019 \pm 0.001	14.656 \pm 0.680	97.01 \pm 0.77	100.00 \pm 0.00	99.64 \pm 0.13	100.00 \pm 0.00
2012	DiGress*	0.082	23.060	91.02	100.00	81.23	100.00
2013	MoFlow	0.046 \pm 0.002	20.931 \pm 0.184	63.11 \pm 5.17	100.00 \pm 0.00	99.99 \pm 0.01	100.00 \pm 0.00
2014	CatFlow*	-	13.211	99.95	99.99	100.00	-
2015	DeFoG	0.002 \pm 0.001	2.030 \pm 0.031	94.97 \pm 0.026	99.99 \pm 0.01	99.98 \pm 0.02	100.00 \pm 0.00
2016	HOG-Diff	0.001 \pm 0.001	1.633 \pm 0.012	98.56 \pm 0.12	100.00 \pm 0.00	99.96 \pm 0.02	99.53 \pm 0.07

2017

2018 F.5 VISUALIZATION RESULTS

2019

2020 In this section, we additionally provide the visualizations of the generated graphs for both molecule
2021 generation tasks and generic graph generation tasks. Figs. 11-16 illustrate non-curated generated
2022 samples. HOG-Diff demonstrates the capability to generate high-quality samples that closely re-
2023 semble the topological properties of empirical data while preserving essential structural details.



2043 Figure 11: Visualization of random samples taken from the HOG-Diff trained on the QM9 dataset.
2044
2045
2046
2047
2048
2049
2050
2051

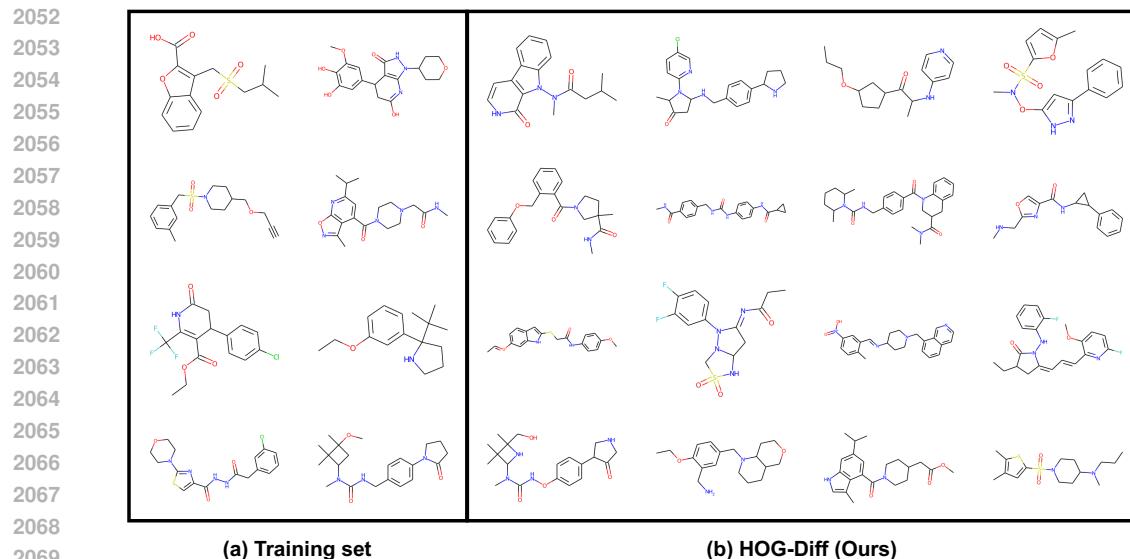


Figure 12: Visualization of random samples taken from the HOG-Diff trained on the ZINC250k dataset.

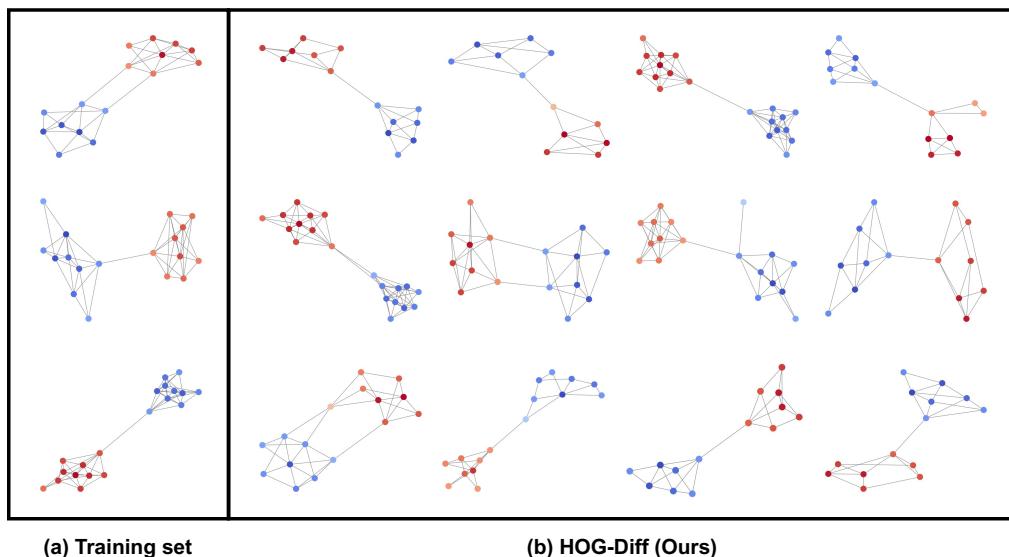


Figure 13: Visual comparison between training set graph samples and generated graph samples produced by HOG-Diff on the Community-small dataset.

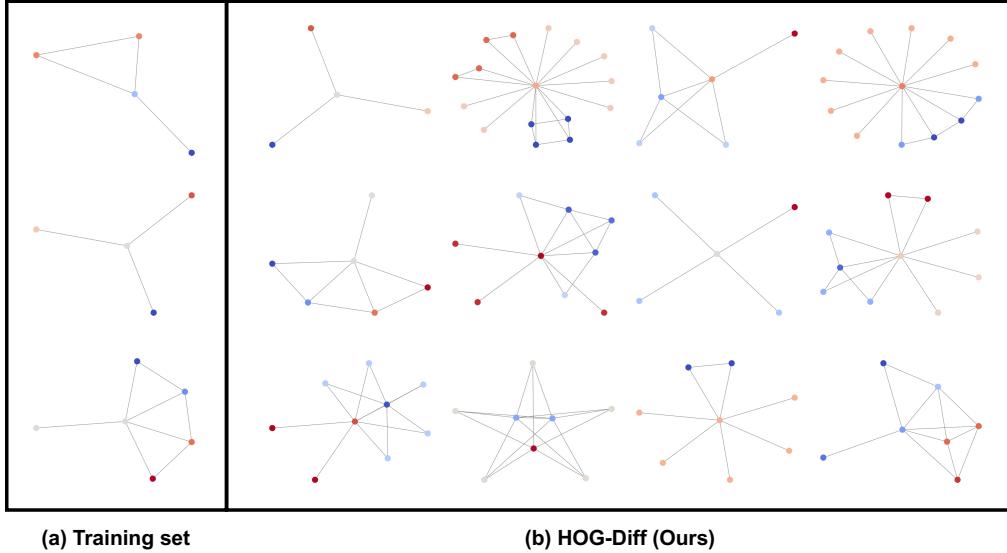
2106

2107

2108

2109

2110



2127

2128

2129

2130 Figure 14: Visual comparison between training set graph samples and generated graph samples produced by HOG-Diff on the Ego-small dataset.

2131

2132

2133

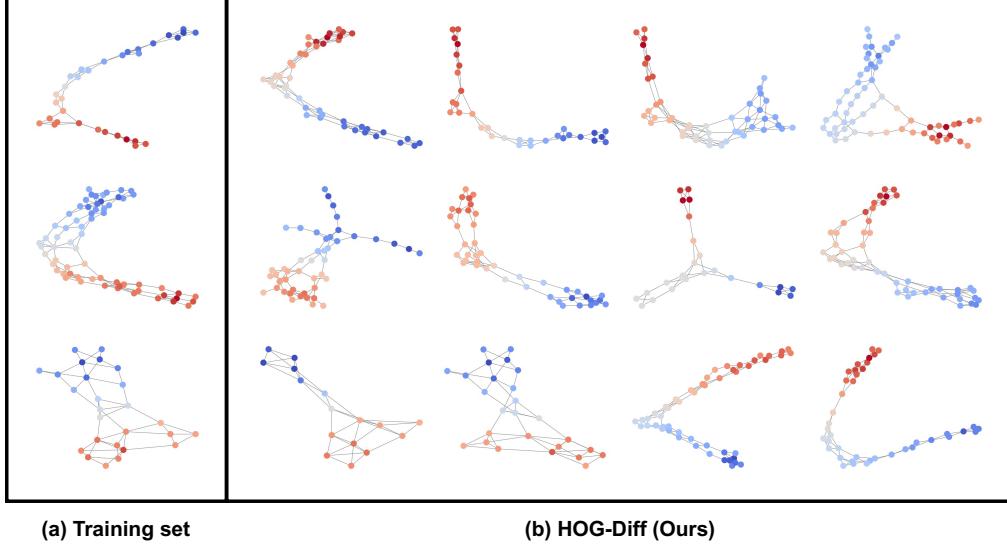
2134

2135

2136

2137

2138



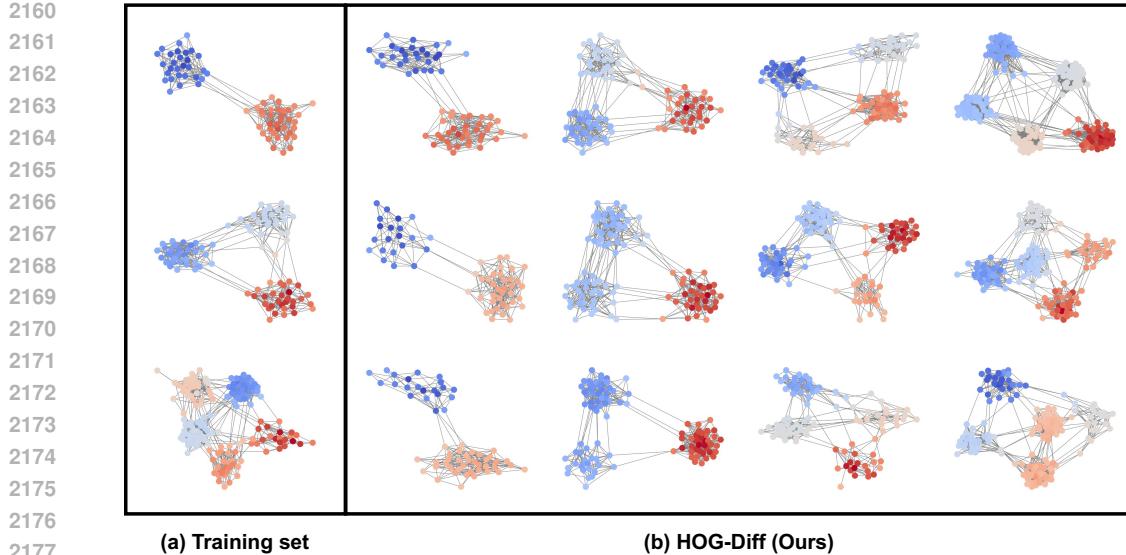
2155

2156

2157

2158

2159 Figure 15: Visual comparison between training set graph samples and generated graph samples produced by HOG-Diff on the Enzymes dataset.



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Figure 16: Visual comparison between training set graph samples and generated graph samples produced by HOG-Diff on the SBM dataset.

G LIMITATIONS AND FURTHER WORK

We propose a principled graph generation framework that explicitly exploits higher-order topological cues to guide the generative process. This design enables HOG-Diff to achieve strong empirical performance across various tasks, including molecule and generic graph generation. While HOG-Diff shows superior performance, future work would benefit from improving our framework.

As discussed in Sec. 4.2, the performance of the proposed framework depends on the presence of explicit higher-order structures. While previous studies have shown the prevalence of such structures in empirical systems, certain types of graphs, such as the ego-small dataset, lack this topological richness. In these cases, the benefits of higher-order diffusion guidance diminish, and the performance advantage becomes less pronounced.

In addition, our framework is built around the use of higher-order structures as diffusion guides, enabled by the Cell Complex Filtering (CCF) mechanism. As detailed in App. D, we introduce a simplified computational formulation of the CCF that facilitates efficient implementation of both cell complex and simplicial complex filters. However, extending this framework to capture more intricate topological elements, such as motifs, higher-order cells (beyond second order), and topological cavities, poses significant computational challenges. We leave this scalability bottleneck as future work.