
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE RANGE SUBGRAPH COUNTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Subgraph counting is a fundamental problem in graph analysis. Motivated by
the practical need to perform graph analytics on subgraphs defined by selected
vertices (or edges) rather than the entire graph, as well as privacy concerns, we
initiate the study of private range subgraph counting. Given an n-vertex graph G,
where each vertex (or edge) has a d-dimensional attribute vector, a pattern graph
H , and a set Q of range queries q, our goal is to count the occurrences of H in
the subgraph of G induced by vertices (or edges) whose attributes fall within q,
all while preserving privacy. We give the first ε-differentially private algorithm
for range subgraph counting, achieving near-optimal accuracy (up to a polylog-
arithmic factor of n) for constant privacy parameter ε and dimension d, with no
additional computational overhead compared to non-private algorithms. We also
demonstrate that by relaxing to (ε, δ)-DP, we can achieve smaller additive errors.
Furthermore, our results generalize the subgraph counting results of the partially
dynamic model in (Fichtenberger et al., 2021). Empirical evaluations demonstrate
that our algorithm significantly outperforms baseline methods in accuracy while
ensuring strong privacy guarantees.

1 INTRODUCTION

Subgraph counting is essential for understanding the properties of a data graph and has been ex-
tensively studied (Alon et al., 1995; Bera et al., 2021; Björklund et al., 2014; Chiba & Nishizeki,
1985; Curticapean et al., 2017; Assadi et al., 2019; Fichtenberger et al., 2020). Given a host graph
G = (V,E) and a pattern graph H , a subgraph of G that is isomorphic to H is called an occurrence
of H . The goal of subgraph (or pattern) counting is to determine the number of occurrences of H in
G. Subgraph counting is a key graph statistic; for instance, counting triangles and k-stars is crucial
for computing the clustering coefficient, which is valuable for evaluating the effectiveness of friend
recommendation systems. Counting 4-cycles, closed loops of four nodes, is particularly useful for
measuring clustering tendencies in bipartite graphs, such as those found in online dating platforms
or mentor-student networks.

In many applications, beyond counting subgraphs in the entire graph, we are often interested in
counting subgraphs within specific subgraphs. This is driven by practical demands for performing
graph analytics on subgraphs relevant to selected vertices (or edges) rather than the entire graph.
For instance, in patient networks, we may be interested in counting patterns within the subgraph
induced by patients of similar age or geographic location. These subgraphs can be defined based on
specific age ranges, geographic areas, or other relevant attributes. In financial networks, counting
transaction patterns among entities with similar risk profiles or locations can help identify fraudulent
activities or assess systemic risks within the financial system. Another example involves relational
event graphs (Bannister et al., 2013). In this context, we are given a graph G = (V,E), where each
edge e ∈ E is associated with a real-valued timestamp. We may wish to count the occurrences of
certain patterns within a specific time range, which corresponds to the subgraph induced by all edges
that fall within that time frame.

Now we formally introduce the Range Subgraph Counting problem that addresses the pattern count-
ing scenarios discussed above.

Definition 1.1 ((Vertex-attributed) range subgraph counting problem). Let G = (V,E) be an undi-
rected graph, where each vertex v ∈ V has a real-valued attribute a(v) ∈ Rd. For a given interval
q = [ℓ1, r1]× · · · × [ℓd, rd], define Vq = {v ∈ V | ℓi ≤ ai(v) ≤ ri, i ∈ [d]}, and let Gq denote the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

subgraph of G induced by Vq , i.e., Gq = G[Vq]. Let Q = {q = [ℓ1, r1] × · · · × [ℓd, rd] | ℓi, ri ∈
R, ℓi ≤ ri, i ∈ [d]} be the query set.

Let H be a fixed, connected pattern graph with O(1) vertices. For each query defined by the interval
q, the goal is to return the number of occurrences of H in Gq . The pattern H is fixed for all queries.

Note that the attributes of the vertices may represent factors such as age or location, depending on the
practical context. Additionally, an occurrence is only counted if all its vertices are contained within
Vq; any occurrences involving vertices outside of Vq are disregarded. We also study a variant of this
problem in the setting where each edge e has an associated real-valued attribute a(e), referred to as
the edge-attributed range subgraph counting problem (see Appendix F). Furthermore, we note that
our edge-attributed range counting strictly generalize the partially dynamic DP subgraph counting
under continual observation as studied in (Fichtenberger et al., 2021). In the partially dynamic
setting, the edge attribute is timestamp and only allow either insertions or deletions of edge. See
Section 1.1 for more discussions. We remark that Deng et al. (2023b) studied the 1-dimensional
(vertex-attributed) range subgraph counting and listing problems, focusing on optimizing the trade-
off between space and query time.

While one could release the exact pattern counts in response to each query, it is important to recog-
nize that the range subgraph counting algorithm lacks formal privacy guarantees, making it poten-
tially “unsafe” from a privacy perspective.

In this work, we approach the range subgraph counting problem from the perspective of differential
privacy (DP). DP ensures that, even if there is a one-element difference in the database, the output of
the algorithm remains statistically similar (see Definition 1.2). This means that DP algorithms allow
for statistical analyses of sensitive individual data while guaranteeing that no specific individual’s
information is leaked (Dwork et al., 2006). When DP is applied to graphs, it can be divided into
two types:edge-DP and node-DP. In the former, two adjacent graphs differ only by one edge, while
in the latter, two adjacent graphs differ by one node and all the neighboring edges. In our work, we
focus on edge-DP. Given two graphs G,G′ with the same set of nodes V (G) = V , we say G,G′ are
neighboring, denoted by G ∼ G′, if they differ in exactly one edge.
Definition 1.2 (Edge DP (Dwork et al., 2006; Nissim et al., 2007)). Let ε > 0 and δ ∈ [0, 1). A
randomized algorithm A is (ε, δ)-differentially private(DP) if for all events S in the output space of
A and all neighboring graph G ∼ G′,Pr[A(G) ∈ S] ≤ eε Pr[A(G′) ∈ S] + δ. When δ = 0, we
say A preserves pure differential privacy (denoted by ε-DP). When 0 < δ < 1, we say A preserves
approximate differential privacy.

While DP has been extensively studied for subgraph counting in the entire host graph (see Sec-
tion 1.1), private algorithms for range subgraph counting remain unexplored. The challenge with
DP range subgraph counting arises not only from the high sensitivity, which is already present in
standard DP subgraph counting, but also from the increased complexity of the queries. In range
subgraph counting, each query is defined over a specific subgraph induced by a subset of vertices,
making the problem more difficult as the algorithm need to handle multiple induced subgraphs effi-
ciently while ensuring privacy.

Before presenting our main results, we outline a straightforward approach to achieve differential
privacy (DP) in range subgraph counting: For each query q ∈ Q, compute the induced subgraph
Gq , count the occurrences of the pattern graph H (e.g. triangles), add Laplace noise to the counts,
and return the noisy results. However, this approach has significant drawbacks. Specifically, it
results in substantial additive error. The sensitivity of triangle counting in any specific graph Gq is
Θ(|Vq|), necessitating Laplace noise of Θ(|Vq|). According to the DP composition theorem (Dwork
et al., 2006), this leads to a cumulative error of O(|Q|n) when aiming for ε-DP (and O(

√
|Q|n) for

(ε, δ)-DP). When |Q| = Ω(n2), the resulting error becomes prohibitively large, rendering the results
practically unusable. For example, in the case of triangles, where the total number of triangles in
a graph is O(n3), the excessive error O(n3) for ε-DP becomes trivial. Furthermore, we note that
range subgraph counting is a nonlinear problem, making it more challenging, and preventing the
direct application of previous DP algorithms designed for linear queries. For instance, the sum of
the number of triangles in two graphs is not equal to the number of triangles in their union.

Our Contribution We present the first efficient range subgraph counting algorithm that satisfies
DP with nearly-optimal additive error, where an algorithm is said to be efficient if it runs in poly-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

nomial time. We let fH(G) denote the number of occurrences of H in G, and let GSfH denote the
global sensitivity of subgraph counting of H (see Definition 2.1).
Theorem 1 (Pure DP (Vertex-Attributed) Range Subgraph Counting). For any ε > 0 , there exists
an ε-differentially private efficient algorithm that, given a graph G = (V,E,a), where the attribute
of each vertex is a d-dimensional vector, pattern graph H , a query set Q, outputs all range subgraph
counting queries which satisfy

max
q∈Q

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = O

(
GSfH · d · log3d+0.5 n

ε

)
with probability at least 1− 1

n .

If we relax the requirements to approximate DP, we can derive an algorithm with a smaller additive
error, as stated in the following theorem.
Theorem 2 (Approximate DP (Vertex-Attributed) Range Subgraph Counting). For any ε > 0 and
0 < δ < 1, there exists an (ε,δ)-differentially private efficient algorithm that, given a graph G =
(V,E,a), where the attribute of each vertex is a d-dimensional vector, pattern graph H , a query set
Q, outputs all range subgraph counting queries which satisfy

max
q∈Q

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = O

(
H̃SfH (G) · d · log3d+0.5 n

ε

)

with probability at least 1− 1
n , where H̃SfH denotes the output in Algorithm 7.

In the above, the quantity H̃SfH can be viewed as an approximation of the higher-order local sen-
sitivity (see (Nguyen et al., 2023)). The parameter δ is typically set to a value on the order of
the reciprocal of a polynomial in the input size (e.g., n−O(1)). It is implicitly incorporated within
H̃SfH (G), which exhibits a dependency on poly(log(1/δ)). In real-world graphs, which are typi-
cally sparse, H̃SfH (G) is often significantly smaller than GSfH . For instance, when H is a triangle,
H̃SfH (G) ≈ dmax(G) ≪ GSfH = n− 2, where dmax(G) represents the maximum degree of graph
G. The proof and detailed description of Theorem 2 can be found in Appendix D.1.

We also show that for the edge-attributed range subgraph counting problem, one can obtain an
efficient pure DP (approximate DP) algorithm with the same additive error as the above. We present
the formal statement Theorem 3 and give its proof in Appendix F.

We note that simply reporting the number fH(G) of subgraphs H in the entire host graph while
satisfying ε-DP incurs an additive error of at least Ω(GSfH). This is due to the fact that the additive
error for the counting problem cannot be lower than the global sensitivity in the worst case (Dwork
et al., 2006). Therefore, our upper bounds achieve nearly optimal additive error up to a factor of
poly log n for any constant d and ε. Furthermore, note that our theorems still provide non-trivial
bounds when d is not necessarily constant but remains relatively small (e.g., d = o(

√
log n)). An

interesting open question is how to obtain better bounds for higher dimensions d (e.g. d = Ω(log n)).

Furthermore, we observe that the global sensitivity GSfH can be bounded to be O(n2ρ(H)−2), where
ρ(H) is the fractional edge cover number of H (Appendix A). Suppose d, ε are constant. Then if
H is triangle, then ρ(H) = 3/2, which implies our DP algorithm for range triangle counting has
error1 Õ(n); if H is k-clique (i.e., a complete graph on k vertices) or a k-cycle (i.e., a cycle with k

vertices), then ρ(H) = k
2 , which implies an error Õ(nk−2). The latter also implies for k = 2, i.e.,

H being an edge, then the additive error is Õ(1).

We experimentally test our DP algorithms for range subgraph counting on real network datasets in
Section 4.

Technical Overview To design DP algorithms for the range subgraph counting problem with small
additive error, we observe that many range queries overlap, making it unnecessary to add noise
to each query separately. Our approach maps the graph’s vertices to points in a 2d-dimensional
Euclidean space, based on vertex or edge attributes, translating the range subgraph counting problem
into estimating the weighted sum of points within corresponding rectangles. Here, the weight of a

1Õ(·) hides polylogarithmic factors.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

point reflects the number of occurrences involving the corresponding vertex pair. We employ a range
tree data structure (Bentley & Saxe, 1978) to iteratively summarize these weighted sums within
chosen ranges, adding Laplace noise to the weights of each node in the tree. To answer a range
query, we traverse the tree to find the relevant nodes for the queried range. This approach effectively
leverages query correlations, reducing the amount of noise required.

Our work shares similarities with the DP interval (and rectangle) query problem (see, e.g., (Dwork
et al., 2015)), which focuses on reporting the number of points in a specified interval, often solved
using a range tree. However, there are several key differences. First, we address edge-DP in graphs,
whereas (Dwork et al., 2015) focuses on differential privacy in tabular data, where each row corre-
sponds to an individual. Second, unlike point counting, our subgraph counting problem is nonlinear;
specifically, the sum of occurrences of a pattern graph in two graphs is not necessarily equal to the
number of occurrences in their union. Third, in our setting, a single edge change can affect many
mapped points and significantly impact subgraph counts (e.g., one edge may participate in Θ(n)
triangles). We address the latter two differences by employing a subgraph projection technique that
uniquely maps each occurrence of a pattern graph H to a distinct point in Euclidean space. This
transformation allows us to appropriately apply the rectangle query algorithm to our problem.

1.1 RELATED WORK

DP Subgraph Counting The DP subgraph counting problem is a significant topic that has been
extensively studied, primarily for the entire graph G. Nissim et al. (2007) improved the utility guar-
antees for triangle counting in differential privacy by incorporating instance-specific noise. Karwa
et al. (2011) extended the smooth sensitivity approach to k-stars and proposed methods for com-
puting local sensitivity to perform k-triangle counting. Kasiviswanathan et al. (2013) introduced a
triangle counting algorithm under the node-DP framework. Zhang et al. (2015) developed ladder
functions for various subgraph counting tasks. Nguyen et al. (2023) focused on optimizing run-
time by calculating approximate smooth sensitivity for graphs with certain properties, achieving
both privacy and utility while reducing time complexity. Additionally, several studies have exam-
ined subgraph counting under the local DP model, such as (Imola et al., 2021; 2022a;b; Eden et al.,
2023). (Fichtenberger et al., 2021) studied DP subgraph counting in dynamic model, while our
work explores subgraphs induced by vertices or edges whose attributes fall within specified ranges.
For Vertex-attribute Range Subgraph Counting, the two problems are fundamentally different and
incomparable. In the context of Edge-attribute Range Subgraph Counting, our work generalizes the
partially dynamic problem in their work, where their problem becomes a special case of ours when
treating edge timestamps as attributes. Instead of focusing on specific pattern graphs like triangles
and k-stars, our approach generalizes to arbitrary constant-size pattern graphs.

Differentially Private Range Queries Muthukrishnan and Nikolov (Muthukrishnan & Nikolov,
2012) present algorithms for the half-space range counting problem under differential privacy,
achieving good approximate accuracy in terms of average squared error. Deng et al. (Deng et al.,
2023a) propose an algorithm for counting queries and bottleneck queries on shortest paths while
ensuring differential privacy. A closer examination of their model reveals that they effectively ad-
dress a range counting problem on a graph. A cut query on a graph is a specialized form of range
counting, where the range space includes all possible cuts. The cut query problem is widely studied
in the field of differential privacy, with significant research dedicated to it (Gupta et al., 2010; 2012;
Dalirrooyfard et al., 2024; Blocki et al., 2012; Arora & Upadhyay, 2019; Eliáš et al., 2020).

2 PRELIMINARIES

Let G = (V,E,a) be a weighted graph with node set V of size |V | = n, edge set E of size |E| = m
and vertex attribute vector a : V → Rd. H = (VH , EH) is a pattern graph such as k-star, triangle
and so on. For simplicity, we let V = [n] := {1, 2, . . . , n}. A subgraph of G isomorphic to H
is called an occurrence of H . We use f(·) represents a function and use fH(G) to represent the
number of occurrences of H in G. For x ∈ Rk, we denote ∥x∥1 =

∑
i∈[k] |xi|.

Differential Privacy The global sensitivity of a function is defined as follows.

Definition 2.1 (Global Sensitivity (Dwork et al., 2006)). For any function f : X → Rk de-
fined over a domain space X , the global sensitivity of the function f is defined as GSf =
maxG∼G′ ∥f(G)− f(G′)∥1 .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We will make use of the following post-processing theorem and basic composition theorem of dif-
ferential privacy.

Proposition 2.2 (Post-processing theorem (Dwork et al., 2006)). Let M : Rd1 → Rd2 be an (ε, δ)-
differential private mechanism and let h: Rd2 → Rd3 be an arbitrary function. Then, the function
g ◦M : Rd1 → Rd3 is also (ε,δ)-differentially private.

Proposition 2.3 (Basic composition theorem (Dwork et al., 2006)). For any ε, δ > 0, the composi-
tion of k (ε, δ)-differentially private algorithms is (kε, kδ)-differentially private.

Laplace distribution and Laplace mechanism We now introduce the definitions of Laplace dis-
tribution and Laplace mechanism.

Definition 2.4 (Laplace distribution). We say a zero-mean random variable X follows the Laplace
distribution with parameter b if the probability density function of X follows Lap(b) = 1

2be
− |x|

b .

Fact 2.5. If Y ∼ Lap(b), then Pr[|Y | > tb] ≤ e−t.

The sum of multiple variables that follow the Laplace distribution satisfies the following properties.

Lemma 2.6 ((Chan et al., 2011; Wainwright, 2019)). Let {Xi} be a collection of independent
random variables such that Xi ∼ Lap(bi) for all 1 ≤ i ≤ m. Then, for ν ≥

√∑
i b

2
i and

0 < λ < 2
√
2ν2

b for b = maxi{bi}, Pr [|
∑

i Xi| ≥ λ] ≤ 2 · exp(− λ2

8ν2). Furthermore, if b = bi for
any i ∈ [m] and m ≥ log β, we have Pr

[
|
∑

i Xi| ≥ 2
√
2 · b

√
m log β

]
≤ 2

β

The Laplace mechanism is a commonly used class of differential privacy mechanisms.

Definition 2.7 (Laplace mechanism (Dwork et al., 2006)). For any function f : X → Rk, the
Laplace mechanism on input x ∈ X samples Y1, . . . ,Yk independently from Lap(GSf

ε) and outputs
M(x) = f(x) + (Y1, . . . ,Yk). The Laplace mechanism is ε-DP.

3 DP RANGE SUBGRAPH COUNTING

We now present a differential privacy algorithm for range subgraph counting and provide a proof
of its privacy and utility guarantees. Due to space constraints, we will focus on the algorithm and
analysis for the one-dimensional case (d = 1) in this section, while the general case for d ≥ 2 will
be addressed in Appendix D.

3.1 THE ALGORITHM

Overview of the algorithm and some definitions Our algorithm for the case d = 1 consists of
three steps:

(1) Map all the vertices in the input graph G to points in a two-dimensional Euclidean space, where
each point corresponds to a rank pair, which is a point (a, b) ∈ [n]2 such that a and b represent
the ranks of some vertices based on their attribute value and index order (see Algorithm 1). We
construct a weight vector w for these points, with the weight of each point representing the number
of occurrences that are “registered” at the corresponding rank pair (see PROJ(G,H) in Algorithm 1).

(2) Build a range tree on the mapped points and the weight vector w such that each leaf node contains
the weight corresponding to its point, while each internal node contains the sum of the weights of
its children and bound information. Then, add Laplace noise to the weight of each node in the tree
(see TREECONST(w, ε,GSfH) in Algorithm 2).

(3) For any specified query q, traverse the tree to find the corresponding nodes and report their
associated weights (see QUERY(G,H,Q, ε) in Algorithm 3).

Here we make some additional symbol declarations. Recall that V = [n]. We use u to represent the
initial label of a vertex and use s(u) to represent the rank a vertex after the second step of PROJ.
Note that by definition, the ranks assigned to each vertex are unique.

Definition 3.1. We say an occurrence of H is registered at the vertex pair (u, v) if u, v ∈ VH and
s(u) < s(u1) < · · · < s(u|VH |−2) < s(v).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that for any occurrence of pattern graph H , it is mapped to a unique vertex pair (u, v).

Definition 3.2 (Discretization). For any range query q = [ℓ, r], where ℓ, r ∈ R, we associate it
with two vertices uℓ and ur, where the attribute value of uℓ is the first one that is at least ℓ, and the
attribute value of ur is the last one that is at most r. In cases of ties, we select vertices based on the
smallest lexicographical order.

We note that even though the attributes are real values, we can discretize the problem as follows.
The above discretization leads to the following useful fact:

Fact 3.3. For all Q, the number of distinct subgraphs G[Vq] induced by the queries in Q is O(n2).

For any range query q = [ℓ, r], we first apply the discretization described above to obtain a new
range q′ = [s(uℓ), s(ur)]. Note that the ranges q and q′ correspond to the same subgraph. For
simplicity, we will use q = [ℓ, r] to refer to the range corresponding to its discretized counterpart in
the following. Now we describe our algorithm in more detail.

Subgraph Counting Projection The Algorithm 1 takes as input an n-vertex graph G = (V,E,a),
where each vertex has an associated attribute. First, it reorders the vertices based on their attribute
values in ascending order, breaking ties by the initial vertex labels. For each occurrence of a sub-
graph H in G, it updates a weight vector w, where each element corresponds to a vertex pair, and the
weight reflects the number of subgraph occurrences involving that pair. The algorithm then returns
the weight vector w, representing the counts of subgraph occurrences for all vertex pairs.

Algorithm 1 PROJ(G = (V,E,a), H) ▷
Subgraph Counting Projection

1: Input: An n-vertex graph G = (V,E,a).
2: Sort vertices by attribute value in ascending

order. For vertices with the same attribute
value, sort by their initial labels. Let s : V →
[n] denote the rank.

3: Initialize w(u,v) = 0, for all u, v ∈ V .
4: for all occurrences of subgraph H in G do
5: Compute w(s(u),s(v)) = w(s(u),s(v)) + 1,

where the occurrence is registered at (u, v).
6: end for
7: return w = {w(s(u),s(v))}

Figure 1: Schematic diagram of the 2D
Range Tree used in our work. The detail can
be seen in Appendix B.

DP Range Tree Construction. In Algorithm 2, we map all vertex pairs to points on a 2D plane based
on their ranks s(u) and s(v), where each point has an associated weight w(s(u),s(v)), representing
the subgraph occurrences involving the corresponding vertex pair. We then utilize a range tree to
preprocess these points and efficiently answer range subgraph counting queries.

A range tree is a binary tree structure designed for interval queries and summation. It recursively
decomposes the interval and precomputes the sums at each node, where each node stores interval
boundaries and corresponding sum values. In the TREECONST algorithm (Algorithm 2), we imple-
ment a modified version of a 2D range tree, which is fully described in Appendix B. This enables
efficient querying for subgraph counts within specified ranges while preserving differential privacy.

The schematic diagram of the 2D range tree is shown in Figure 1. Intuitively, the tree construction
process recursively divides the n × n points on the 2D plane into two equal parts, with each tree
node storing interval boundaries and corresponding weight sums.

We begin by partitioning the first dimension of the plane to construct a tree Tx, where each node in
Tx corresponds to a sub-interval of this dimension. For each node in Tx, we then partition the second
dimension to construct a one-dimensional range tree Ty . As a result, each node in Tx represents a
range tree Ty , and each node in Ty corresponds to a sub-interval within the 2D space. Finally, to
ensure differential privacy, Laplace noise is added to the weight of each node in Ty (not both Ty and
Tx add noise).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 TREECONST(w, ε,GSfH)
▷ Private Range Tree Construction

1: Input: Projection vector w, privacy pa-
rameter ε > 0, and global sensitivity
GSfH .

2: Construct Tx according to Definition B.3
using tuples (s(u), s(v), w(s(u),s(v))),
where u, v ∈ V .

3: Create a noisy version, T̃x, by adding
Laplace noise to the weight of each node
in every Ty tree (within each node of
Tx). Specifically, update the weight as
weight = weight + Lap(tε), where t =

GSfH · log2 n.
4: return T̃x

Algorithm 3 QUERY(G,H,Q, ε) ▷ Private
Range Subgraph Counting Query

1: Input: An n-vertex graph G = (V,E,a), a
pattern graph H , a set of range queries Q, and
privacy parameter ε.

2: Compute the global sensitivity:
GSfH = fH(Kn)− fH(Kn − e).

3: Compute the projection vector:
w = PROJ(G,H).

4: Construct the noisy range tree:
T̃x = TREECONST(w, ε,GSfH).

5: for each query q ∈ Q do
6: Determine ℓ and r according to Defini-

tion 3.2.
7: return the result of Definition B.4 using

T̃x and the range [ℓ, n]× [1, r].
8: end for

Query procedure. For each query q, we discretize the range [ℓ, r] and access the range tree T̃x to
obtain the result. Specifically, we need to calculate the sum of the weights of the selected nodes
in Ty . In Algorithm 3, the process involves locating the relevant node in Tx and subsequently
identifying the corresponding nodes in Ty by traversing from top to bottom (see Figure 1).

3.2 THE ANALYSIS

We will make use of the following fact.
Fact 3.4 (Properties of Range Tree). Each range tree is a binary tree with a depth of log n. Each
leaf node stores the interval bounds and the sum value, along with the root node of the nested tree.
The sum of the values of the tree nodes equals the sum of the values of the left child plus the sum of
the values of the right child.

Privacy We now prove that Algorithm 3 is an ε-DP algorithm.
Lemma 3.5. Assuming the weight w(s(u),s(v)) of each pair is generated by Algorithm 1, the number
of occurrences of H in the graph, consisting of all vertices within the range q = [ℓ, r], is equal to
the sum of the weights of all rank pairs falling within the range [ℓ, n] × [1, r]. That is, fH(Gq) =∑

(s(u),s(v))∈[ℓ,n]×[1,r] w(s(u),s(v)).

In particular, the number fH(G) of pattern graphs H in G is equal to
∑

(u,v)∈V×V w(u,v).

Proof. If an occurrence of H falls within the range q = [ℓ, r], it means that all vertices in this
occurrence of H are contained within the range q. Specifically, if an occurrence of H is registered
at the vertex pair (u, v), then the ranks satisfy ℓ ≤ s(u) < s(u1) < · · · < s(u|VH |−2) < s(v) ≤ r.

Since the vertex reordering is performed in the second step of Algorithm 1 and each vertex is as-
signed a unique rank, we can transform the subgraph range into a range on the weight vector w.
Consequently, the sum of the weights of all rank pairs in the range [ℓ, n]× [1, r] corresponds to the
number of occurrences of subgraph H that fall within the range q = [ℓ, r].

Lemma 3.6. Algorithm 3 is ε-DP.

Proof. We use w and w′ to denote the different weight vectors formed by graphs G and G′,
respectively, where G ∼ G′ (i.e., G and G′ differ by a single edge). The global sensitiv-
ity of function f is denoted as GSf , and the global sensitivity of fH is defined as GSfH =
maxG∼G′ |fH(G)− fH(G′)| (see Definition 2.1). The sensitivity of w, denoted as GSw, is de-
fined as maxw,w′ ∥w −w′∥1. Note that for any w,w′, we have ∥w −w′∥1 = |∥w∥1 − ∥w′∥1|.
This follows from the fact that subgraph counting is a monotonic function, meaning that the addition
of any edge does not reduce the number of occurrences of H . Furthermore, each element of w or
w′ is non-negative.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Thus, the global sensitivity of w is GSw = maxw,w′ ∥w −w′∥1 = maxw,w′ |∥w∥1 − ∥w′∥1| =
max

∣∣∣∑(u,v)∈V×V w(u,v) −
∑

(u,v)∈V×V w′
(u,v)

∣∣∣ = maxG∼G′ |fH(G)− fH(G′)| = GSfH ,

where the second to last equation follows from Lemma 3.5.

Let’s revisit the algorithm with a focus on a layer of the range tree Tx. At each layer of Tx, we
select all corresponding Ty trees. The number of Ty trees at this layer is equal to the number of
nodes at that layer of Tx. For each layer i (where i ∈ [log n]), let p represent all the nodes on the
i-th layer of these Ty trees. The sum of the weights of the selected nodes,

∑
p p.weight, equals the

sum of the weights of all vertex pairs, which can be written as
∑

(u,v)∈V×V w(u,v) (or equivalently,∑
(u,v)∈V×V w(s(u),s(v))).

In other words, if we treat the weights obtained in this way as a vector, its sensitivity is equal to the
sensitivity of w, denoted by GSw.

Since Tx has at most log n layers and each Ty tree also has at most log n layers (as stated in Fact 3.4),
there are at most log2 n such vectors. Let wt be the vector of weights from all nodes on the Ty trees.
The sensitivity of wt is GSwt = GSw · log2 n = GSfH · log2 n.

Thus, according to the Laplace mechanism and basic composition theorems, adding Laplace noise
with magnitude GSfH · log2 n/ε to each element of the vector ensures that Tx achieves differential
privacy. For each query, the range trees Tx and Ty are reused, and hence Algorithm 3 maintains
ε-differential privacy based on the post-processing property.

Utility Now we analyze the utility of Algorithm 3. Interestingly, while the range tree approach is
traditionally employed in non-private algorithms to improve query time, in this context, it also serves
to reduce the errors introduced by differential privacy protection. By leveraging the structure of the
range tree, we can distribute the noise more effectively across the tree’s nodes, which minimizes
the overall impact of noise on query accuracy. This ensures that the utility of the algorithm remains
high, even with the added noise required to preserve privacy.

We first prove that for a query q, only a small number of noise terms are required to obtain the
private answer. We have the following lemma whose proof is deferred to Appendix C.

Lemma 3.7. For a given query q and any pattern graph H , to calculate fH(Gq), the number of
occurrence of H in the graph Gq , we only need to sum the weights of at most log2 n tree nodes.

We will now show that the DP range subgraph counting implemented by our algorithm provides
strong utility guarantees for d = 1, achieving an error that is close to that of DP global subgraph
counting error (i.e., GSfH), differing only by a factor of logC n.

As outlined in Algorithm 2, we introduce Laplace noise to the weight of each node in the Ty trees.
Referring back to Lemma 3.7, we note that when answering a query, we only need to compute the
sum of the weights of at most log2 n nodes.

Assume that p represents the Ty nodes selected by query q, and each Yp is an independent ran-

dom variable where Yp ∼ Lap
(

GSfH
·log2 n

ε

)
. Let fH(·) denote the true result and f̃H(·) the

output of the algorithm. For any query q ∈ Q, the additive error generated can be expressed as:∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = ∣∣∣∑p∈q w(p)−

∑
p∈q w̃(p)

∣∣∣ ≤ ∣∣∣∑log2 n
p Yp

∣∣∣ = O
(

GSfH
·log3.5 n

ε

)
, where

the final inequality follows from the fact that each query utilizes at most log2 n tree node weights for
computation by Lemma 3.7.This bound holds with a probability of at least 1− 1

n3 , as established by
Lemma 2.6, where b = GSfH · log2 n, m = log2 n, and β = n3. We can derive the following bound:

maxq∈Q

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = O

(
GSfH

·log3.5(n)

ε

)
. This holds with a probability of at least 1− 1

n .

This result is achieved by applying the union bound, as there are at most O(n2) effective subgraphs
by Fact 3.3. This finishes the proof for the case d = 1.

4 EXPERIMENTS
To evaluate the trade-off between privacy and utility in our algorithm, We conducted experiments
on two real-world datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Datasets: Ego-Facebook: Facebook data was collected from survey participants using this Face-
book app. The dataset includes node features (profiles), circles, and ego networks. The network
(Leskovec & Mcauley, 2012) has n = 4039 and m = 88234.

Fb-Pages-government: Data collected about Facebook pages (November 2017). These datasets
represent blue verified Facebook page networks of different categories. Nodes represent the pages
and edges are mutual likes among them. The network (Leskovec & Mcauley, 2012) has n = 7057
and m = 89455. For each vertex in the aforementioned two networks, we sample values from a
standard normal distribution to serve as vertex attributes.

Infrastructure: All algorithms are implemented in Python. We ran our experiments on a system
with a 128-core Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and 504GB RAM.

Baseline: There is no prior work on differential privacy range subgraph counting. We use two base-
lines for comparison. The first baseline BASE COMP uses the Laplace mechanism and advanced
composition theorem (Dwork et al., 2014), and we set δ = 0.01. The second baseline BASE PRE
adds Laplace noise of size GSfH

ε on the basis of subgraph counting projection (PROJ) which is the
same as Algorithm 1, and does not build a tree structure. We use DPSRC to represent our algo-
rithm (pure-DP) and DPSC to represent global subgraph counting with privacy which only focus
the whole graph and answer one query. We give the theoretical information of the above algorithm
in Table 1. In our experiments, we set the attribute dimension d = 1.

Metric: We define the relative error for a query q as |f̃H(Gq)−fH(Gq)|
min (fH(Gq),0.001n)

. This metric follows the
approach outlined in (Imola et al., 2021). To maintain a consistent standard, we ensure that all tested
algorithms adhere to either ε-DP or (ε, δ)-DP. We keep the query q fixed and randomly generated
across a series of experiments, ensuring that |Vq| = Θ(n).In fact, our algorithm can handle any
number of queries, and compared to other algorithms, it demonstrates an advantage when the graph
scale is larger, as shown in Theorem 1.

Algorithm Query Type Privacy Additive Error

BASE COMP Range (ε,δ)-DP Õ(n ·GSfH)

BASE PRE Range ε-DP Õ(n ·GSfH)

DPSC Global ε-DP Õ(GSfH) or instance-dependent2

DPRSC Range ε-DP Õ(GSfH)

Table 1: The performance guarantees of DP algorithms for counting occurrences of H . For range
queries, the additive error is specified according to Theorem 1, while for single queries, it is mea-
sured by the absolute value of the difference between the algorithm’s output and the actual count.

Relative Error vs ε: We evaluated the relation between relative error and ε. We tested the algorithm
on the ego-facebook and fb-pages-government datasets for the cases when H is triangle, 2-star and
edge, respectively. Figure 2 describes the relationship between the relative error and ε when the
algorithm guarantees ε-DP ((ε, δ)-DP) under the same random query. When ε is relatively small,
the privacy protection is strong, making it difficult for potential attackers to distinguish between any
two inputs based on the output; however, the relative error is large. As ε increases, privacy becomes
weaker and the relative error becomes smaller. In addition, it can be seen that our algorithm is
significantly better than the baseline. In practical applications, the choice of ε should be made based
on specific requirements.

Relative Error vs n: We evaluated the relation between relative error and n. We tested the algorithm
on the ego-facebook and fb-pages-government datasets for the cases where H is triangle, 2-star and
edge, respectively under the same random query. In the experiment, we set ε = 2.0 and randomly
generate a fixed query. As can be seen from Figure 3, our algorithm is significantly better than the
baseline. And the experimental results are basically in line with intuition: the increase in graph size
will lead to an increase in the number of triangles, 2-stars and edge in most cases. If the growth rate
is greater than the growth rate of additive error, the relative error will decrease, and vice versa. Due

2The error is determined by certain unfixed properties of the input graph (such as the number of edges and
the degree of the nodes). In the worst case, it is Õ(GSfH), and the actual error may be smaller as usual.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) ego-facebook (b) ego-facebook (c) ego-facebook

(d) fbgov (e) fb-gov (f) fb-gov

Figure 2: Relative error vs ε

(a) ego-facebook (b) ego-facebook (c) ego-facebook

(d) fb-gov (e) fb-gov (f) fb-gov

Figure 3: Relative error vs n

to limitations in equipment and storage optimization, we believe that our algorithm demonstrates
a more pronounced advantage on larger-scale graphs and queries, as the impact of the log n factor
becomes less significant in such cases.

5 CONCLUSION

We give the first algorithm for the differentially private range subgraph counting problem that
achieves nearly optimal additive error for any constant dimension d and a constant privacy parameter
ε. Our approach establishes a connection between subgraph counting and the range tree technique
within the DP framework. Further exploration of instance-dependent error bounds for private range
subgraph counting would be interesting. Another natural question is how to design an algorithm
that ensures the additive error remains non-trivial, if the vertex attributes are high-dimensional (for
example, d = Ω(log n)).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM), 42(4):
844–856, 1995.

Raman Arora and Jalaj Upadhyay. On differentially private graph sparsification and applications.
Advances in neural information processing systems, 32, 2019.

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm for
counting arbitrary subgraphs via edge sampling. arXiv preprint arXiv:1811.07780, 2018.

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm for
counting arbitrary subgraphs via edge sampling. In Avrim Blum (ed.), 10th Innovations in The-
oretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, volume 124 of LIPIcs, pp. 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi: 10.4230/LIPICS.ITCS.2019.6. URL https://doi.org/10.4230/LIPIcs.
ITCS.2019.6.

Albert Atserias, Martin Grohe, and Dániel Marx. Size Bounds and Query Plans for Relational Joins.
IEEE, 10 2008. doi: 10.1109/focs.2008.43.

Michael J Bannister, Christopher DuBois, David Eppstein, and Padhraic Smyth. Windows into rela-
tional events: Data structures for contiguous subsequences of edges. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 856–864. SIAM, 2013.

Jon Louis Bentley and James B Saxe. Decomposable searching problems. 1978.

Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Near-linear time homomorphism counting
in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2315–2332. SIAM, 2021.

Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing triangles.
In International Colloquium on Automata, Languages, and Programming, pp. 223–234. Springer,
2014.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, pp. 410–419. IEEE, 2012.

T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Transactions on Information and System Security (TISSEC), 14(3):1–24, 2011.

Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal
on computing, 14(1):210–223, 1985.

Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting
small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 210–223, 2017.

Mina Dalirrooyfard, Slobodan Mitrovic, and Yuriy Nevmyvaka. Nearly tight bounds for differen-
tially private multiway cut. Advances in Neural Information Processing Systems, 36, 2024.

Chengyuan Deng, Jie Gao, Jalaj Upadhyay, and Chen Wang. Differentially private range query on
shortest paths. In Algorithms and Data Structures Symposium, pp. 340–370. Springer, 2023a.

Shiyuan Deng, Shangqi Lu, and Yufei Tao. Space-query tradeoffs in range subgraph counting and
listing. 255:6:1–6:25, 2023b. doi: 10.4230/LIPICS.ICDT.2023.6. URL https://doi.org/
10.4230/LIPIcs.ICDT.2023.6.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

11

https://doi.org/10.4230/LIPIcs.ITCS.2019.6
https://doi.org/10.4230/LIPIcs.ITCS.2019.6
https://doi.org/10.4230/LIPIcs.ICDT.2023.6
https://doi.org/10.4230/LIPIcs.ICDT.2023.6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. Pure differential privacy for
rectangle queries via private partitions. In International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pp. 735–751. Springer, 2015.

Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam D. Smith. Triangle counting with
local edge differential privacy. In Kousha Etessami, Uriel Feige, and Gabriele Puppis (eds.),
50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pp. 52:1–52:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.ICALP.2023.52. URL https:
//doi.org/10.4230/LIPIcs.ICALP.2023.52.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private release
of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 560–578. SIAM, 2020.

Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly uniformly
in sublinear time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli (eds.), 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pp. 45:1–45:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPICS.ICALP.2020.45. URL
https://doi.org/10.4230/LIPIcs.ICALP.2020.45.

Hendrik Fichtenberger, Monika Henzinger, and Lara Ost. Differentially private algorithms for
graphs under continual observation. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman
(eds.), 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lis-
bon, Portugal (Virtual Conference), volume 204 of LIPIcs, pp. 42:1–42:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPICS.ESA.2021.42. URL https:
//doi.org/10.4230/LIPIcs.ESA.2021.42.

Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially pri-
vate combinatorial optimization. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pp. 1106–1125. SIAM, 2010.

Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data release.
In Theory of Cryptography: 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily,
Italy, March 19-21, 2012. Proceedings 9, pp. 339–356. Springer, 2012.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Locally differentially private analysis of
graph statistics. In 30th USENIX security symposium (USENIX Security 21), pp. 983–1000, 2021.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. {Communication-Efficient} triangle
counting under local differential privacy. In 31st USENIX security symposium (USENIX Secu-
rity 22), pp. 537–554, 2022a.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Differentially private triangle and 4-cycle
counting in the shuffle model. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1505–1519, 2022b.

Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Private analysis of
graph structure. Proceedings of the VLDB Endowment, 4(11):1146–1157, 2011.

Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Analyzing
graphs with node differential privacy. In Theory of Cryptography: 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pp. 457–476. Springer,
2013.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances
in neural information processing systems, 25, 2012.

Shanmugavelayutham Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace count-
ing via discrepancy. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pp. 1285–1292, 2012.

12

https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.4230/LIPIcs.ESA.2021.42
https://doi.org/10.4230/LIPIcs.ESA.2021.42

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dung Nguyen, Mahantesh Halappanavar, Venkatesh Srinivasan, and Anil Vullikanti. Faster approx-
imate subgraph counts with privacy. Advances in Neural Information Processing Systems, 36,
2023.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 75–84, 2007.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao. Private
release of graph statistics using ladder functions. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data, pp. 731–745, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A UPPER BOUND ON THE GLOBAL SENSITIVITY OF SUBGRAPH COUNTING

In Section 3, we used GSfH to denote the global sensitivity of subgraph counting. In fact, in many
cases, we do not know the exact value of GSfH or it is cumbersome to calculate, and we want to
estimate it. Here we give an upper bound for GSfH through the fractional edge-cover number, an
important metric in graph theory. We also demonstrate the existence of a pattern subgraph H where
GSfH meets the established upper bound. To the best of our knowledge, this work is the first to
combine differential privacy for graphs with the concept of fractional edge-cover number.

Pattern Graph GSfH ρ(H)

Edge 1 1

Triangle n− 2 3
2

k-Star
(
n−1
k−2

)
k − 1

k-Cycle (k − 2)!
(
n−2
k−2

)
k
2

k-Clique
(
n−2
k−2

)
k
2

Table 2: Global sensitivity GSfH and ρ(H) of some common pattern graphs H

Graph theory We introduce the definition of fractional edge-cover number in (Assadi et al., 2018)
which is a classic definition of a subgraph enumeration and counting field.
Definition A.1 (Fractional Edge-Cover Number). A fractional edge-cover of H(VH , EH) is a map-
ping ϕ : EH → [0, 1] such that for each vertex v ∈ VH ,

∑
e∈EH ,v∈e ϕ(e) ≥ 1. The fractional

edge-cover number ρ(H) of H is the minimum value of
∑

e∈EH
ϕ(e) among all fraction edge cov-

ers ϕ.

Atserias, Grohe, and Marx (Atserias et al., 2008) established a relationship between the number of
occurrences of H in a graph, the number of edges, and the fractional edge-cover number.
Lemma A.2 ((Atserias et al., 2008)). The number of occurrences of H in a graph G with m edges
is O(mρ(H)).

This lemma states that for any graph G, if the number of edges in the graph is m, then the number
of occurrences of subgraph H in G is O(mρ(H)). For example, if H is a triangle, we can obtain
ρ(H) = 3

2 according to the definition of fractional edge-cover number. It means that the number of
triangle in a graph is O(m

3
2), that is O(n3) when the graph is complete graph with n vertices. It is

known that one can efficiently compute the fractional edge cover ρ(H) in polynomial (in |H|) time
(see (Assadi et al., 2018)).

We try to bound GSfH in a simple and effective way. We need to understand the global sensitivity
of the subgraph count in the graph, which is actually to calculate the number of occurrences of H
that contain a specific vertex pair (i, j) in the complete graph.
Lemma A.3. Given an n vertex graph G, pattern graph H . The upper bound of GSfH is
O(n2ρ(H)−2).

Proof. GSfH is global sensitivity of subgraph H counting, note that

GSfH = max
G∼G′

|fH(G)− fH(G′)| = |fH(Kn)− fH(Kn − {(i, j)})| = O(n2ρ(H)−2)

The second equality holds because the global sensitivity of fH is equal to the difference between
the count of the complete graph Kn and the count of the complete graph Kn with one edge (i, j)
missing. The final equality follows from Lemma A.2.

B RANGE TREE IN ALGORITHM 2 AND ALGORITHM 5

For clarity, we define the tree construction and query process to streamline the algorithm’s descrip-
tion. Here, T , Tx, and Ty all represent trees. The construction of the range tree is based primarily

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

on (Bentley & Saxe, 1978), with minor modifications. A schematic of the 2D range tree is provided
in Figure 1.

We begin by introducing the basic 1D range tree.
Definition B.1 (1D Range Tree). Given a set of points P = {(xi, wi)}, where each point has an
x-coordinate and weight, the 1D range tree is constructed as follows:

1. Sort the points by x-coordinates, denoted as x1, . . . , xn.

2. Begin building the tree recursively from the root node, where the interval spans from x1 to
xn.

3. For a given interval xl, . . . , xr corresponding to a tree node p, set mid = l+r
2 . Recur-

sively construct the left child using points xl, . . . , xmid and the right child using points
xmid+1, . . . , xr. If the interval contains only one point, terminate the recursion.

4. During backtracking, compute the weight of the current tree node as the sum of its interval:

node.weight = left.weight + right.weight.

Definition B.2 (1D Range Tree Query). Given a query range [low, high], start at the root node of
the 1D range tree T .

1. Start the recursive query from the root node of T .

2. For the current node, if node falls within the range [low, high], return p.weight. If low
lies within the left child of p, recursively query the left subtree; if high1 lies within the right
child, recursively query the right subtree.

3. When backtracking, sum the results of the left child and the right child and return them.

Next, we introduce a more complex case. To correspond to our chapter, we separate the 2D case and
the kD (k > 2) case.
Definition B.3 (2D Range Tree Construction). For a set of points P = {(xi, yi, wi)} where each
point has coordinates (x, y) and weight, the 2D range tree is constructed as follow:

1. Group the points by their x-coordinates, and sort each group by x, denoted as p1, . . . , pn.

2. Construct the 2D range tree Tx using p1, . . . , pn in a similar approach to the 1D range
tree, partitioning the first dimension. Note that each node of Tx contains an associated 1D
range tree Ty for the second dimension.

3. For each node in Tx, take the points covered by that node, group them by their y-
coordinates, sort them, and construct a corresponding range tree Ty which is contained
in the node Tx.

Definition B.4 (2D Range Tree Query). Given [low1, high1]× [low2, high2] and a 2D Range Tree
Tx, the query process is as follows:

1. Start the recursive query from the root node of Tx.

2. For the current node, if node falls within the range [low1, high1], perform a query on Ty

with [low2, high2] (call 1D tree query). If low1 lies within the left child of node, recur-
sively query the left subtree; if high1 lies within the right child, recursively query the right
subtree.

3. When backtracking, sum the results of the left child and the right child and return them.

Next we describe range tree construction and query in general.
Definition B.5 (kD Range Tree Construction). For a set of points P =

{
(x1

i , . . . , x
k
i , wi)

}
where

each point has coordinates (x1, . . . , xk) and weight, the kD range tree is constructed as follow:

1. Group the points by their first dimension, and sort each group by the first dimension, de-
noted as p1, . . . , pn.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2. Construct the kD range tree T1 using p1, . . . , pn in a similar approach to the 1D range
tree, partitioning the first dimension. Note that each node of T1 contains an associated
(k − 1)D range tree T2 for the second dimension, recursively.

3. For each node in T1, take the points covered by that node, group them by their second
dimension, sort them, and construct a corresponding (k − 1)D range tree T2.

Definition B.6 (kD Range Tree Query). Given a k-dimensional query range [low1, high1]× · · · ×
[lowk, highk] and kD range tree T :

1. Start the recursive query from the root node of T1.

2. For the current node, if node falls within the range [low1, high1], perform a query on T2

with [low2, high2] (call (k − 1)D tree query recursively). If low1 lies within the left child
of node, recursively query the left subtree; if high1 lies within the right child, recursively
query the right subtree.

3. When backtracking, sum the results of the left child and the right child and return them.

C PROOF OF LEMMA 3.7

Given a query q = [ℓ, r], we can prove that only at most log2 n tree node weights of Ty are needed
to compute the result.

First, consider the tree Tx, which represents the first dimension (the rank of vertex pairs based on
their first vertex). Our task is to select the tree nodes that cover the range [ℓ, n]. In the binary range
tree structure, once a parent node is selected, its child nodes are not selected since the parent already
covers the required range. This simplifies the problem to identifying nodes whose first dimension
(rank) is numbered in i, i+ 1, . . . , n.

At the i-th level (from bottom to top, i.e., levels 1, 2, . . . , log n), each tree node at this level covers
intervals such as [1, 2i], [2i + 1, 2i+1], . . . , [2logn−1 + 1, n].

Assume j is the smallest rank not less than ℓ. We can represent the difference n − j as a binary
number, which can be expressed as a sum of at most log (n− j) powers of 2. For example, the
number 10 in binary is 1010, i.e., 10 = 23+21. Similarly, we can cover the range [ℓ, n] by selecting
at most log n nodes in Tx, since the range tree is built based on binary subdivisions of the range.

Similarly, for each node in Tx that we select, it contains a nested tree Ty . At this stage, for each
Ty , we select a tree node corresponding to the range [1, r] (since we have already determined the
left boundary). Just like before, we can cover all rank pairs whose second dimension is in [1, r] by
selecting at most log n tree nodes from Ty .

Thus, by selecting the necessary nodes in both Tx and Ty , we can cover all rank pairs falling within
[ℓ, n]× [1, r]. This allows us to retrieve all subgraph counts where the vertices lie in the range [ℓ, r].

In summary, we need to select at most log2 n tree nodes from Ty to find all rank pairs within [ℓ, n]×
[1, r]. According to Lemma 3.5, the number of subgraphs with vertex ranks falling within any given
query range can be efficiently calculated.

Note that we ignore some rounding issues here.

D MISSING ALGORITHM AND PROOF OF THEOREM 1: THE CASE d ≥ 2

In the previous section we discussed the case of one-dimensional attribute for a vertex. In this
section, we extend our algorithm to the case of multi-dimensional (low-dimensional) attribute for a
vertex which is a more general situation, i.e. a(u) ∈ Rd, where u ∈ V .

Without loss of generality, we assume that each attribute ai(u) ∈ [0, λi] for i ∈ [d], and each query
q = [l1, h1]× · · · × [ld, hd].

When vertex attributes are multi-dimensional, the algorithm needs some adjustments. The entire
algorithm PROJMULT, TREECONSTMULT and QUERYMULT is given in this section.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 PROJMULT (G = (V,E,a), H) ▷ Subgraph Counting Projection For Mult-
attribute

1: Input: An n-vertex graph G = (V,E,a).
2: Reorder all vertex labels by i-th attribute value from small to large. If the attribute values are

the same, sort according to the initial label. Obtain the new rank si : V → [n] where i ∈ [d].
3: Initialize w(u1,v1,...,ud,vd) = 0, for any u1, . . . , ud ∈ V .
4: for all occurrences of subgraph H in G do
5: Compute w(s1(u1),s1(v1),...,s2(ud),s2(vd)) = w(s(u1),s(v1),...,sd(ud),sd(vd)) + 1, where ui (resp.

vi) be the vertex in this occurrence with the smallest (resp. largest) rank in dimension i.
6: end for
7: return w = {w(s(u1),s(v1),...,s(ud),s(vd))}

Algorithm 5 TREECONSTMULT (w, ε,GSfH) ▷ Private Range Tree Contruction For Mult-
attribute

1: Input: Projection w, privacy parameter ε > 0 and global sensitivity GSfH .
2: Create a noisy version, T̃1, by adding Laplace noise to the weight of each node in every Td tree

(within each node of Tx). Specifically, update the weight as weight = weight + Lap(tε), where
t = GSfH · log2d n.

3: return T̃1

Algorithm 6 DPRSC (G,H,Q, ε) ▷ Private Range Subgraph Counting Query For Mult-
attribute

1: Input: An n-vertex graph G = (V,E,a), a pattern graph H , a set of range queries Q, and
privacy parameter ε.

2: GSfH = fH(Kn)− fH(Kn − e).
3: w = PROJMULT (G,H).
4: T̃1 = TREECONSTMULT (w, ε,GSfH)
5: for q ∈ Q do
6: Get ℓi and ri according to Definition 3.2 for each dimension of q.
7: return Output of Definition B.6 with T̃1 and [ℓ1, r1]× · · · × [ℓd, rd].
8: end for

We refer to Definition 3.2 for the discretization steps in each dimension. Also, we abuse ℓi, ri to
denote rank for range.
Fact D.1. For all Q, we have |{G[Vq] | q ∈ Q}| = O(n2d).

We say the vertex u falls within query q if a(u) satisfy ai(u) ∈ [li, hi] for i ∈ [d]. If we say that
the vertices (u1, u2, . . . , uk) falls within the range q if and only if all vertices within the tuple fall
within the range.

Inspired by the case where d = 1, we can still perform subgraph counting projection on the vertices
of the graph. However, instead of projecting onto a plane, we project onto a hyperrectangle. Each
range subgraph counting query actually queries a small hyperrectangle inside the large hyperrect-
angle and calculates the sum of the weights of the tuple in the small hyperrectangle. Similar to
Section 3, we construct a nested tree based on these projections, ensuring that the tree with the finest
granularity has noisy weights. The final result of each query is still determined by the node weights
within the trees.

For the private range subgraph counting algorithm with multi-dimensional attributes, we give an
algorithm with performance guarantee given in Theorem 1 and prove its privacy and utility.

D.1 PROOF OF THEOREM 1

Lemma D.2. Assuming that the weight w(s1(u1),s1(v1),...,sd(ud),sd(vd)) of each pair is generated by
Algorithm 1, the number of occurrences of H in the graph consisting of all vertices falling within

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the range q = [ℓ, r] is equal to the sum of the weights of all rank pairs falling within the range
[ℓ, n]× [1, r]. That is,

fH(Gq) =
∑

(s1(u1),s1(v1),...,sd(ud),sd(vd))∈[ℓ1,n]×[1,r1]×···×[ℓd,n]×[1,rd]

w(s1(u1),s1(v1),...,sd(ud),sd(vd)).

In particular, the number fH(G) of pattern graphs H in G is equal to∑
(u1,v1,...,ud,vd)∈V d w(u1,v1,...,ud,vd) where V d = V × V × · · · × V︸ ︷︷ ︸

d

.

Proof. First, We use tuples of length 2d to register an occurrence of the pattern graph H . Assume
that a(u) = (a1(u), . . . ,ad(u)), we construct rank tuple (s1(u1), s1(v1), . . . , sd(u2d−1), sd(v2d))
to register subgraph H .

We say if an occurrence of pattern graph H falls within range q, tuple must fall in query. In Al-
gorithm 4, d new sort s is generated, we call the ordering of each dimension si. We suppose an
occurrence can be registered at (u1, v1, . . . , ud, vd). If an occurrence of pattern graph H falls within
range q, that means

ℓi ≤ si(u) < si(u1) < · · · < si(u|VH |−2) < si(v) ≤ ri

for i ∈ [d] and u ∈ V . Note that we have discretized the query q similar to Definition 3.2, so li and
ri is discretized into rank.

Because of rearrange, each vertex has a unique sorting number, so each occurrence is registered at
unique tuple. When all vertices in the tuple are within the range of q, all vertices in all subgraphs
represented by the tuple also fall within this range. According to this corresponding relationship, we
can obtain the sum of the weights of the tuples falling into [l1, n] × [1, r1] × · · · × [ld, n] × [1, rd]
is equivalent to the number of occurrences of H in the subgraph consisting of vertices in [l1, r1] ×
· · · × [ld, rd].

Lemma D.3. Algorithm 6 is ε-DP.

Proof. The proof method is an extension of Lemma 3.6. GSw = GSfH . And here Ti has log n
layers by Fact 3.4 for i ∈ [d]. Note that our approach in Section 3 can be extended to the case d ≥ 2.
If we combine the node weights of all Td into a vector, then this vector wt, then the global sensitivity
of this vector is GSwt = GSw · log2d n = GSfH · log2d n. And there are log2d−1 n groups of Td

that can form the entire point (tuple) set, that is GSfH · log2d n.

Lemma D.4. For a given query q and any pattern graph H , to calculate fH(Gq), the number of
occurrence of H in the graph Gq induced by all vertices within the range, we only need to sum the
weights of at most log2d n tree nodes. In particular,the theorem degenerates into Lemma 3.7 when
d = 1.

Proof. Given a query q = [l1, r1]× · · · × [ld, rd], we can prove that only at most log2d n tree node
weights of Td are needed. In Lemma 3.7, we proved the case where d = 1. We use mathematical
induction to prove the case where d ≥ 2.

First, assume that when the dimension is j − 1 only the weight of log2j−2 n tree nodes is required.

We focus on the T2j−1. Note that we need to find tree nodes that fall within [lj , n] from top
to bottom. And once a parent node is selected, its children will not be selected. We can sim-
plify the problem to selecting rank tuple whose 2j − 1-th dimension points are numbered in
i, i + 1, . . . , n. At the i-th level, each tree node in this level is responsible for interval numbers[
1, 2i

]
,
[
2i + 1, 2i+1

]
, . . . ,

[
2logn−1 + 1, n

]
. In a similar way to Lemma 3.7, log n nodes in T2j−1

is needed.

Similarly, each node in the T2j−1 we select contains a T2j . At this time, for each T2j , select a tree
node in the range [1, rj] (we have already determined the left boundary). Similarly, we can cover
all rank tuple which 2j-th dimension is in [1, rj] by selecting at most log n tree nodes. Then we can
obtain all rank pair in range [lj , n]× [1, rj] and obtain all subgraph counting which vertex in [lj , rj].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Recall that for the first j − 1 dimensions, each query requires visiting log2j−2 n tree nodes. On this
basis, to continue covering the remaining query dimension [lj , rj] requires log n nodes. Therefore,
for j dimensions, each query requires (log2j−2 n) · (log2 n) = log2j n nodes. Let j = d, we finish
the proof.

Assume that p represents the Td nodes selected by query q and each Yp are independent random

variables, where Yp ∼ Lap(
GSfH

·log2d n

ε). For a fixed query q, the additive error generated is

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = ∣∣∣∣∣∑

p

w(p)−
∑
p

w̃(p)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
log2d n∑

p

Yp

∣∣∣∣∣∣ = O(
GSfH · d · log3d+0.5 n

ε
)

with a probability of at least 1 − 1
n3 by Lemma 2.6 which b = GSfH · log2 n, m = log2d n and

β = n2d+1. by Lemma D.2, Lemma D.4, and Lemma 2.6.

E MISSING PROOF OF THEOREM 2

(Nguyen et al., 2023) introduced the concept of higher order local sensitivity to generalize to the DP
general subgraph counting problem. Since directly adding noise to the local sensitivity can lead to
privacy leakage, their approach is to estimate the noisy local sensitivity. If the local sensitivity of
the local sensitivity still results in privacy leakage, further noise estimation is required for the local
sensitivity of the local sensitivity, and this process is repeated recursively. We leverage their work to
assist in the proof.

First, we introduce the concept of local sensitivity. The local sensitivity of f is defined as

LSf (G) = max
G′:G′∼G

∥f(G)− f(G′)∥1.

Let S be a set of vertex pairs. Let fH(G,S) denote the number of occurrences of a fixed pattern
graph H in the graph (V (G), E(G) ∪ S). We define

f
(k)
H (G) = max

|S|=k
fH(G,S).

We denote the output of Algorithm 7 as H̃S
(k)

fH (G). Specifically, the noisy estimate of local sensitiv-

ity L̃SfH (G) is equivalent to H̃S
(1)

fH (G). For clarity, we refer to H̃S
(1)

fH (G) as H̃SfH (G).

Algorithm 7 ESTIMATEHS(G,H, ε′, δ′) ▷ Estimating higher-order private local sensitivity
(Nguyen et al., 2023), Algorithm 5

1: Input: An n-vertex graph G, privacy parameters ε′ > 0 and 0 < δ′ < 1.

2: Let kH = |EH |, H̃S
(kH)

fH = 0.
3: for k = kH − 1 down to 1 do
4: H̃S

(k)

fH (G) = f
(k)
H (G) + H̃S

(k+1)

fH (G) ln 1/δ′

ε′ + Lap(H̃S
(k+1)

fH (G)/ε′)
5: end for
6: return H̃SfH (G)

The following lemmas were proven in (Nguyen et al., 2023).

Lemma E.1 ((Nguyen et al., 2023)). Let H̃S
(k)

fH (G) = fk
H(G) + H̃S

(k+1)

fH (G) ln 1/δ′

ε′ +

Lap(H̃S
(k+1)

(G)/ε′), for k = |EH | − 1, . . . , 1 as computed in Algorithm 7. Then H̃SfH (G) is
a (kHε′, δ′ + kHeε

′
δ′)-DP estimate of local sensitivity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma E.2 ((Nguyen et al., 2023)). It holds that

Pr[H̃S
(k)

fH (G) ≥ f
(k)
H (G)] ≥ 1− δ′

for k = 1, . . . , kH − 1.

The proof of Lemma E.3 follows the proof of Lemma 4.4 in (Karwa et al., 2011), and we extend
their result to the case of multi-dimensional function f .
Lemma E.3. Let d ≥ 1. Let B be an (ε1, δ1)-DP algorithm such that Pr[B(x) ≥ LSf (x)] > 1− δ2
for all x. Consider the algorithm A that runs B(x) to obtain an estimate L̃Sx of the local sensitivity,
and releases both L̃Sx and a noisy estimate of f , i.e.,

A(x) = (L̃Sx, f(x) + Lapd(L̃Sx/ε2)),

where L̃S = B(x), Lapd(b) represents a d-dimensional vector such that each element is inde-
pendently sampled from a Laplace distribution with mean 0 and scale parameter b. Then A is
(ε1 + ε2,δ1 + eε1δ2)-DP.

Proof. Given neighboring datasets x and x′, where f(x), f(x′) ∈ Rd, consider the following:

A(x) = (L̃Sx, f(x) + Lapd(L̃Sx/ε2))

A(x′) = (L̃Sx′ , f(x′) + Lapd(L̃Sx′/ε2))

where L̃Sx = B(x) and L̃Sx′ = B(x′). Now, define the random variable

Amix = (L̃Sx, f(x
′) + Lapd(L̃Sx/ε2)).

Let px, px′ and pmix be the probability distributions of A(x), A(x′) and Amix. First, consider
the difference between A(x′) and Amix. They differ only in the initial estimate L̃S (either B(x′)
or B(x)). Since B is (ε1, δ1)-DP and since post-processing does not affect differential privacy, it
follows that for every event E

px′(E) ≤ eε1pmix(E) + δ1

Let F denote the event that L̃Sx > LSf (x). By the precondition of the lemma, Pr[B(x) >
LSf (x)] > 1− δ2, Pr(F) > 1− δ2. Here, z ∈ Rd is an arbitrary point.

We have

pmix(z|F)

px(z|F)
=

∏d
i=1 e

−ε2|f(x′)i−zi|/L̃Sx∏d
i=1 e

−ε2|f(x)i−zi|/L̃Sx

=

d∏
i=1

e
ε2(|f(x)i−zi|−|f(x′)i−zi|)

L̃Sx

≤
d∏

i=1

e
ε2|f(x)−f(x′)|

L̃Sx = e
ε2∥f(x)−f(x′)∥1

L̃Sx ≤ e
ε2∥f(x)−f(x′)∥1

LSf (x) ≤ eε2 .

The first inequality follows from the triangle inequality, the second inequality follows from the
definition of event F , and the third inequality is due to the definition of local sensitivity, LSf (x) ≥
∥f(x)− f(y)∥1.

For convenience, we can replace points with events, resulting in pmix(E|F) ≤ px(E|F). Since the
probability of F is the same under both pmix and px, we can strengthen this to pmix(E ∩ F) ≤
eε2px(E ∩ F). Note that Pr(F) ≤ δ2 and thus

pmix(E) ≤ pmix(E ∩ F) + pmix(E ∩ F) ≤ eε2px(E ∩ F) + pmix(E ∩ F) ≤ eϵ2px(E) + δ2.

Because we obtain px′(E) ≤ eε1pmix(E) + δ1, we get

px′(E) ≤ eε1+ε2px(E) + eε1δ2 + δ1.

The inequality is symmetric by the whole proof, as it remains valid when x′ is replaced with x,
ensuring the result holds regardless of the order of x and x′. So we prove A is (ε1 + ε2,δ1 + eε1δ2)-
DP.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 8 APPROXDPRSC (G,H,Q, ε,δ) ▷ Approximate DP Range Subgraph Counting
Query For Mult-attribute

1: Input: An n-vertex graph G = (V,E,a), a pattern graph H , a set of range queries Q, and
privacy parameter ε, δ.

2: Set ε′ and δ′ such that ε = (|EH |+ 1)ε′ and δ = δ′ + (|EH |+ 1)eε
′
δ′.

3: H̃SfH (G) =Algorithm 7(G,H, ε′, δ′).
4: w = PROJMULT (G,H).
5: T̃1 = TREECONSTMULT (w, ε′, H̃SfH (G))
6: for q ∈ Q do
7: Get ℓi and ri according to Definition 3.2 for each dimension of q.
8: return Output of Definition B.6 with T̃1 and [ℓ1, r1]× · · · × [ℓd, rd].
9: end for

Proof of Theorem 2. We prove the privacy and utility of the algorithm separately.

Privacy: We continue to use w as the vector output of the subgraph projection algorithm (the same
as w in Lemma 3.6 when d = 1). We use w and w′ to denote the different weight vectors formed
by graphs G and G′, respectively. Recall that fH(G) is the subgraph counting function for G. We
have

LSw(G) = max
w,w′

∥w −w′∥1 = max
G′:G′∼G

|fH(G)− fH(G′)| = LSfH(G).

Thus, if we get noisy estimate of LSfH (G), we get noisy estimate of LSw(G). Obviously, we can
get H̃SfH (G)for (kHε′,δ′ + kHeε

′
δ′)-DP by Lemma E.1. According to Lemma E.3, if we release

A(G) = (L̃Sw(G),w+Lap(L̃Sw(G)/ε′)) = (H̃SfH (G),w+Lap(H̃SfH (G)/ε′)), we can obtain
a ((kH + 1)ε′,δ′ + (kH + 1)eε

′
δ′) estimate of w.

Note that we are not aiming to obtain a differentially private w; instead, our goal is to ensure that
the constructed tree satisfies privacy requirements, as referenced in Lemma 3.6. Let wt represent
the vector of weights of all nodes in innermost trees (for d = 1, this corresponds to all trees Ty; for
d ≥ 1, it corresponds to all trees Td). We mention the description of wt in Lemma 3.6 when d = 1.

The vector wt satisfies LSwt
= LSw · log2d n. The noisy estimate H̃Swt

(G) is actually log2d n

times the noise estimate H̃Sw(G).

Therefore,

(L̃Swt
,wt + Lap(L̃Swt

(G)/ε′)) = (H̃Swt
,wt + Lap(H̃Swt

(G)/ε′))

= (H̃Sw · log2d n,wt + Lap(H̃Sw(G) · log2d n/ε′))

= (H̃SfH · log2d n,wt + Lap(H̃SfH (G) · log2d n/ε′))

is ((kH +1)ε′, δ′ + (kH +1)eε
′
δ′) -DP, where ε′ and δ′ is privacy parameter in Algorithm 7. Here,

we set
ε = (kH + 1)ε′, δ = δ′ + (kH + 1)eε

′
δ′.

By the post-processing property, Algorithm 8 satisfies (ε, δ)-DP. Furthermore, if ε and δ are speci-
fied, ε′ and δ′ can be easily computed.

Utility: The overall proof is similar to the utility proof in Theorem 1. Recall that, in Step 5 of
Algorithm 8 (which calls Algorithm 5), we add independent Laplace noise with a magnitude of
O(H̃SfH (G) · log2d n) to the weight of each tree node. For a fixed query q, the additive error
generated is

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = ∣∣∣∣∣∑

p

w(p)−
∑
p

w̃(p)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
log2d n∑

p

Yp

∣∣∣∣∣∣ = O(
H̃SfH (G) · d · log3d+0.5 n

ε′
)

= O(
H̃SfH (G) · d · log3d+0.5 n

ε
)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

With a probability of at least 1− 1
n3 (as established in Lemma 2.6), we have b = H̃SfH (G) · log2d n,

m = log2d n, and β = n2d+1, as supported by Lemma D.2, Lemma D.4, and Lemma 2.6. The
inequality holds because each query uses at most log2d n tree node weights for computation, as
shown in Lemma D.4. For the final equality, note that we focus on the family of pattern graphs with
a constant number of edges, where kH is a constant.

However, there is no explicit upper bound on H̃SfH (G) for all H , and its value typically varies
depending on H and G. For some H , H̃SfH can be relatively easy to estimate, while for others, it
presents more significant challenges. Nevertheless, our results remain practically significant. For
common H , such as triangles, H̃Sf∆ ≈ dmax(G), where dmax(G) represents the maximum degree
of the graph G. In most sparse graphs in the real world, dmax(G) = o(n).

Lemma E.4 ((Karwa et al., 2011)). It holds that

H̃Sf∆ ≤ dmax(G) +
2 ln 1/δ′

ε′

with probability at least 1− δ′.

Proof. (Karwa et al., 2011) provided a proof for the case of k-triangles. For clarity, we have rewrit-
ten the proof for triangles.

If H is a triangle, then f
(1)
∆ (G) ≤ dmax(G), f (2)

∆ (G) = 1. According to the algorithm Algorithm 7,
H̃Sf∆ = f

(1)
∆ (G) + ln 1/δ′

ε′ + Lap(1/ε′) ≤ dmax(G) + ln 1/δ′

ε′ + Lap(1/ε′). We have H̃Sf∆ ≤
dmax(G) + 2 ln 1/δ′

ε′ with probability at least 1− δ′ by Fact 2.5.

F EDGE-ATTRIBUTED RANGE SUBGRAPH COUNTING PROBLEM

In practical applications, many works require counting subgraphs based on edge attributes. For ex-
ample, in dynamic graphs, temporal networks or relational event graph with edges that have times-
tamps, someone want to query the number of subgraphs related to edges generated within a certain
time range in order to calculate metrics like clustering coefficients for data mining purposes. There-
fore, we have revised our definition and introduced algorithm for range subgraph counting based on
edges.

Definition F.1 (Edge Range Subgraph Counting). G = (V,E,a) is an undirected graph where each
edge e ∈ E carries a real-valued attribute a(e). For an interval q = [ℓ1, r1]× · · · × [ℓd, rd], define
Eq = {e ∈ E|ℓi ≤ ai(e) ≤ ri, i ∈ [d]} and Gq as the subgraph of G induced by Eq .

Let H be a connected (pattern) graph with a fixed number of vertices, e.g., triangle, edge, star.
Given an interval q, a query returns the number of occurrences of Q in Gq . The pattern H is fixed
for all queries.

We show that our previous algorithm framework is so powerful that it can be used to solve this
problem with a simple adjustment, which also shows the versatility of our algorithm.

To distinguish them from vertices, we use ei to denote edges. At the beginning, we have the initial
labels of the edges. Similarly, we use sj(ei) to denote the rank after reordering according to the j-th
dimension attributes. For edge range subgraph counting, we only need to adjust the projection part,
and the rest of the algorithm content will reuse Algorithm 2 and Algorithm 3, just replace vertices
with edges.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 9 EDGEPROJ(G = (V,E,a), H) ▷ Edge Subgraph Counting Projection

1: Input: An n-vertex graph G = (V,E,a).
2: Reorder all edge labels by attribute value from small to large. If the attribute values are the

same, sort according to the initial label. Obtain the new rank s : E → [n2].
3: Initialize w(e11,e

2
1,...,e

1
d,e

2
d)

= 0, for any e1j , e
2
j ∈ E where j ∈ [d].

4: for all occurrences of subgraph H in G do
5: Compute w(s1(e11),s2(e

2
1),...,sd(e

1
d),sd(e

2
d))

= w(s1(e11),s2(e
2
1),...,sd(e

1
d),sd(e

2
d))

+ 1, where occur-
rence registered at (e11, e

2
1, . . . , e

1
d, e

2
d).

6: end for
7: return w = {w(s1(e11),s2(e

2
1),...,sd(e

1
d),sd(e

2
d))

}

Refer to the construction of Algorithm 2 and Algorithm 3, just replace the vertices with edges. The
proof follows Section 3. The specific proof process is similar to vertex attribute case, we will not
repeat them here for simplicity. The only difference is that here we use edges to determine the
range, and there are at most O(n2) types of edges, so there are at most O(n4d) possible queries. For
building a DP range tree, n2d tuples are used to build a d-dimensional DP range tree, and at most
log2d n2 nodes are used each time. We then have the following theorem.
Theorem 3 (Pure DP Edge-Attributed Range Subgraph Counting). For any ε > 0 , there exists an
ε-DP efficient algorithm that given a graph G = (V,E,a), where the attribute of each edge is a
d-dimensional vector, a pattern graph H , and a query set Q outputs all subgraph counting queries
which satisfy

max
q∈Q

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = O

(
GSfH · d · log3d+0.5 n

ε

)
with probability at least 1− 1

n .

Theorem 4 (Approximate DP Edge-Attributed Range Subgraph Counting). For any ε > 0 and
0 < δ < 1, there exists an (ε, δ)-DP efficient algorithm that given a graph G = (V,E,a), where
the attribute of each edge is a d-dimensional vector, a pattern graph H , and a query set Q outputs
all subgraph counting queries which satisfy

max
q∈Q

∣∣∣fH(Gq)− f̃H(Gq)
∣∣∣ = O

(
H̃SfH · d · log3d+0.5 n

ε

)
with probability at least 1− 1

n .

We extend Theorem 2 to the edge case. By performing edge projection using Algorithm 9 and
replacing the global sensitivity with H̃SfH (G) estimated via Algorithm 7 to construct the DP range
tree, we achieve an error of O(H̃SfH (G)), ignoring d (since terms involving d remain unchanged).
In general, H̃SfH (G) provides better results than global sensitivity.

23

	Introduction
	Related Work

	Preliminaries
	DP Range Subgraph Counting
	The algorithm
	The analysis

	Experiments
	Conclusion
	Upper Bound on the Global Sensitivity of Subgraph Counting
	Range Tree in alg: DP Range Tree Contruction and alg: DP Range Tree Contruction for MA
	Proof of lem:the number of node is visited in a query
	Missing algorithm and proof of thm: dp subgraph counting multi d: The case d2
	Proof of thm: dp subgraph counting multi d

	Missing proof of thm: approximate dp subgraph counting multi d
	Edge-attributed range subgraph counting problem

