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Abstract

We examine the capabilities of language mod-001
els (LMs) from the critical perspective of hu-002
man language acquisition. Building on clas-003
sical language development theories, we pro-004
pose a three-stage framework to assess the abil-005
ities of LMs, ranging from preliminary word006
understanding to complex grammar and com-007
plex logical reasoning.1 Using this framework,008
we evaluate the generative capacities of LMs009
using methods from linguistic research. Re-010
sults indicate that although recent LMs gener-011
ally outperform earlier models in overall per-012
formance, with some variations due to factors013
such as model architecture and training objec-014
tives, their developmental trajectory does not015
strictly follow the path of human language ac-016
quisition. Models show robust improvement in017
basic and intermediate tasks during pretraining,018
yet advanced tasks yield minimal gains, high-019
lighting persistent challenges in higher-order020
linguistic processing. Notably, in generation021
tasks, experiments show that linguistic features022
in the training data shape model performance023
through context-dependent dimensions analo-024
gous to those observed in human language.025

1 Introduction026

Since the advent of early natural language pro-027

cessing (NLP) systems such as ELIZA (Weizen-028

baum, 1966) and SHRDLU (Winograd, 1971) in029

the 1950s, researchers have been striving to de-030

velop language models (LMs) to emulate human031

language. Over the past decades, we have wit-032

nessed the rise of LMs, which have achieved un-033

precedented success in language understanding and034

language generation (e.g., Gemini, Anil et al., 2023;035

GPT-4, Achiam et al., 2023; Llama 3, Dubey et al.,036

2024). These models not only handle complex037

contexts and generate coherent, human-like text;038

1Code and dataset are available at https://anonymous.
4open.science/r/Language-Acquisition-C8F7/README.
md

Figure 1: Three-Stage Anatomy of Language Acquisi-
tion.

they also exhibit emergent reasoning abilities and 039

a plausible degree of creativity (Wei et al., 2022a). 040

As the capabilities of LMs continue to grow, 041

so does the need for comprehensive evaluations of 042

their performance. Most existing benchmarks, such 043

as GLUE (Wang et al., 2019), SuperGLUE (Wang 044

et al., 2020) and MMLU (Hendrycks et al., 2021), 045

while thoroughly evaluating models on specific lan- 046

guage tasks, overlook the understanding of model 047

capabilities in terms of the developmental stages of 048

human language acquisition (Goldberg, 2005)—the 049

focus of this paper. Similar to how humans acquire 050

language through extensive exposure to spoken or 051

written words as they develop, LMs are similarly 052

trained on large collections of text. Both humans 053

and LMs build their language skills by repeatedly 054

encountering language, gradually forming and re- 055

fining stable patterns and associations. Therefore, 056

insights from previous studies on the stages of hu- 057

man language development could offer valuable 058

reference points for understanding this process in 059

terms of LMs. 060

As one of the unique abilities of humans, the 061

acquisition of language has long been a key area 062

of research in psycholinguistics. During the pro- 063
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cess of language acquisition, humans go through064

multiple stages, from imitation and rule learning065

to complex contextual understanding (Goldberg,066

2005). These stages bear some resemblance to the067

way current LMs are trained. For instance, LMs068

learn the statistical patterns and grammatical rules069

of language through training on large-scale data,070

similar to how infants develop language abilities by071

receiving a vast amount of input through listening072

and speaking. If we apply our understanding of073

the human language acquisition process to design074

and evaluate theory-driven tests of the capabilities075

of LMs, this could help us better understand the076

nature, potential, and limitations of LMs in their077

development.078

Our work draws on classical theories of human079

language development to assess LMs in terms of080

a three-stage human language development frame-081

work (Chomsky, 2014; Loban, 1976; Pinker, 2003),082

as shown in Figure 1. The first stage involves de-083

veloping basic language understanding, similar to084

early language acquisition in infants. At this stage,085

we evaluate the model’s ability to recognize vocab-086

ulary, grasp syntax, and perform simple reasoning.087

In the second stage, the focus shifts to mastering088

complex grammar and semantics, where the model089

demonstrates a deeper understanding of language090

rules and logical relationships between sentences.091

The third stage assesses advanced language abili-092

ties, evaluating the model’s capacity for complex093

reasoning and logical analysis.094

We further investigate another theory: regis-095

ter theory in linguistics, which posits that differ-096

ent language use scenarios influence the form and097

structure of language (Halliday, 1977; Matthiessen,098

1993). This theory offers insights into the extent099

to which models’ abilities depend on the linguis-100

tic features encountered in specific situations and101

contexts, referred to as registers. In LMs, when102

conditioned on certain tasks, they will reflect some103

registers but not others, as the task-specific cues104

selectively activate subsets of linguistic patterns105

learned from the training data, leading us to exam-106

ine how LMs have evolved in their register usage107

over time.108

We evaluated 16 LMs released between 2019109

and 2024, excluding instruction fine-tuned or chat110

versions, with varying parameter sizes (see §4.1).111

Our findings include: (1) LMs learn from vast cor-112

pora like humans, but their development does not113

exactly mimic human language acquisition stages,114

and their training objective and architecture could115

be factors that caused the variations; (2) Analysis 116

of model checkpoints shows a steady improvement 117

in model performance with training steps, though 118

more advanced tasks remain challenging; (3) Mod- 119

els also share the context-dependent nature of lin- 120

guistic feature distribution to some extent. 121

2 Related Works 122

Large pre-trained LMs, such as GPT (Radford et al., 123

2019) and BERT (Devlin et al., 2019), have revolu- 124

tionized NLP by leveraging vast amounts of data 125

and computational power to capture intricate nu- 126

ances in language and enhance generative capabili- 127

ties. After pre-training, these models are fine-tuned 128

for specific tasks, and systematic benchmarking 129

is important to standardize comparisons (Srivas- 130

tava et al., 2023), highlight areas for improvement, 131

and guide future advancements as models grow in 132

complexity and diversity. 133

Classical Evaluations. There are many bench- 134

marks that evaluate LMs’ abilities. Some focus 135

on specific aspects, whereas others cover a broad 136

range of tasks. For instance, the SST2 dataset 137

(Socher et al., 2013) measures text classification 138

and the TriviaQA dataset (Joshi et al., 2017) fo- 139

cuses on question answering. Additionally, compre- 140

hensive benchmarks like GLUE (Wang et al., 2019), 141

SuperGLUE (Wang et al., 2020), and MMLU 142

(Hendrycks et al., 2021) assess multitask language 143

understanding across a wide range of topics and 144

tasks. 145

Cognitive and Linguistic Evolution of LMs. 146

Several studies have been conducted to investigate 147

LMs’ capabilities of learning language and their 148

developmental abilities. For example, Kallini et al. 149

(2024) evaluated GPT-2 on synthetic variations 150

of impossible languages through systematic alter- 151

ations of English, revealing that GPT-2 exhibited 152

significant learning difficulties with these impossi- 153

ble languages compared to natural ones, challeng- 154

ing Chomsky’s assertions about LMs’ universal 155

learning capabilities. Shah et al. (2024) investi- 156

gated developmental trajectories in pretrained LMs 157

by assessing cognitive abilities across training us- 158

ing standardized metrics in four domains, finding 159

a consistent developmental window where mod- 160

els maximally align with human cognitive patterns. 161

Besides, Li et al. (2024) demonstrated that LMs 162

exhibit human-like patterns in resolving temporary 163

ambiguities, particularly when structural cues such 164

as commas facilitate disambiguation, suggesting 165
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fundamental similarities in linguistic processing166

mechanisms between artificial and human language167

systems.168

While classical benchmarks and recent investiga-169

tions into the cognitive evolution of LMs provide170

valuable measures of performance, they overlook a171

critical perspective: how these models mirror the172

gradual, stage-based progression observed in hu-173

man language acquisition. In contrast to evaluating174

isolated tasks, assessing these models through the175

lens of human language development can provide176

further insights and deepen our understanding of177

LMs’ capabilities. Human language development178

is a gradual, stage-based process. In the following179

section (§3), we will provide a more detailed de-180

scription of this process, along with a breakdown of181

language capabilities at each developmental stage.182

3 Psycholinguistics View Framework and183

Datasets184

Psycholinguistics explore the cognitive processes185

behind language acquisition, focusing on how hu-186

mans gradually develop language abilities. We187

primarily focus on research related to the various188

stages of language development.189

Previous research has established that coupled190

with a human’s growth, language development fol-191

lows a relatively stable trajectory, with several key192

stages identifiable along the way. For example,193

Gesell et al. (1946) found that the development of194

spoken language demonstrates consistent growth,195

as reflected in metrics such as the average num-196

ber of words per communication unit, the number197

of clauses per unit, and the elaboration between198

subjects and verbs.199

Similarly, Templin’s (1957) analysis of subor-200

dinate clause usage also underscores these stages,201

showing that eight-year-old children use subordi-202

nate clauses significantly more often than three-203

year-olds, marking a pivotal point of refinement204

in language acquisition. And Gesell et al. (1946)205

indicated that the development of spoken language206

shows a relatively stable growth trend. For exam-207

ple, the average number of words per communica-208

tion unit (C-Unit), the number of clauses in each209

communication unit, and the amount of elaboration210

between subjects and verbs all continue to increase.211

3.1 Framework212

Combining the findings above with those of Watts213

(1944); O’Donnel et al. (1967); Paul (2007) and the214

summary of Loban (1976), we can roughly divide 215

the overall process of language development into 216

three stages: 217

Stage I (Ages 0-6): At this stage, children primar- 218

ily focus on understanding vocabulary, and simple 219

syntactic structures begin to emerge. They gradu- 220

ally learn to use pronouns and verbs and become 221

able to distinguish between the present and past 222

tense. Although language expression remains rela- 223

tively simple at this age, the use of compound sen- 224

tences increases, especially those that express con- 225

ditionality and causality. Using words like “why,” 226

“because,” and “if,” children begin to engage in pre- 227

liminary causal reasoning, though this ability is not 228

yet fully developed. 229

Stage II (Ages 6-12): During this stage, the 230

development of language gradually moves to- 231

wards more complex grammatical structures. They 232

begin to master finer syntactic elements, such 233

as predicate-argument structures, prepositional 234

phrases, subordinate clauses, and the use of active 235

and passive voice. Their semantic understanding 236

also advances, enabling them to grasp the implied 237

meanings of words (e.g., “run” implies “move- 238

ment”) and handling negation through pre-pending 239

or appending particles to the stem of a word. For 240

example, morphological negation, refers to the 241

process of creating a negative form of a word by 242

adding a prefix, such as when “possible” becomes 243

“impossible”. This involves using prefixes like “un- 244

,” “in-,” or “im-” to change the meaning of the 245

original word to its opposite. In addition, during 246

this stage, children develop the ability to recognize 247

named entities, quantifiers, and complex concepts 248

such as factuality, symmetry, and redundancy. 249

Stage III (Above age 12): At this stage, chil- 250

dren’s language abilities are reflected not only in 251

the complexity of their verbal expression but, more 252

significantly, in their use of logical reasoning and 253

abstract thinking. They begin to engage in spa- 254

tial reasoning, deductive reasoning, and syllogistic 255

analysis, which allows them to use language with 256

greater precision and rigor. Additionally, they be- 257

come adept at resolving ambiguities in words with 258

multiple meanings and demonstrate a marked im- 259

provement in reading comprehension skills. 260

3.2 Datasets 261

Within each stage we just introduced, we compile 262

several datasets and introduce them in the following 263
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section.2 For an overview of the datasets, please264

refer to Table 3 in Appendix F and see Table 6 in265

Appendix F for the example of each dataset.266

3.2.1 Stage I267

one-word understanding: To assess the LM’s268

understanding of individual vocabulary items, we269

selected examples from publicly accessible vocab-270

ulary sample tests (Test, 2024; EnglishTestsOn-271

line.com, 2024) and randomly extracted frequently272

used vocabulary with brief examples from Ox-273

ford_Learner’s_Dictionary (2024).274

In this task, LMs will be asked to answer sim-275

ple multiple-choice questions. They will need to276

choose one of the four choices (a word or phrase)277

that makes the most sense in the given context.278

agent-action-object (AAO): To test whether279

LMs possess the knowledge to decide whether it is280

reasonable to take an action on the object, we chose281

the “subject-verb-trans” set from BLiMP (Warstadt282

et al., 2023) as our AAO dataset.283

In this task, LMs will be provided two sentences284

that have minimal differences (one or two words),285

where one of the two sentences is grammatically286

correct, and the other is not. LMs will be asked287

to distinguish between correct and incorrect sen-288

tences.289

bc-if-why: We select examples containing290

the words {because, if, why} from the Multi-291

Genre Natural Language Inference (MNLI) dataset292

(Williams et al., 2018), to test the models’ prelimi-293

nary expressiveness in terms of conditionality and294

causality, which presumably to be obtained in early295

stage.296

Following the same format in the MNLI dataset,297

we let the models perform a three-class classifica-298

tion task. Given premise and hypothesis, models299

will need to classify them into {entailment, neutral,300

contradiction}.301

3.2.2 Stage II302

Grammar-comp: To evaluate complex grammat-303

ical structures, we included more comprehensive304

and diverse grammatical types (e.g. quantifiers,305

belief verbs) in this task from MNLI (Williams306

et al., 2018). We also exclude instances containing307

participial words that are not typically mastered308

2Note that we filter the training dataset and restrict the
average C-Unit in datasets from the first two stages. In some
cases (e.g., bc-if-why), because there is not a sufficient number
of filtered examples from its evaluation set, we randomly split
off 20% of the training dataset for validation. For datasets that
do not require filtering, the evaluation sets are provided.

at this stage. We keep the same task setup as in 309

“bc-if-why” in Stage I. 310

BLiMP-comp: To minimize the influence of in- 311

ference on grammar tasks in addition to MNLI, we 312

extract minimal pair tasks from BLiMP (Warstadt 313

et al., 2023), which includes a wide range of gram- 314

matical phenomena, from subject-verb-agreement 315

to syntactic structure. We select those subsets with 316

human average performance of at least 80% accu- 317

racy as tests. The format is the same as the AAO 318

task. 319

CoLA (Warstadt et al., 2018): Unlike the other 320

two tasks in this stage, models are required to clas- 321

sify a sentence as either grammatically correct or 322

incorrect, categorizing it into one of two classes: 323

True or False, respectively. 324

3.2.3 Stage III 325

WiC: The WiC dataset (Pilehvar and Camacho- 326

Collados, 2019) focuses on words that have multi- 327

ple meanings. We used it to test the models’ ability 328

to probe both the context of the sentences and dif- 329

ferent definitions of the word when those exist. 330

In this task, two sentences will be given, where 331

each has one word in common, but they may or may 332

not have the same meanings. Models will need to 333

judge whether this word has the same meaning or 334

not under these two contexts. 335

ReClor: This dataset (Yu et al., 2020) is com- 336

posed of complex logical reasoning questions. We 337

used it to test whether the models possess complex 338

language abilities, including word understanding, 339

grammatical accuracy, inference, and reasoning. 340

During this task, models will do multiple-choice 341

questions. Provided with a context and a question, 342

models are expected to choose the most suitable 343

answers to the question from one of four choices. 344

4 Experimental Setup 345

In this section, we introduce the LMs we tested 346

(§4.1), the testing methods for different tasks per- 347

formed by the LMs (§4.2), as well as the evaluation 348

method (§4.3). 349

4.1 Models 350

We investigated 16 LMs 3 in total over a broad 351

time period (2019 to 2024) and with varying model 352

parameter sizes. 353

3Note that the count of 16 excludes the fine-tuned or chat
versions used in the ReClor and generation tasks, as they are
the same type and size as the base models.
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These include GPT-2 (gpt-2-large, gpt-2-xl;354

Radford et al., 2019), RoBERTa (RoBERTa-base,355

RoBERTa-large; Liu et al., 2019), ALBERT356

(ALBERT-xlarge, ALBERT-xxlarge; Lan et al.,357

2019), Google T5 (T5-3b, T5-large; Raffel358

et al., 2020), OPT (opt-1.3b, opt-2.7b; Zhang359

et al., 2022), Llama2 (Llama-2-7b-hf), Mistral360

(Mistral-7B-v0.3; Jiang et al., 2023), Llama3361

8B (meta-Llama-3-8b), Gemma2 (gemma-2-2b,362

gemma-2-9b) and the intermediate checkpoints of363

Pythia (Biderman et al., 2023).364

4.2 Testing Methods365

We use four different strategies to test the perfor-366

mance of LMs based on the specific tasks and367

model architectures.368

Classification Task: In this type of task, sen-369

tences are given as inputs to models. Models will370

output a class label (e.g., {0, 1} for two-class clas-371

sification, {0, 1, 2} for three-class classification).372

Minimal Pair Task and Vocabulary Task: In373

these two kinds of tasks, we will either calculate the374

loss for decoder-only models or compare the prob-375

ability distributions of the masked token through376

Masked Token Prediction (MLM) (BERT-style) or377

Span Predictions (T5). Please refer to Appendix E378

for details on the format.379

Reading Comprehension Task: For this task,380

we select either the available chat versions or the381

instruction-fine-tuned versions of our chosen mod-382

els, as these can be prompted to answer questions383

in a designated format. In addition to the normal384

prompt, we also apply the zero-shot CoT (Wei et al.,385

2022b) and one-shot ICL (Brown et al., 2020) to386

determine whether any further improvement in the387

performance of the LMs can be obtained.388

Generation Task: The chat and instruction-fine-389

tuned versions of the models are prompted with in-390

structions for 16 topics in four different categories,391

taken from GRE public issue writing prompts (Ed-392

ucational Testing Service). Sample essays written393

by human testees with high scores (6 and 5) are394

sourced from (Yu, 2024) to compare with the per-395

formance of the LMs on this task.396

4.3 Evaluation Method397

We report accuracy as our main evaluation met-398

ric as most of our testing datasets are balanced.399

CoLA dataset (Warstadt et al., 2018) also uses the400

Matthews correlation coefficient (see E.1).401

Normalized Accuracy: While the NLI task has402

a baseline accuracy of 0.33 (random guess), tasks403

with four choices, such as one-word understanding, 404

have a baseline accuracy of 0.25. Therefore, it 405

is unreasonable to compare them solely on their 406

original accuracy. We have therefore normalized 407

each metric by the following formula: 408

Normalized_Accuracy =
A−R

1−R
409

where A is the observed accuracy, R is the accuracy 410

of a random guess. This formula is the same as 411

Cohen’s kappa for rating tasks, which takes random 412

rater agreement into account (Cohen, 1960). 413

5 Experimental Results 414

We first analyzed whether the LMs’ overall devel- 415

opmental trends between the years 2019 and 2024 416

were consistent with the developmental trajectory 417

of human language (§5.1). Then we further ex- 418

plored the developmental trend of Pythia during 419

pretraining (§5.2). Finally, we conducted a com- 420

prehensive and in-depth evaluation of the models’ 421

generative abilities from a linguistic perspective 422

(§5.3). 423

5.1 Overall Trends in LMs’ Development 424

Here, we focused on the overall development trends 425

of LMs, and whether these models mimic the de- 426

velopmental process of human language acquisi- 427

tion. As noted previously, just as humans learn 428

language from an early age by being exposed to a 429

large amount of spoken or written language, LMs 430

are trained on vast text corpora. Both humans and 431

LMs develop language abilities through repeated 432

exposure to language, forming patterns and associ- 433

ations over time. 434

As mentioned earlier, these datasets have been 435

divided into tasks based on theories of human lan- 436

guage development. We anticipated that certain 437

LMs would exhibit stronger performance in the 438

early stages of language acquisition but show more 439

modest results in the later stages. Further, if these 440

stages of human language development hold for 441

the development of LMs, then if an LM achieves 442

relatively good results in the third stage, then it 443

should also demonstrate corresponding success in 444

the first and second stages on which the third stage 445

depends. Despite this theoretical motivation, the 446

experimental results did not support this hypothe- 447

sis. 448

Figure 2 displays our overall results. In Stage I, 449

we first tackled fundamental tasks of human lan- 450

guage acquisition, such as understanding individual 451
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Figure 2: Performance of LMs across three stages. Colors represent stages arranged from left to right: Stage I –>
Stage II –> Stage III. The upper legends correspond to models tested in tasks. For each task, models are ordered by
their time released, and the tie is broken by their parameter sizes. Results from CoLA also use a different metric;
please refer to Figure 11 in Appendix. F. Performance differences appear larger due to normalization.

words. Most models performed well at this stage,452

but a few lagged behind. For example, the accu-453

racy of T5 and RoBERTa was only half that of other454

models in one-word understanding. We found that455

Gemma2 performed well in many tasks; however,456

it fell short compared to other models on the AAO457

task. After conducting some experiments (see Ap-458

pendix A.1) on these models, we discovered that459

T5 and RoBERTa did not perform well on ques-460

tions that require contextual information. However,461

the fine-tuned versions of T5 excelled in one-word462

understanding and the AAO task.463

Stage II involved more complex grammatical464

knowledge, yet most LMs did not share this diffi-465

culty, performing as well as, or even better than,466

they did in stage I. Notably, despite similar overall467

performance, there were significant differences in468

the models’ scores across different grammatical469

phenomena from BLiMP-comp. Please refer to470

Table 5 in Appendix F for detailed examples.471

In Stage III, performance differences among the472

LMs became more pronounced across various tasks.473

For the WiC task, the LMs failed to demonstrate474

comparative performance relative to other tasks475

in Stage I and Stage II. In the ReClor task, the476

fine-tuned opt-1.3b model and Llama2-chat ver-477

sion performed poorly, while Gemma2-9b-instruct478

achieved higher accuracy. Moreover, one-shot ICL479

and CoT learning did not significantly improve 480

model performance in this task (see Table 4 in Ap- 481

pendix F). 482

Observing the developmental trend also re- 483

veals several key architectural and scaling insights 484

(see Appendix B for detailed descriptions) in the 485

model’s language acquisition. While increasing 486

model parameters did not consistently improve 487

performance across most language development 488

stages (with ReClor in Stage III being a notable ex- 489

ception), we found that encoder models frequently 490

matched or surpassed larger decoder models in clas- 491

sification tasks, likely due to their bidirectional at- 492

tention capabilities. Interestingly, for sentence-pair 493

comparison tasks (AAO and one-word), decoder- 494

only models generally outperformed their encoder- 495

only or encoder-decoder models, potentially due 496

to differences in training objectives (e.g., masked 497

language modeling vs. next-token prediction) and 498

the absence of sentence order prediction objective 499

in some models (RoBERTa and T5). These find- 500

ings suggest that architectural choices and training 501

objectives may be more crucial than model size 502

for specific linguistic tasks to empower the model 503

to learn from the training corpus more effectively. 504

This also indicates that insights from linguistic 505

research can contribute to future improvements, 506

alongside scaling up model parameters and data 507

6



sizes.508

5.2 Language Development in Pretraining509

In addition to the investigation of LMs’ devel-510

opment as a whole, we also examined the LMs’511

development during pretraining. Here we se-512

lected Pythia-1B (Biderman et al., 2023) and513

tested checkpoints at {5000, 28000, 56000, 84000,514

112000, 143000} steps respectively. The experi-515

mental results (shown in Figure 3) yield two pri-516

mary insights: (1) As the training steps increase,517

the model performance tends to increase. (2) Gener-518

ally, the model performs better in early-stage tasks519

than in later-stage tasks—except for the “bc-if-why”520

task—and Pythia exhibits greater initial gains (or521

learnability) in earlier-stage tasks.
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Figure 3: Performance of Pythia 1B with different
checkpoints.

522 Trends in Training Steps. Model performance523

demonstrates consistent improvement across train-524

ing steps, analogous to human language acquisi-525

tion patterns. However, there is a slight dropback526

between the last two checkpoints in some tasks,527

which usually appears during training (Shen et al.,528

2024; Luo et al., 2024). This mirrors patterns in529

human skill acquisition where progress stabilizes530

despite continued practice (Vleugels et al., 2020).531

Significantly, models achieve near-optimal perfor-532

mance after approximately 50000 training steps,533

with marginal subsequent improvements.534

Trends between Stages. Pythia in Stage I tasks535

demonstrates robust overall performance, with536

“one-word” tasks achieving high performance,537

while “bc-if-why” tasks show more modest but also538

consistent improvement throughout training. Stage539

II evaluations exhibit progressive enhancement dur-540

ing pretraining, with CoLA demonstrating a slight541

inital gain but particularly notable developmental 542

trajectories. In contrast, Stage III task WIC con- 543

sistently yields the low performance metrics with 544

minimal improvement across training iterations, 545

suggesting a persistent challenge in higher-order 546

linguistic processing. 547

5.3 Generation Ability and Register Theory 548

We also evaluated the generation abilities of some 549

LMs through the generation task. Here, we regard 550

generation ability as a reflection of LMs’ overall 551

capability, as generation requires word-level under- 552

standing, flexible use of grammatical knowledge, 553

and strong logical reasoning skills to ensure sen- 554

tence completeness and fluency. 555

Biber’s Tagger. Register theory posits that lin- 556

guistic features—such as vocabulary, syntax, and 557

formality—vary systematically with context, audi- 558

ence, and communicative purpose (Halliday, 1977; 559

Matthiessen, 1993; Biber and Conrad, 2009). Ex- 560

tensive research in linguistics has explored co- 561

occurrence patterns of these features across dif- 562

ferent contexts based on register theory. Drawing 563

on the Multi Dimensional Analysis Tagger (MAT) 564

by Nini (2019), which replicates the procedure es- 565

tablished by Biber (1988), we compared five repre- 566

sentative dimensions. 567

NN (nouns that are not identified as nominaliza- 568

tions or gerunds): This metric evaluates the model’s 569

accurate and flexible use of standard noun forms. 570

AWL (average word length): This metric mea- 571

sures the mean length of the words in the text in 572

orthographic letters. 573

Clause (a collection of adjectival and adverbial 574

clauses): This metric quantifies the frequency and 575

diversity of clauses. 576

TTR (type-token ratio): This dimension evalu- 577

ates the richness of the generated text in terms of 578

lexical diversity. 579

Auxiliary Verbs (e.g., modal verbs expressing 580

possibility, prediction, and necessity): This indica- 581

tor tracks the usage of auxiliary verbs in the texts. 582

In all five dimensions, we found that patterns in 583

NN, TTR, and AWL dimensions tend to be more 584

similar to human, while more variations 4 are ex- 585

hibited in other dimensions (see Figure 4(a)). 586

Linguistic Features reflect Register. To explore 587

the inter-relationships between linguistic features 588

and registers, we further divided the GRE issue 589

4These variations are discussed in Appedix B.
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(b) Average TTR across Four Categories of Topics

Figure 4: Models are ordered by time. (a) shows the comparison of five dimensions of different linguistic features
in the essays. (b) shows average TTR across four categories of topics. Average NN also shows certain trend, see
Figure 17 in Appendix F.

writing prompts (mentioned in Section 4.2) into590

four distinct topics (culture, education, society, and591

governance) and calculated the average TTR for592

each category separately. As shown in Figure 4(b),593

the trends in average TTR across these topics con-594

verge more closely to human patterns in later mod-595

els compared to earlier ones—Gemma9b-it even596

exhibits a higher overall TTR in every category597

than human data—which suggests that while re-598

cent models produce more lexically diverse outputs,599

they have concurrently evolved to capture the nu-600

anced register-specific variations that characterize601

natural language.602

To investigate how linguistic characteristics in-603

fluence the variations in the registers, we employed604

sparse dictionary learning methods (Braun et al.,605

2024) through two complementary case studies.606

Our empirical investigation yielded two findings re-607

garding the relationship between register variation608

and semantic processing:609

Semantic Boundaries in AAO. Analysis of the610

AAO task performance demonstrates that models611

exhibiting lower accuracy tend to produce subject612

token representations with less distinct semantic613

boundaries. This observation aligns with register614

theory principles, where effective communication615

relies on maintaining clear semantic distinctions616

across different contexts (detailed analysis in A.1617

of the Appendix).618

Lexical Variation under Register Steering.619

Through targeted activation (see Appendix E.2 for620

implementation details) steering on context fea-621

tures from “Governance” to “Culture” (Figure 5),622

we observe systematic decreases in TTR measures.623

This finding provides empirical support that mod-624

els also share the the context-dependent nature of625

linguistic feature distribution, demonstrating how 626

register variations systematically influence lexical 627

diversity patterns. 628

5 10 15 20 25 30
Steering Strength

230

240

250

260

270

280

290

300

TT
R

TTR

Figure 5: Steering activations of Gemma9b-it with
prompt on “Governance” topic to “Culture”. Steering
strength is normalized by a factor of 100.

6 Conclusion 629

We evaluated LMs by incorporating theories from 630

human language acquisition. Building on classi- 631

cal language development theories, we proposed 632

a three-stage framework to assess the abilities of 633

LMs. 634

By and large, we observed that LMs do not 635

conform to human language acquisition patterns. 636

Although some LMs performed competitively in 637

the later stages, they struggled with tasks in the 638

earlier stages. This may be due to their specific 639

architectures, parameter sizes, and the scale of 640

the corpora they were trained on. Investigations 641

of model checkpoints indicate that models show 642

greater learning abilities in earlier-stage tasks than 643

in later-stage tasks. 644

The study of register theory further shows that 645

linguistic features of the training data influence 646

the models’ performance, demonstrating context- 647

dependent linguistic feature dimensions similar to 648

those observed in human language. 649
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Limitations650

This evaluation was necessarily limited by the gen-651

res of our collected dataset, which consisted en-652

tirely of text. Texts represent only part of the infor-653

mation acquired during human language acquisi-654

tion. For example, Barreto (2019) introduced visual655

questions in the CELF-5 that assessed children’s656

understanding of spatial terms, requiring the exami-657

nee to identify the position of an object in a picture.658

Similarly, the TOLD-P:5 (Newcomer and Hammill,659

2018) assessed children’s spoken language skills660

through tasks such as defining spoken words and661

demonstrating an understanding of their meanings.662

To explore this topic further, a multimodal dataset663

incorporating images, videos, and speech would664

have been necessary.665

Moreover, because the aforementioned assess-666

ments were commercially available, accessibility667

issues arose concerning such datasets. In the spirit668

of open science, future work should focus on creat-669

ing similar datasets that are open to a wide range670

of research communities.671

Additionally, research by McMurray et al. (2014)672

showed individual differences in human language673

abilities. Similarly, LMs could have been devel-674

oped to model such variations more closely.675

Finally, due to the rapid advancements in LMs676

and their increasing parameter sizes, a continuous677

and sustainable evaluation of these models might678

have been required.679

Ethics Statement680

The datasets we compiled are all publicly available681

for research purposes (under CC-BY 4.0 license682

or unspecified). We have manually checked each683

example from the one-word understanding we col-684

lected and modified to ensure it does not contain685

any harmful information or bias.686
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A Appendix A1043

A.1 Case Study: Under-performance in1044

one-word Understanding1045

An example question in one-word-
understanding that T5 made a mistake

Model choice: wait
Correct choice: rush

You don’t have to ______! We’re not late!

A) dream
B) laugh
C) rush
D) wait

1046

We also investigate questions that RoBERTa and1047

T5 answered incorrectly in the one-word under-1048

standing task, which all other models, including1049

decoder-only and encoder-only models, answered1050

correctly. After a thorough inspection of the testing1051

examples that RoBERTa and T5 did not answer1052

correctly, we identified two common points: (1)1053

The models tend to choose answers that form more1054

frequent collocations. For example, the models pre-1055

fer “think about” over “complain about.” “Think1056

about” can be used in a wider variety of contexts,1057

including contemplation, consideration, and plan-1058

ning, whereas “complain about” has a negative1059

connotation and is more context-specific. (2) Most1060

of these questions require information from the sur-1061

rounding context, either before or after the blank1062

that needs to be filled in, which is similar to the1063

findings of the case study in Wang et al. (2024).1064

We carefully designed 50 examples from our1065

training dataset on one-word understanding and1066

tested RoBERTa-base and T5-large on these exam-1067

ples. All of the selected questions are composed of1068

either those requiring context knowledge or those1069

relying solely on collocation knowledge. To solve1070

example A.1, the models must attend to the second1071

sentence to understand that “not late” is related to1072

“don’t have to rush,” rather than focusing solely on1073

the first sentence. Not surprisingly, in Figure 6,1074

ALBERT-xl which aimed this question paid more1075

attention to the token “late” in the correct sentence1076

compared to T5 which missed this question.1077

RoBERTa RoBERTa-base answered 23 out of1078

50 examples correctly with an accuracy of 46%.1079

Upon closer investigation, we found that, out of1080
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Figure 6: Max attention weight differences between
sentence 1: “You don’t have to rush...” and sentence 2:
“You don’t have to wait...” for T5 and ALBERT. The
“____” token is “rush” in the first sentence and “wait” in
the second sentence. We could find the “____” token in
ALBERT is more related to the “late” token compared
to T5.

the 27 questions RoBERTa made mistakes on, 60% 1081

(16 questions) required context, while 40% (11 1082

questions) were related to collocation. 1083

T5 For the same set of examples, T5-large cor- 1084

rectly answered 28 out of 50 examples, achieving 1085

an accuracy of 56%. Of the 22 questions that T5 1086

answered incorrectly, 16 (73%) required some con- 1087

textual knowledge, while 6 (27%) involved collo- 1088

cations. 1089

Because T5 performed relatively well compared 1090

to other models, we speculate that the way it han- 1091

dles multiple-choice questions contributes to its 1092

lower performance (see §B). As a result, we tested 1093

Flan-T5 (both large and 3b) on this task. We 1094

found that their performance, measured by normal- 1095

ized accuracy, increased to 0.807 (Flan-T5-l) and 1096

0.898 (Flan-T5-xl). 1097

Dictionary Learning Reflects Register Usage 1098

Sparse Autoencoder (SAE) is a powerful unsu- 1099

pervised dictionary learning method that learns 1100

a sparse decomposition of models’ representa- 1101
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Sentences Gemma2 9b Gemma2 9b-it Llama3.1-8b ✔

Good : Melissa will
clean a gate.

Bad : This mouth
will clean a gate.

15675: terms related
to oral health and

hygiene

6714: anatomical
terms related to

body parts

6991:
references to mouth

Llama 3.1 and
Gemma2 9b-it

Good : Tanya
admires Melanie.

Bad : Music admires
Melanie.

10440: mathematical
symbols or notions

8262: instances of
phrases "I don’t" and

its variations

16839:
references to music
and related media

Llama 3.1

Good : A senator
drops by every lake.

Bad : The muffin
drops by every lake.

12754: descriptions
of

food and beverages ,
with emphasis on
coffee and sweet

treats

15081: the prefix
"mu" in various forms

to identify related
biological or chemical

substances

10179: mentions of
muffins in various

contexts
Gemma2 9b

Good : The
committee disliked
Lissa.

Bad : The company
disliked Lissa.

13164: references to
companies and their

details

11832: references to
companies and their

details

25617: mentions of
companies or

company-related
concepts

None

Table 1: Sentences selected from the AAO tasks. Each entry in the middle three columns represents the feature
of the subject token that has the highest activation in the bad sentence. The last column indicates which model(s)
choose(s) the correct answer. Highlights in orange show the models activate on correct feature(s) when “making
decisions”.

tions into interpretable features (Cunningham et al.,1102

2023). Register theory suggests that language1103

varies systematically based on context and corpus.1104

As a result, SAE offers a plausible way to inves-1105

tigate the models could activate on what type of1106

context or which part of corpus (features) given the1107

texts.1108

Here we use SAE to investigate the AAO tasks1109

in which Gemma2 did not perform well. Because1110

training and scaling of SAEs are computationally1111

intensive and difficult (Gao et al., 2024), we used1112

pretrained SAEs Gemma Scope (Lieberum et al.,1113

2024) and Llama Scope (He et al., 2024). As men-1114

tioned in the paper, the data that used to train SAEs1115

are sampled to be representative of the distribution1116

of pretraining data, we could get a fairly well ap-1117

proximation to the pretraining corpus and connect1118

to register theory.1119

We compared Gemma2-9b, Gemma2-9-it, and1120

Llama3.1-8b on the last layer’s residual stream by1121

selecting several examples from the AAO tasks1122

they did correctly or incorrectly. We find an inter-1123

esting pattern: When the models did the problem1124

correctly, the feature that subject tokens activate1125

retains more precise semantic meanings compared1126

to when they did it incorrectly. For example, at the 1127

first row of Table 1, we see that the subject token 1128

(“mouth”) in the bad example activates on features 1129

that are more related (body parts and reference to 1130

mouth) for Gemma2-9b-it and Llama3.1-8b. For 1131

Gemma2 9b that missed this question, the feature 1132

“oral health and hygenie” encompassed more mean- 1133

ing of the later token such as “clean” within the 1134

token “mouth”. Maintaining a more independent 1135

meaning from the context of bad examples is key 1136

to aiming this question. 1137

Nonetheless, the last example in Table 1 presents 1138

an interesting exception — features from all three 1139

models are precise and did not interleave with later 1140

tokens. One plausible explanation is that the train- 1141

ing corpus may include grammatically incorrect 1142

sentences. It does not impede our understanding of 1143

the sentence if we say “The company disliked Liss” 1144

even if it has mistakes in grammar. 1145

Additionally, having learned that models encode 1146

blended semantic meanings in the subject token 1147

when they chose the bad sentence, we verified 1148

this observation by activation steering (refer to Ap- 1149

pendix E.2 for the formulation of steering). By 1150

steering toward activations with more precise se- 1151
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mantic meaning, the model is more likely to favor1152

the correct answer if it had previously answered1153

incorrectly (see Figure 7). This observation aligns1154

naturally with register theory principles, where for-1155

mal registers are characterized by clear semantic1156

boundaries and controlled meaning structures. The1157

models’ successful performance appears to mir-1158

ror this principle—maintaining distinct, register-1159

appropriate semantic representations leads to cor-1160

rect responses, while semantic boundary violations,1161

manifesting as blended activations, typically re-1162

sult in errors. Similarly, as shown in Figure 8, by1163

steering Llama3.1-8b’s activation of the second ex-1164

ample towards the opposite direction of “Music”,1165

the model becomes less likely to favor the correct1166

examples. This also confirms the robustness of1167

the features across models and different pretrained1168

SAEs.1169
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Figure 7: Good Sentence: Tanya admires Melanie. Bad
Sentence: Music admires Melanie. Steering towards the
direction of “Music”. Steering Gemma2-9b towards the
direction of "Music".
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Figure 8: Good Sentence: Tanya admires Melanie. Bad
Sentence: Music admires Melanie. Steering Llama3.1-
8b towards the opposite direction of "Music". We could
find that, before steering Llama3.1-8b could choose the
correct sentence. However, after steering by a certain
strength (around 4), the good sentence has larger per-
plexity.

B Appendix B: Factors in Models’ 1170

Language Acquisitions 1171

In this section, we discussed factors that could af- 1172

fect the performance of the models in our language 1173

acquisition task. 1174

Does Scale Matter? Although previous research 1175

has shown that the performance of LMs often im- 1176

proves with the expansion of model parameters 1177

(Kaplan et al., 2020), in most of the ability tests we 1178

conducted across different stages of language devel- 1179

opment, there was no significant difference (larger 1180

than 20% accuracy) in performance between small 1181

models and their larger counterparts. However, 1182

this observation does not negate that on certain 1183

tasks, larger models could outperform by a certain 1184

amount as compared to their smaller counterparts. 1185

In fact for the complex task ReClor (in Stage III), 1186

larger models significantly outperformed smaller 1187

ones. 1188

Just like previous research (e.g., Millière, 2024; 1189

Wilcox et al., 2024), our results also support the 1190

idea that small models can effectively encode suf- 1191

ficient information for certain tasks, meaning that 1192

increasing model parameters is not the only path 1193

to improving performance. Therefore, instead of 1194

solely pursuing larger models, drawing insights 1195

from linguistic research might be a more effective 1196

way to enhance overall model performance (Mil- 1197

lière, 2024; Wilcox et al., 2024). 1198

Does Architecture Matter? We noticed that, in 1199

classification tasks, encoder models (including T5, 1200

which only uses its encoder part for classification), 1201

even with smaller numbers of parameters, almost 1202

equalize or exceed the performances of decoder 1203

models with larger numbers of parameters. The 1204

bidirectional property of encoder models could con- 1205

tribute to this. 1206

To master NLI and WiC tasks, it is pivotal to pos- 1207

sess the inter-relationship between tokens in two 1208

sentences. Consequently, models with encoders 1209

could cross-attend to previous and later contextual 1210

information in the question and thus manage such 1211

tasks well. 1212

For tasks that compare loss between sentence 1213

pairs (AAO and one-word), most decoder-only 1214

models, such as GPT-2, outperform encoder- 1215

only or encoder-decoder models (e.g., T5 and 1216

RoBERTa). The differences in architecture deter- 1217

mine how they tackle such problems, particularly 1218

with prediction loss (e.g., MLM vs. next-token 1219

15



prediction).1220

We suspect that the randomness introduced by1221

masking tokens (or corruption rates for T5) could1222

contribute to this difference. Additionally, Sen-1223

tence Order Prediction (SOP) might play an impor-1224

tant role in one-word understanding tasks (see Ap-1225

pendix A.1 for a complementary case study). Even1226

with larger batch sizes, models such as RoBERTa1227

and T5, which are not trained on SOP, may lack the1228

ability to model sentence-to-sentence transitions,1229

which is essential for that task.1230

Do Data Size Matter? As the representations in1231

AI models are converging (Huh et al., 2024), the1232

scale and the quality of data that they learn from1233

are the key to their performance. We found that as1234

models’ pretraining data scale up, regardless that1235

bigger is not always better, there was a trend to1236

perform better in each stage (see Figure 13, 14, 151237

in Appendix F). Please refer to the formula in E.31238

of Appendix for how the data sizes are estimated.1239

Although there might be disparities among1240

model sizes, we could anticipate that with a larger1241

amount of training data, LMs could learn richer1242

knowledge and generalize it better.1243

Variations in Auxiliary and Clause Dimensions1244

in Generation Task. We observed that for some1245

dimensions (Auxiliary and Clause), LMs have1246

larger variations compared to humans. However,1247

a good composition or essay does not necessarily1248

contain more usage of complex features such as1249

auxiliary features and clauses (Jagaiah et al., 2020;1250

Casal and Lee, 2019). While this observation is1251

interesting, it falls outside the scope of our paper,1252

and further research on these topics is encouraged.1253

C Appendix C: Coherence of Generation1254
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Figure 9: Coherence Comparison across different mod-
els.

We observed that, some generated texts from some 1255

models are somewhat repetitive in nature. This 1256

repetitive nature could cause larger measurements 1257

in some dimensions (e.g., clause) in the multidi- 1258

mensional co-occurrence analysis. As a result, we 1259

also measured the relative coherence of those es- 1260

says generated by the models. The relative co- 1261

herence score is calculated by dividing the target 1262

model’s coherence score by the reference model’s 1263

coherence score, where each score is obtained by 1264

the pretrained coherence model from Jwalapuram 1265

et al. (2022). We made some small modifications 1266

to the algorithm to handle negative scores. Please 1267

check Appendix E.3 for the details of the algorithm. 1268

In Figure 9, the score in entry (i, j) is obtained 1269

by using the i-th model as the reference model and 1270

the j-th model as the subject model. We found 1271

that all models except Flan-T5-xl exhibit higher 1272

coherence when compared to humans. This is at- 1273

tributed to the repetitive nature of the texts gener- 1274

ated by T5, as previously mentioned. Despite this 1275

supremacy, we observed a decreasing trend where 1276

the relative coherence of later models tends to de- 1277

crease. This trend indicates an evolution toward 1278

more human-like behavior in the models, suggest- 1279

ing an increased capacity to learn and replicate text 1280

with enhanced accuracy and precision. 1281

D Appendix D: Data Contamination 1282

There has been an increasing concern in data con- 1283

tamination nowadays (Deng et al., 2024). In this 1284

section, we investigate whether the pretraining data 1285

contain any datasets used in our evaluation. We 1286

apply the MIN-K% Prob method (Shi et al., 2024). 1287

This method selects the top k% of tokens with the 1288

highest negative log-likelihood and then computes 1289

the average log-likelihood. It is based on the hy- 1290

pothesis that an unseen example is likely to contain 1291

a few outlier words with low probabilities under 1292

the LMs, whereas a seen example is less likely to 1293

have words with such low probabilities. We follow 1294

the same settings as in that research and choose 1295

k = 20. If the number of tokens is between zero 1296

and one after multiplying the token length by 20%, 1297

we round it up to one. 1298

In the following paragraph, we list the selection 1299

methodology: 1300

one-word-understanding: We selected all in- 1301

stances of our test datasets and included sentences 1302

containing the correct answers. 1303

AAO: We selected all examples from the test set, 1304
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including both sentence_good and sentence_bad.1305

bc-if-why: We included all instances in the test1306

datasets, incorporating both the premise and the1307

hypothesis.1308

grammar-comp: In the test data, we randomly1309

selected 1,000 examples and kept all other settings1310

the same as in bc-if-why.1311

BLiMP-comp: For each grammatical phe-1312

nomenon, we selected 50 examples, resulting in1313

2,800 instances. All other settings were the same1314

as in AAO.1315

CoLA: All of the test examples were selected.1316

grammar-diag: We included all of the examples1317

in the test datasets. The settings were the same as1318

in bc-if-why.1319

WiC: Both sentences, one and two, were in-1320

cluded.1321

ReClor: We tested the “context” part in each1322

question. For this question, we tested the instruc-1323

tional fine-tuned and the chat version of the models.1324

Across each task, we presented the average MIN-1325

K% probability for all individual sentences. For1326

encoder-only models, we adapted this method by1327

calculating the logits after masking each token in1328

every sentence. To measure the relative MIN-K%1329

probability, we randomly generated a sequence of1330

all alphabets with a length of 10.1331

Overall, all models demonstrated comparatively1332

low probabilities. We found that, in most datasets,1333

the models are within 5% of the probabilities from1334

random letters. However, gemma2-2b slightly ex-1335

ceeds 5% in the AAO dataset, which we consider1336

acceptable (see Table 2).1337

E Appendix E: Implementation Details1338

and Metrics1339

Implementation Details1340

Classification For BERT-style encoder models1341

(Devlin et al., 2019), a special token, [CLS], is used1342

as input to an MLP for prediction. In decoder mod-1343

els such as GPT-2 (Radford et al., 2019), the hidden1344

state of the last token is connected to a classification1345

head. For T5 (Raffel et al., 2020), with an encoder-1346

decoder architecture, we use only the encoder to1347

make predictions. Because an MLP is concate-1348

nated to each model, fine-tuning is necessary for1349

the models to perform classification.5 Otherwise,1350

5We also compared this method by concatenating question
prompts and allowing the model to predict the next token
(answer). This approach resulted in at least 20% decrease in
performance.

the results will be random guesses. We fine-tune 1351

the models on grammar-comp for 1 epoch due to 1352

the large amount of data, and other classification 1353

tasks for 20 epochs maximum using four NVIDIA 1354

A-6000 GPUs and choose the checkpoint with the 1355

lowest validation loss. The learning rates we used 1356

range from 1e-6 to 1e-4, depending on model sizes 1357

and data sizes. Training batch sizes range from 1358

1 to 16, given different parameter sizes. We also 1359

use LoRA with rank 64 and lora_alpha 32 (Hu 1360

et al., 2021) for models with large parameter sizes 1361

(Llama2-7b, Llama3-8b, Mistral-7b, Gemma2-9b) 1362

due to the limitations of computational resources. 1363

Minimal Pair and Vocabulary For decoder 1364

models, the average loss of the sequence is com- 1365

puted to determine which sentence is better. For 1366

BERT-style models, Masked Language Modeling 1367

is used to make predictions. For minimal pair 1368

questions (AAO and BLiMP-comp), special masks 1369

(e.g., <MASK>) are placed at the positions where 1370

the two sentences differ. Of the masked words, 1371

we select the one with a larger probability among 1372

the prediction of the masked positions. Simi- 1373

larly, for one-word understanding, we masked the 1374

blanks in the sentence. Then we choose one of 1375

the four words/phrases with the largest probability. 1376

T5, which is very similar to BERT-style models, 1377

uses Span Predictions. We compare the proba- 1378

bility of the words it predicts between the span: 1379

<extra_id_0> word(s) predicted <extra_id_1>. 1380

Generation Configuration The number of to- 1381

kens generated by the LMs is set between a min- 1382

imum of 500 and a maximum of 600 to ensure 1383

meaningful and comparable results across all cho- 1384

sen models. We keep the default generation pa- 1385

rameters for all models, with two exceptions: Flan- 1386

T5 (Chung et al., 2022) and OPT-IML (Iyer et al., 1387

2023) tend to generate repetitive sentences, so we 1388

relax their sampling criteria and apply top-k sam- 1389

pling with a probability of 0.9. 1390

Biber’s Tagger and MAT To ensure method- 1391

ological rigor in our analysis of Type-Token Ratio 1392

(TTR), we incorporated a fixed-sample approach 1393

with a standardized 600-token threshold. For texts 1394

exceeding 600 tokens, TTR is calculated based on 1395

the first 600 tokens. For texts with fewer than 600 1396

tokens, the TTR is computed using the full text. 1397

This standardization effectively neutralizes the ana- 1398

lytical distortions that typically emerge when com- 1399

paring lexical diversity across texts of varying 1400

17



Models AAO one-word bc-if-why grammar-
comp

BLiMP-
comp

CoLA grammar-
diag

WiC ReClor Random
letters

opt-1.3b 12.75 10.18 9.13 9.42 12.51 10.37 9.11 10.41 10.30 10.29
opt-2.7b 12.8 10.17 9.16 9.43 12.54 10.38 9.05 10.39 / 10.22
T5-large 12.75 10.18 9.13 9.42 12.78 10.37 9.11 10.41 0.73 4.88
T5-3b 12.75 10.18 9.13 9.42 13.27 10.37 9.11 10.41 0.62 5.00
gpt2-large 12.66 10.55 8.91 9.15 12.54 10.04 9.02 9.73 / 9.87
gpt2-xl 12.67 10.47 8.86 9.13 12.38 10.04 8.99 9.70 / 9.84
Llama2-7b 11.58 9.24 8.96 8.87 11.29 9.63 8.36 9.89 8.31 9.87
Llama3-8b 13.13 10.35 9.80 9.70 12.69 10.58 9.03 10.85 11.00 11.00
Mistral-7b 12.16 9.80 9.64 9.42 12.14 10.18 8.72 11.27 7.08 10.12
gemma-2-2b 20.22 14.06 13.25 13.52 19.60 15.22 12.62 16.26 8.62 15.54
gemma-2-9b 22.14 14.82 13.85 14.03 21.50 16.12 12.94 16.63 9.11 17.11
ALBERT-xlarge 11.62 8.72 7.46 7.65 11.03 8.13 7.08 8.27 / 11.19
ALBERT-xxlarge 12.65 8.72 7.46 7.65 12.07 8.13 7.08 8.27 / 11.17
RoBERTa-base 12.87 9.29 7.27 7.10 11.92 7.91 5.82 7.99 / 9.89
RoBERTa-large 12.50 8.81 6.83 6.62 11.50 7.61 5.36 7.45 / 9.29

Table 2: MIN-K% Prob measured in %. Models measured in the ReClor task are the fine-tuned or chat version of
that model.

lengths.1401

The methodological justification for this ap-1402

proach is grounded in well-established research1403

on lexical statistics. As demonstrated by (Tweedie1404

and Baayen, 1998), TTR values exhibit an inverse1405

relationship with text length, primarily due to the in-1406

herent frequency patterns of common lexical items.1407

Our implementation of a uniform 600-token an-1408

alytical window thus addresses this fundamental1409

methodological challenge, enabling more precise1410

cross-corpora comparisons of lexical diversity.1411

Our approach is supported by the characteristics1412

of our corpus. The texts have a relatively consis-1413

tent length, with an average of 480 tokens. This1414

natural consistency helps justify our fixed-sample1415

approach, reducing potential bias in TTR calcu-1416

lations. Together, the standardized analysis and1417

corpus properties provide a strong basis for assess-1418

ing lexical diversity, mitigating the the bias in TTR1419

measurement.1420
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Figure 10: Average Token Length of Each Subject per
Category

Other For filtering examples from datasets, we1421

use the nltk (Bird et al., 2009) and spaCy (Honnibal1422

et al., 2020) packages in Python.1423

E.1 Matthews Correlation Coefficient 1424

Formulation: 1425

MCC = 1426

1427
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1) 1428

where: 1429

• FP: False Positive 1430

• FN: False Negative 1431

• TP: True Positive 1432

• TN: True Negative 1433

E.2 Activation Steering 1434

Here we describe how we chose and conducted 1435

activation steering mentioned in Appendix A.1 and 1436

Section 5.3. 1437

Specifically, for the AAO task, we first select 1438

the feature’s activation that encodes more precise 1439

meaning of the subject token and steer the original 1440

activation by the following formula: 1441

γ = strength_multiple× steering_strength, 1442

v = sae.W_dec[feature_index], 1443

a← a+ γ v, 1444

where feature_index corresponds to the index of 1445

the feature’s top activation that encodes more pre- 1446

cise meaning of the subject token, a corresponds 1447

to model’s activation. 1448

Similarly, for the generation tasks steering, we 1449

first selected a feature’s activation of the context 1450

(e.g., feature that activated on “culture”) we want 1451

to steer to, and steered the original activation with 1452

the above formulation. 1453
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E.3 Training Data Size Calculation1454

We assess the training data size based on either the1455

total token size or the size of its corpus, depending1456

on the information provided in technical reports.1457

For the total token size, we approximate the corpus1458

using the following formula:1459

1460

Corpus Size (GB) =1461

1462
TT× ACT× BC

109
(2)1463

where:1464

• TT: Total Tokens1465

• ACT: Average Characters per Token1466

• BC: Bytes per Characters1467

• GB: Gigabytes1468

E.4 Relative Coherence Score Calculation1469

Algorithm 1 Relative Coherence Score Calculation
Require: ref , sub ▷ Input reference and subject

texts
1: ref_tensor ← Preprocessor([ref ])
2: sub_tensor ← Preprocessor([sub])
3: ref_score ←

coherenceScore(ref_tensor["tokenized_texts"])
4: sub_score ←

coherenceScore(sub_tensor["tokenized_texts"])
5: if sub_score < 0 and sub_score ̸=

ref_score then
6: return −sub_score

ref_score−sub_score
7: else if ref_score < 0 and sub_score ̸=

ref_score then
8: return −ref_score

sub_score−ref_score
9: else

10: return sub_score
ref_score

11: end if
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F Appendix F: Tables and Graphs1470

Stage Type Data Split AspectTrain Test

one-word 598 255 word-level

I

AAO - 1k preliminary
common sense

bc-if-why 1.4k 348 causality
conditionality

II

grammar-comp 170k 19k

grammar

CoLA 6.8k 1.7k

grammar-diag - 645

BLiMP-comp - 56k

WiC 5.4k 1.4k word meaning
under context

III

ReClor 4.6k 1k logical
reasoning

generation - 10 logical
composition

Table 3: Tasks from different stages. The Aspect col-
umn lists different language aspects tested. AAO =
agent-action-object; one-word = one-word understand-
ing dataset.
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Figure 11: CoLA performance in Stage II measured in Matthews Correlation Coefficient (E.1). The result is
obtained by training models at most 20 epochs
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on bc-if-why and grammar-comp’s training set.
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Figure 13: Stage I performance (normalized) vs. their data scale in the logarithm of Gigabyte.
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Figure 16: Four different dimensions of linguistic features in generated texts. Models are ordered by time
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find a trend that is similar to human. However, compared to TTR, the NN metric—focused on noun usage—remains
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Models Raw Accuracy 1-shot ICL 0-shot CoT
opt-iml-1.3b 0.31 0.32 +0.06 0.32 +0.06
Flan-t5-l 0.42 0.38 -0.05 0.42 +0.00
Flan-t5-xl 0.55 0.55 +0.00 0.54 -0.00
Gemma2-2b-it 0.49 0.46 -0.03 0.49 +0.00
Gemma2-9b-it 0.72 0.76 +0.04 0.71 -0.01
Llama2-7b-chat 0.37 0.36 -0.01 0.36 -0.01
Llama3-8b-chat 0.58 0.56 -0.03 0.43 -0.15
Mistral-7b-it 0.55 0.55 +0.00 0.53 -0.02

Table 4: Model Performance with raw accuracy on ReClor Dataset with 1-shot ICL and 0-shot CoT.

Grammar Phenomena RoBERTa-base T5-l Gemma2-9b Human
passive_2 0.60 0.87 0.75 0.86
determiner_noun_agreement_with_adj_irregular_1 0.50 0.83 0.89 0.94
superlative_quantifiers_2 0.89 0.76 0.71 0.85
wh_questions_subject_gap_long_distance 0.72 0.90 0.80 0.85
superlative_quantifiers_1 0.42 1.00 0.71 0.94
causative 0.72 0.78 0.65 0.98

Table 5: Selected results from BLiMP-comp of detailed grammar phenomena. We could notice the discrepancy in
performance among the three models in these tasks, while humans could maintain high performance relatively. To
access a comprehensive list of results, please refer to our project page which can be found on the first page.
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Examples of each task

one-word understanding

Question: When you say something to someone’s ear quietly and secretly, you ______.

A) repeat
B) whisper
C) discuss
D) cry
Correct Answer: B

Agent-Action-Object (AAO)

sentence_good: Tanya conceals Adam.
sentence_bad: This ice cream conceals Adam.

bc-if-why

Premise: If we keep up, they’ll route.
Hypothesis: They’ll route if we keep up.
Label: Entailment
grammar-comp

Premise: For Master P, neither is an appealing prospect.
Hypothesis: Master P found both projects to be appealing.
Label: Contradiction

CoLA

sentence: The in loved peanut butter cookies.
Label: 0 (False)

BLiMP-comp: determiner_noun_agreement_adj_2

sentence_good: Cynthia scans these hard books.
sentence_bad: Cynthia scans this hard books.

WiC

word: carry
sentence1: You must carry your camping gear.
sentence2: Sound carries well over water.
Label: F (False)

ReClor

Context: In a business whose owners and employees all belong to one family, the employees can be
paid exceptionally low wages. Hence, general operating expenses are much lower than they would be for
other business ventures, making profits higher. So a family business is a family’s surest road to financial
prosperity.

Question: The reasoning in the argument is flawed because the argument

A) ignores the fact that in a family business, paying family members low wages may itself reduce the
family’s prosperity
B) presumes, without providing justification, that family members are willing to work for low wages in a
family business because they believe that doing so promotes the family’s prosperity
C) ignores the fact that businesses that achieve high levels of customer satisfaction are often profitable
even if they pay high wages
D) presumes, without providing justification, that only businesses with low general operating expenses
can succeed
Answer: A

Table 6: One example from each dataset.
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Example of Essay in Governance Topic

The Art of Simplification: A Necessary Counterpoint to Complexity
The statement, "Anyone can make things bigger and more complex. What requires real effort
and courage is to move in the opposite direction—in other words, to make things as simple as
possible," resonates deeply with me. While it’s undeniably easier to add layers, features, and
bureaucracy, true ingenuity lies in stripping away the unnecessary and distilling the essence of a
problem or system. This principle applies not only to physical objects but also to social structures,
processes, and even our own lives.
The allure of complexity is undeniable. We are constantly bombarded with information, options,
and technological advancements, leading to a natural inclination towards accumulating more.
Businesses strive for bigger market shares, governments expand their reach, and individuals
seek ever-increasing levels of comfort and convenience. This pursuit of "more" often results in
convoluted systems, inefficient processes, and a sense of overwhelm.
Consider the healthcare system. While advancements in medical technology have undoubtedly
improved patient outcomes, the system itself has become increasingly complex, with multiple
stakeholders, intricate insurance networks, and a labyrinthine web of regulations. This complexity
leads to higher costs, administrative burdens, and ultimately, a less accessible and equitable system
for many.
Similarly, the rise of big government, often cited as an example of excessive complexity, can
be detrimental. While government intervention can be necessary to address market failures and
provide essential services, an overreaching bureaucracy can stifle innovation, create inefficiencies,
and erode individual liberties.
However, the path of simplification is not without its challenges. It requires a willingness to
question assumptions, challenge the status quo, and embrace radical transparency. It demands a
deep understanding of the underlying principles and a commitment to identifying and eliminating
redundancies and inefficiencies.
There are, of course, circumstances where complexity is unavoidable and even beneficial. For
instance, advanced scientific research often necessitates intricate models and sophisticated tech-
nologies. Similarly, complex legal frameworks are necessary to navigate the intricacies of societal
interactions and protect individual rights.
The key lies in finding the right balance. We must strive to simplify wherever possible without
sacrificing essential functionality or undermining the need for complexity in specific domains.
This principle of simplification extends beyond the realm of systems and structures. It applies
to our personal lives as well. We are constantly bombarded with information and distractions,
leading to a sense of overwhelm and a lack of focus. By consciously simplifying our routines,
decluttering our environments, and prioritizing meaningful experiences, we can create space for
clarity, creativity, and genuine connection.
In conclusion, while the allure of complexity is strong, the true test of ingenuity lies in the ability
to simplify. It requires courage, vision, and a commitment to identifying and eliminating the
unnecessary. By embracing this principle, we can create more efficient systems, foster greater
clarity, and ultimately, live more fulfilling lives.
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Example of Essay after steering from Governance to Culture

The adage "simplicity is next to godliness" certainly holds weight when considering the complexi-
ties of modern life. While the allure of complexity and the allure of "bigger government" might
seem attractive on the surface, the pursuit of simplicity, as the statement suggests, requires a deeper
understanding of our values and a willingness to challenge the status quo.
I largely agree with the statement that simplifying complex systems is a greater challenge and
requires more courage than making things more complex. Here’s why:
**1. The Culture of Complexity:** We live in a culture that often equates complexity with
progress and sophistication. Complex systems, like complex government programs, can seem
more sophisticated and complex, and therefore, more impressive. This can lead to a resistance to
simplification, as it can be perceived as a sign of weakness or a rejection of progress.
**2. The Comfort Zone:** We are creatures of habit and comfort. Embracing simplicity often
means challenging our ingrained habits and challenging the status quo. It requires a willingness to
step outside our comfort zone and embrace a different way of living and interacting with the world.
**3. The Power of Simplicity:** Simplicity, in its purest form, often leads to greater efficiency,
clarity, and cultural impact. Think about the impact of movements like minimalism in design.
They’re not about deprivation, but rather about focusing on what truly matters and simplifying our
lives to free up time and energy for what truly matters.
**4. The Challenge of Cultural Shift:** Shifting towards a culture that values simplicity over
complexity is a monumental task. It requires a cultural shift that values principles like simplicity
and mindfulness. It’s about shifting the cultural narrative and moving away from the idea that
more is always better.
**Examples:**
* **Technology:** The cultural shift towards minimalism in technology, as seen in the minimalist
design of apps and interfaces, reflects a growing appreciation for simplicity. * **Urban Plan-
ning:** The move towards walkable cities and neighborhoods reflects a growing appreciation for
community and sustainability. **Politics and Governance:** The growing emphasis on cultural
humility in governance reflects an awareness of the need for simplicity and thoughtful leadership.
**Conclusion:**
While the allure of complexity and "bigger government" might seem attractive on the surface, the
pursuit of simplicity—as the statement suggests—requires a deeper understanding of our values
and a willingness to challenge the status quo. Embracing simplicity can lead to greater well-being,
efficiency, and a more sustainable future. It’s about recognizing that less can often be more, and
that true progress lies in simplifying our lives and focusing on what truly matters.
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