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Abstract

Large language models (LLMs) demonstrate remarkable reasoning capabilities,
yet their reliance on step-by-step reasoning can make them brittle when tasks do
not align with such structured approaches. In contrast, human cognition flexibly
alternates between fast, intuitive reasoning (System 1) and slow, analytical reason-
ing (System 2), depending on context. To bridge this gap, we curate a dataset of
2K examples, each with valid responses from both reasoning styles, and explicitly
align LLMs with System 1 and System 2 reasoning. Evaluations across diverse
reasoning benchmarks reveal an accuracy-efficiency trade-off: System 2-aligned
models excel in arithmetic and symbolic reasoning, while System 1-aligned models
perform better in commonsense tasks. A mechanistic analysis of model responses
shows that System 1 models employ more definitive answers, whereas System
2 models demonstrate greater uncertainty. Interpolating between these extremes
produces a monotonic transition in reasoning accuracy, preserving coherence. This
work challenges the assumption that step-by-step reasoning is always optimal and
highlights the need for adapting reasoning strategies based on task demands

1 Introduction

LLMs have demonstrated remarkable reasoning capabilities, often achieving near-human or even
superhuman performance (Huang and Chang| 2023). These advances have largely been driven
by techniques that simulate step-by-step, deliberative reasoning, such as Chain-of-Thought (CoT)
prompting and inference-time interventions (Wei et al., 2022b; (Wang et al., [2022). Given their
success, such methods are increasingly integrated into LLM training (Chung et al.,|2024)), reinforcing
explicit, structured reasoning regardless of the task necessity. However, the increasing focus on
step-by-step reasoning has revealed limitations such as brittle generalization, particularly in tasks
requiring nuanced judgment (Delétang et al.| [2023)), logical consistency (Jiang et al., 2024)), or
adaptability to uncertainty (Mirzadeh et al.,[2024). Similarly, recent analyses frame this issue as
“overthinking”: |Cuadron et al.| (2025)); (Chen et al.|(2024) demonstrate that excessive deliberation can
hamper decision-making. This problem appears in LLMs’ responses to simple factual queries, where
they often generate unnecessarily explanations instead of direct responses (Wang et al., 2023)).

This focus on explicit, structured reasoning highlights a key difference between LLMs and human
cognition: while LLMs are being pushed towards a single mode of processing, human reasoning is far
more nuanced. Rather than a monolithic process, human reasoning emerges from a sophisticated suite
of cognitive tools evolved to tackle a spectrum of computational problems. This spectrum of human
reasoning encompasses both automatic and reflective processes, a key insight recognized across
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diverse fields from behavioral economics to psychology and neuroscience (Daw et al.| 2005} Dolan
and Dayan, |2013} Balleine and Dickinson, [1998)). On one end lie computationally light problems
demanding rapid, intuitive judgments (e.g., instinctively dodging a speeding car), handled by the
reflexive “System 1.” On the other end are heavy problems requiring deliberate, step-by-step analysis,
managed by the reflective “System 2” (Kahneman| 2011} |Stanovich and West, |2000). This dual-
process system allows us to dynamically shift between modes depending on the task, balancing speed
and accuracy (Evans and Stanovichl, 2013). Extensive work in neuroscience in the past two decades
links the dual-process framework and human decision strategies, which depicts decision-making
on a spectrum between a fast but reflexive habitual decision strategy and a reflective goal-directed
strategy (Daw et al.| 2005} [Dolan and Dayanl, |2013)). Experimental work in neuroscience is built
on the relative advantages of these two strategies, the separate but overlapping neural structures
supporting them, and the circumstances under which each system is deployed in the brain (Daw et al.|
20115 Schad et al.| [2020; |Piray and Daw, 2021)). Given the evolutionary advantage of humans in
switching between fast and slow thinking to balance speed, efficiency, and accuracy, exploring LLMs
through the lens of System 1 and System 2 reasoning offers a powerful way to address their current
limitations.

While recent studies explore whether LLMs exhibit System 1 and System 2 behaviors (Hagendorff]
et al.l 2023} [Pan et al., |2024) or propose hybrid models (Yang et al., |2024; Deng et al., [2024),
most prior work implicitly assumes that structured, deliberative reasoning is universally superior.
Even research suggesting LLMs’ capacity for both reasoning modes (Wang and Zhou, 2024) largely
overlooks the crucial question of when each mode is indeed advantageous. The assumption that a
single “best” reasoning strategy can apply across all contexts is a fundamental simplification that
limits current approaches in LLM development. This assumption prevents LLMs from achieving true
cognitive flexibility, hindering their ability to adapt their reasoning processes to diverse situations.

To address this gap, we explicitly align LLMs with System 1 and System 2 reasoning and evaluate
their reasoning capabilities and behaviors across a range of reasoning benchmarks. Our approach
involves designing an experimental setup where both thinking styles can produce valid responses
but follow distinct paths, one leveraging intuitive heuristics, and the other prioritizing deliberate,
step-by-step reasoning. By systematically assessing how reasoning styles and cognitive biases
affect downstream task performance, we provide insights into when intuitive heuristics or structured
deliberation are most effective, and highlight the trade-offs between accuracy and efficiency in LLMs.

Specifically, as demonstrated in Figure[T} we first curate a dataset of 2,000 reasoning questions, where
each problem has both a fast, heuristic-driven (System 1) response and a deliberative, structured
(System 2) response, grounded in 10 different cognitive heuristics (Tversky and Kahneman, |1974).
We then explicitly align LLMs with either System 1 or System 2 type responses and evaluate these
models on diverse reasoning benchmarks. Our findings reveal a structured accuracy-efficiency trade-
off and demonstrate that different reasoning paradigms in LLMs excel at different types of tasks,
mirroring how humans selectively rely on fast or slow thinking depending on task demands: System
2-aligned models consistently outperform instruction-tuned and CoT prompt baselines in arithmetic
and symbolic reasoning, demonstrating superior multi-step inference, but generating more extended
token-intensive responses. Conversely, System 1-aligned models generate more succinct responses
and excel at commonsense reasoning, where heuristic shortcuts are effective. Importantly, unlike CoT
models, which always engage in structured reasoning regardless of necessity, our models provide
an explicit way to study when different reasoning styles are beneficial, mirroring the well-known
efficiency-accuracy trade-off in human cognition (Keramati et al., 2011; [Mattar and Daw, 2018)).
By framing LLM reasoning as a structured and adaptable process, rather than simply an ability to
achieve higher benchmark scores, this work highlights the importance of selecting the right reasoning
strategy for a given task. This perspective not only aligns LLM reasoning more closely with human
cognition but also paves the way for more flexible, efficient, and robust reasoning systems, setting a
foundation for future advancements in LLM reasoning.

2 Related Work

2.1 Reasoning in LLMs

Driven by extensive research highlighting the strengths and weaknesses of LLM reasoning abili-
ties (e.g., [Huang and Chang} 2022} Mondorf and Plankl [2024; Valmeekam et al., |2022; [Parmar
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et al.,[2024; [Sourati et al., [2024)), recent efforts to enhance these capabilities have largely focused
on prompting techniques (Brown et al., 2020), ranging from zero-shot prompting with explicit in-
structions (Kojima et al.| 2022} |Wang et al., 2023} |Zhou et al.,[2024b) to few-shot prompting with
step-by-step examples (Wei et al.,|2022b). Wang and Zhou| (2024) take CoT prompting even one
step further and demonstrate that CoT reasoning paths can be elicited from pre-trained LLMs by
simply altering the decoding process without the use of a specific prompt. Related approaches, such
as self-consistency decoding Wang et al.| (2022), explore how diverse reasoning paths can enhance
robustness, aligning with deliberative aspects of System 2 reasoning. Tree of Thought (ToT;|Yao et al.|
2024) generalizes over CoT and allows LMs to perform deliberate decision making by considering
multiple different reasoning paths and self-evaluating choices to decide the next course of action, as
well as looking ahead or backtracking when necessary to make a global choice. Another alternative
way of increasing the reasoning abilities of LLMs is through instruction tuning on a substantial
amount of CoT reasoning data |Chung et al.[(2024); Huang et al.| (2022)) or distillation [Magister|
et al.| (2022). By training LLMs on a large-scale CoT dataset, models can internalize step-by-step
reasoning, potentially enhancing their performance across diverse benchmarks without relying solely
on prompting techniques. Concurrent studies have identified an “overthinking” phenomenon in
LLMs, where models produce excessively detailed or unnecessarily elaborate reasoning steps (Chen
et al., [2024; |Cuadron et al., [2025)).

2.2 Dual-Process Theory in NLP

Dual-process theories, widely studied in psychology, distinguish between fast, intuitive reasoning
(System 1) and slow, deliberate reasoning (System 2). While these theories have long explained the
spectrum of human reasoning, their application in NLP remains underexplored. Existing research falls
into two main categories: (1) analyzing LLMs’ reasoning through dual-process theory, identifying
similarities and differences between LLMs and human reasoning, and (2) developing models with
dual-process mechanisms to enhance LLM reasoning and leverage the benefits of both systems.

Analyzing LLMs’ reasoning through dual-process theory. Researchers have investigated whether
LLMs exhibit reasoning behaviors aligned with System 1 and System 2, particularly in terms of
cognitive human-like errors and biases (Hagendorff et al.,|2023; Booch et al., [2021; [Pan et al., 2024;
Echterhoff et al.| 2024} |Zeng et al., [2024). Hagendorff et al.| (2023)) examine cognitive heuristics in
LLMs, showing that newer models exhibit fewer errors characteristic of System 1 thinking. Booch
et al.| (2021) discuss fundamental questions regarding the role of dual-process theory in machine
learning but leave practical implementation as an open problem. Most of these studies evaluate LLMs
on benchmarks where System 2 reasoning is assumed to be superior, portraying intuitive responses
as erroneous, even though such rapid, heuristic-driven judgments are often crucial for efficient and
effective reasoning in real-world scenarios. In contrast, by analyzing models aligned with System 1
and System 2 reasoning using a carefully curated dataset where both response types are valid, we
offer a more nuanced understanding of how this alignment influences broader model behavior.

Incorporating dual-process theory in NLP models. Several studies have integrated dual-process-
inspired reasoning into LLMs. Some works combine intuitive (fast) and deliberate (slow) components
to improve reasoning (He et al., [2024; [Liu et al., [2022; |Hua and Zhang| [2022; Pan et al., [2024), while
others optimize reasoning efficiency by distilling System 2 insights into System 1 models (Yang et al.|
2024} Deng et al., [2024; |Yu et al.,|2024). Additionally, research has leveraged System 2 reasoning to
mitigate biases associated with System 1 heuristics, improving fairness and robustness (Furniturewala
et al.| [2024; [Kamruzzaman and Kim) 2024; Weston and Sukhbaatar} 2023). While prior work largely
frames System 2 reasoning as superior or explicitly builds dual-process components within models,
our approach investigates the implicit effects of aligning LLMs to System 1 or System 2 responses.
By analyzing how these heuristics influence general reasoning capabilities, we address a gap in
the literature and provide new insights into the broader cognitive behaviors of LLMs that have
implications for how unseen properties of data that LLMs are trained on can affect their capabilities.
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(A) Dataset (B) Approach

5

o jon Common Sense

P
If you estimate a number quickly, do you adjust it later when you System 1 Arithmetic
get more accurate data? . | Answer
. Symbolic
System 1 Answer System 2 Answer .
I generally stick with my initial || revise my estimates based on | - &0 Common Sense
estimate and rgrely deviate lAdeatAed and accurate data System 1| o Arithmetic
from it... since it can reduces errors... Answer
Symbolic

Figure 1: (A) Sample of dataset with System 1 and System 2 answers. (B) Overview of our alignment
approach with fast and slow thinking, highlighting performance gains across reasoning benchmarks.

3 Method

3.1 Aligning LLMs to System 1 & System 2 Thinking

We formalize the modeling of fast and slow thinking as an alignment problem using a curated dataset
in which each reasoning question is paired with both a System 1 (intuitive) and a System 2 (analytical)
response (see Section[3.2). We align LLMs to either reasoning style via a preference-based training
approach: for System 1 alignment, the intuitive response is designated as the preferred (winner)
and the analytical response as the non-preferred (loser); for System 2 alignment, this preference is
reversed, treating the analytical response as the winner and the intuitive response as the loser.

This approach is effective for two key reasons. First, our aim is not to introduce new knowledge or
instructions but rather to shape the model’s reasoning process based on existing capabilities. Second,
previous research has shown that prompt engineering can guide LLMs toward System 2 reasoning
(Wei et al.,[2022a)) or System 1 reasoning (Zhou et al., [20244a), suggesting that LLMs already have
both reasoning abilities. Therefore, instead of creating new reasoning pathways, we guide the model
to distinguish between intuitive and analytical reasoning processes without altering its underlying
knowledge. The next section describes the dataset creation process that enables this training setup.

3.2 Dataset of System 1 & System 2 Thinking

Our curated dataset consists of 2,000 questions designed to elicit two distinct reasoning styles in
English: one intuitive and rapid, reflecting cognitive shortcuts (System 1), and the other deliberate
and analytical (System 2). This dual structure allows us to study the distinct mechanisms underlying
System 1 and System 2 reasoning (Kahneman, 201 1; Stanovich and West, 2000; [Evans and Stanovich,
2013). The dataset was created in three key phases: Generation, Refinement, and Validation.

Generation. Cognitive heuristics provide a practical foundation for distinguishing between System
1 and System 2 reasoning, where both yield valid but behaviorally distinct responses (Kahneman,
2011). To construct our dataset, we adopted a human-in-the-loop pipeline that leverages GPT-40
(Hurst et al.||2024) to scale up the number of high-quality reasoning examples. In line with recent
work on dataset creation using LLMs and few-shot prompting (Xu et al.| 2023 |Wang et al., [2022),
we used a one-shot prompting setup, where each generation is guided by a carefully selected example
grounded in a particular cognitive heuristic. These seed examples were authored by domain experts
(see Appendix and span 10 well-known heuristics from|Kahneman|(2011) (Appendix Q) For each,
experts provided a reasoning question accompanied by both a System 1 (heuristic) and System 2
(deliberative) response. During expansion, the prompt included the formal definition of each heuristic,
a description of how both systems typically approach it, and the expert-written example. This setup
enabled the model to generate new reasoning items aligned with distinct cognitive patterns. Full
prompt details are provided in Appendix [F] and expert-authored examples are shown in Appendix [E]

Refinement. As a byproduct of the data generation process, System 2 outputs were significantly
longer and more detailed—reflecting their step-by-step reasoning style, while System 1 outputs were
shorter and more direct; this length difference was confirmed using Welch’s ¢-test, ¢(2090.1) =
—184.74, p < .001, d = —5.84. Prior work demonstrates that alignment methods can rely on
superficial cues, such as output length, favoring longer responses even when they offer no real
reasoning advantage (Singhal et al.l 2023). To prevent this bias, we use zero-shot prompting with
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Table 1: Samples of curated dataset with the cognitive heuristic category, each paired with System 1
response using the heuristic and System 2 response mitigating that heuristic.

Category Question System 1 Answer System 2 Answer
. I often find myself comparing everythin, hat initial . . .
‘When booking ofte d ) yselt comparing evel yt g to that N ¢ a To book travel effectively, I avoid comparisons only
deal. Once I"ve encountered a specific offer or price, it X . .
travel, do you R against the initial option. I understand that the first deal
. becomes the standard by which I measure all others. Even | .=, .
. find it hard to L L. isn’t always the best ensures a broader perspective, more
Anchoring when new deals come along, my mind instinctively revisits . . .
move away from - . . s . observations increases the chances of finding a more
that first one, guiding my judgment. It’s an automatic . . .
the first deal you . . N . favorable travel plan. Exploring more options ultimately
comparison that influences how I evaluate options moving . .
see? N leads to better decision-making.
forward.
. L The effectiven f a di nds on scientific evidence,
This diet is obviously effective. just look at the people Jnec ective css ol a diet depends on scient e e}"de e,
X . . . individual health factors, and long-term sustainability
who follow it! Celebrities and influencers swear by it, and . . > ) L7
‘Would you say . rather than its popularity or association with celebrities.
o - S they’re in great shape. When so many successful, healthy . .
Halo Effect | fasting diet is X s . - A diet may lead to short-term weight loss but could lack
N people use it, that’s proof it works. Plus, it’s super popular, . Ny S o .
effective? 5 N e g ae essential nutrients or be difficult to maintain. Evaluating
which wouldn’t happen if it didn’t give great results. If you | . N .
. its impact on metabolism, overall health, and adherence is
want to see real change, this is the way to go! .
crucial..
L. . . ‘While confidence in interpersonal skills is beneficial,
Yes, I excel in interviews. I communicate clearly, stay . . L I
. . thorough interview preparation is essential for success. It
confident under pressure, and listen attentively to ques- L . . .
. P . . s allows for anticipation of potential questions and crafting
tions. My ability to understand the interviewer’s needs and | . . R
. X . N informed responses, showcasing an understanding of the
Do you believe align my responses accordingly enhances my effectiveness. X
Over N e . . company and role. Researching company culture enables
you will ace the I maintain engaging body language and make genuine . . . . o
Confidence | ? A X . .S . candidates to align their answers with organizational
interview? connections, making a lasting impression. I prepare . . . L
- < N values, enhancing their chances of making a positive
thoroughly, anticipate potential questions, and rehearse . N .
X X X ) impression. Solely relying on confidence can lead to unpre-
answers, ensuring I approach interviews with a calm, . PR .
Ny X paredness, especially for technical inquiries, reducing the
composed demeanor, making me a strong candidate. . . . . ©
effectiveness of skill articulation.

GPT-40 to match the lengths of our System 1 and System 2 outputs while preserving their content.
Adjustments were applied only when there was a significant length disparity. More details about
the prompt and the length disparity threshold are described in Appendix [J]] By reducing the length
disparity, we minimized any preference for System 2 outputs arising from their longer responses.
After adjustment, System 1 outputs had an average length of 82.19 tokens, while System 2 outputs
averaged 83.93 tokens. A two one-sided t-test (TOST) confirmed the equivalence of post-adjustment
lengths across various token counts as equivalence margins (see Appendix [I), indicating that the
adjustment effectively eliminated significant length differences between the two response types.

Verification. Prior works show that high-quality, expert-supervised datasets of this scale are
common and effective for fine-tuning LLMs (Xiao et al.,|2024; Dumpala et al., [2024; [Li et al.; 2024).
Following this precedent to ensure data quality, we had our domain experts conform all generated
data to formal definitions of System 1 and System 2 thinking, and ensured that the dataset covers the
intended set of cognitive heuristics across varied subject areas. In this process, the experts manually
revised approximately 20% of the responses. We further verified the breadth of topic coverage via
topic modeling; see Appendix [G]for details. A subset of the curated dataset is shown in Table [T}

4 Experiments Setup

4.1 Alignment Algorithm

To implement the alignment strategy for System 1 and System 2 reasoning, we utilize two offline
preference optimization methods, namely, Direct Preference Optimization (DPO; [Rafailov et al.,
2024) and Simple Preference Optimization (SimPO; Meng et al. [2024)), because (i) their offline
formulation removes the costly on-policy sampling loop, yielding a simpler and more compute-
efficient training pipeline, and (ii) our hand-crafted preference pairs capture fine-grained relational
signals that would likely be blurred by online-generated pairs.

DPO is an offline alignment method that fine-tunes LLMs by comparing the preferred and disfavored
outputs of a model against a reference model, optimizing preferences without requiring a separate
reward model. As a prominent method in preference optimization, DPO has gained traction for
its stability and efficiency, making it a widely adopted alternative to Reinforcement Learning from
Human Feedback (RLHF;|Ouyang et al.}[2022). SimPO builds on the principles of DPO but introduces
a reference-free approach to preference optimization. Instead of requiring a separate reference model,
SimPO aligns responses by directly optimizing preference signals within the model itself. This
makes it computationally more efficient and removes the dependency on an external reference model,
offering a streamlined alternative for aligning LL.Ms to a specific preference.
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4.2 Benchmarks

We evaluate our System 1 and System 2 models using 13 reasoning benchmarks across three different
categories: (1) arithmetic reasoning: MultiArith (Roy and Roth, [2015), GSM8K (Cobbe et al.| [2021),
AddSub |Hosseini et al.|(2014), AQUA-RAT (Ling et al.|[2017), SingleEq (Koncel-Kedziorski et al.,
2015)), and SVAMP (Patel et al., 2021)); (2) commonsense reasoning: CSQA (Talmor et al.,[2019),
StrategyQA (Geva et al., 2021)), PIQA (Bisk et al.| [2020), SIQA (Sap et al.|[2019), and COM2SENSE
(Singh et al.| [2021)); (3) symbolic reasoning: Last Letter Concatenation and Coin Flip |Wei et al.
(2022b)). More details about the benchmarks are in Appendix[H}

Following [Kong et al.| (2024), our evaluation follows a two-stage process. In the first stage, we
present benchmark questions to model and record its responses. In the second stage, we prompt the
model with the original question, its initial response, and benchmark-specific instructions to ensure
the output is formatted as required. See Appendix [K|for each benchmark’s instructions.

4.3 Implementation Details

We use Llama-3-8B-Instruct (Al@Meta, |2024) and Mistral-7B-Instruct-v0.1 (Jiang et al., [2023))
as SFT models for alignment. Following Kojima et al.| (2023)), we compare the performance of
these aligned models against their instruction-tuned counterparts under zero-shot and zero-shot CoT
prompting (additional details in Appendix [LJ). To analyze the model’s behavior along the System 1 to
System 2 reasoning spectrum, we train seven intermediate models, where the winner responses are
mixed at predefined ratios between System 1 and System 2. This structured interpolation allows us to
systematically assess whether the transition between reasoning styles is discrete or gradual.

5 Results

5.1 Distinct Strengths of System 1 & System 2 Models

Table 2] shows a comparison of exact matching accuracy across 13 benchmarks for Llama and Mistral.
Specifically, we compare the base models with the System 1 and System 2 variants, and include results
for CoT prompting for reference. Our findings reveal distinct performance trends for the System 1
and System 2 models, highlighting their respective strengths in different reasoning benchmarks.

In all arithmetic benchmarks (MultiArith, GSM8K, AddSub, AQuA, and SingleEq), System 2 models
outperformed both the base model and their System 1 counterpart, evident for both Llama and Mistral.
This improvement is most significant in the AddSub and SingleEq benchmarks. Similarly, System 2
models outperformed System 1 models in nearly all symbolic reasoning benchmarks (Coin, Letter),
which require pattern recognition and logical structuring, further validating the idea that deliberative,
slow-thinking models enhance performance in structured reasoning. While both approaches achieve
high accuracy, System 1’s heuristic shortcuts introduce small but systematic errors that System 2’s
deliberate, stepwise computations tend to avoid, such as rounding the number or adding numbers
without checking. This is further supported by our AddSub analysis (see Appendix [O).

Conversely, System 1 models excelled both their System 2 counterparts and the base model as
well as the CoT variant on all commonsense reasoning benchmarks (CSQA, StrategyQA, PIQA,
SIQA, COM2SENSE), which depend on intuitive judgments and heuristic shortcuts. While System 2
reasoning is correct, its deliberate nature can often lead to overthinking, producing overly cautious
or extensively interpretive responses that diverge from typical human reactions in rapid, intuitive
situations. For example, when asked what a kindergarten teacher does before nap time, System 2
suggests “encourage quiet behavior” instead of “tell a story,” or predicts “laughter” rather than “fight”
if you surprise an angry person. As shown in Appendix [O} this preference for completeness over
contextual fit makes System 2 less reliable for quick, socially grounded tasks.

When comparing Llama and Mistral, Llama models generally achieved higher accuracy across
all benchmarks. This suggests that Llama may have stronger foundational reasoning capabilities,
which are further enhanced by the System 2 and System 1 alignment. Moreover, instruction-tuned
models equipped with the CoT prompt exhibited only marginal differences compared to their base
counterparts because step-by-step reasoning has already been internalized during pretraining on CoT-
style data (Al@Metal 2024), reducing the need for explicit prompting. Based on this observation, we
use the base Llama model as our primary baseline in subsequent experiments.
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Table 2: Accuracy comparison of our System 1 and System 2-aligned models against instruction-tuned
and CoT baselines across benchmarks. Each cell shows accuracy, with parentheses indicating the
difference from the baseline. Color intensity reflects the magnitude of deviation.

Arithmetic Symbolic Common Sense
| Multiarith ~ GSMSK  AddSub AQuA  SingleEq  SVAMP |  Coin Letter | CSQA  Strategy PIQA SIQA  COM2SENSE

« DPO 98.67 79.37 89.87 49.21 94.37 85.4 93.8 86.2 71.42 60.87 81.15 67.93 76.42
g (+1.0) (+0.88) (+7.4) (+0.39) (+3.65) (+4.9) (0.4) (+22) (0) (-6.68) (2.01) (3.19) (2.6)
2’ SIMPO 97.83 79.38 90.13 54.72 94.49 81.7 94.4 84.8 69.62 67.38 81.49 69.16 78.21
& +0.16) (+0.89) (+7.66) (+6.78) #377) +12) (+02) (+08) “1.8) 0.17) 1.67) (-1.96) 0.81)

Llama-3 97.67 78.49 82.47 48.82 90.72 80.5 942 84 71.42 67.55 83.16 71.12 79.02
Llama-3-CoT 97.83 78.54 82.03 49.21 88.19 80.9 94.8 84.2 71.58 67.38 83.34 70.97 79.86
- DPO 98.5 77.01 80.76 46.46 77.24 78 934 83.8 72.81 68.21 83.94 72.16 79.99
g (+0.83) (-1.48) (-1.71) (-2.36) (-13.48) (2.5) (0.8) (02) (+139) (+0.66) (+0.78) (+1.04) (+0.97)
Z’ SIMPO 97.5 7779 80.51 48.03 874 79.3 90 83.8 72.32 67.73 83.35 71.67 81.46
& (0.17) (0.7) (-1.96) (-0.79) (3.32) -12) (“42) (02) (+0.9) (+0.18) (+0.19) (+0.55) (+2.44)
o bro 7883 5645 8127 3268 8484 69.1 4 86 62582 5681 5049 5777 6673
£ (+1.16) (+1.47) (+6.79) (+1.19) (+0.98) (+3.4) (22) (+8) (-3.44) (-8.6) ) (:2.24) (-1.64)
"g'. SIMPO 78.3 55.42 82.28 3425 86.81 68.5 454 78 64.78 63.75 82.07 59.82 68.15
i3 (+0.63) (+0.53) (+7.8) (+2.76) (+2.95) (+2.8) (+22) (+6.2) (-1.48) (-1.66) (-0.46) (0.19) (-022)

Mistral 77.67 54.89 79.75 31.49 83.86 66.26 43.2 1.6 66.26 65.41 82.53 60.01 68.37
Mistral-CoT 78.3 54.96 80.25 33.07 83.66 67.8 438 1.6 66.18 65.49 82.21 60.76 69.01
- bro 75 514 79.49 2953 83.07 67.4 404 0 67.4 65.49 8322 60.01 7083
£ (0.17) (-349) (-0.26) (-1.96) (:0.79) (-02) (2.8) (-1.6) (+1.14) (+0.08) (+0.69) ) (+2.46)
:',-',: SIMPO 77 53.61 78.73 311 83.67 67.3 43 67.32 65.51 82.84 60.93 69.13
& (-0.67) (-1.28) (-1.02) (-0.39) (:0.19) (:03) (02) (-1.6) (+1.06) (+0.1) (+131) (+0.92) (+0.76)

In summary, our results showcase that System 2 models excel in structured, multi-step reasoning
such as arithmetic and symbolic reasoning, while System 1 models are effective in intuitive and
commonsense reasoning benchmarks. These findings highlight the significant potential of dual-
process alignment for boosting LLM performance across a diverse range of reasoning paradigms.

5.2 Length Differences Across Reasoning Styles

A recent trend in LLM performance, exempli-
fied by models such as DeepSeek R1 (Muen/ op0 SvPo

nighoff et al., 2025)), is that achieving stronger H = system1 B

benchmark results often correlates with produc- gw e 10

ing longer reasoning chains, even if not explic- ol 5

itly trained to do so. This correlation raises H

the question of whether such verbose responses g ’ @ 4 ’

truly reflect enhanced reasoning capabilities or 2 20 ' | -

if they are Simply a formattlng artifaCt Of cur- : First Stage Second Stage First Stage Second Stage

rent high-performing models. In our studies,

this concern is particularly relevant for System  Fjgure 2: Token difference between System 1
2 models, which are expected to behave more  and System 2 responses relative to Llama3 model

output lengths across the two-stage prompting

setup described in Section 4.2}

As shown in Figure[2] System 2-aligned models generate significantly longer responses than their
System 1 counterparts, relative to the Llama baseline, under both alignment methods, DPO (¢(8836) =
57.14, p < .001) and SimPO (¢(8586) = 9.833, p < .001). This difference emerges specifically
in the second stage, where models are prompted to finalize their responses, while response lengths
remain comparable in the first stage, where both models are simply asked to reason. Although both
models were trained on equal-length preference pairs (Section [3.2)), System 2 models still tend to
elaborate more during finalization, consistent with their alignment toward deliberative reasoning.

While longer reasoning chains are often associated with stronger performance, our findings suggest
that this extended reasoning can also introduce inefficiencies or even degrade quality in contexts where
concise, heuristic-driven reasoning is more appropriate. In particular, tasks requiring commonsense
or intuitive judgments are often better handled by System 1 models, which respond more directly.
This highlights a central insight of our study: extended reasoning is not universally beneficial, and
reasoning strategies must be evaluated in relation to the task.

5.3 Moving from Fast to Slow Thinking

In the previous analysis, System 1 and System 2 models can be viewed as endpoints of a broader
spectrum of reasoning strategies. Paralleling approaches in cognitive psychology (Daw et al.| 2011}
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Piray and Daw, |2021)), we explored this spectrum by constructing interpolated models—blending
System 1 and System 2 preferred answers at varying ratios in the alignment dataset. Figure
demonstrates a consistent, monotonic transition in accuracy across representative benchmarks from
three reasoning categories (all 72 > 0.9,p < 0.001), a pattern visible across all benchmarks (see
Appendix [M). While arithmetic and symbolic reasoning benchmarks exhibit a steady increase in
accuracy moving toward System 2 thinking, commonsense reasoning benchmarks show the opposite
trend, with accuracy increasing as models rely more on System 1 reasoning. This trade-off highlights
that both reasoning styles offer unique advantages, with System 2 excelling in structured, multi-step
problem-solving and System 1 providing efficient, adaptable responses in intuitive scenarios. These
findings strengthen the importance of task-dependent reasoning strategies that leverage the strengths
of both System 1 and System 2 thinking. Critically, there are no sudden drops or fluctuations in
performance when transitioning between reasoning styles. This stability indicates that the shift from
System 1 to System 2 reasoning is gradual and predictable, without any unexpected anomalies. This
observation reinforces the idea that LLMs can be strategically guided toward different reasoning
styles, allowing for more adaptive problem-solving.

5.4 Reasoning & Uncertainty

A key insight from psychology and neuroscience is that System 1 operates on confident heuristics,
providing quick, intuitive judgments, while System 2 engages in more deliberate, analytical thought,
accurately assessing the uncertainty associated with its conclusions (Daw et al., 2005} [Lee et al.,
2014; [Keramati et al., 2011} |Xu, |2021). To examine uncertainty and confidence, we consider three
different characteristics: 1) token-level uncertainty; 2) the presence of hedge words in model output
(Lakoff] [1973; |Ott, [2018)); and 3) definitive commitment to responses in System 1 versus System 2.

Plot A in Figure [4] shows that System 2 models consistently generate tokens with lower confi-
dence than System 1 models, based on token-level uncertainty from logits. This trend holds across
arithmetic $(4075) = 54.53,p < .001, symbolic £(999) = 42.53,p < .001, and commonsense
t(3510) = 106.86,p < .001 benchmarks. Additionally, we analyzed surface-level uncertainty in
model reasoning by examining word choices. Figure fi] Plot B shows System 2-aligned models
use significantly more hedge words, in arithmetic ¢(4075) = 22.03,p < .001 and commonsense
t(3510) = 21.49,p < .001 when models reiterate their reasoning. While increased uncertainty
enhances analytical reasoning, it may hinder tasks requiring rapid, intuitive judgments. To assess
early-stage response conclusiveness, we used LLM-as-Judge (Zheng et al., 2023) as detailed in
Appendix [N] Figure 4] Plot C shows System 1 models provide significantly more definitive re-
sponses than System 2 models in commonsense reasoning, McNemar’s x?(1,400) = 20.0, p < .001,
regardless of where in the response the definitive responses is reached (see Appendix [N)).

This analysis reinforces the idea that different reasoning styles are suited to different tasks. Greater
uncertainty in models’ generated reasoning suggests that System 2 models can explore alternative
reasoning paths more effectively. This uncertainty is reflected in both their model output probabilities
and word choices. System 2 models’ superior performance in arithmetic benchmarks highlights the
benefits of deliberate, effortful processing in tasks that demand exploration and uncertainty. On the
other hand, the greater tendency of System 1 models to commit to responses in a more definitive way
aligns with their advantage in tasks requiring rapid and intuitive judgments. This behavior is observed
exclusively in commonsense reasoning, where quick, decisive responses are advantageous—a trend
supported by human studies (Byrd, [2022) and confirmed by our findings in Section[5.1] However, it
does not appear in other benchmarks (see Appendix [N)), suggesting that the activation of a particular
reasoning style is context-dependent and influenced by task demands.
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6 Conclusion

A central question in current LLM development is whether structured, step-by-step reasoning is
always beneficial, or whether a more flexible range of reasoning strategies is needed. Inspired by
dual-process theories of human cognition, we studied LLMs explicitly aligned with System 1 and
System 2 thinking, representing fast, heuristic reasoning and slow, analytical reasoning, respectively.
Our findings indicate that, much like in human cognition, reasoning in LLMs is not a one-size-fits-
all solution: different reasoning modes are effective in different contexts and downstream tasks.
System 2 excels in arithmetic and symbolic reasoning, while System 1 is more effective and accurate
in commonsense reasoning (Section [5.1)). Training intermediate models with blended ratios of
preferred System 1 and System 2 responses revealed smooth, monotonic shifts in performance
across benchmarks (Section [5.3), supporting the view that LLM reasoning lies on a continuous,
tunable spectrum rather than a binary divide. Additionally, System 1 models generate responses with
fewer tokens, highlighting its efficiency in decision-making (Section[5.2)). Finally, our analysis in
Section [5.4]illustrated that System 2 models exhibit greater uncertainty throughout the reasoning
process, potentially enabling them to engage in more structured, step-by-step problem-solving. In
contrast, System 1 models display higher confidence, allowing them to reach responses faster, which
is particularly advantageous for tasks requiring rapid, intuitive judgments.

Beyond these empirical findings, our study aligns with broader principles observed across cognitive
science and neuroscience. The observation that System 1 models generate faster responses echoes
established theories in human cognition, where intuitive, heuristic-driven thinking allows for rapid
decision-making. Similarly, the higher uncertainty exhibited by System 2 models aligns with
neuroscience findings that deliberate reasoning involves increased cognitive load and self-monitoring
mechanisms. These parallels suggest that LLMs, when properly aligned, can mirror key aspects of
human cognition, offering new insights into both artificial and natural intelligence.

Our work bridges between LLM development and cognitive science, highlighting how we can enable
efficiency-accuracy trade-offs in LLMs, similar to those long observed in human cognition. We align
models with reasoning behaviors that follow well-known cognitive heuristics, which humans use in
everyday thinking, like System 1°s rapid, intuitive judgments and System 2’s deliberate, analytical
thought, and show they can follow the dynamic interplay between fast and slow thinking. This
alignment not only informs more sophisticated training and evaluation strategies but also suggests
that future LLMs can be designed to possess a more cognitively grounded flexibility, allowing them
to adapt their reasoning as effectively as humans do when faced with diverse task demands. Finally,
models that reason in ways that are cognitively interpretable, mirroring the human brain’s strategies
for learning, decision making, and inference, may also be more predictable, steerable, and trustworthy
in deployment. In this light, dual-process alignment connects cognitive science and neuroscience
with model capabilities, enabling future LLMs to reason more like humans, not just in what they
conclude, but in how they get there.

This paper is a first step toward adaptive reasoning in LLMs, where models can dynamically shift
between heuristic and deliberative thinking based on task demands. Furthermore, understanding how
to optimally balance speed and accuracy in LLMs can have significant implications for real-world
applications, from conversational agents to automated decision-making systems. In practice, this
approach could let us deliberately trade off answer quality for faster responses by choosing fewer
reasoning steps when time is critical.
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A Limitations

Despite the promising advancements of using different thinking styles through the lens of dual-process
cognitive theory in our approach, it is important to clarify the intended scope and outline future
directions. Our curated dataset of 2,000 questions covers 10 well-established cognitive heuristics and
was validated by our domain experts to ensure quality. While not exhaustive, this dataset provides
a strong foundation for investigating reasoning style differences and establishes methodological
groundwork for broader-scale expansion in future studies to represent the entire spectrum of reasoning
challenges encountered in real-world tasks. We focused our alignment experiments on Llama and
Mistral as base models, using DPO and SIMPO as preference optimization techniques. While
our findings are likely to generalize across model architectures and alignment methods, given the
shared emergence of both intuitive and deliberative reasoning in large-scale pretraining, testing this
generalization to other architectures and alignment methods is a valuable future direction. In terms of
evaluating reasoning uncertainty, we adopt token-level logit-based measures and linguistic hedging
analysis as computationally tractable proxies. These provide interpretable signals of reasoning
behavior, though deeper psycholinguistic and interactive evaluations may offer complementary
insights. Finally, while our experiments reveal a clear accuracy-efficiency trade-off between intuitive
and deliberative reasoning, the extent to which these findings translate to more complex or dynamic
decision-making scenarios remains an open question. Future work should explore larger, more diverse
datasets and investigate alternative alignment strategies to further validate and extend these results.

B Ethical Statement

Aligning LL.Ms with System 1 and System 2 reasoning raises concerns about model behavior in
different contexts. System 1 models may produce overly confident but incorrect responses, while
System 2 models, though more deliberate, may slow response times and increase computational costs.
Responsible deployment requires balancing these trade-offs to prevent biased or misleading outputs.

C Cognitive heuristics

In Table[3] we list 10 different cognitive heuristics and their definitions, which we used in curating
the dataset|Kahneman| (2011)); Stanovich and West (2000); [Evans and Stanovich|(2013).

Table 3: 10 common cognitive biases and their definitions, which were considered in curating the
dataset

Cognitive Bias Definition

The tendency to rely too heavily on the first piece of information we receive about a topic, using it as a reference point

Anchoring Bias X . . X X
e for future judgments and decisions, even when new information becomes available.

The tendency to let one positive impressions of people, brands, and products in one area positively influence our feelings

Halo Effect Bias .
in another area.

Overconfidence Bias The tendency to have excessive confidence in one’s own abilities or knowledge.

Optimism Bias The tendency to overestimate the likelihood of positive outcomes and underestimate negative ones.

Availability Heuristic Bias The tendency to use information that comes to mind quickly and easily when making decisions about the future.

Status Quo Bias The preference for maintaining the current state of affairs, leading to resistance to change.

The tendency to better remember and recall information presented to us most recently, compared to information we

Recency Bias .
encountered earlier

Confirmation Bias The tendency to notice, focus on, and give greater credence to evidence that fits with our existing beliefs.

The tendency to underestimate the amount of time it will take to complete a task, as well as the costs and risks associated

Planning Fallac . o . .
ing Y with that task even if it contradicts our experiences.

Bandwagon Effect Bias The tendency to adopt beliefs or behaviors because many others do.
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s9 D Details of Experts

650 The experts consulted are the two authors of this paper, both of whom are Ph.D. students in Psychology
651 with a focus on cognitive and social science.

es2 E Initial Data Examples

Table 4: 10 samples generated by an expert

Category Question System 1 Answer System 2 Answer

I should interact with them more to form a well-rounded
opinion.

Do you rely on your first impres-
sion of meeting your lab mate ?

Anchoring Bias Yes, my gut instinct is usually right.

How do you feel about the new
political candidate?

I do not like their stance on one issue, so I think they are a

Halo effect Bias terrible candidate.

I'll weigh their stance on multiple issues before deciding.

Over Confidence
Bias

Do you think you will succeed in
your new job?

T will need to put in effort and adapt to the new environ-
ment to succeed.

I will definitely succeed here.

Should you change your workout My routine has always worked, so there is no need to My fitness needs might have changed, so I will consider

Status Quo Bias

routine? change it. adjusting my routine.
. . Do you need to double-check your | Tam usually careful, so one mistake doesn’t mean I'll T will double-check my work to make sure I don’t repeat
Optimism Bias N . 9 h
work after a mistake? make another. the mistake.
Availabilit Is the newest seafood restaurant the . . Popularity does not always mean the best quality, so I will
11ability © © o ® | Itis the most popular one, so it must be the best. puiarity s Y quatity, !
heuristic best restaurant in town? read reviews first.

T will research the stock and market conditions before
making a decision.

Should you invest in the stock after
hearing good things about it?

Recency Bias Yes, it is been rising lately, so it’s sure to keep going up.

Is the newest seafood restaurant the
best restaurant in town?

Confirmation
Bias

Popularity does not always mean the best quality, so I will

It is the mo: lar one, so it must be the best. .
t is the most popular one, so it must be the best. read reviews first.

Is the newest seafood restaurant the
best restaurant in town?

Popularity does not always mean the best quality, so I will

Planning Fallacy It is the most popular one, so it must be the best. read reviews first.

Bandwagon
Effect Bias

Why did you pick apple as brand
of your phone?

I compared different features and chose the one that suits

Everyone I know has this brand, so it must be the best.
my needs.

53 The 10 samples generated by the expert for our data generation are shown in Table 4]

es« F  Prompt for Data Expansion

655 We expand our sample dataset by concatenating the expert-generated samples with the definitions in
es6  Table[3] along with a description of how System 1 and System 2 would respond to a given question,
657 as shown below:

The System 1 response should be intuitive, fast, and reflect the cognitive
heuristic associated with the question.

658
The System 2 response should be more deliberate, slower, and use reasoning to
correct or mitigate the heuristic.

659

0 G Topic Modeling

661 Following expert validation, we experimentally verified the diversity of our dataset to ensure it goes
62 beyond surface-level variation in wording. Figure [5] presents the results of topic modeling using
663 BERTopic (Grootendorst, 2022), demonstrating the range of topics covered in the dataset. The wide
664 distribution and clustering across 150 unique topics demonstrate the semantic diversity of the dataset
665 beyond superficial lexical variation.
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Figure 5: Topic modeling results on our dataset. Each dot represents a question, and colors indicate
distinct topics.

H Benchmark Details

We use three categories of reasoning benchmarks: arithmetic, commonsense reasoning, symbolic
reasoning, We provide an overview of the datasets used in each category.

Arithmetic reasoning. We use six datasets: MultiArith, GSM8K, AddSub, AQuA, SingleEq, and
SVAMP. Each dataset consists of questions that present a scenario requiring numerical computation
and multi-step reasoning based on mathematical principles.

Commonsense reasoning. To assess commonsense reasoning, we utilize five benchmarks: Com-
monsenseQA (CSQA), StrategyQA, PIQA, SociallQA (SIQA), and Com2Sense. All require models
to go beyond surface-level understanding and reason using prior knowledge. CSQA focuses on
multiple-choice questions grounded in general world knowledge, while StrategyQA includes ques-
tions that demand implicit multi-hop reasoning. PIQA evaluates physical commonsense by requiring
models to choose the more plausible solution to everyday benchmarks. SIQA targets social common-
sense, presenting scenarios about interpersonal interactions and asking questions about motivations,
reactions, and emotions. Com2Sense provides pairs of complementary sentences to test a model’s
ability to distinguish between plausible and implausible statements using commonsense.

Symbolic reasoning. We use the Last Letter Concatenation and Coin Flip datasets. Last Letter
Concatenation involves forming a word by extracting the last letter of given words in order. Coin
Flip presents a sequence of coin-flipping instructions and asks for the final coin orientation. These
datasets were originally proposed by Wei et al.|(2023a) but were not publicly available. [Kojima et al.
(2023)) 1ater followed their approach to create and release accessible versions, which we use in our
experiments.

I Equivalence Testing of Dataset Lengths Using TOST

A two one-sided t-test (TOST) confirmed the equivalence of these post-adjustment lengths across
various token counts as equivalence margins: +3 tokens, ¢(3870.30) = 85.82, p < .001; +5 tokens,
t(3870.30) = 149.07, p < .001; +7 tokens, #(3870.30) = 212.31, p < .001; and 5% of the mean
token count (+4.15 tokens), ¢(3870.30) = 122.29, p < .001

J Length Adjustment Threshold and Prompt

We adjust the length if there is a disparity of more than 15 tokens between the System 1 and System
2 outputs using GPT-40 with the following prompt:
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For a given {question}, we have two types of answers:

A fast, intuitive response based on cognitive heuristics which is our System
1 Answer.

System 1 Answer: {System 1 Answer}

And a slow, deliberate, and logical reasoning response which is our System 2
Answer.

System 2 Answer: {System 2 Answer}

Your task is to adjust the two answers so that they are presented in the same
order of tokens without altering their content. Ensure that the intuitive
nature of the System 1 Answer and the logical reasoning of the System 2
Answer are preserved.

K Benchmark Instruction

The benchmark-specific instructions are shown in Table [5]

Table 5: Benchmark instruction sentences

Benchmark Second Stage Instruction

MultiArith, SingleEq, AddSub, GSM8K, SVAMP Therefore, the answer (arabic numerals) is

AQuA, CSQA Therefore, among A through E, the answer is
PIQA Therefore, among A and B, the answer is
COM2SENSE Therefore, the answer (TRUE or FALSE) is
Strategy, Coin Therefore, the answer (Yes or No) is

Letters

|
\
|
SIQA ‘ Therefore, among A through C, the answer is
|
\
\
‘ Therefore, the final answer is

L. Implementation Details

We use Python 3.10.12, PEFT 0.12.0, PyTorch 2.4.0, and Transformers 4.44.2. The dataset is split
into 80% training and 20% validation. For alignment, we apply Low-Rank Adaptation (LoRA Hu
et al.||2021) with a rank of 8, an alpha of 16, and dropout rate of 0.1. We train for five epochs, using
accuracy on winner responses as an early stopping criterion to prevent overfitting, with patience of 5.
We set the train batch size to 4 and the validation batch size to 8. To align Llama 3 using the DPO
method, we followed Meng et al.| (2024) and set the learning rate to 7e — 7 with beta of 0.01. For
SimPO, we use a learning rate of le — 6, beta of 2.5, and a gamma-to-beta ratio of 0.55. For Mistral
v0.1, we set the DPO learning rate to 5e — 7 with beta of 0.001. In SimPO, we use a learning rate of
5e — 7, beta of 2.5, and a gamma-to-beta ratio of 0.1.

The experiments were conducted using NVIDIA RTX A6000 GPU equipped with 48GB of RAM.
The total computation time amounted to approximately 800 GPU hours.

M Moving from Fast to Slow Thinking Plots

Figure E] demonstrates a consistent, monotonic increase in accuracy across all other benchmarks.

N Additional Insights into Models’ Reasoning

In this analysis, we investigate when different models reach definitive answers. We aim to detect
this commitment as early as possible during the reasoning process. This early commitment serves
as a proxy for the model’s confidence in the generated reasoning and its final answer. By analyzing
this behavior, we explore whether models can arrive at a definitive answer or if they leave room for
ambiguity or subjective interpretation.
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Figure 6: Accuracy across different benchmarks as reasoning shifts from System 1 to System 2.

We leverage the strong extractive capabilities of LLMs (Wei et al.|[2023b) and their near-human-like
annotation abilities (Gilardi et al.| 2023} |Alizadeh et al.2023)). Specifically, we focus on the Phi4
(14B) model (Abdin et al.,2024), which demonstrates exceptional performance in question-answering
and reasoning benchmarks, even surpassing closed-source models like GPT-40 (Hurst et al., [2024).
To determine whether a model’s reasoning contains a definitive answer, we use the following prompt
fed to Phi4:

Does the given answer directly answer the given question in a definitive way? ONLY RETURN YES OR
NO IN A \textbf{ }. Definitive answers are clear and do not leave room for interpretation or ambiguity.
If the answer tries to explore multiple perspectives or factors involved, it is not definitive, and YOU
HAVE TO RETURN NO.

This prompt is applied to reasoning generated by both System 1 and System 2 models. To understand
when these models commit to a definitive answer during their reasoning process, we focus on the first
n sentences of their reasoning, where n € {1,3,6,9,12,15}. We set a cap of 15 sentences based on
our observations that nearly all generated reasonings across benchmarks fall within this range (see

Figure[§).

Applying the prompt to each generated reasoning from the models across all benchmarks (200
randomly sampled data points from each benchmark, totaling 2000 samples for both System 1 and
System 2 reasonings), we append six solved demonstrations to the prompt to help further guide
the models. These demonstrations, selected randomly from the cognitive heuristics introduced in
Section [3.2] help clarify what qualifies as a definitive answer, aligning the models’ knowledge with
patterns we have aligned System 1 and 2 models with (see Section [3.I)).

Figure [7|shows the proportion of definitive answers in the first n sentences, across all benchmarksE]
For tasks where quick, intuitive judgments are advantageous, such as in commonsense reasoning.
System 1 models consistently provide more definitive answers than System 2 models. This gap
emerges early, with System 1 providing more definitive answers in the first three sentences. The
difference persists even as we extend the number of sentences considered (see Table[ffor a quantitative
analysis of the significance between System 1 and System 2 regarding the definitiveness of their
answers).

O System-Specific Failure Patterns

To complement the main results, we include two analyses that illustrate how System 1 and System 2
models diverge in failure patterns depending on task type. In numerical reasoning benchmarks, System
2 models are more reliable when higher precision is required, while in commonsense benchmarks,
System 1 models tend to produce more contextually appropriate answers. The following figure and
table offer additional insight into these differences.

To further analyze the behavioral differences between System 1 and System 2 models, we examine
their performance on AddSub items with varying numeric complexity. Figure[Qshows the distribution
of digit types in ground truth answers across four outcome categories. Notably, in examples where
System 2 succeeds and System 1 fails (“Sys2 better”), the ground truth answers tend to have a

Note that this ratio should not necessarily converge to 1.0 as more sentences are considered. In some cases,
even when considering the full reasoning chain, the models may still leave room for vagueness.
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Figure 7: Proportion of definitive answers in the first n sentences across arithmetic, symbolic, and
commonsense reasoning tasks
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Figure 8: Distribution of the number of sentences in models’ reasoning for both System 1 and System
2 reasoners across different benchmarks.

Table 6: McNemar’s test results comparing the ratio of answers providing committed and definitive
responses between System 1 and System 2 across different benchmarks. Statistically significant
results (p-value < 0.05) are boldfaced.

#Sen. Arithmetic | Symbolic | Common Sense
X2 p-value Winner | X2 p-value Winner | X2 p-value Winner

1 21.0 1.00 System 1 19.0 755 System 2 25.0 050 System 1
3 123.0 .028 System 2 29.0 228 System 1 20.0 >.001 System 1
6 125.0 272 System 2 33.0 720 System 1 21.0 >.001 System 1
9 120.0 040 System 2 44.0 1.00 System 1 21.0 >.001 System 1
12 118.0 .051 System 2 45.0 .320 System 2 20.0 >.001 System 1
15 121.0 .069 System 2 45.0 .836 System 1 20.0 >.001 System 1
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Figure 9: Distribution of digit characteristics in AddSub ground truth (GT) answers across different
outcome categories. Left: total number of digits. Right: number of digits after the decimal point.
Notably, examples where System 2 is correct and System 1 is not (“Sys2 better”) tend to have more
floating-point digits, indicating higher numerical precision.

significantly higher number of floating-point digits (Mann—Whitney U test, U = 346.0, p = 0.0051).
This pattern suggests that System 2 is more effective at handling cases requiring greater numerical
precision. In contrast, the number of total digits (irrespective of decimal placement) does not differ
meaningfully between the “Sys2 better” and “Sys1 better” subsets (U = 224.0, p = 0.99).

We also provide a qualitative comparison of commonsense failures made by System 2, shown in
The table includes representative examples from CSQA where System 2 responses, although
logically coherent, miss intuitive or socially grounded answers. These cases highlight how interpretive
depth can lead to answers that diverge from typical human judgment.

P Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with
the paper submission before the full submission deadline (see above), or as a separate PDF in the
ZIP file below before the supplementary material deadline. There is no page limit for the technical
appendices.
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Table 7: Examples where the System 2 model fails on commonsense questions. The middle column
shows the model’s rationale and final answer, while the right column contains our analysis of why
these responses deviate from typical human judgment. In all cases, the System 1 model gives the
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774 Guidelines:
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correct answer.

Question (Answer Choices)

‘ System 2 Rationale & Final Answer

‘ Analysis and Insight

A supermarket is uncommon in what type of
collection of shops? (A) strip mall (B) city or town
(C) shoppingcentre (D) boutique (E) vermont

Supermarkets are most commonly found in
urban or suburban areas such as cities and
towns. They are less associated with specific
retail arrangements like strip malls or boutiques.
Final Answer: B

Overanalyzes spatial patterns instead of
recognizing that “strip mall” is a retail form not
typically associated with supermarkets. Correct
answer: A.

The man tried to reply to the woman, but he had
difficulty keeping track of conversations that he didn’t
do what to? (A) initiate (B) ignore (C) question (D)
answer (E) ask

If someone has trouble following conversations,
it’s often because they are not actively
participating by responding. Final Answer: D

Logical but misses the commonsense
interpretation that initiating a conversation
anchors attention. Correct answer: A.

What does a kindergarten teacher do before nap time?
(A) lower expectations (B) encourage (C) fear (D)
time test (E) tell story

Teacher might try to calm children and create a
relaxed atmosphere before nap, e.g., by
encouraging quiet behavior or mindfulness.
Final Answer: B

Misses the stereotypical, culturally familiar act
of storytelling before naps. Correct answer: E.

Where can a human find clothes that aren’t pants? (A)
pants shop (B) on planet earth (C) dress shop (D)
school (E) train wreck

On planet Earth, people have access to a wide
range of clothing items beyond pants, including
dresses, skirts, and robes. Final Answer: B

Too literal and expansive—technically true but
ignores the specific, expected answer: C.

Dan was sitting quietly with a book. Laurie thought
he was focused, but he actually did what? (A) eat (B)
think (C) reading (D) meditate (E) fall asleep

The word “ditting” seems like a typo for
“reading,” which matches the context of holding
abook. Final Answer: C

Tries to correct perceived error in the question
instead of interpreting the pragmatic cue.
Correct answer: E.

‘What instrument can be played with an air of
happiness? (A) jump up and down (B) jump up and
down (C) sing (D) play games (E) fiddle

Singing is often associated with expressing
happiness, and it’s a way people naturally
convey joy. Final Answer: C

Interprets “instrument” metaphorically rather
than literally, overlooking that “fiddle” is an
actual musical instrument. Correct answer: E.

If you spend all your time buying and not saving what
is likely to happen? (A) using money (B) feel better
(C) ocean (D) losing money (E) go broke

Without saving, continuous spending will likely
cause one to lose money over time. Final
Answer: D

Reasoning is valid, but the phrasing “losing
money” is less idiomatic than “go broke,” which
better matches the question. Correct answer: E.

Surprising an angry person could lead to what? (A)
humor (B) fight (C) jocose (D) laughter (E) accidents

A sudden surprise may defuse tension and even
cause laughter, helping to de-escalate anger in
some cases. Final Answer: D

Overly optimistic and detached from real-world
expectations; more likely outcome is aggression.
Correct answer: B.

22



789
790

791

794

809
810
811
812
813
814

815

816
817

818

819
820

821

822

823
824

825

826
827
828

829
830

831

832

833
834
835

836

837
838

839

840

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper is primarily empirical and does not present formal theoretical results
or proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental configurations, data, and code are publicly available in our
repository.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced our code as well as the accompanying dataset that is
introduced in the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings and details are provided in Section [4.3] and Ap-
pendix[[}
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We used suitable statistical analysis based on the variable in different part of
our paper such as Section[3.2] Section[5.3] Section[5.2] and Section[5.4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix[[] we have provided the computation resources.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and made sure that the paper
conforms to it.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide high-level, abstract interpretations of our results and discuss their
broader implications, including potential societal impacts, in both Section [5]and Section [6]
These include the risks of over-relying on a single mode of reasoning in LLMs and the
importance of aligning model behavior with context-sensitive cognitive strategies.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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12.

13.

Answer: [NA]

Justification: This paper contributes to the field of reasoning in language models, which is
neutral with respect to misuse or dual-use concerns. It does not involve the release of high-
risk models or datasets and does not pose foreseeable risks requiring specific safeguards.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We used Apache-2.0 as our license in github.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code and data are available on GitHub and Hugging Face.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: Our paper did not involve crowdsourcing and human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that our core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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