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Abstract

Large language models (LLMs) demonstrate remarkable reasoning capabilities,1

yet their reliance on step-by-step reasoning can make them brittle when tasks do2

not align with such structured approaches. In contrast, human cognition flexibly3

alternates between fast, intuitive reasoning (System 1) and slow, analytical reason-4

ing (System 2), depending on context. To bridge this gap, we curate a dataset of5

2K examples, each with valid responses from both reasoning styles, and explicitly6

align LLMs with System 1 and System 2 reasoning. Evaluations across diverse7

reasoning benchmarks reveal an accuracy-efficiency trade-off: System 2-aligned8

models excel in arithmetic and symbolic reasoning, while System 1-aligned models9

perform better in commonsense tasks. A mechanistic analysis of model responses10

shows that System 1 models employ more definitive answers, whereas System11

2 models demonstrate greater uncertainty. Interpolating between these extremes12

produces a monotonic transition in reasoning accuracy, preserving coherence. This13

work challenges the assumption that step-by-step reasoning is always optimal and14

highlights the need for adapting reasoning strategies based on task demands.115

1 Introduction16

LLMs have demonstrated remarkable reasoning capabilities, often achieving near-human or even17

superhuman performance (Huang and Chang, 2023). These advances have largely been driven18

by techniques that simulate step-by-step, deliberative reasoning, such as Chain-of-Thought (CoT)19

prompting and inference-time interventions (Wei et al., 2022b; Wang et al., 2022). Given their20

success, such methods are increasingly integrated into LLM training (Chung et al., 2024), reinforcing21

explicit, structured reasoning regardless of the task necessity. However, the increasing focus on22

step-by-step reasoning has revealed limitations such as brittle generalization, particularly in tasks23

requiring nuanced judgment (Delétang et al., 2023), logical consistency (Jiang et al., 2024), or24

adaptability to uncertainty (Mirzadeh et al., 2024). Similarly, recent analyses frame this issue as25

“overthinking”: Cuadron et al. (2025); Chen et al. (2024) demonstrate that excessive deliberation can26

hamper decision-making. This problem appears in LLMs’ responses to simple factual queries, where27

they often generate unnecessarily explanations instead of direct responses (Wang et al., 2023).28

This focus on explicit, structured reasoning highlights a key difference between LLMs and human29

cognition: while LLMs are being pushed towards a single mode of processing, human reasoning is far30

more nuanced. Rather than a monolithic process, human reasoning emerges from a sophisticated suite31

of cognitive tools evolved to tackle a spectrum of computational problems. This spectrum of human32

reasoning encompasses both automatic and reflective processes, a key insight recognized across33
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diverse fields from behavioral economics to psychology and neuroscience (Daw et al., 2005; Dolan34

and Dayan, 2013; Balleine and Dickinson, 1998). On one end lie computationally light problems35

demanding rapid, intuitive judgments (e.g., instinctively dodging a speeding car), handled by the36

reflexive “System 1.” On the other end are heavy problems requiring deliberate, step-by-step analysis,37

managed by the reflective “System 2” (Kahneman, 2011; Stanovich and West, 2000). This dual-38

process system allows us to dynamically shift between modes depending on the task, balancing speed39

and accuracy (Evans and Stanovich, 2013). Extensive work in neuroscience in the past two decades40

links the dual-process framework and human decision strategies, which depicts decision-making41

on a spectrum between a fast but reflexive habitual decision strategy and a reflective goal-directed42

strategy (Daw et al., 2005; Dolan and Dayan, 2013). Experimental work in neuroscience is built43

on the relative advantages of these two strategies, the separate but overlapping neural structures44

supporting them, and the circumstances under which each system is deployed in the brain (Daw et al.,45

2011; Schad et al., 2020; Piray and Daw, 2021). Given the evolutionary advantage of humans in46

switching between fast and slow thinking to balance speed, efficiency, and accuracy, exploring LLMs47

through the lens of System 1 and System 2 reasoning offers a powerful way to address their current48

limitations.49

While recent studies explore whether LLMs exhibit System 1 and System 2 behaviors (Hagendorff50

et al., 2023; Pan et al., 2024) or propose hybrid models (Yang et al., 2024; Deng et al., 2024),51

most prior work implicitly assumes that structured, deliberative reasoning is universally superior.52

Even research suggesting LLMs’ capacity for both reasoning modes (Wang and Zhou, 2024) largely53

overlooks the crucial question of when each mode is indeed advantageous. The assumption that a54

single “best” reasoning strategy can apply across all contexts is a fundamental simplification that55

limits current approaches in LLM development. This assumption prevents LLMs from achieving true56

cognitive flexibility, hindering their ability to adapt their reasoning processes to diverse situations.57

To address this gap, we explicitly align LLMs with System 1 and System 2 reasoning and evaluate58

their reasoning capabilities and behaviors across a range of reasoning benchmarks. Our approach59

involves designing an experimental setup where both thinking styles can produce valid responses60

but follow distinct paths, one leveraging intuitive heuristics, and the other prioritizing deliberate,61

step-by-step reasoning. By systematically assessing how reasoning styles and cognitive biases62

affect downstream task performance, we provide insights into when intuitive heuristics or structured63

deliberation are most effective, and highlight the trade-offs between accuracy and efficiency in LLMs.64

Specifically, as demonstrated in Figure 1, we first curate a dataset of 2,000 reasoning questions, where65

each problem has both a fast, heuristic-driven (System 1) response and a deliberative, structured66

(System 2) response, grounded in 10 different cognitive heuristics (Tversky and Kahneman, 1974).67

We then explicitly align LLMs with either System 1 or System 2 type responses and evaluate these68

models on diverse reasoning benchmarks. Our findings reveal a structured accuracy-efficiency trade-69

off and demonstrate that different reasoning paradigms in LLMs excel at different types of tasks,70

mirroring how humans selectively rely on fast or slow thinking depending on task demands: System71

2-aligned models consistently outperform instruction-tuned and CoT prompt baselines in arithmetic72

and symbolic reasoning, demonstrating superior multi-step inference, but generating more extended73

token-intensive responses. Conversely, System 1-aligned models generate more succinct responses74

and excel at commonsense reasoning, where heuristic shortcuts are effective. Importantly, unlike CoT75

models, which always engage in structured reasoning regardless of necessity, our models provide76

an explicit way to study when different reasoning styles are beneficial, mirroring the well-known77

efficiency-accuracy trade-off in human cognition (Keramati et al., 2011; Mattar and Daw, 2018).78

By framing LLM reasoning as a structured and adaptable process, rather than simply an ability to79

achieve higher benchmark scores, this work highlights the importance of selecting the right reasoning80

strategy for a given task. This perspective not only aligns LLM reasoning more closely with human81

cognition but also paves the way for more flexible, efficient, and robust reasoning systems, setting a82

foundation for future advancements in LLM reasoning.83

2 Related Work84

2.1 Reasoning in LLMs85

Driven by extensive research highlighting the strengths and weaknesses of LLM reasoning abili-86

ties (e.g., Huang and Chang, 2022; Mondorf and Plank, 2024; Valmeekam et al., 2022; Parmar87
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et al., 2024; Sourati et al., 2024), recent efforts to enhance these capabilities have largely focused88

on prompting techniques (Brown et al., 2020), ranging from zero-shot prompting with explicit in-89

structions (Kojima et al., 2022; Wang et al., 2023; Zhou et al., 2024b) to few-shot prompting with90

step-by-step examples (Wei et al., 2022b). Wang and Zhou (2024) take CoT prompting even one91

step further and demonstrate that CoT reasoning paths can be elicited from pre-trained LLMs by92

simply altering the decoding process without the use of a specific prompt. Related approaches, such93

as self-consistency decoding Wang et al. (2022), explore how diverse reasoning paths can enhance94

robustness, aligning with deliberative aspects of System 2 reasoning. Tree of Thought (ToT; Yao et al.,95

2024) generalizes over CoT and allows LMs to perform deliberate decision making by considering96

multiple different reasoning paths and self-evaluating choices to decide the next course of action, as97

well as looking ahead or backtracking when necessary to make a global choice. Another alternative98

way of increasing the reasoning abilities of LLMs is through instruction tuning on a substantial99

amount of CoT reasoning data Chung et al. (2024); Huang et al. (2022) or distillation Magister100

et al. (2022). By training LLMs on a large-scale CoT dataset, models can internalize step-by-step101

reasoning, potentially enhancing their performance across diverse benchmarks without relying solely102

on prompting techniques. Concurrent studies have identified an “overthinking” phenomenon in103

LLMs, where models produce excessively detailed or unnecessarily elaborate reasoning steps (Chen104

et al., 2024; Cuadron et al., 2025).105

2.2 Dual-Process Theory in NLP106

Dual-process theories, widely studied in psychology, distinguish between fast, intuitive reasoning107

(System 1) and slow, deliberate reasoning (System 2). While these theories have long explained the108

spectrum of human reasoning, their application in NLP remains underexplored. Existing research falls109

into two main categories: (1) analyzing LLMs’ reasoning through dual-process theory, identifying110

similarities and differences between LLMs and human reasoning, and (2) developing models with111

dual-process mechanisms to enhance LLM reasoning and leverage the benefits of both systems.112

Analyzing LLMs’ reasoning through dual-process theory. Researchers have investigated whether113

LLMs exhibit reasoning behaviors aligned with System 1 and System 2, particularly in terms of114

cognitive human-like errors and biases (Hagendorff et al., 2023; Booch et al., 2021; Pan et al., 2024;115

Echterhoff et al., 2024; Zeng et al., 2024). Hagendorff et al. (2023) examine cognitive heuristics in116

LLMs, showing that newer models exhibit fewer errors characteristic of System 1 thinking. Booch117

et al. (2021) discuss fundamental questions regarding the role of dual-process theory in machine118

learning but leave practical implementation as an open problem. Most of these studies evaluate LLMs119

on benchmarks where System 2 reasoning is assumed to be superior, portraying intuitive responses120

as erroneous, even though such rapid, heuristic-driven judgments are often crucial for efficient and121

effective reasoning in real-world scenarios. In contrast, by analyzing models aligned with System 1122

and System 2 reasoning using a carefully curated dataset where both response types are valid, we123

offer a more nuanced understanding of how this alignment influences broader model behavior.124

Incorporating dual-process theory in NLP models. Several studies have integrated dual-process-125

inspired reasoning into LLMs. Some works combine intuitive (fast) and deliberate (slow) components126

to improve reasoning (He et al., 2024; Liu et al., 2022; Hua and Zhang, 2022; Pan et al., 2024), while127

others optimize reasoning efficiency by distilling System 2 insights into System 1 models (Yang et al.,128

2024; Deng et al., 2024; Yu et al., 2024). Additionally, research has leveraged System 2 reasoning to129

mitigate biases associated with System 1 heuristics, improving fairness and robustness (Furniturewala130

et al., 2024; Kamruzzaman and Kim, 2024; Weston and Sukhbaatar, 2023). While prior work largely131

frames System 2 reasoning as superior or explicitly builds dual-process components within models,132

our approach investigates the implicit effects of aligning LLMs to System 1 or System 2 responses.133

By analyzing how these heuristics influence general reasoning capabilities, we address a gap in134

the literature and provide new insights into the broader cognitive behaviors of LLMs that have135

implications for how unseen properties of data that LLMs are trained on can affect their capabilities.136
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Figure 1: (A) Sample of dataset with System 1 and System 2 answers. (B) Overview of our alignment
approach with fast and slow thinking, highlighting performance gains across reasoning benchmarks.

3 Method137

3.1 Aligning LLMs to System 1 & System 2 Thinking138

We formalize the modeling of fast and slow thinking as an alignment problem using a curated dataset139

in which each reasoning question is paired with both a System 1 (intuitive) and a System 2 (analytical)140

response (see Section 3.2). We align LLMs to either reasoning style via a preference-based training141

approach: for System 1 alignment, the intuitive response is designated as the preferred (winner)142

and the analytical response as the non-preferred (loser); for System 2 alignment, this preference is143

reversed, treating the analytical response as the winner and the intuitive response as the loser.144

This approach is effective for two key reasons. First, our aim is not to introduce new knowledge or145

instructions but rather to shape the model’s reasoning process based on existing capabilities. Second,146

previous research has shown that prompt engineering can guide LLMs toward System 2 reasoning147

(Wei et al., 2022a) or System 1 reasoning (Zhou et al., 2024a), suggesting that LLMs already have148

both reasoning abilities. Therefore, instead of creating new reasoning pathways, we guide the model149

to distinguish between intuitive and analytical reasoning processes without altering its underlying150

knowledge. The next section describes the dataset creation process that enables this training setup.151

3.2 Dataset of System 1 & System 2 Thinking152

Our curated dataset consists of 2,000 questions designed to elicit two distinct reasoning styles in153

English: one intuitive and rapid, reflecting cognitive shortcuts (System 1), and the other deliberate154

and analytical (System 2). This dual structure allows us to study the distinct mechanisms underlying155

System 1 and System 2 reasoning (Kahneman, 2011; Stanovich and West, 2000; Evans and Stanovich,156

2013). The dataset was created in three key phases: Generation, Refinement, and Validation.157

Generation. Cognitive heuristics provide a practical foundation for distinguishing between System158

1 and System 2 reasoning, where both yield valid but behaviorally distinct responses (Kahneman,159

2011). To construct our dataset, we adopted a human-in-the-loop pipeline that leverages GPT-4o160

(Hurst et al., 2024) to scale up the number of high-quality reasoning examples. In line with recent161

work on dataset creation using LLMs and few-shot prompting (Xu et al., 2023; Wang et al., 2022),162

we used a one-shot prompting setup, where each generation is guided by a carefully selected example163

grounded in a particular cognitive heuristic. These seed examples were authored by domain experts164

(see Appendix D) and span 10 well-known heuristics from Kahneman (2011) (Appendix C). For each,165

experts provided a reasoning question accompanied by both a System 1 (heuristic) and System 2166

(deliberative) response. During expansion, the prompt included the formal definition of each heuristic,167

a description of how both systems typically approach it, and the expert-written example. This setup168

enabled the model to generate new reasoning items aligned with distinct cognitive patterns. Full169

prompt details are provided in Appendix F, and expert-authored examples are shown in Appendix E.170

Refinement. As a byproduct of the data generation process, System 2 outputs were significantly171

longer and more detailed—reflecting their step-by-step reasoning style, while System 1 outputs were172

shorter and more direct; this length difference was confirmed using Welch’s t-test, t(2090.1) =173

−184.74, p < .001, d = −5.84. Prior work demonstrates that alignment methods can rely on174

superficial cues, such as output length, favoring longer responses even when they offer no real175

reasoning advantage (Singhal et al., 2023). To prevent this bias, we use zero-shot prompting with176
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Table 1: Samples of curated dataset with the cognitive heuristic category, each paired with System 1
response using the heuristic and System 2 response mitigating that heuristic.

Category Question System 1 Answer System 2 Answer

Anchoring

When booking
travel, do you
find it hard to
move away from
the first deal you
see?

I often find myself comparing everything to that initial
deal. Once I’ve encountered a specific offer or price, it
becomes the standard by which I measure all others. Even
when new deals come along, my mind instinctively revisits
that first one, guiding my judgment. It’s an automatic
comparison that influences how I evaluate options moving
forward.

To book travel effectively, I avoid comparisons only
against the initial option. I understand that the first deal
isn’t always the best ensures a broader perspective, more
observations increases the chances of finding a more
favorable travel plan. Exploring more options ultimately
leads to better decision-making.

Halo Effect
Would you say
fasting diet is
effective?

This diet is obviously effective. just look at the people
who follow it! Celebrities and influencers swear by it, and
they’re in great shape. When so many successful, healthy
people use it, that’s proof it works. Plus, it’s super popular,
which wouldn’t happen if it didn’t give great results. If you
want to see real change, this is the way to go!

The effectiveness of a diet depends on scientific evidence,
individual health factors, and long-term sustainability
rather than its popularity or association with celebrities.
A diet may lead to short-term weight loss but could lack
essential nutrients or be difficult to maintain. Evaluating
its impact on metabolism, overall health, and adherence is
crucial..

Over
Confidence

Do you believe
you will ace the
interview?

Yes, I excel in interviews. I communicate clearly, stay
confident under pressure, and listen attentively to ques-
tions. My ability to understand the interviewer’s needs and
align my responses accordingly enhances my effectiveness.
I maintain engaging body language and make genuine
connections, making a lasting impression. I prepare
thoroughly, anticipate potential questions, and rehearse
answers, ensuring I approach interviews with a calm,
composed demeanor, making me a strong candidate.

While confidence in interpersonal skills is beneficial,
thorough interview preparation is essential for success. It
allows for anticipation of potential questions and crafting
informed responses, showcasing an understanding of the
company and role. Researching company culture enables
candidates to align their answers with organizational
values, enhancing their chances of making a positive
impression. Solely relying on confidence can lead to unpre-
paredness, especially for technical inquiries, reducing the
effectiveness of skill articulation.

GPT-4o to match the lengths of our System 1 and System 2 outputs while preserving their content.177

Adjustments were applied only when there was a significant length disparity. More details about178

the prompt and the length disparity threshold are described in Appendix J. By reducing the length179

disparity, we minimized any preference for System 2 outputs arising from their longer responses.180

After adjustment, System 1 outputs had an average length of 82.19 tokens, while System 2 outputs181

averaged 83.93 tokens. A two one-sided t-test (TOST) confirmed the equivalence of post-adjustment182

lengths across various token counts as equivalence margins (see Appendix I), indicating that the183

adjustment effectively eliminated significant length differences between the two response types.184

Verification. Prior works show that high-quality, expert-supervised datasets of this scale are185

common and effective for fine-tuning LLMs (Xiao et al., 2024; Dumpala et al., 2024; Li et al., 2024).186

Following this precedent to ensure data quality, we had our domain experts conform all generated187

data to formal definitions of System 1 and System 2 thinking, and ensured that the dataset covers the188

intended set of cognitive heuristics across varied subject areas. In this process, the experts manually189

revised approximately 20% of the responses. We further verified the breadth of topic coverage via190

topic modeling; see Appendix G for details. A subset of the curated dataset is shown in Table 1.191

4 Experiments Setup192

4.1 Alignment Algorithm193

To implement the alignment strategy for System 1 and System 2 reasoning, we utilize two offline194

preference optimization methods, namely, Direct Preference Optimization (DPO; Rafailov et al.,195

2024) and Simple Preference Optimization (SimPO; Meng et al., 2024), because (i) their offline196

formulation removes the costly on-policy sampling loop, yielding a simpler and more compute-197

efficient training pipeline, and (ii) our hand-crafted preference pairs capture fine-grained relational198

signals that would likely be blurred by online-generated pairs.199

DPO is an offline alignment method that fine-tunes LLMs by comparing the preferred and disfavored200

outputs of a model against a reference model, optimizing preferences without requiring a separate201

reward model. As a prominent method in preference optimization, DPO has gained traction for202

its stability and efficiency, making it a widely adopted alternative to Reinforcement Learning from203

Human Feedback (RLHF; Ouyang et al., 2022). SimPO builds on the principles of DPO but introduces204

a reference-free approach to preference optimization. Instead of requiring a separate reference model,205

SimPO aligns responses by directly optimizing preference signals within the model itself. This206

makes it computationally more efficient and removes the dependency on an external reference model,207

offering a streamlined alternative for aligning LLMs to a specific preference.208
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4.2 Benchmarks209

We evaluate our System 1 and System 2 models using 13 reasoning benchmarks across three different210

categories: (1) arithmetic reasoning: MultiArith (Roy and Roth, 2015), GSM8K (Cobbe et al., 2021),211

AddSub Hosseini et al. (2014), AQUA-RAT (Ling et al., 2017), SingleEq (Koncel-Kedziorski et al.,212

2015), and SVAMP (Patel et al., 2021); (2) commonsense reasoning: CSQA (Talmor et al., 2019),213

StrategyQA (Geva et al., 2021), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), and COM2SENSE214

(Singh et al., 2021); (3) symbolic reasoning: Last Letter Concatenation and Coin Flip Wei et al.215

(2022b). More details about the benchmarks are in Appendix H.216

Following Kong et al. (2024), our evaluation follows a two-stage process. In the first stage, we217

present benchmark questions to model and record its responses. In the second stage, we prompt the218

model with the original question, its initial response, and benchmark-specific instructions to ensure219

the output is formatted as required. See Appendix K for each benchmark’s instructions.220

4.3 Implementation Details221

We use Llama-3-8B-Instruct (AI@Meta, 2024) and Mistral-7B-Instruct-v0.1 (Jiang et al., 2023)222

as SFT models for alignment. Following Kojima et al. (2023), we compare the performance of223

these aligned models against their instruction-tuned counterparts under zero-shot and zero-shot CoT224

prompting (additional details in Appendix L). To analyze the model’s behavior along the System 1 to225

System 2 reasoning spectrum, we train seven intermediate models, where the winner responses are226

mixed at predefined ratios between System 1 and System 2. This structured interpolation allows us to227

systematically assess whether the transition between reasoning styles is discrete or gradual.228

5 Results229

5.1 Distinct Strengths of System 1 & System 2 Models230

Table 2 shows a comparison of exact matching accuracy across 13 benchmarks for Llama and Mistral.231

Specifically, we compare the base models with the System 1 and System 2 variants, and include results232

for CoT prompting for reference. Our findings reveal distinct performance trends for the System 1233

and System 2 models, highlighting their respective strengths in different reasoning benchmarks.234

In all arithmetic benchmarks (MultiArith, GSM8K, AddSub, AQuA, and SingleEq), System 2 models235

outperformed both the base model and their System 1 counterpart, evident for both Llama and Mistral.236

This improvement is most significant in the AddSub and SingleEq benchmarks. Similarly, System 2237

models outperformed System 1 models in nearly all symbolic reasoning benchmarks (Coin, Letter),238

which require pattern recognition and logical structuring, further validating the idea that deliberative,239

slow-thinking models enhance performance in structured reasoning. While both approaches achieve240

high accuracy, System 1’s heuristic shortcuts introduce small but systematic errors that System 2’s241

deliberate, stepwise computations tend to avoid, such as rounding the number or adding numbers242

without checking. This is further supported by our AddSub analysis (see Appendix O).243

Conversely, System 1 models excelled both their System 2 counterparts and the base model as244

well as the CoT variant on all commonsense reasoning benchmarks (CSQA, StrategyQA, PIQA,245

SIQA, COM2SENSE), which depend on intuitive judgments and heuristic shortcuts. While System 2246

reasoning is correct, its deliberate nature can often lead to overthinking, producing overly cautious247

or extensively interpretive responses that diverge from typical human reactions in rapid, intuitive248

situations. For example, when asked what a kindergarten teacher does before nap time, System 2249

suggests “encourage quiet behavior” instead of “tell a story,” or predicts “laughter” rather than “fight”250

if you surprise an angry person. As shown in Appendix O, this preference for completeness over251

contextual fit makes System 2 less reliable for quick, socially grounded tasks.252

When comparing Llama and Mistral, Llama models generally achieved higher accuracy across253

all benchmarks. This suggests that Llama may have stronger foundational reasoning capabilities,254

which are further enhanced by the System 2 and System 1 alignment. Moreover, instruction-tuned255

models equipped with the CoT prompt exhibited only marginal differences compared to their base256

counterparts because step-by-step reasoning has already been internalized during pretraining on CoT-257

style data (AI@Meta, 2024), reducing the need for explicit prompting. Based on this observation, we258

use the base Llama model as our primary baseline in subsequent experiments.259
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Table 2: Accuracy comparison of our System 1 and System 2-aligned models against instruction-tuned
and CoT baselines across benchmarks. Each cell shows accuracy, with parentheses indicating the
difference from the baseline. Color intensity reflects the magnitude of deviation.

Arithmetic Symbolic Common Sense

MultiArith GSM8K AddSub AQuA SingleEq SVAMP Coin Letter CSQA Strategy PIQA SIQA COM2SENSE

Sy
st

em
2

DPO 98.67
(+1.0)

79.37
(+0.88)

89.87
(+7.4)

49.21
(+0.39)

94.37
(+3.65)

85.4
(+4.9)

93.8
(-0.4)

86.2
(+2.2)

71.42
(0)

60.87
(-6.68)

81.15
(-2.01)

67.93
(-3.19)

76.42
(-2.6)

SIMPO 97.83
(+0.16)

79.38
(+0.89)

90.13
(+7.66)

54.72
(+6.78)

94.49
(+3.77)

81.7
(+1.2)

94.4
(+0.2)

84.8
(+0.8)

69.62
(-1.8)

67.38
(-0.17)

81.49
(-1.67)

69.16
(-1.96)

78.21
(-0.81)

Llama-3 97.67 78.49 82.47 48.82 90.72 80.5 94.2 84 71.42 67.55 83.16 71.12 79.02

Llama-3-CoT 97.83 78.54 82.03 49.21 88.19 80.9 94.8 84.2 71.58 67.38 83.34 70.97 79.86

Sy
st

em
1

DPO 98.5
(+0.83)

77.01
(-1.48)

80.76
(-1.71)

46.46
(-2.36)

77.24
(-13.48)

78
(-2.5)

93.4
(-0.8)

83.8
(-0.2)

72.81
(+1.39)

68.21
(+0.66)

83.94
(+0.78)

72.16
(+1.04)

79.99
(+0.97)

SIMPO 97.5
(-0.17)

77.79
(-0.7)

80.51
(-1.96)

48.03
(-0.79)

87.4
(-3.32)

79.3
(-1.2)

90
(-4.2)

83.8
(-0.2)

72.32
(+0.9)

67.73
(+0.18)

83.35
(+0.19)

71.67
(+0.55)

81.46
(+2.44)

Sy
st

em
2

DPO 78.83
(+1.16)

56.45
(+1.47)

81.27
(+6.79)

32.68
(+1.19)

84.84
(+0.98)

69.1
(+3.4)

41
(-2.2)

8.6
(+8)

62.82
(-3.44)

56.81
(-8.6)

80.49
(0)

57.77
(-2.24)

66.73
(-1.64)

SIMPO 78.3
(+0.63)

55.42
(+0.53)

82.28
(+7.8)

34.25
(+2.76)

86.81
(+2.95)

68.5
(+2.8)

45.4
(+2.2)

7.8
(+6.2)

64.78
(-1.48)

63.75
(-1.66)

82.07
(-0.46)

59.82
(-0.19)

68.15
(-0.22)

Mistral 77.67 54.89 79.75 31.49 83.86 66.26 43.2 1.6 66.26 65.41 82.53 60.01 68.37

Mistral-CoT 78.3 54.96 80.25 33.07 83.66 67.8 43.8 1.6 66.18 65.49 82.21 60.76 69.01

Sy
st

em
1 DPO 77.5

(-0.17)
51.4

(-3.49)
79.49
(-0.26)

29.53
(-1.96)

83.07
(-0.79)

67.4
(-0.2)

40.4
(-2.8)

0
(-1.6)

67.4
(+1.14)

65.49
(+0.08)

83.22
(+0.69)

60.01
(0)

70.83
(+2.46)

SIMPO 77
(-0.67)

53.61
(-1.28)

78.73
(-1.02)

31.1
(-0.39)

83.67
(-0.19)

67.3
(-0.3)

43
(-0.2)

0
(-1.6)

67.32
(+1.06)

65.51
(+0.1)

82.84
(+1.31)

60.93
(+0.92)

69.13
(+0.76)

In summary, our results showcase that System 2 models excel in structured, multi-step reasoning260

such as arithmetic and symbolic reasoning, while System 1 models are effective in intuitive and261

commonsense reasoning benchmarks. These findings highlight the significant potential of dual-262

process alignment for boosting LLM performance across a diverse range of reasoning paradigms.263

5.2 Length Differences Across Reasoning Styles264

Figure 2: Token difference between System 1
and System 2 responses relative to Llama3 model
across stages and alignment methods.

A recent trend in LLM performance, exempli-265

fied by models such as DeepSeek R1 (Muen-266

nighoff et al., 2025), is that achieving stronger267

benchmark results often correlates with produc-268

ing longer reasoning chains, even if not explic-269

itly trained to do so. This correlation raises270

the question of whether such verbose responses271

truly reflect enhanced reasoning capabilities or272

if they are simply a formatting artifact of cur-273

rent high-performing models. In our studies,274

this concern is particularly relevant for System275

2 models, which are expected to behave more276

deliberatively. To investigate this, we analyze277

output lengths across the two-stage prompting278

setup described in Section 4.2.279

As shown in Figure 2, System 2-aligned models generate significantly longer responses than their280

System 1 counterparts, relative to the Llama baseline, under both alignment methods, DPO (t(8836) =281

57.14, p < .001) and SimPO (t(8586) = 9.833, p < .001). This difference emerges specifically282

in the second stage, where models are prompted to finalize their responses, while response lengths283

remain comparable in the first stage, where both models are simply asked to reason. Although both284

models were trained on equal-length preference pairs (Section 3.2), System 2 models still tend to285

elaborate more during finalization, consistent with their alignment toward deliberative reasoning.286

While longer reasoning chains are often associated with stronger performance, our findings suggest287

that this extended reasoning can also introduce inefficiencies or even degrade quality in contexts where288

concise, heuristic-driven reasoning is more appropriate. In particular, tasks requiring commonsense289

or intuitive judgments are often better handled by System 1 models, which respond more directly.290

This highlights a central insight of our study: extended reasoning is not universally beneficial, and291

reasoning strategies must be evaluated in relation to the task.292

5.3 Moving from Fast to Slow Thinking293

In the previous analysis, System 1 and System 2 models can be viewed as endpoints of a broader294

spectrum of reasoning strategies. Paralleling approaches in cognitive psychology (Daw et al., 2011;295
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Figure 3: Accuracy across benchmark categories as reasoning shifts from System 1 to System 2.

Piray and Daw, 2021), we explored this spectrum by constructing interpolated models—blending296

System 1 and System 2 preferred answers at varying ratios in the alignment dataset. Figure 3297

demonstrates a consistent, monotonic transition in accuracy across representative benchmarks from298

three reasoning categories (all r2 > 0.9, p < 0.001), a pattern visible across all benchmarks (see299

Appendix M). While arithmetic and symbolic reasoning benchmarks exhibit a steady increase in300

accuracy moving toward System 2 thinking, commonsense reasoning benchmarks show the opposite301

trend, with accuracy increasing as models rely more on System 1 reasoning. This trade-off highlights302

that both reasoning styles offer unique advantages, with System 2 excelling in structured, multi-step303

problem-solving and System 1 providing efficient, adaptable responses in intuitive scenarios. These304

findings strengthen the importance of task-dependent reasoning strategies that leverage the strengths305

of both System 1 and System 2 thinking. Critically, there are no sudden drops or fluctuations in306

performance when transitioning between reasoning styles. This stability indicates that the shift from307

System 1 to System 2 reasoning is gradual and predictable, without any unexpected anomalies. This308

observation reinforces the idea that LLMs can be strategically guided toward different reasoning309

styles, allowing for more adaptive problem-solving.310

5.4 Reasoning & Uncertainty311

A key insight from psychology and neuroscience is that System 1 operates on confident heuristics,312

providing quick, intuitive judgments, while System 2 engages in more deliberate, analytical thought,313

accurately assessing the uncertainty associated with its conclusions (Daw et al., 2005; Lee et al.,314

2014; Keramati et al., 2011; Xu, 2021). To examine uncertainty and confidence, we consider three315

different characteristics: 1) token-level uncertainty; 2) the presence of hedge words in model output316

(Lakoff, 1973; Ott, 2018); and 3) definitive commitment to responses in System 1 versus System 2.317

Plot A in Figure 4 shows that System 2 models consistently generate tokens with lower confi-318

dence than System 1 models, based on token-level uncertainty from logits. This trend holds across319

arithmetic t(4075) = 54.53, p < .001, symbolic t(999) = 42.53, p < .001, and commonsense320

t(3510) = 106.86, p < .001 benchmarks. Additionally, we analyzed surface-level uncertainty in321

model reasoning by examining word choices. Figure 4, Plot B shows System 2-aligned models322

use significantly more hedge words, in arithmetic t(4075) = 22.03, p < .001 and commonsense323

t(3510) = 21.49, p < .001 when models reiterate their reasoning. While increased uncertainty324

enhances analytical reasoning, it may hinder tasks requiring rapid, intuitive judgments. To assess325

early-stage response conclusiveness, we used LLM-as-Judge (Zheng et al., 2023) as detailed in326

Appendix N. Figure 4, Plot C shows System 1 models provide significantly more definitive re-327

sponses than System 2 models in commonsense reasoning, McNemar’s χ2(1, 400) = 20.0, p < .001,328

regardless of where in the response the definitive responses is reached (see Appendix N).329

This analysis reinforces the idea that different reasoning styles are suited to different tasks. Greater330

uncertainty in models’ generated reasoning suggests that System 2 models can explore alternative331

reasoning paths more effectively. This uncertainty is reflected in both their model output probabilities332

and word choices. System 2 models’ superior performance in arithmetic benchmarks highlights the333

benefits of deliberate, effortful processing in tasks that demand exploration and uncertainty. On the334

other hand, the greater tendency of System 1 models to commit to responses in a more definitive way335

aligns with their advantage in tasks requiring rapid and intuitive judgments. This behavior is observed336

exclusively in commonsense reasoning, where quick, decisive responses are advantageous—a trend337

supported by human studies (Byrd, 2022) and confirmed by our findings in Section 5.1. However, it338

does not appear in other benchmarks (see Appendix N), suggesting that the activation of a particular339

reasoning style is context-dependent and influenced by task demands.340
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Figure 4: (A) Log probabilities of models’ reasoning indicating internal uncertainty; (B) Hedge word
ratio showing surface-level uncertainty; (C) Proportion of definitive answers in the first n sentences.

6 Conclusion341

A central question in current LLM development is whether structured, step-by-step reasoning is342

always beneficial, or whether a more flexible range of reasoning strategies is needed. Inspired by343

dual-process theories of human cognition, we studied LLMs explicitly aligned with System 1 and344

System 2 thinking, representing fast, heuristic reasoning and slow, analytical reasoning, respectively.345

Our findings indicate that, much like in human cognition, reasoning in LLMs is not a one-size-fits-346

all solution: different reasoning modes are effective in different contexts and downstream tasks.347

System 2 excels in arithmetic and symbolic reasoning, while System 1 is more effective and accurate348

in commonsense reasoning (Section 5.1). Training intermediate models with blended ratios of349

preferred System 1 and System 2 responses revealed smooth, monotonic shifts in performance350

across benchmarks (Section 5.3), supporting the view that LLM reasoning lies on a continuous,351

tunable spectrum rather than a binary divide. Additionally, System 1 models generate responses with352

fewer tokens, highlighting its efficiency in decision-making (Section 5.2). Finally, our analysis in353

Section 5.4 illustrated that System 2 models exhibit greater uncertainty throughout the reasoning354

process, potentially enabling them to engage in more structured, step-by-step problem-solving. In355

contrast, System 1 models display higher confidence, allowing them to reach responses faster, which356

is particularly advantageous for tasks requiring rapid, intuitive judgments.357

Beyond these empirical findings, our study aligns with broader principles observed across cognitive358

science and neuroscience. The observation that System 1 models generate faster responses echoes359

established theories in human cognition, where intuitive, heuristic-driven thinking allows for rapid360

decision-making. Similarly, the higher uncertainty exhibited by System 2 models aligns with361

neuroscience findings that deliberate reasoning involves increased cognitive load and self-monitoring362

mechanisms. These parallels suggest that LLMs, when properly aligned, can mirror key aspects of363

human cognition, offering new insights into both artificial and natural intelligence.364

Our work bridges between LLM development and cognitive science, highlighting how we can enable365

efficiency-accuracy trade-offs in LLMs, similar to those long observed in human cognition. We align366

models with reasoning behaviors that follow well-known cognitive heuristics, which humans use in367

everyday thinking, like System 1’s rapid, intuitive judgments and System 2’s deliberate, analytical368

thought, and show they can follow the dynamic interplay between fast and slow thinking. This369

alignment not only informs more sophisticated training and evaluation strategies but also suggests370

that future LLMs can be designed to possess a more cognitively grounded flexibility, allowing them371

to adapt their reasoning as effectively as humans do when faced with diverse task demands. Finally,372

models that reason in ways that are cognitively interpretable, mirroring the human brain’s strategies373

for learning, decision making, and inference, may also be more predictable, steerable, and trustworthy374

in deployment. In this light, dual-process alignment connects cognitive science and neuroscience375

with model capabilities, enabling future LLMs to reason more like humans, not just in what they376

conclude, but in how they get there.377

This paper is a first step toward adaptive reasoning in LLMs, where models can dynamically shift378

between heuristic and deliberative thinking based on task demands. Furthermore, understanding how379

to optimally balance speed and accuracy in LLMs can have significant implications for real-world380

applications, from conversational agents to automated decision-making systems. In practice, this381

approach could let us deliberately trade off answer quality for faster responses by choosing fewer382

reasoning steps when time is critical.383
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A Limitations622

Despite the promising advancements of using different thinking styles through the lens of dual-process623

cognitive theory in our approach, it is important to clarify the intended scope and outline future624

directions. Our curated dataset of 2,000 questions covers 10 well-established cognitive heuristics and625

was validated by our domain experts to ensure quality. While not exhaustive, this dataset provides626

a strong foundation for investigating reasoning style differences and establishes methodological627

groundwork for broader-scale expansion in future studies to represent the entire spectrum of reasoning628

challenges encountered in real-world tasks. We focused our alignment experiments on Llama and629

Mistral as base models, using DPO and SIMPO as preference optimization techniques. While630

our findings are likely to generalize across model architectures and alignment methods, given the631

shared emergence of both intuitive and deliberative reasoning in large-scale pretraining, testing this632

generalization to other architectures and alignment methods is a valuable future direction. In terms of633

evaluating reasoning uncertainty, we adopt token-level logit-based measures and linguistic hedging634

analysis as computationally tractable proxies. These provide interpretable signals of reasoning635

behavior, though deeper psycholinguistic and interactive evaluations may offer complementary636

insights. Finally, while our experiments reveal a clear accuracy-efficiency trade-off between intuitive637

and deliberative reasoning, the extent to which these findings translate to more complex or dynamic638

decision-making scenarios remains an open question. Future work should explore larger, more diverse639

datasets and investigate alternative alignment strategies to further validate and extend these results.640

B Ethical Statement641

Aligning LLMs with System 1 and System 2 reasoning raises concerns about model behavior in642

different contexts. System 1 models may produce overly confident but incorrect responses, while643

System 2 models, though more deliberate, may slow response times and increase computational costs.644

Responsible deployment requires balancing these trade-offs to prevent biased or misleading outputs.645

C Cognitive heuristics646

In Table 3, we list 10 different cognitive heuristics and their definitions, which we used in curating647

the dataset Kahneman (2011); Stanovich and West (2000); Evans and Stanovich (2013).

Table 3: 10 common cognitive biases and their definitions, which were considered in curating the
dataset

Cognitive Bias Definition

Anchoring Bias The tendency to rely too heavily on the first piece of information we receive about a topic, using it as a reference point
for future judgments and decisions, even when new information becomes available.

Halo Effect Bias The tendency to let one positive impressions of people, brands, and products in one area positively influence our feelings
in another area.

Overconfidence Bias The tendency to have excessive confidence in one’s own abilities or knowledge.

Optimism Bias The tendency to overestimate the likelihood of positive outcomes and underestimate negative ones.

Availability Heuristic Bias The tendency to use information that comes to mind quickly and easily when making decisions about the future.

Status Quo Bias The preference for maintaining the current state of affairs, leading to resistance to change.

Recency Bias The tendency to better remember and recall information presented to us most recently, compared to information we
encountered earlier

Confirmation Bias The tendency to notice, focus on, and give greater credence to evidence that fits with our existing beliefs.

Planning Fallacy The tendency to underestimate the amount of time it will take to complete a task, as well as the costs and risks associated
with that task even if it contradicts our experiences.

Bandwagon Effect Bias The tendency to adopt beliefs or behaviors because many others do.

648
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D Details of Experts649

The experts consulted are the two authors of this paper, both of whom are Ph.D. students in Psychology650

with a focus on cognitive and social science.651

E Initial Data Examples652

Table 4: 10 samples generated by an expert

Category Question System 1 Answer System 2 Answer

Anchoring Bias Do you rely on your first impres-
sion of meeting your lab mate ? Yes, my gut instinct is usually right. I should interact with them more to form a well-rounded

opinion.

Halo effect Bias How do you feel about the new
political candidate?

I do not like their stance on one issue, so I think they are a
terrible candidate. I’ll weigh their stance on multiple issues before deciding.

Over Confidence
Bias

Do you think you will succeed in
your new job? I will definitely succeed here. I will need to put in effort and adapt to the new environ-

ment to succeed.

Status Quo Bias Should you change your workout
routine?

My routine has always worked, so there is no need to
change it.

My fitness needs might have changed, so I will consider
adjusting my routine.

Optimism Bias Do you need to double-check your
work after a mistake?

I am usually careful, so one mistake doesn’t mean I’ll
make another.

I will double-check my work to make sure I don’t repeat
the mistake.

Availability
heuristic

Is the newest seafood restaurant the
best restaurant in town? It is the most popular one, so it must be the best. Popularity does not always mean the best quality, so I will

read reviews first.

Recency Bias Should you invest in the stock after
hearing good things about it? Yes, it is been rising lately, so it’s sure to keep going up. I will research the stock and market conditions before

making a decision.

Confirmation
Bias

Is the newest seafood restaurant the
best restaurant in town? It is the most popular one, so it must be the best. Popularity does not always mean the best quality, so I will

read reviews first.

Planning Fallacy Is the newest seafood restaurant the
best restaurant in town? It is the most popular one, so it must be the best. Popularity does not always mean the best quality, so I will

read reviews first.

Bandwagon
Effect Bias

Why did you pick apple as brand
of your phone? Everyone I know has this brand, so it must be the best. I compared different features and chose the one that suits

my needs.

The 10 samples generated by the expert for our data generation are shown in Table 4.653

F Prompt for Data Expansion654

We expand our sample dataset by concatenating the expert-generated samples with the definitions in655

Table 3, along with a description of how System 1 and System 2 would respond to a given question,656

as shown below:657

The System 1 response should be intuitive, fast, and reflect the cognitive
heuristic associated with the question.

658

The System 2 response should be more deliberate, slower, and use reasoning to
correct or mitigate the heuristic.

659

G Topic Modeling660

Following expert validation, we experimentally verified the diversity of our dataset to ensure it goes661

beyond surface-level variation in wording. Figure 5 presents the results of topic modeling using662

BERTopic (Grootendorst, 2022), demonstrating the range of topics covered in the dataset. The wide663

distribution and clustering across 150 unique topics demonstrate the semantic diversity of the dataset664

beyond superficial lexical variation.665
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Figure 5: Topic modeling results on our dataset. Each dot represents a question, and colors indicate
distinct topics.

H Benchmark Details666

We use three categories of reasoning benchmarks: arithmetic, commonsense reasoning, symbolic667

reasoning, We provide an overview of the datasets used in each category.668

Arithmetic reasoning. We use six datasets: MultiArith, GSM8K, AddSub, AQuA, SingleEq, and669

SVAMP. Each dataset consists of questions that present a scenario requiring numerical computation670

and multi-step reasoning based on mathematical principles.671

Commonsense reasoning. To assess commonsense reasoning, we utilize five benchmarks: Com-672

monsenseQA (CSQA), StrategyQA, PIQA, SocialIQA (SIQA), and Com2Sense. All require models673

to go beyond surface-level understanding and reason using prior knowledge. CSQA focuses on674

multiple-choice questions grounded in general world knowledge, while StrategyQA includes ques-675

tions that demand implicit multi-hop reasoning. PIQA evaluates physical commonsense by requiring676

models to choose the more plausible solution to everyday benchmarks. SIQA targets social common-677

sense, presenting scenarios about interpersonal interactions and asking questions about motivations,678

reactions, and emotions. Com2Sense provides pairs of complementary sentences to test a model’s679

ability to distinguish between plausible and implausible statements using commonsense.680

Symbolic reasoning. We use the Last Letter Concatenation and Coin Flip datasets. Last Letter681

Concatenation involves forming a word by extracting the last letter of given words in order. Coin682

Flip presents a sequence of coin-flipping instructions and asks for the final coin orientation. These683

datasets were originally proposed by Wei et al. (2023a) but were not publicly available. Kojima et al.684

(2023) later followed their approach to create and release accessible versions, which we use in our685

experiments.686

I Equivalence Testing of Dataset Lengths Using TOST687

A two one-sided t-test (TOST) confirmed the equivalence of these post-adjustment lengths across688

various token counts as equivalence margins: ±3 tokens, t(3870.30) = 85.82, p < .001; ±5 tokens,689

t(3870.30) = 149.07, p < .001; ±7 tokens, t(3870.30) = 212.31, p < .001; and 5% of the mean690

token count (±4.15 tokens), t(3870.30) = 122.29, p < .001691

J Length Adjustment Threshold and Prompt692

We adjust the length if there is a disparity of more than 15 tokens between the System 1 and System693

2 outputs using GPT-4o with the following prompt:694
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For a given {question}, we have two types of answers:
A fast, intuitive response based on cognitive heuristics which is our System
1 Answer.
System 1 Answer: {System 1 Answer}
And a slow, deliberate, and logical reasoning response which is our System 2
Answer.
System 2 Answer: {System 2 Answer}
Your task is to adjust the two answers so that they are presented in the same
order of tokens without altering their content. Ensure that the intuitive
nature of the System 1 Answer and the logical reasoning of the System 2
Answer are preserved.

695

K Benchmark Instruction696

The benchmark-specific instructions are shown in Table 5.

Table 5: Benchmark instruction sentences

Benchmark Second Stage Instruction

MultiArith, SingleEq, AddSub, GSM8K, SVAMP Therefore, the answer (arabic numerals) is

AQuA, CSQA Therefore, among A through E, the answer is

SIQA Therefore, among A through C, the answer is

PIQA Therefore, among A and B, the answer is

COM2SENSE Therefore, the answer (TRUE or FALSE) is

Strategy, Coin Therefore, the answer (Yes or No) is

Letters Therefore, the final answer is

697

L Implementation Details698

We use Python 3.10.12, PEFT 0.12.0, PyTorch 2.4.0, and Transformers 4.44.2. The dataset is split699

into 80% training and 20% validation. For alignment, we apply Low-Rank Adaptation (LoRA Hu700

et al., 2021) with a rank of 8, an alpha of 16, and dropout rate of 0.1. We train for five epochs, using701

accuracy on winner responses as an early stopping criterion to prevent overfitting, with patience of 5.702

We set the train batch size to 4 and the validation batch size to 8. To align Llama 3 using the DPO703

method, we followed Meng et al. (2024) and set the learning rate to 7e− 7 with beta of 0.01. For704

SimPO, we use a learning rate of 1e− 6, beta of 2.5, and a gamma-to-beta ratio of 0.55. For Mistral705

v0.1, we set the DPO learning rate to 5e− 7 with beta of 0.001. In SimPO, we use a learning rate of706

5e− 7, beta of 2.5, and a gamma-to-beta ratio of 0.1.707

The experiments were conducted using NVIDIA RTX A6000 GPU equipped with 48GB of RAM.708

The total computation time amounted to approximately 800 GPU hours.709

M Moving from Fast to Slow Thinking Plots710

Figure 6 demonstrates a consistent, monotonic increase in accuracy across all other benchmarks.711

N Additional Insights into Models’ Reasoning712

In this analysis, we investigate when different models reach definitive answers. We aim to detect713

this commitment as early as possible during the reasoning process. This early commitment serves714

as a proxy for the model’s confidence in the generated reasoning and its final answer. By analyzing715

this behavior, we explore whether models can arrive at a definitive answer or if they leave room for716

ambiguity or subjective interpretation.717
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Figure 6: Accuracy across different benchmarks as reasoning shifts from System 1 to System 2.

We leverage the strong extractive capabilities of LLMs (Wei et al., 2023b) and their near-human-like718

annotation abilities (Gilardi et al., 2023; Alizadeh et al., 2023). Specifically, we focus on the Phi4719

(14B) model (Abdin et al., 2024), which demonstrates exceptional performance in question-answering720

and reasoning benchmarks, even surpassing closed-source models like GPT-4o (Hurst et al., 2024).721

To determine whether a model’s reasoning contains a definitive answer, we use the following prompt722

fed to Phi4:723

Does the given answer directly answer the given question in a definitive way? ONLY RETURN YES OR
NO IN A \textbf{}. Definitive answers are clear and do not leave room for interpretation or ambiguity.
If the answer tries to explore multiple perspectives or factors involved, it is not definitive, and YOU
HAVE TO RETURN NO.

724

This prompt is applied to reasoning generated by both System 1 and System 2 models. To understand725

when these models commit to a definitive answer during their reasoning process, we focus on the first726

n sentences of their reasoning, where n ∈ {1, 3, 6, 9, 12, 15}. We set a cap of 15 sentences based on727

our observations that nearly all generated reasonings across benchmarks fall within this range (see728

Figure 8).729

Applying the prompt to each generated reasoning from the models across all benchmarks (200730

randomly sampled data points from each benchmark, totaling 2000 samples for both System 1 and731

System 2 reasonings), we append six solved demonstrations to the prompt to help further guide732

the models. These demonstrations, selected randomly from the cognitive heuristics introduced in733

Section 3.2, help clarify what qualifies as a definitive answer, aligning the models’ knowledge with734

patterns we have aligned System 1 and 2 models with (see Section 3.1).735

Figure 7 shows the proportion of definitive answers in the first n sentences, across all benchmarks.2736

For tasks where quick, intuitive judgments are advantageous, such as in commonsense reasoning.737

System 1 models consistently provide more definitive answers than System 2 models. This gap738

emerges early, with System 1 providing more definitive answers in the first three sentences. The739

difference persists even as we extend the number of sentences considered (see Table 6 for a quantitative740

analysis of the significance between System 1 and System 2 regarding the definitiveness of their741

answers).742

O System-Specific Failure Patterns743

To complement the main results, we include two analyses that illustrate how System 1 and System 2744

models diverge in failure patterns depending on task type. In numerical reasoning benchmarks, System745

2 models are more reliable when higher precision is required, while in commonsense benchmarks,746

System 1 models tend to produce more contextually appropriate answers. The following figure and747

table offer additional insight into these differences.748

To further analyze the behavioral differences between System 1 and System 2 models, we examine749

their performance on AddSub items with varying numeric complexity. Figure 9 shows the distribution750

of digit types in ground truth answers across four outcome categories. Notably, in examples where751

System 2 succeeds and System 1 fails (“Sys2 better”), the ground truth answers tend to have a752

2Note that this ratio should not necessarily converge to 1.0 as more sentences are considered. In some cases,
even when considering the full reasoning chain, the models may still leave room for vagueness.
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Figure 7: Proportion of definitive answers in the first n sentences across arithmetic, symbolic, and
commonsense reasoning tasks

Figure 8: Distribution of the number of sentences in models’ reasoning for both System 1 and System
2 reasoners across different benchmarks.

Table 6: McNemar’s test results comparing the ratio of answers providing committed and definitive
responses between System 1 and System 2 across different benchmarks. Statistically significant
results (p-value < 0.05) are boldfaced.

# Sen.
Arithmetic Symbolic Common Sense

χ2 p-value Winner χ2 p-value Winner χ2 p-value Winner

1 21.0 1.00 System 1 19.0 .755 System 2 25.0 .050 System 1

3 123.0 .028 System 2 29.0 .228 System 1 20.0 > .001 System 1

6 125.0 .272 System 2 33.0 .720 System 1 21.0 > .001 System 1

9 120.0 .040 System 2 44.0 1.00 System 1 21.0 > .001 System 1

12 118.0 .051 System 2 45.0 .320 System 2 20.0 > .001 System 1

15 121.0 .069 System 2 45.0 .836 System 1 20.0 > .001 System 1
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Figure 9: Distribution of digit characteristics in AddSub ground truth (GT) answers across different
outcome categories. Left: total number of digits. Right: number of digits after the decimal point.
Notably, examples where System 2 is correct and System 1 is not (“Sys2 better”) tend to have more
floating-point digits, indicating higher numerical precision.

significantly higher number of floating-point digits (Mann–Whitney U test, U = 346.0, p = 0.0051).753

This pattern suggests that System 2 is more effective at handling cases requiring greater numerical754

precision. In contrast, the number of total digits (irrespective of decimal placement) does not differ755

meaningfully between the “Sys2 better” and “Sys1 better” subsets (U = 224.0, p = 0.99).756

We also provide a qualitative comparison of commonsense failures made by System 2, shown in757

Table 7. The table includes representative examples from CSQA where System 2 responses, although758

logically coherent, miss intuitive or socially grounded answers. These cases highlight how interpretive759

depth can lead to answers that diverge from typical human judgment.760

P Technical Appendices and Supplementary Material761

Technical appendices with additional results, figures, graphs and proofs may be submitted with762

the paper submission before the full submission deadline (see above), or as a separate PDF in the763

ZIP file below before the supplementary material deadline. There is no page limit for the technical764

appendices.765
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Table 7: Examples where the System 2 model fails on commonsense questions. The middle column
shows the model’s rationale and final answer, while the right column contains our analysis of why
these responses deviate from typical human judgment. In all cases, the System 1 model gives the
correct answer.

Question (Answer Choices) System 2 Rationale & Final Answer Analysis and Insight

A supermarket is uncommon in what type of
collection of shops? (A) strip mall (B) city or town
(C) shoppingcentre (D) boutique (E) vermont

Supermarkets are most commonly found in
urban or suburban areas such as cities and
towns. They are less associated with specific
retail arrangements like strip malls or boutiques.
Final Answer: B

Overanalyzes spatial patterns instead of
recognizing that “strip mall” is a retail form not
typically associated with supermarkets. Correct
answer: A.

The man tried to reply to the woman, but he had
difficulty keeping track of conversations that he didn’t
do what to? (A) initiate (B) ignore (C) question (D)
answer (E) ask

If someone has trouble following conversations,
it’s often because they are not actively
participating by responding. Final Answer: D

Logical but misses the commonsense
interpretation that initiating a conversation
anchors attention. Correct answer: A.

What does a kindergarten teacher do before nap time?
(A) lower expectations (B) encourage (C) fear (D)
time test (E) tell story

Teacher might try to calm children and create a
relaxed atmosphere before nap, e.g., by
encouraging quiet behavior or mindfulness.
Final Answer: B

Misses the stereotypical, culturally familiar act
of storytelling before naps. Correct answer: E.

Where can a human find clothes that aren’t pants? (A)
pants shop (B) on planet earth (C) dress shop (D)
school (E) train wreck

On planet Earth, people have access to a wide
range of clothing items beyond pants, including
dresses, skirts, and robes. Final Answer: B

Too literal and expansive—technically true but
ignores the specific, expected answer: C.

Dan was sitting quietly with a book. Laurie thought
he was focused, but he actually did what? (A) eat (B)
think (C) reading (D) meditate (E) fall asleep

The word “ditting” seems like a typo for
“reading,” which matches the context of holding
a book. Final Answer: C

Tries to correct perceived error in the question
instead of interpreting the pragmatic cue.
Correct answer: E.

What instrument can be played with an air of
happiness? (A) jump up and down (B) jump up and
down (C) sing (D) play games (E) fiddle

Singing is often associated with expressing
happiness, and it’s a way people naturally
convey joy. Final Answer: C

Interprets “instrument” metaphorically rather
than literally, overlooking that “fiddle” is an
actual musical instrument. Correct answer: E.

If you spend all your time buying and not saving what
is likely to happen? (A) using money (B) feel better
(C) ocean (D) losing money (E) go broke

Without saving, continuous spending will likely
cause one to lose money over time. Final
Answer: D

Reasoning is valid, but the phrasing “losing
money” is less idiomatic than “go broke,” which
better matches the question. Correct answer: E.

Surprising an angry person could lead to what? (A)
humor (B) fight (C) jocose (D) laughter (E) accidents

A sudden surprise may defuse tension and even
cause laughter, helping to de-escalate anger in
some cases. Final Answer: D

Overly optimistic and detached from real-world
expectations; more likely outcome is aggression.
Correct answer: B.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions834

of the paper (regardless of whether the code and data are provided or not)?835

Answer: [Yes]836

Justification: All experimental configurations, data, and code are publicly available in our837

repository.838

Guidelines:839

• The answer NA means that the paper does not include experiments.840
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• If the paper includes experiments, a No answer to this question will not be perceived841

well by the reviewers: Making the paper reproducible is important, regardless of842

whether the code and data are provided or not.843

• If the contribution is a dataset and/or model, the authors should describe the steps taken844

to make their results reproducible or verifiable.845

• Depending on the contribution, reproducibility can be accomplished in various ways.846

For example, if the contribution is a novel architecture, describing the architecture fully847

might suffice, or if the contribution is a specific model and empirical evaluation, it may848

be necessary to either make it possible for others to replicate the model with the same849

dataset, or provide access to the model. In general. releasing code and data is often850

one good way to accomplish this, but reproducibility can also be provided via detailed851

instructions for how to replicate the results, access to a hosted model (e.g., in the case852

of a large language model), releasing of a model checkpoint, or other means that are853

appropriate to the research performed.854

• While NeurIPS does not require releasing code, the conference does require all submis-855

sions to provide some reasonable avenue for reproducibility, which may depend on the856

nature of the contribution. For example857

(a) If the contribution is primarily a new algorithm, the paper should make it clear how858

to reproduce that algorithm.859

(b) If the contribution is primarily a new model architecture, the paper should describe860

the architecture clearly and fully.861

(c) If the contribution is a new model (e.g., a large language model), then there should862

either be a way to access this model for reproducing the results or a way to reproduce863

the model (e.g., with an open-source dataset or instructions for how to construct864

the dataset).865

(d) We recognize that reproducibility may be tricky in some cases, in which case866

authors are welcome to describe the particular way they provide for reproducibility.867

In the case of closed-source models, it may be that access to the model is limited in868

some way (e.g., to registered users), but it should be possible for other researchers869

to have some path to reproducing or verifying the results.870

5. Open access to data and code871

Question: Does the paper provide open access to the data and code, with sufficient instruc-872

tions to faithfully reproduce the main experimental results, as described in supplemental873

material?874

Answer: [Yes]875

Justification: We have open-sourced our code as well as the accompanying dataset that is876

introduced in the paper.877

Guidelines:878

• The answer NA means that paper does not include experiments requiring code.879

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/880

public/guides/CodeSubmissionPolicy) for more details.881

• While we encourage the release of code and data, we understand that this might not be882

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not883

including code, unless this is central to the contribution (e.g., for a new open-source884

benchmark).885

• The instructions should contain the exact command and environment needed to run to886

reproduce the results. See the NeurIPS code and data submission guidelines (https:887

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.888

• The authors should provide instructions on data access and preparation, including how889

to access the raw data, preprocessed data, intermediate data, and generated data, etc.890

• The authors should provide scripts to reproduce all experimental results for the new891

proposed method and baselines. If only a subset of experiments are reproducible, they892

should state which ones are omitted from the script and why.893

• At submission time, to preserve anonymity, the authors should release anonymized894

versions (if applicable).895
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• Providing as much information as possible in supplemental material (appended to the896

paper) is recommended, but including URLs to data and code is permitted.897

6. Experimental setting/details898

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-899

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the900

results?901

Answer: [Yes]902

Justification: All experimental settings and details are provided in Section 4.3 and Ap-903

pendix L.904

Guidelines:905

• The answer NA means that the paper does not include experiments.906

• The experimental setting should be presented in the core of the paper to a level of detail907

that is necessary to appreciate the results and make sense of them.908

• The full details can be provided either with the code, in appendix, or as supplemental909

material.910

7. Experiment statistical significance911

Question: Does the paper report error bars suitably and correctly defined or other appropriate912

information about the statistical significance of the experiments?913

Answer: [Yes]914

Justification: We used suitable statistical analysis based on the variable in different part of915

our paper such as Section 3.2, Section 5.3, Section 5.2, and Section 5.4.916

Guidelines:917

• The answer NA means that the paper does not include experiments.918

• The authors should answer "Yes" if the results are accompanied by error bars, confi-919

dence intervals, or statistical significance tests, at least for the experiments that support920

the main claims of the paper.921

• The factors of variability that the error bars are capturing should be clearly stated (for922

example, train/test split, initialization, random drawing of some parameter, or overall923

run with given experimental conditions).924

• The method for calculating the error bars should be explained (closed form formula,925

call to a library function, bootstrap, etc.)926

• The assumptions made should be given (e.g., Normally distributed errors).927

• It should be clear whether the error bar is the standard deviation or the standard error928

of the mean.929

• It is OK to report 1-sigma error bars, but one should state it. The authors should930

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis931

of Normality of errors is not verified.932

• For asymmetric distributions, the authors should be careful not to show in tables or933

figures symmetric error bars that would yield results that are out of range (e.g. negative934

error rates).935

• If error bars are reported in tables or plots, The authors should explain in the text how936

they were calculated and reference the corresponding figures or tables in the text.937

8. Experiments compute resources938

Question: For each experiment, does the paper provide sufficient information on the com-939

puter resources (type of compute workers, memory, time of execution) needed to reproduce940

the experiments?941

Answer: [Yes]942

Justification: In Appendix L, we have provided the computation resources.943

Guidelines:944

• The answer NA means that the paper does not include experiments.945
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,946

or cloud provider, including relevant memory and storage.947

• The paper should provide the amount of compute required for each of the individual948

experimental runs as well as estimate the total compute.949

• The paper should disclose whether the full research project required more compute950

than the experiments reported in the paper (e.g., preliminary or failed experiments that951

didn’t make it into the paper).952

9. Code of ethics953

Question: Does the research conducted in the paper conform, in every respect, with the954

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?955

Answer: [Yes]956

Justification: We have read the NeurIPS Code of Ethics and made sure that the paper957

conforms to it.958

Guidelines:959

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.960

• If the authors answer No, they should explain the special circumstances that require a961

deviation from the Code of Ethics.962

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-963

eration due to laws or regulations in their jurisdiction).964

10. Broader impacts965

Question: Does the paper discuss both potential positive societal impacts and negative966

societal impacts of the work performed?967

Answer: [Yes]968

Justification: We provide high-level, abstract interpretations of our results and discuss their969

broader implications, including potential societal impacts, in both Section 5 and Section 6.970

These include the risks of over-relying on a single mode of reasoning in LLMs and the971

importance of aligning model behavior with context-sensitive cognitive strategies.972

Guidelines:973

• The answer NA means that there is no societal impact of the work performed.974

• If the authors answer NA or No, they should explain why their work has no societal975

impact or why the paper does not address societal impact.976

• Examples of negative societal impacts include potential malicious or unintended uses977

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations978

(e.g., deployment of technologies that could make decisions that unfairly impact specific979

groups), privacy considerations, and security considerations.980

• The conference expects that many papers will be foundational research and not tied981

to particular applications, let alone deployments. However, if there is a direct path to982

any negative applications, the authors should point it out. For example, it is legitimate983

to point out that an improvement in the quality of generative models could be used to984

generate deepfakes for disinformation. On the other hand, it is not needed to point out985

that a generic algorithm for optimizing neural networks could enable people to train986

models that generate Deepfakes faster.987

• The authors should consider possible harms that could arise when the technology is988

being used as intended and functioning correctly, harms that could arise when the989

technology is being used as intended but gives incorrect results, and harms following990

from (intentional or unintentional) misuse of the technology.991

• If there are negative societal impacts, the authors could also discuss possible mitigation992

strategies (e.g., gated release of models, providing defenses in addition to attacks,993

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from994

feedback over time, improving the efficiency and accessibility of ML).995

11. Safeguards996

Question: Does the paper describe safeguards that have been put in place for responsible997

release of data or models that have a high risk for misuse (e.g., pretrained language models,998

image generators, or scraped datasets)?999
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Answer: [NA]1000

Justification: This paper contributes to the field of reasoning in language models, which is1001

neutral with respect to misuse or dual-use concerns. It does not involve the release of high-1002

risk models or datasets and does not pose foreseeable risks requiring specific safeguards.1003

Guidelines:1004

• The answer NA means that the paper poses no such risks.1005

• Released models that have a high risk for misuse or dual-use should be released with1006

necessary safeguards to allow for controlled use of the model, for example by requiring1007

that users adhere to usage guidelines or restrictions to access the model or implementing1008

safety filters.1009

• Datasets that have been scraped from the Internet could pose safety risks. The authors1010

should describe how they avoided releasing unsafe images.1011

• We recognize that providing effective safeguards is challenging, and many papers do1012

not require this, but we encourage authors to take this into account and make a best1013

faith effort.1014

12. Licenses for existing assets1015

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1016

the paper, properly credited and are the license and terms of use explicitly mentioned and1017

properly respected?1018

Answer: [Yes]1019

Justification: We used Apache-2.0 as our license in github.1020

Guidelines:1021

• The answer NA means that the paper does not use existing assets.1022

• The authors should cite the original paper that produced the code package or dataset.1023

• The authors should state which version of the asset is used and, if possible, include a1024

URL.1025

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1026

• For scraped data from a particular source (e.g., website), the copyright and terms of1027

service of that source should be provided.1028

• If assets are released, the license, copyright information, and terms of use in the1029

package should be provided. For popular datasets, paperswithcode.com/datasets1030

has curated licenses for some datasets. Their licensing guide can help determine the1031

license of a dataset.1032

• For existing datasets that are re-packaged, both the original license and the license of1033

the derived asset (if it has changed) should be provided.1034

• If this information is not available online, the authors are encouraged to reach out to1035

the asset’s creators.1036

13. New assets1037

Question: Are new assets introduced in the paper well documented and is the documentation1038

provided alongside the assets?1039

Answer: [Yes]1040

Justification: Our code and data are available on GitHub and Hugging Face.1041

Guidelines:1042

• The answer NA means that the paper does not release new assets.1043

• Researchers should communicate the details of the dataset/code/model as part of their1044

submissions via structured templates. This includes details about training, license,1045

limitations, etc.1046

• The paper should discuss whether and how consent was obtained from people whose1047

asset is used.1048

• At submission time, remember to anonymize your assets (if applicable). You can either1049

create an anonymized URL or include an anonymized zip file.1050
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14. Crowdsourcing and research with human subjects1051

Question: For crowdsourcing experiments and research with human subjects, does the paper1052

include the full text of instructions given to participants and screenshots, if applicable, as1053

well as details about compensation (if any)?1054

Answer: [NA] .1055

Justification: Our paper does not involve crowdsourcing nor research with human subjects.1056

Guidelines:1057

• The answer NA means that the paper does not involve crowdsourcing nor research with1058

human subjects.1059

• Including this information in the supplemental material is fine, but if the main contribu-1060

tion of the paper involves human subjects, then as much detail as possible should be1061

included in the main paper.1062

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1063

or other labor should be paid at least the minimum wage in the country of the data1064

collector.1065

15. Institutional review board (IRB) approvals or equivalent for research with human1066

subjects1067

Question: Does the paper describe potential risks incurred by study participants, whether1068

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1069

approvals (or an equivalent approval/review based on the requirements of your country or1070

institution) were obtained?1071

Answer: [NA] .1072

Justification: Our paper did not involve crowdsourcing and human subjects.1073

Guidelines:1074

• The answer NA means that the paper does not involve crowdsourcing nor research with1075

human subjects.1076

• Depending on the country in which research is conducted, IRB approval (or equivalent)1077

may be required for any human subjects research. If you obtained IRB approval, you1078

should clearly state this in the paper.1079

• We recognize that the procedures for this may vary significantly between institutions1080

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1081

guidelines for their institution.1082

• For initial submissions, do not include any information that would break anonymity (if1083

applicable), such as the institution conducting the review.1084

16. Declaration of LLM usage1085

Question: Does the paper describe the usage of LLMs if it is an important, original, or1086

non-standard component of the core methods in this research? Note that if the LLM is used1087

only for writing, editing, or formatting purposes and does not impact the core methodology,1088

scientific rigorousness, or originality of the research, declaration is not required.1089

Answer: [NA] .1090

Justification: The core method development in this research does not involve LLMs as any1091

important, original, or non-standard components.1092

Guidelines:1093

• The answer NA means that our core method development in this research does not1094

involve LLMs as any important, original, or non-standard components.1095

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1096

for what should or should not be described.1097
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