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Abstract
Large vision language models (LVLMs) integrate large language models (LLMs)
with pre-trained vision encoders, thereby activating the model’s perception capa-
bility to understand image inputs and conduct subsequent reasoning for different
queries. Improving this capability requires high-quality vision-language data,
which is costly and labor-intensive to acquire. Self-training approaches have
been effective in single-modal settings to alleviate the need for labeled data by
leveraging model’s own generation. However, effective self-training remains a chal-
lenge regarding the unique visual perception and reasoning capability of LVLMs.
To address this, we introduce Self-Training on Image Comprehension (STIC),
which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference dataset for image descriptions us-
ing unlabeled images. Preferred responses are generated through a step-by-step
prompt, while dis-preferred responses are generated from either corrupted images
or misleading prompts. To further self-improve reasoning on the extracted visual in-
formation, we let the model reuse a small portion of existing instruction-tuning data
and append its self-generated image descriptions to the prompts. We validate the
effectiveness of STIC across seven different benchmarks, demonstrating substantial
performance gains of 4.0% on average while using 70% less supervised fine-tuning
data than the current method. Further studies investigate various components of
STIC and highlight its potential to leverage vast quantities of unlabeled images for
self-training. Code and data are made publicly available on GitHub.

1 Introduction
In recent years, we have witnessed remarkable advancements in large language models (LLMs),
such as GPT-4 (OpenAI, 2023a) and the LLaMA family (Touvron et al., 2023a,b). The increasing
importance of processing multimodal inputs, including images and text, has significantly driven
progress in vision language models (Radford et al., 2021; Jia et al., 2021b; Goel et al., 2022).
Leveraging the powerful language understanding and generation capabilities of LLMs, researchers
have advanced vision language models into large vision language models (LVLMs). This enhancement
is achieved by integrating LLMs with image encoders (Radford et al., 2021; Li et al., 2023a), which
were pre-trained on large-scale image-text pairs to ensure alignment between the two domains. For
instance, LLaVA (Liu et al., 2023b) integrates a vision encoder from CLIP (Radford et al., 2021)
with the LLM Vicuna (Chiang et al., 2023b), which is further fine-tuned on carefully constructed
vision-language instructional datasets to activate the model’s perception capability of capturing the
vision information according to different queries. This recent development has substantially expanded
the requirement for large-scale instruction fine-tuning data for LVLMs (Gao et al., 2023b; Bai et al.,
2023; Chen et al., 2023b; Gao et al., 2024; Anthropic, 2024; McKinzie et al., 2024).
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STIC (LLaVA-v1.6) Query: How many gallons of supreme 
gasoline can I get with $50? 

Base (LLaVA-v1.6 7B): 
Based on the current gas prices displayed on 
the sign, you can get approximately 3.65 
gallons of supreme gasoline with $50. 

STIC (LLaVA-v1.6 7B): 
With $50, you can get approximately 13.69 
gallons of supreme gasoline, as indicated by 
the price of $3.65 per gallon on the sign. 

Figure 1: Left: Accuracy improvement of our method, STIC, compared to the original LLaVA-v1.6
(Liu et al., 2024) on seven benchmarks. Right: Response examples from the original LLaVA-v1.6 and
STIC (LLaVA-v1.6), which enhances image comprehension and subsequent reasoning capabilities.

While LVLMs have shown promising results, a key challenge lies in the acquisition of high-quality
fine-tuning data. Obtaining human-curated content at scale is often prohibitively expensive, especially
for multi-modal data. Many recent studies resort to GPT-4V (OpenAI, 2023b) for generating or
labeling high-quality vision-language fine-tuning data. However, this approach does not significantly
reduce the cost (Liu et al., 2023b; Wu et al., 2024). For instance, using GPT-4V to generate 6k image
descriptions with 1k tokens per output would cost approximately $200. There remains a pressing
need for cost-effective methods to gather fine-tuning data to further enhance LVLMs.
To tackle the data acquisition bottleneck in multi-modality, we propose Self-Training on Image
Comprehension (STIC). Our method is inspired by the recent success of self-training (Chen et al.,
2024; Yuan et al., 2024; Fränken et al., 2024; Rosset et al., 2024) in LLMs, which leverages self-
generated data to improve their downstream performance. However, different from the text-only
domain, the unique vision modality of LVLMs introduces new challenges, as LVLMs must understand
the input image content before reasoning and responding to any related textual queries about the
image. Therefore, the proposed STIC approach is a novel two-stage self-training method that targets
both image perception and reasoning over images and texts.
The overall framework is summarized in Figure 2. STIC specifically emphasizes the image compre-
hension self-training of LVLMs where the model generates its own preference dataset focused on
image description. The self-generated dispreferred response is obtained by gathering model responses
from either (1) prompts likely to elicit inaccurate responses or (2) corrupted images. The preferred
responses are collected via a detailed prompt that guides the model through a step-by-step image
description process. Figure 3 shows examples of such generated responses. During fine-tuning, we
consider a DPO loss (Rafailov et al., 2023) with an additional regularized term explicitly emphasizing
the preferred response. Lastly, we allow the model to self-improve its reasoning ability based on
its own extracted image information by reusing a small amount of existing instruction fine-tuning
data and appending its self-generated image descriptions to the prompts. We refer to this second
stage as description-infused fine-tuning. Notably, our STIC approach does not require pre-labeled
information of the images, which contrasts to the recent works that rely on such information for
constructing vision-language preference data (Zhou et al., 2024).
To demonstrate the effectiveness of STIC, we conduct extensive experiments on seven vision-language
benchmarks, including ScienceQA (Lu et al., 2022), TextVQA (Singh et al., 2019), ChartQA (Masry
et al., 2022), LLaVA-Bench (Liu et al., 2023a), MMBench (Liu et al., 2023c), MM-Vet (Yu et al.,
2023), and MathVista (Lu et al., 2024). These benchmarks encompass scientific reasoning, math
reasoning, optical character recognition (OCR), and conversation capabilities based on vision inputs,
spanning various image sources such as natural, chart, and text-rich images. We employ LLaVA-
v1.6 (Liu et al., 2024) as the primary base LVLM for our experiments and unitize 6k images from
MSCOCO (Lin et al., 2014) to construct the image description preference data. As depicted in Figure
1, STIC achieves consistent and significant performance improvements across these benchmarks, with
an average accuracy gain of 4.0% over the base LVLM and a notable gain of 6.4% on ScienceQA.
We also provide an example of the different responses from the original LVLM and STIC in Figure 1,
where STIC successfully identifies the key visual information and accurately reason with it. These
results demonstrate the remarkable effectiveness of our image comprehension self-training approach
in enhancing the visual perception capabilities of LVLMs.
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Unlabeled Images

Bad Prompting

Stage 1: Image Comprehension Self-Training

Preferred Dis-preferred

Used instruction 
fine-tuning data

<Instruction>
<Response>

<Image description>

Stage 2: Description-Infused Fine-Tuning

Good Prompting (step-by-step)
Please provide a detailed description 
of the image, focusing on the follow-
ing aspects:
(1) Identify the main subjects 
(people, animals, objects) in the 
image and describe what they are 
doing ......

������

(1) Suggest and detail practical items 
or people that could logically inhabit 
the image's setting.
(2) Augment the scene with details of 
potential events or items.
(3) Incorporate elements that, though 
absent, would seamlessly fit into the 
context of the picture.

Stage-1
LVLM

Supervised fine-tuning

DPO alignment fine-tuning w/ regularization

Stage-2
LVLM

Image
Corruption

Figure 2: Framework overview of STIC, a two-stage self-training algorithm focusing on the image
comprehension capability of the LVLMs. In Stage 1, the base LVLM self-constructs its preference
dataset for image description using well-designed prompts, poorly-designed prompts, and distorted
images. In Stage 2, a small portion of the previously used SFT data is recycled and infused with
model-generated image descriptions to further fine-tune the base LVLM.

In addition, we explore the benefits of the various components of STIC. First, based on the description-
infused fine-tuning stage that enhances the model’s reasoning ability with self-generated description,
we show that further letting the model describe the image before responding to a query provides
further improved reasoning capability. This results in a notable improvement of 2.8% on ScienceQA
and 1.1% on average as compared to direct responses to queries (Table 2). Moreover, we examine
the impact of self-generated dispreferred responses, from either bad prompting or image corruption.
By excluding these dispreferred responses and conducting SFT solely with preferred responses, we
observed a performance decrease of 2.5% on average across three benchmarks as compared to STIC
with the preference data (Table 3). This highlights the importance of the negative samples in the
self-constructed preference data by STIC. We also assess the scalability of our self-training scheme.
By increasing the amount of generated preference data from 6k to 12k, we show an even further
improvement of STIC from 1.9% to 3.1% on LLaVA-Bench (Figure 6). This result suggests that
STIC holds considerable potential for leveraging vast quantities of unlabeled images for self-training,
given the immense availability of unlabeled image data. Lastly, our t-SNE visualization analysis
shows that the closer the distribution between MSCOCO images, which we use for preference data
construction, to images in downstream tasks, the more likely STIC results in higher performance
gains (Figure 7).
The main contributions of this work are summarized as follows:

• We propose STIC, a novel two-stage self-training approach for LVLMs that focuses on
enhancing their image comprehension capabilities by generating a preference dataset for
image description without relying on pre-labeled image information.

• Through extensive experiments on seven diverse benchmarks, STIC demonstrates significant
performance gains over the base LVLM, achieving an average accuracy gain of 4.0%.

• We explore the benefits of various components of STIC, highlighting its potential to leverage
vast quantities of unlabeled images for self-training.

2 Related Work
Vision language models (VLMs). VLMs (Tan and Bansal, 2019; Li et al., 2019, 2020; Kim et al.,
2021; Wang et al., 2022b; Bao et al., 2022; Wang et al., 2022a; Alayrac et al., 2022; Li et al., 2023b;
Chen et al., 2022; Jia et al., 2021a; Shen et al., 2022; Singh et al., 2021), processing both images
and text, are pivotal in a wide range of multimodal understanding and reasoning tasks, capable
of generating text or encoding multimodal representations. These models have shown increasing
proficiency in visual perception and textual reasoning, and are also capable of following complex
instructions (OpenAI, 2023b; Team et al., 2023). Recent advancements in the field have been
propelled by the availability of open-source large language models (LLMs) (Touvron et al., 2023a,b;
Jiang et al., 2023) and innovative image encoders (Radford et al., 2021; Li et al., 2022). For instance,
LLaVA (Liu et al., 2023b) combines a vision encoder from CLIP (Radford et al., 2021) with the
Vicuna LLM (Chiang et al., 2023b), and has been further fine-tuned on vision-language instruction-
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Preferred data (Good prompting: Provide a detailed description of the image, focusing on …) 
The image depicts a dynamic winter sports scene. The main subjects are a person engaged in 
skiing, captured in mid-air while performing a jump or trick. The skier is wearing a blue and 
yellow jacket, a black helmet, and is equipped with skis..... 

(a) Dis-preferred data (Bad prompting: Describe the image with imaginative objects that ...)
...... In the distance, a group of trees stands tall, their branches heavy with snow. ...... Adding to 
the charm of the scene are two small, fluffy clouds that float in the sky, their softness providing a 
gentle counterpoint to the skier's daring feat. 

(b) Dis-preferred data (Normal prompting + Image corruption: Color jitter.) 
...... The skier, clad in a vibrant purple jacket and blue pants, ...... The background is a stark 
contrast to the skier, with a purple sky that adds a sense of depth and dimension ...... 

(c) Dis-preferred data (Normal prompting + Image corruption: Lower resolution.) 
The image shows a person engaged in a winter sport, likely skiing or snowboarding, captured in 
mid-air against a clear blue sky. The individual is wearing a blue and yellow suit, ...... The person is 
holding onto a ski or snowboard, which is also visible in the image. The motion blur effect ...... 

Task: Explain what is depicted in the photograph. 

Figure 3: Examples of the self-constructed preference data in STIC.

following datasets. The recent development of LVLMs has significantly expanded the scale and
diversity of VL instruction-following data, including models such as LLaMA-Adapter-V2 (Gao
et al., 2023b), Qwen-VL (Bai et al., 2023), InternVL (Chen et al., 2023b), InstructBLIP (Dai et al.,
2024), SPHINX-X (Gao et al., 2024), Claude-3 (Anthropic, 2024), MM1 (McKinzie et al., 2024), and
Grok-1.5V (xAI, 2024). In this work, we focus on enhancing the visual perception and mathmatical
reasoning capabilities of LVLMs by efficiently aligning them with purely unsupervised data.
Alignment fine-tuning. Subsequent to supervised fine-tuning (SFT), alignment fine-tuning has
emerged as a prominent approach to further enhance the performance of LLMs by aligning them
with human preferences (Ouyang et al., 2022; Casper et al., 2023). Early efforts utilized on-policy
reinforcement learning (RL) methods, such as proximal policy optimization (PPO) (Schulman et al.,
2017), to train a reward model based on preference data (Bai et al., 2022; Touvron et al., 2023a).
With the notable introduction of direct policy optimization (DPO) (Rafailov et al., 2023), a new line
of research emphasizes direct learning from human preferences without relying on an explicit reward
model (Zhao et al., 2023; Azar et al., 2024; Ethayarajh et al., 2024; Zheng et al., 2024). Another
prominent direction is iterative preference fine-tuning, which has proven effective in enhancing model
performance by repeatedly optimizing on newly generated preference pairs in each iteration (Adolphs
et al., 2023; Xu et al., 2023; Xiong et al., 2023; Pang et al., 2024). While substantial research has
focused on alignment fine-tuning for LLMs, efforts to adapt these techniques for LVLMs have been
significantly limited. Initial attempts involve constructing preference datasets using human-labeled
data (Sun et al., 2023) or GPT-4 generations for fine-tuning with a DPO loss (Zhou et al., 2024).
Concurrent works (Pi et al., 2024; Zhou et al., 2024) begin to focus on generating preference dataset
of LVLMs, while our method distinguishes itself with the unique preference prompt set.
Self-training. Traditional self-supervised training schemes (He et al., 2019; Xie et al., 2020; Wei
et al., 2020; Zoph et al., 2020; Sohn et al., 2020; Ghiasi et al., 2021; Kang et al., 2023) leverage
trained models to generate labels for unlabeled data and incorporate these self-labeled examples
into training as a form of data augmentation. These frameworks primarily focus on self-supervised
representation learning of vision models. While both classical self-training schemes and our approach
share the fundamental goal of effectively utilizing unlabeled data to enhance model performance, our
method differs in its focus on vision LLMs, maintaining an LLM as the backbone architecture. Rather
than optimizing image representations, our approach aims to generate synthetic data that enables the
LLM to produce higher-quality responses to image queries.

3 Problem Setting and Preliminaries
Notation. We use lower case letters and lower case bold face letters to denote scalars and vectors.
We use the symbol p to represent the probability of an LLM’s response. And we denote the sequence
of tokens generated from the LLM before the t-th token as y<t = [y1, . . . , yt−1] for t > 1.
Generative vision language models. LVLM typically consists of three components: a vision encoder
f(·), a projection network g(·), and an LLM pθ parameterized by θ. The model processes an image
input e along with a text sequence x = [x1, . . . , xn] as the prompt to generate a corresponding
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response y = [y1, . . . , ym], where xi and yj represent individual tokens from the vocabulary of the
LLM. The image is therefore converted into visual tokens within the language token space by the
vision encoder and the projection network, producing v = [v1, . . . , vk] = f ◦ g(e). The response y
is then considered as a sample from the conditional probability distribution pθ(·|v,x). As a Markov
process, the conditional probability distribution pθ(y|v,x) can be decomposed as

pθ(y|v,x) =
m∏
j=1

pθ(yj |v,x,y<j). (3.1)

Alignment fine-tuning. To improve LLM alignment with human preferences, RL fine-tuning (Bai
et al., 2022; Gao et al., 2023a) is typically employed after supervised fine-tuning (SFT). This process
involves a reward function r(x,y) for a given sequence pair (x,y). The more preferred response y
is expected to result in a higher reward r(x,y), where the corresponding objective is to maximize the
following:

L(θ) = Ex∼D,y∼pθ(·|x)[r(x,y)]− λEx∼DKL
(
pθ(·|x)||pref(·|x)

)
, (3.2)

where x ∼ D is sampled from a given distribution D and the KL regularization term prevents
the new model pθ from deviating too much from the reference model pref , with λ > 0 as the
regularization parameter. Training the reward function is challenging in practice, but direct preference
optimization (DPO) (Rafailov et al., 2023) simplifies this process using a predefined preference
dataset Spref =

{
(x(i),y

(i)
w ,y

(i)
l )

}
i∈[N ]

, where y
(i)
w denotes the preferred response and y

(i)
l denotes

the dispreferred response given the same prompt x(i). The objective function is then formulated as

LDPO(θ,θref) = E(x,yw,yl)∼Spref

[
ℓ

(
λ log

pθ(yw|x)
pθref

(yw|x)
− λ log

pθ(yl|x)
pθref

(yl|x)

)]
, (3.3)

where ℓ(t) = log(1 + exp(−t)) is the logistic loss function and θref is the reference model.

4 Our Method: STIC
In this section, we introduce STIC, a two-stage self-training algorithm designed to enhance image
comprehension capabilities. The first stage constructs its own preference dataset and the second stage
infuses the used SFT data with self-generated image descriptions for fine-tuning. Figure 2 presents the
general framework of STIC. Notably, unlike recent work on fine-tuning algorithms (Sun et al., 2023;
Zhou et al., 2024), STIC enables a base LVLM, such as LLaVA-v1.6 (Liu et al., 2024), to evolve from
self-generated image captions, thus eliminating the need for additional supervised and preference
data from human annotators or advanced teacher models. This approach fundamentally enhances
image comprehension abilities and can be seamlessly applied to a wide range of vision-language
reasoning tasks. We summarize STIC in Algorithms 1 and 2, and detail the process below.
Stage 1: Image comprehension self-training. The process begins with a self-constructed preference
dataset from the base LVLM, which we aim to improve through fine-tuning. The dataset contains
paired preference data for image descriptions:

• Preferred response: Model-generated image descriptions derived from well-crafted prompts
with explicit reasoning steps.

• Dispreferred response: Model-generated descriptions resulting from either (1) corrupted
image with low resolution or distorted color, or (2) “bad” prompts that cause the base model
to hallucinate and describe elements that may not logically exist in the image.

The self-constructed preference dataset is used for the first-stage self-training using DPO (Rafailov
et al., 2023) with an additional regularization term to further emphasize the preferred response,
controlled by the hyperparameter α. The regularized loss function is as follows:

L(θ,θref) = E(x,yw,yl)∼S

[
ℓ

(
λ log

pθ(yw|x)
pθref

(yw|x)
− λ log

pθ(yl|x)
pθref

(yl|x)

)
− α log pθ

(
yw|x

)]
. (4.1)

The use of an explicit loss term for positive examples can be similarly found in previous studies on
contrastive learning (Chen et al., 2021; Chen and He, 2021; Chen et al., 2023a) and more recently in
preference fine-tuning (Pang et al., 2024). Specifically, Chen et al. (2023a) demonstrated in the context
of contrastive learning that a regularization term applied to positive samples provably enhances the
model’s ability to differentiate between positive and negative samples. As demonstrated in our
experiments in Section 6, the LVLM after Stage 1 has shown notable improvement in downstream
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Algorithm 1 STIC (Stage 1: image comprehension self-training)

Input: Unlabeled image dataset: {v(i)}i∈[N ]. Image captioning prompt set: P = {x(i)}i∈[M1].
Hallucination prompt set: Phallu = {x(i)

hallu}i∈[M2]. Image corruption h(·). Well-curated caption-
ing prompt: xg . LVLM parameterized by θ0: pθ0

.
Let self-training dataset D = {}.
for i = 1, . . . N do

Randomly sample a number n ∈ (0, 1).
Randomly sample x ∼ {x(i)}i∈[M ].
Generate preferred response yg ∼ pθ0(·|v(i),xg).
if n < 0.5 then

Randomly sample bad prompt xb ∼ Phallu.
Generate dispreferred response yb ∼ pθ0(·|v(i),xb).

else
Corrupt the image input v(i)

b = h(v(i)).
Generate dispreferred response yb ∼ pθ0

(·|v(i)
b ,x).

end if
Add (x,yg,yb) to D.

end for
Update θ1 = argminθ∈Θ

∑
(x,yg,yb)∈D

[
ℓ
(
λ log

pθ(yg|x)
pθ0

(yg|x) −λ log pθ(yb|x)
pθ0

(yb|x)

)
−α log pθ

(
yg|x

)]
.

Output: θ1.

vision-language reasoning tasks, confirming that the enhanced visual comprehension ability directly
benefits the model performance and its multimodal reasoning ability.
Prompt design. Our prompt design for the well-crafted prompt focuses on quality and diversity. We
use GPT-4 to generate and sample multiple initial prompts, which are then refined through human
filtering. To ensure effectiveness, we test these prompts on MSCOCO samples, verifying their ability
to produce well-structured and relevant responses from the model. The bad prompts are sampled from
GPT-4 and, in contrast, designed to elicit inaccurate descriptions by setting up a slightly different
task (describe objects that would logically exist in the image) for the model. We thus work under the
assumption that responses generated from prompts that have differences in human preference lead to
responses of the same preference with high probability. The key is that the discrepancy between good
and bad prompts should result in pairs of responses that share the same implicit preference with high
probability, which is sufficient for effective DPO training.
Stage 2: Description-infused fine-tuning. In the second stage, we further fine-tune the self-trained
LVLM to leverage self-generated high-quality image descriptions for instruction-following tasks, and
thus help ground its reasoning ability on self-generated descriptions. To achieve this, we randomly
select a small subset of data from the model’s instruction fine-tuning dataset already used during SFT.
We then infuse the instructions in this subset with model-generated image descriptions as follows:

Image description: {model description}
<original instruction>

The original ground-truth completions remain unchanged. We then fine-tune the LVLM for one epoch
on this small description-infused subset. This fine-tuning step ensures that the model effectively
integrates visual information into its responses, thereby enhancing its ability to handle a variety of
vision-language reasoning tasks.
Describe and Respond. During inference, optionally, we can let the model self-augment its prompt
for downstream vision-language reasoning tasks by describing the image before answering. Rather
than generating an immediate response, we first elicit an image description, which is then concatenated
with the original question to produce a more informed answer.

5 Experiments
In this section, we present the experiment results of STIC across seven visual question answering
(VQA) benchmarks. We demonstrate that STIC effectively and substantially improves LVLM’s
performance across different VQA tasks using a self-constructed preference dataset without labels.
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Algorithm 2 STIC (Stage 2: description-infused fine-tuning)

Input: Instruction-following dataset already used for fine-tuning the target LVLM model:
{v(i),x(i),y(i)}i∈[m]. Image description prompt set: P = {x(i)

des}i∈[M1]. LVLM parameterized by
θ1 after self-training: pθ1

.
Let description-infused dataset Ddes = {}.
for i = 1, . . .m do

Randomly sample xdes ∼ {x(i)
des}i∈[M ].

Generate model image description ydes ∼ pθt(·|v(i),xdes).
Add

(
[ydes,x

(i)],y(i)
)

to Ddes.
end for
Update θ̂ = argminθ∈Θ

∑
(x,y)∈Ddes

ℓ
(
log pθ

(
y|x

))
.

Output: θ̂.

5.1 Experiment Setup

Model and datasets. In experiments, we consider llava-v1.6-mistral-7b (Liu et al., 2023a) as
our base model for self-training with model generated preference data. We additionally consider
llava-v1.5-7b (Liu et al., 2023a) based on Vicuna-7B (Chiang et al., 2023b) to directly compare
with one concurrent baseline POVID (Zhou et al., 2024). A detailed discussion with POVID can
be found in Appendix C.3. We follow the optimization process described in Section 4 for self-
training on image description in Algorithm 1 and description-infused fine-tuning in Algorithm 2
to achieve improved downstream performances. For the self-constructed preference dataset, we
gather 6k unlabeled image data randomly sampled from the MSCOCO dataset (Lin et al., 2014)
and specifically the train2014 split for its high-quality images popularly used for pre-training and
fine-tuning. In the second stage, we randomly subsample 5k used instruction fine-tuning data from
LLaVA’s SFT data to construct the description-infused fine-tuning data with model-generated image
descriptions. Lastly, we use low-rank adaptation (LoRA) fine-tuning (Hu et al., 2021) instead of full
fine-tuning for efficient computation. We defer the detailed prompts and corruptions to Appendix B.
Evaluation. We consider the widely used benchmarks for LVLM evaluation across different domains
including: ScienceQA (Lu et al., 2022), TextVQA (Singh et al., 2019), ChartQA (Masry et al., 2022),
LLaVA-Bench (Liu et al., 2023a), MMBench (Liu et al., 2023c), MM-Vet (Yu et al., 2023), and
MathVista (Lu et al., 2024). Specifically, ScienceQA focuses on scientific question answering and
MathVista focuses on math reasoning with visual information. TextVQA consists of images with
text-rich contents and ChartQA with visual charts. Lastly, LLaVA-Bench, MMBench, and MM-Vet
are three recent benchmarks to comprehensively evaluate a model’s capabilities in a wide range of
tasks and evaluation criteria. We use the evaluation scripts provided by LLaVA (Liu et al., 2023a) to
obtain the results for both our base model and after using STIC to ensure a fair comparison.

5.2 Main Results

Table 1: Performance of STIC compared with the original LVLM model across vision-language
reasoning tasks. For LLaVA-v1.5 (Vicuna 7B), we directly report the values in the paper of POVID,
and “–” indicates an unreported value.

Model ScienceQA TextVQA ChartQA LLaVA-Bench MMBench MM-Vet MathVista

InstructBLIP (7B) 60.5 50.1 – 60.9 36.0 26.2 25.3
mPLUG-OWL2 (7B) 64.5 54.3 – 59.9 64.5 36.2 22.2

LLaVA-v1.5 (7B) 66.8 58.2 6.3 65.4 64.3 31.1 25.1
w/ POVID 68.8 – – 68.7 64.9 31.8 –
w/ STIC 69.5 61.4 6.6 68.9 65.3 32.6 27.2
LLaVA-v1.6 (7B) 68.9 60.3 36.4 77.3 63.7 42.2 34.6
w/ STIC 75.3 65.2 41.5 79.2 67.8 45.0 37.0

We present our main results in Table 1 and detail the benchmark performances of STIC (LLaVA-v1.6
7B) on MMBench and MM-Vet in Figure 4. In Appendix B, we present detailed results for MMBench
in Table 7 and MM-Vet in Table 8. Our results show a consistent and significant improvement of STIC
over the original models (LLaVA-v1.5 and LLaVA-v1.6) across all seven datasets. This improvement
is achieved using only self-constructed preference data and a small portion of the model’s SFT dataset,
which had already been used for fine-tuning the original model.
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On average, STIC improves LLaVA-v1.5 by 1.7%, increasing from 45.3% to 47.0%, and LLaVA-v1.6
by a notable score of 4.0%, increasing from 54.7% to 58.7%. The improvement is comprehensive, as
detailed in Tables 7 and 8, where STIC consistently enhances performance across all evaluation tasks
and targets. Moreover, while STIC improves both LLaVA-v1.5 and LLaVA-v1.6, a more significant
improvement is observed in the more advanced model, LLaVA-v1.6. This trend suggests that the
extent of self-improvement could be correlated with the model’s inherent capabilities.
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Figure 4: Accuracy improvement of STIC compared to the base LLaVA-v1.6 model across different
tasks in Left: MMBench, where the original performances are re-scaled to 60 in plotting and STIC
accordingly with the same coefficient for each task. Middle: MM-Vet, where the performances of
the original model are re-scaled to 40 and STIC accordingly. Right: LLaVA-Bench, where we report
the error bars over three independent runs due to the randomness of GPT-4 evaluation.

6 Ablation Studies and Discussions
In this section, we conduct ablation studies on the key components of STIC to demonstrate their
importance and effectiveness. Additionally, we examine the image distribution of our self-training
data (MSCOCO) alongside the image distributions of benchmark datasets, revealing a positive
correlation between performance gains and similarity in image distributions.
Effectiveness of describe-and-respond (DaR) prompting. We assess the significance of the fine-
tuning process in STIC by comparing it to the approach of directly allowing the base LVLM to
describe an image and then respond to a query with a self-augmented prompt, which we refer to as
the describe-and-respond (DaR) prompting method. As indicated in Table 2, applying DaR to the
base LVLM yields mixed results, with performance improvements on some datasets and degradation
on others, resulting in an overall average drop of 2.3%. In contrast, when DaR is combined with the
fine-tuning process of STIC, it leads to a further average enhancement of 1.1% and a notable 2.8%
on ScienceQA. This demonstrates the synergistic effect of DaR and the fine-tuning process in STIC.
Additionally, it is worth noting that STIC achieves a substantial average improvement of 2.8% even
without the DaR prompting method, compared to the base LVLM.
Table 2: Test performance of STIC based on llava-v1.6-mistral-7b. We investigate the benefit
of DaR as a prompting method toward the base LVLM model as compared to the benefit on STIC.

Method DaR ScienceQA TextVQA ChartQA LLaVA-Bench MMBench MM-Vet MathVista Average

Original
68.9 60.3 36.4 77.3 63.7 42.2 34.6 54.8

✓ 69.9 56.6 34.6 78.5 50.7 42.3 34.7 52.5

w/ STIC
72.5 63.4 39.3 78.4 68.7 45.7 35.2 57.6

✓ 75.3 65.2 41.5 79.2 67.8 45.2 37.0 58.7

Base Stage-1 Stage-2 DaR
68

69

70

71

72

73

74

75

68.9
70.0

72.5

75.3

Figure 5: Progression of
stages in STIC.

Progression of stages. In Figure 5, we illustrate the sequential
improvement in performance of STIC on ScienceQA. While stage
1 focuses exclusively on enhancing the perception capabilities of the
LVLM, it still notably improves performance on downstream VQA
tasks. Building on the improved image comprehension achieved
in stage 1, stage 2 introduces an enhanced reasoning process that
utilizes the model’s self-generated image descriptions and results
in an even more significant gain. This enhancement further enables
the model to self-augment its prompts with Describe and Respond
(DaR), resulting in total the substantial performance gains of 6.4%
observed.
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Figure 7: t-SNE visualization of images from MSCOCO and four benchmarks, each sampling 1k.

The role of dispreferred samples in STIC. To understand the importance of dispreferred samples in
STIC, we conduct an ablation study using llava-v1.6-mistral-7b as the base LVLM. We remove
the negative examples from the preference data and only use the positive samples for supervised
fine-tuning (SFT), effectively creating an SFT version of STIC. Table 3 shows that omitting the
dispreferred samples even leads to a performance drop of 0.6% on LLaVA-Bench, while failing to
provide equally significant improvement as STIC with preference data. This highlights the crucial
role of negative examples in aligning preferences and enabling the model to distinguish between
high-quality and low-quality responses. By leveraging both positive and negative examples, STIC
effectively improves the model’s performance and generates more preferred outputs.
Table 3: Test performance of STIC if we remove negative examples and use positive ones to perform
SFT in Stage 1.

Model ScienceQA TextVQA LLaVA-Bench

Original 68.9 60.3 77.3
w/ STIC (positive) 71.8 63.7 76.7
w/ STIC 75.3 65.2 79.2

6k 12k 30k1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.9

3.1

3.9

Figure 6: Scaling law in STIC.

Scaling law of STIC. We explore the scaling law of STIC by
expanding the preference data in Stage 1. Using the LLaVA-Bench
benchmark as a case study, we scale up the preference data from
6k to 12k MSCOCO images. As depicted in Figure 6, there is an
obvious gain on the LLaVA-Bench from 1.9% to 3.1%. This finding
demonstrates that STIC can effectively leverage larger amounts of
unlabeled image data and presents a cost-effective solution to the
challenge of acquiring high-quality vision-language data.
Correlation between image distribution and performance gains.
To gain further insight into the effectiveness of STIC across different
benchmarks, we conducted a t-SNE visualization analysis comparing the image distributions of
MSCOCO, which we used for preference data construction, with those of four benchmarks: Sci-
enceQA, TextVQA, MathVista, and ChartQA (Figure 7). Our analysis revealed a general trend: the
greater the overlap between the MSCOCO image distribution and that of a benchmark, the higher the
performance gain achieved by STIC on that benchmark. This observation held true for ScienceQA
and TextVQA, which exhibited substantial distributional overlap with MSCOCO and yielded the
highest performance gains of 6.4% and 4.9%, respectively. Conversely, MathVista, with its diverse
image types and limited overlap with MSCOCO, saw a more modest gain of 2.4%. Interestingly,
ChartQA was an outlier, achieving a high gain of 5.1% despite minimal overlap with MSCOCO,
suggesting that the improved image comprehension from STIC played a fundamental role in under-
standing and reasoning about the charts. Detailed per-benchmark visualizations and discussions are
provided in Appendix C.2.
Diversity in image distribution. Based on the observation on the effect of image distribution
in the final performance, we further utilize the Vision Flan dataset (VFLAN†) for stage 1 image
comprehension self-training. This dataset includes images from 191 diverse vision tasks, providing a
broader spectrum of image types. We ensured a fair comparison by maintaining the same sample

†https://huggingface.co/datasets/Vision-Flan/vision-flan_191-task_1k

9

 https://huggingface.co/datasets/Vision-Flan/vision-flan_191-task_1k


Table 4: Performance of STIC on different stage-1 training images compared with the original LVLM
model LLaVA-v.16 (Mistral 7B) across vision-language reasoning benchmarks.

Model Data
LLaVA-Bench MM-Vet MMBench

Complex Conv Detail All Rec Ocr Know Gen Spat Math Total All
LLaVA-v1.6 (7B) - 87.4 61.3 77.8 77.3 43.1 40.6 29.6 32.5 44.7 15.4 42.2 63.7

w/ STIC COCO 89.1 63.7 79.5 79.2 45.7 42.5 30.4 34.9 45.1 22.7 45.0 67.8
w/ STIC VFLAN 92.8 68.4 77.9 81.9 45.7 43.0 31.0 36.2 45.1 26.5 45.1 68.3

Table 5: Performance of STIC compared with the original LVLM model LLaVA-v1.6 (Vicuna 13B)
across vision-language reasoning tasks. Image data used for 13B model remain the same as what we
used for the 7B model.

Model
LLaVA-Bench MM-Vet MMBench

Complex Conv Detail All Rec Ocr Know Gen Spat Math Total All
LLaVA-v1.6 (7B) 87.4 61.3 77.8 77.3 43.1 40.6 29.6 32.5 44.7 15.4 42.2 63.7

LLaVA-v1.6 (13B) 94.0 73.8 78.7 84.5 52.2 47.1 38.8 45.2 42.7 26.9 48.9 70.6
w/ STIC 93.5 78.1(+4.3) 79.4 85.6(+1.1) 54.5 48.0 42.3(+3.5) 49.4(+4.2) 42.0 23.1 50.5(+1.6) 72.3(+1.7)

size (randomly sampled 6k images) and present the experimental results in Table 4. As shown, our
approach improves consistently across different datasets, demonstrating its robustness and adaptability.
Notably, the increased diversity of VFLAN led to further improvements in STIC, suggesting the
potential for even greater enhancement with better sets of unlabeled images.
Scalability. To explore STIC’s applicability to models with higher representation capacity, we
conducted supplementary experiments using LLaVA-v1.6 (Vicuna-13B). Table 5 shows the detailed
experiment results. We used the same images for STIC fine-tuning as in our experiments for LLaVA-
v1.6 (Mistral-7B) to ensure fairness and the same set of hyperparameters. The improvements observed
with LLaVA-v1.6 (Vicuna-13B) demonstrate that STIC is not only effective with smaller models but
also scales well with larger or more capable LVLMs.
Qualitative example. In Figure 8, we show an example output of STIC. Despite the task being
focused on mathematical reasoning, STIC enhanced the model’s response by improving its image
comprehension capabilities. While the original model merely identified one of the recognized numbers
in the image as the final answer, the STIC fine-tuned model was able to interpret the meaning of each
number, describe them accurately, and perform reasoning based on this understanding.

Query: What is the difference in metric tonnes between the 
amount of plastic produced and the amount discarded?

STIC (LLaVA-v1.6 7B):
The image shows that in 2015, humans produced 407 million 
metric tons of new plastic, while 302 million metric tons were 
discarded as waste. The difference between the amount of plastic 
produced and the amount discarded is 105 million metric tons. 
This indicates that a significant portion of the plastic produced is 
not being properly managed and is ending up in the environment or 
landfills.

Base (LLaVA-v1.6 7B):
The difference between the amount of plastic produced and the 
amount discarded is 302 million metric tonnes.  

Figure 8: Response examples from original LLaVA-v1.6 and STIC (LLaVA-v1.6) in MM-Vet.

7 Conclusion
We introduce Self-Training on Image Comprehension (STIC), a novel self-training approach designed
to enhance the image comprehension capabilities of large vision language models (LVLMs). Our
method leverages a two-stage self-training process, creating a preference dataset for image descrip-
tions from unlabeled images and refining reasoning abilities through description-infused fine-tuning.
Extensive experiments across seven vision-language benchmarks demonstrated significant perfor-
mance improvements, with an average accuracy gain of 4.0%, while reducing the need for supervised
fine-tuning data by 70%. Our findings underscore the potential of STIC to harness vast quantities of
unlabeled images, offering a cost-effective solution for advancing LVLMs.
The promising results demonstrated by STIC in enhancing the capabilities of 7B LVLMs suggest its
potential applicability to larger models, such as those with 40B, and 100B parameters, if computational
resources permit.
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A Additional Related Work
Self-improving language models. High-quality data, including human-crafted and advanced AI
generated content, has been demonstrated to significantly enhance the performance of LLMs on
various tasks (Josifoski et al., 2023; Taori et al., 2023; Chiang et al., 2023a; Li et al., 2023c). Although,
acquiring such high-quality data is often prohibitively expensive. To circumvent the costs associated
with obtaining human-annotated or expertly curated data, researchers have shifted their focus to
leveraging data generated by the target model itself, exploring ways of self-improvement (Chen et al.,
2024; Yuan et al., 2024; Fränken et al., 2024; Rosset et al., 2024). Recent studies have also emphasized
the rephrasing capabilities of LLMs, which either enhance their own response quality (Deng et al.,
2023; Prasad et al., 2023) or augment synthetic data for self-supervised fine-tuning (Kim et al., 2023).
To the best of our knowledge, our work is the first to explore the potential for self-improvement in
LVLMs, specifically focusing on the vision modality and emphasizing the self-improvement of image
comprehension capabilities.

B Experimental Details
Perference data construction. We consider randomly sampling from the following “bad” prompts
as a means of generating dis-preferred examples.

• “Describe the image with imaginative objects that may exist in the scene.”
• “Enrich the description by adding hypothetical objects or characters that could be part of the

scene.”
• “Suggest and detail practical items or people that could logically inhabit the image’s setting.”
• “Incorporate elements that, though absent, would seamlessly fit into the context of the

picture.”
• “Imagine and describe additional everyday objects or activities taking place just out of

frame.”
• “Augment the scene with details of potential events or items that are plausible.”
• “Conceive of and detail natural elements, such as weather or animals, that could realistically

enter the scene. Make the description affirmative.”
• “Invent and incorporate details of practical tools, vehicles, or gadgets that could be expected

in a similar scenario.”
Given an input image, with 50% chance, we generate the dis-preferred response using the “bad”
prompt. Otherwise, we generate the dis-preferred response with a corrupted image either from color
jittering or lower resolution. To generate the preferred response, we use the following step-by-step
prompt:

• “Please provide a detailed description of the image, focusing on the following. Identify
the main subjects (people, animals, objects) in the image and describe what they are doing.
Describe the setting of the image. Is it indoors or outdoors? What kind of environment or
location does it depict? What mood does the image convey? Are there any specific elements
(such as lighting, weather, expressions) that contribute to this atmosphere? Describe the
dominant colors and the overall composition. How do these elements affect the image’s
impact? Point out any details or symbols that might be relevant to understanding the image’s
meaning or context. If applicable, provide interpretations of what the image might represent
or communicate.”

The prompts used as instructions in DPO are listed below:

• “Illustrate the details of the picture.”
• “Summarize the visual content presented.”
• “Explain what is depicted in the photograph.”
• “Outline the key elements captured in the image.”
• “Detail the composition and subjects within the frame.”
• “Convey the atmosphere and mood represented in the snapshot.”
• “Interpret the scene shown in the image.”
• “Identify and describe the main focal points in the visual.”

In Stage 2, we prompt the LVLM with simple instructions like “Explain what is depicted in the
photograph.” to gather the image descriptions for Stage 2 fine-tuning.
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Task: Explain what is depicted in the photograph.

Preferred (Good prompting)
The image depicts a social setting, likely a dinner party or a gathering of some 
sort. The main subjects in the image are a bottle of St-Germain liqueur and 
several wine glasses. The bottle is prominently placed in the foreground, with its 
label facing the viewer, while the wine glasses are scattered around the table, 
some filled with wine.\n\nThe setting appears to be indoors, possibly a dining 
room or a similar space, as indicated by the presence of a dining table. The 
table is covered with a white tablecloth, ......

Dis-preferred (Bad prompting)
In the image, there's a sense of a social gathering or a celebration. Just out of frame, you might imagine several every-
day objects and activities:\n\n1. A person is holding a glass of wine, toasting to a special occasion.\n2. A waiter is 
walking by, carrying a tray with appetizers or desserts.\n3. A guest is engaged in a conversation with another 
person, sharing stories and laughter.\n4. A person is taking a photograph of the moment, capturing the joy and camara-
derie.\n5. A host is standing near the bar, ensuring everyone has what they need. ......

Figure 9: Example of generated preference data, where the dis-preferred response is generated from
bad prompting.
Task: Explain what is depicted in the photograph

Preferred (Good prompting)
The image depicts a young child, likely a boy, seated at a dining table with a 
birthday cake in front of him. The child appears to be in the process of blowing 
out the candles on the cake, which are lit and casting a warm glow on his face. 
The child is wearing a gray t-shirt and has short, light-colored hair.\n\nThe 
setting is indoors, with a wooden dining table and chairs visible in the back-
ground. The environment suggests a domestic, homey atmosphere, possibly a 
dining room or a kitchen area.\n\nThe mood of the image is joyful ......

Dis-preferred (Lower resolution)
The image shows a close-up of a person, likely a child, looking at a cake with candles. The cake appears to be a birth-
day cake, and the child seems to be focused on it. The background is blurred, but it looks like an indoor setting with 
warm lighting. The focus is on the child and the cake, making the background indistinct. 

Figure 10: Example of generated preference data, where the dis-preferred response is generated from
images with lower resolution.
Task: Interpret the scene shown in the image.

Preferred (Good prompting)
The image depicts a joyful and festive scene, likely a birthday party. The main 
subjects in the image are a young child, who appears to be the focus of the 
celebration, and several other children and adults. The child is seated at a table, 
engrossed in eating a piece of cake. ...... The setting is indoors, with the table 
and chairs arranged in a typical party layout. The table is covered with a table-
cloth featuring a cartoon character, adding to the festive atmosphere. ...... The 
mood of the image is one of happiness and anticipation ......

Dis-preferred (Color jitter)
The image shows a child's birthday party. The child in the foreground is wearing a striped shirt and appears to be in the 
process of eating a piece of cake. The cake is green and has a \"Happy Birthday\" message on it, suggesting it's a 
birthday celebration. The child is using a plastic fork to eat the cake.\n\nIn the background, there are other children and 
adults, some of whom are also eating cake. ...... The overall atmosphere seems to be one of joy and celebration.

Figure 11: Example of generated preference data, where the dis-preferred response is generated from
images with color jittering.

Fine-tuning details. We train for 1 epoch in each stage, including the image comprehension self-
training stage and the description-infused fine-tuning stage. We use the same hyperparameters for
LoRA fine-tuning in both stages, with lora_r = 128, lora_alpha = 256, and lora_target =
all. The fine-tuning hyperparameters for Stage 1 are presented in Table 6. The parameters remain
the same for Stage 2 fine-tuning, with the only differences being a learning rate of 2e− 5 and a global
batch size of 64.
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Table 6: Fine-tuning hyperparameters.
Learning rate 1e− 7

Optimizer AdamW
Global batch size 4

Regularization coefficient α 1/1024
mm_projector_lr 2e− 5

mm_projector_type mlp2x_gelu
gradient_accumulation_steps 1

image_aspect_ratio pad
group_by_modality_length True

weight_decay 0
warmup_ratio 0.03

lr_scheduler_type cosine
model_max_length 1024

Describe and Respond.

User: <image>\n Detail the composition and subjects within the frame.
Model: <image description>
User: <image>\nImage description:\n<image description>\n<question>
Model: <response>

Evaluation details. We use the evaluation scripts provided by LLaVA (Liu et al., 2023a) for all
evaluations. It is important to note that the potential new evaluation scripts and prompts used to report
the results for LLaVA-v1.6 have not been released at the time of writing this manuscript. This may
cause discrepancies in the evaluation results of the original model.

Compute resources. Experiments were conducted on NVIDIA RTX A6000 GPU clusters. The
entire self-training process for LLaVA v1.5 (7B) and LLaVA v1.6 (7B), using 6k image data and 5k
reused instruction fine-tuning data, takes approximately 6 hours on 4 GPUs. The evaluation process
of STIC for the benchmarks typically varies from 2 to 8 hours, mainly depending on the test set size.

C Experimental Results

Table 7: Detailed performance of STIC com-
pared with the original VLM model on the MM-
Bench dev set.

Model MMBench
LR AR RR FP-S FP-C CP

Original 35.6 65.8 61.7 64.5 49.0 80.7
w/ STIC 42.4 69.3 67.8 68.6 60.8 83.1

Table 8: Detailed performance of STIC com-
pared with the original VLM model on the MM-
Vet benchmark.

Model MM-Vet
rec ocr know gen spat math

Original 43.1 40.6 29.6 32.5 44.7 15.4
w/ STIC 45.7 42.5 30.4 34.9 45.1 22.7

C.1 Example Outputs
In Figure 12 and 13, we demonstrate more output examples of the original LLaVA-v1.6 and STIC.

Query: I am getting one funghi pizza and one prosciutto pizza. 
How much should I pay in total?

STIC (LLaVA-v1.6 7B):
Based on the menu displayed in the image, the price for a funghi 
pizza is 6,90€, and the price for a prosciutto pizza is 7,90€. 
Therefore, the total cost for one funghi pizza and one prosciutto 
pizza would be 14,80€.

Base (LLaVA-v1.6 7B):
Based on the menu prices, the total cost for one funghi pizza and 
one prosciutto pizza would be 14,00€.

Figure 12: Response examples from original LLaVA-v1.6 and STIC (LLaVA-v1.6) in MM-Vet.
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Query: What is the name of the man in the photo?

STIC (LLaVA-v1.6 7B):
The man in the photo is Elon Musk. 

Base (LLaVA-v1.6 7B):
I'm sorry, but I cannot identify the person in the photo. 

Figure 13: Response examples from original LLaVA-v1.6 and STIC (LLaVA-v1.6) in LLaVA-Bench.

C.2 t-SNE Visualization Analysis
ScienceQA, TextVQA, MathVista, and ChartQA were chosen because there are at least 1, 000 images
in the test set, providing enough data points for analysis.

MSCOCO vs ScienceQA. The gain achieved by STIC on ScienceQA was 6.4%, the highest across
all seven benchmarks. As evident from Figure 14 (a), the images in ScienceQA have substantial
overlap with those in MSCOCO. This suggests that the image comprehension capabilities developed
by STIC through self-training on MSCOCO translated effectively to the scientific reasoning tasks in
ScienceQA.

MSCOCO vs TextVQA. STIC yielded a gain of 4.9% on TextVQA, one of the higher gains
observed across the benchmarks. Figure 14 (b) shows a significant overlap between the image
distributions of TextVQA and MSCOCO. This indicates that the enhanced image understanding from
self-training on MSCOCO proved beneficial for the text-based visual question answering tasks in
TextVQA.

MSCOCO vs MathVista. On MathVista, STIC achieved a gain of 2.4%, which, while still notable,
was lower compared to other benchmarks. As Figure Figure 14 (c) illustrates, the images in MathVista
have limited overlap with those in MSCOCO. Moreover, MathVista features diverse image types and
mathematical reasoning tasks that pose additional challenges beyond image comprehension. These
factors likely contributed to the more modest performance gain.

MSCOCO vs ChartQA. STIC attained a high gain of 5.1% on ChartQA, despite the images in
ChartQA having minimal overlap with those in MSCOCO, as shown in Figure 14 (d). This seem-
ingly contradictory result can be explained by considering that the improved image comprehension
capabilities developed by STIC play a fundamental role in understanding and reasoning about the
charts in ChartQA. Thus, even with limited distributional similarity, the enhanced perception skills
proved valuable for this benchmark.

C.3 Discussion with POVID.
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Figure 15: Data comparison.

We detail the differences between STIC and POVID. In POVID, the
dispreferred response is generated either by adding Gaussian noise
to the original image or by manually injecting hallucinations into
the ground truth completion, using the labeled object information
of the images. In contrast, STIC (1) specifically targets the image
description task, (2) constructs preference datasets exclusively from
unlabeled images using self-generated content for both preferred and
dispreferred responses, (3) employs an automatic model generation
process without manual injections or modifications, and (4) utilizes
only a small portion of SFT data for instruction-following fine-tuning
with uniquely infused model descriptions. Lastly, we compare the
data types and scales used in POVID and STIC in Figure 15.

C.4 Investigation of Prompt Quality
Table 9 presents an additional experiments using DaR to demonstrate prompt quality. We compared
normal prompts from our main paper (e.g., “Illustrate the details of the picture.”) with the hallucination
prompts and well-curated prompts used for DPO pair generation. The results show an expected
discrepancy in QA performance: hallucination prompts significantly decreased performance, while
well-curated prompts maintained a decent performance. We also included results based on a prompt
proposed by Llama-3 8B and filtered using the same restrictions. The performance difference between
GPT-4 and Llama-3 8B prompts underscores the quality of GPT-4’s proposals.
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Figure 14: t-SNE visualization of images from MSCOCO and benchmarks.

Table 9: Test performance of llava-v1.6-mistral-7b using various prompts with DaR. We
evaluate prompt quality using DaR as a prompting method. DaR=None represents the original LVLM
model’s performance. Normal prompt refers to the simple prompt we used for DaR in our paper.
GPT-4’s well-curated prompt refers to the prompt we used for preferred response generation, and we
include Mistral 7B’s curated prompt for additional comparison.

Model DaR LLaVA-Bench MM-Vet MMBench

LLaVA-v1.6 (7B)

None 77.3 42.2 63.7
Normal Prompt 78.5(+1.2) 42.3(+0.1) 50.7(−13.0)

Hallu Prompt 73.7(−3.6) 40.5(−1.7) 40.7(−23.0)

Well-curated (Llama-3 8B) 77.2(+0.1) 40.0(−2.2) 60.1(−3.6)

Well-curated (GPT-4) 79.1(+2.1) 42.9(+0.7) 60.9(−2.8)

D Limitations and Future Work
While STIC demonstrates significant performance gains across a diverse set of benchmarks, there are
still some limitations to be addressed in future work. First, STIC achieves a relatively small accuracy
gain on MathVista compared to other benchmarks. This is likely because MathVista features various
mathematical reasoning abilities across a wide range of image types, from elementary school to
college level problems, which go beyond the scope of image comprehension. In contrast, STIC uses
MSCOCO, containing only natural images, for constructing its preference data. To further improve
performance on tasks like MathVista, future work could expand the source image types and generate
task-specific image description data that better aligns with the target benchmark.
Second, while our approach of using good prompts for positive examples and bad prompts or
corrupted images for negative examples is straightforward and effective, this preference data may
be insufficient for scenarios requiring nuanced understanding of image details. More sophisticated
strategies for preference data construction could potentially further boost fine-tuning performance
with the DPO loss.
Additionally, our current method relies on a two-stage process of first training on the preference
data and then performing description-infused fine-tuning. An interesting direction for future work
would be to explore integrating these stages into a single end-to-end training process, which could
potentially lead to even greater synergies and performance gains.
Lastly, while we have demonstrated the scalability of STIC by doubling the amount of preference
data, leading to further improvements, we have not yet explored the upper limits of this scaling. It is
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possible that even larger amounts of self-training data could lead to diminishing returns at some point.
Characterizing the scaling behavior of STIC more fully is an important direction for future research.
Despite these limitations, we believe STIC represents an important step towards leveraging the vast
amounts of unlabeled image data available to enhance the image comprehension capabilities of large
vision-language models in a cost-effective manner.

E Broader Impacts
The development of STIC, our self-training approach for enhancing the image comprehension
capabilities of large vision language models (LVLMs), presents several potential societal impacts.
Positively, our method can democratize access to advanced vision-language models by significantly
reducing the cost and effort required for fine-tuning, making state-of-the-art LVLMs more accessible
to researchers and organizations with limited resources. This can accelerate advancements in
healthcare, education, and environmental monitoring, where improved image comprehension can
lead to better diagnostic tools, personalized learning experiences, and more effective environmental
protection measures. Additionally, by encouraging the reuse and recycling of existing data, STIC
aligns with sustainable AI practices, promoting efficient use of computational and data resources.
However, there are potential negative societal impacts that must be considered. Enhanced LVLM
capabilities could be misused for generating disinformation, creating fake profiles, or conducting
unauthorized surveillance, contributing to the spread of misinformation and erosion of public trust.
Fairness considerations are crucial, as biased training data may lead to outputs that disproportionately
impact specific groups, resulting in unfair treatment or discrimination. Privacy concerns also arise
from using self-generated data, particularly if models are trained on sensitive or personal visual
content without proper consent. To mitigate these risks, strategies such as gated release of models,
robust fairness audits, diverse data inclusion, and enhanced transparency about the technology’s
limitations and risks are essential to ensure responsible use.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction focus on the novel self-training
method for image comprehension, description-infused fine-tuning, and the significant per-
formance gains across several benchmarks. These contributions are accurately reflected and
supported by the theoretical and experimental results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed method are thoroughly discussed in Appendix
D, where the authors address potential challenges and constraints, including domain align-
ment issues and possible failure cases, providing a clear reflection on the robustness and
scope of their approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

23



3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 3 provides the problem setting and preliminaries, outlining the as-
sumptions and theoretical foundations supporting our proposed approach. Theoretical
assumptions are clearly stated and supported by relevant literature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 and the Appendix B provide detailed information on the experimental
setup, datasets, and evaluation metrics, ensuring reproducibility. Additionally, we commit
to releasing the entire codebase, including data generation and fine-tuning procedures, to
facilitate replication of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper commits to providing open access to the code, including data
generation and fine-tuning procedures. We discuss the open benchmarks used for evaluation
in Section 5.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 provides details on the experimental setup, Section 6 covers the
ablation studies, and Appendix B includes additional experimental details such as data splits,
hyperparameters, and the type of optimizer used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: On LLaVA-bench, where the evaluations are done with GPT-4, we reported
the error bars in Figure 4. However, most evaluations in this work are done using greedy
decoding, resulting in a deterministic process that does not incur error bars. Therefore, the
reported values of the baseline method that we compare to similarly did not report error
bars. Lastly, due to the computational expense of fine-tuning large language models multiple
times, we did not include error bars. However, we acknowledge this limitation and ensure
that the reported results are consistent and reliable based on our experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix B provides detailed information on the compute resources used for
experiments, including the type of compute workers (GPU) and execution time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics,
ensuring ethical standards are maintained in data usage, experimental procedures, and
reporting of results. The paper preserves anonymity and considers the implications of the
research on society.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix E discusses both the potential positive societal impacts, such as
advancements in vision-language understanding and applications in education, and the po-
tential negative societal impacts, including concerns about misuse and ethical considerations.
The paper also addresses possible mitigation strategies for negative impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our approach does not involve releasing models or data, so there are no
high-risk elements requiring safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-sourced models and datasets for our experiments, all of which
are properly cited and used under their original licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets, so this question is not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects, so
this question is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

28

paperswithcode.com/datasets


• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects, so
this question is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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