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ABSTRACT

Humans navigate daily life by combining two modes of behavior: deliberate plan-
ning in novel situations and fast, automatic responses in familiar ones. Modeling
human decision-making therefore requires capturing how people switch between
these modes. We present a framework for learning human habits with rule-guided
active inference, extending the view of the brain as a prediction machine that min-
imizes mismatches between expectations and observations, and computationally
modeling of human(-like) behavior and habits. In our approach, habits emerge as
symbolic rules that serve as compact, interpretable shortcuts for action. To learn
these rules alongside the human models, we design a biologically inspired wake–
sleep algorithm. In the wake phase, the agent engages in active inference on real
trajectories: reconstructing states, updating beliefs, and harvesting candidate rules
that reliably reduce free energy. In the sleep phase, the agent performs generative
replay with its world model, refining parameters and consolidating or pruning rules
by minimizing joint free energy. This alternating rule–model consolidation lets
the agent build a reusable habit library while preserving the flexibility to plan.
Experiments on basketball player movements, car-following behavior, medical
diagnosis, and visual game strategy demonstrate that our framework improves
predictive accuracy and efficiency compared to logic-based, deep learning, LLM-
based, model-based RL, and prior active inference baselines, while producing
interpretable rules that mirror human-like habits.

1 INTRODUCTION

Understanding human behavior in complex environments has long been a central goal in both
cognitive science (Pylyshyn, 1980) and artificial intelligence (Leichtmann et al., 2023). A large
body of work suggests that behavior in humans and other mammals is supported by at least two
complementary modes of control: a goal-directed system that evaluates actions based on their
consequences, and a habit system that relies on learned stimulus–response routines, with evidence
for partially distinct corticostriatal circuits underlying each (Balleine & O’doherty, 2010; Dolan &
Dayan, 2013). In novel situations, they engage in deliberate planning, drawing on internal models of
the world to simulate possibilities and anticipate outcomes. In familiar contexts, they shift effortlessly
into habitual control, relying on rules or shortcuts (Neal et al., 2012) that bypass heavy deliberation
and allow rapid, efficient action. This smooth interplay between flexible reasoning and automatic
habits is a hallmark of human intelligence—and capturing it in a biologically plausible way remains
a key challenge for building models that aspire to human-like adaptability.
Active inference (AIF) (Mazzaglia et al., 2022), a framework rooted in neuroscience and Bayesian
principles, offers a biologically inspired, brain-like account of adaptive behavior. It portrays the
person as a prediction-driven mind that minimizes free energy (Parr & Friston, 2019; Millidge et al.,
2021): through variational free energy it makes sense of sensations by inferring hidden causes, and
through expected free energy it imagines plausible futures—favoring scenarios that both reduce
uncertainty (curiosity-driven understanding) and align with the person’s preferences (goal-congruent
intentions). In doing so, AIF maintains an internal generative (world) model that is continually
refined to reduce surprise—providing a principled, unified lens on perception, learning, and action.
In this work, we use AIF in the control-as-inference sense as a modeling framework for human(-like)
behavior (Levine, 2018; Toussaint, 2009), rather than as a new reward-maximizing control agent.
Yet, classical AIF largely operationalizes behavior via prospective planning at each step, and
thus under-specifies three ingredients that are central to human behavior: habit acquisition, habit
consolidation, and meta-control over when to plan versus when to act automatically (Han et al., 2024;
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Dung Nguyen et al., 2024). Concretely, (i) it lacks a mechanism to compress repeated successes into
compact, reusable rules with confidence; (ii) it lacks a principled way to switch modes—using instant,
rule-based actions in familiar situations, and calling on costly look-ahead only when uncertainty is
high; and (iii) it offers no offline process to consolidate, prune, or semantically anchor such rules.
These gaps motivate our approach. We propose a rule-guided active inference framework that
augments AIF with habitual policies learned and refined through a biologically inspired wake–sleep
process (Hinton et al., 1995; Hewitt et al., 2020; Ellis et al., 2023). Our aim is to use this framework
to fit and explain human (and human-like) action sequences via a control-as-inference objective.
In the wake phase, the agent harvests candidate rules from real experience by identifying state–
intention–action triples that consistently reduce free energy. In the sleep phase, it performs generative
replay to consolidate, prune, and semantically anchor these rules, so that useful ones are reinforced
while spurious ones are discarded. Each rule is grounded in latent state prototypes and interpretable
discrete intentions, forming a neural–symbolic unit that bridges continuous world models with
symbolic decision-making. This hybrid structure enables instant action in familiar scenarios through
high-confidence rules, while retaining flexible planning via expected free energy in novel cases.
Beyond efficiency, the learned rules provide interpretable structure that facilitates knowledge transfer
and offers insights into the agent’s behavior. Altogether, our contributions are threefold: i) a
biologically inspired extension of active inference tailored to computational modeling of human(-like)
habits via rule-guided policies, ii) a novel wake–sleep algorithm that jointly learns generative models
and symbolic rules under a unified free-energy objective, and iii) empirical evidence on human action
prediction tasks such as NBA player trajectories, car-following dynamics, medical diagnosis, and
visual game strategy, where our framework improves both predictive performance and interpretability
compared to deep learning, logic-based, and prior AIF baselines.

2 RELATED WORK

Human Behavior Modeling. Modeling human behavior is central to applications in public
health (Ferguson, 2007; Marsch, 2021), crime analysis (Savage & Vila, 2003), and human–robot
collaboration (Dragan & Srinivasa, 2013; Maeda et al., 2017). Probabilistic and deep approaches
often focus on predicting dynamics of discrete events: Shen et al. (2018) developed deep models
for spatio-temporal events, Zhou et al. (2022) combined neural networks with spatio-temporal point
processes, and Chen et al. (2020) proposed continuous-time normalizing flows. These methods
achieve strong predictive performance but largely act as black boxes, offering limited insight into the
structure of human decisions.
A complementary line emphasizes the role of habit in behavior maintenance (Rothman et al., 2009).
Examples include HAT (Serra et al., 2018) for cross-task stability, Markovian models of decision-
making (Pentland & Liu, 1999), and imitation learning (Ho & Ermon, 2016; Li et al., 2017; Duan
et al., 2017) for reproducing expert routines. Yet these approaches encode regularities implicitly,
making habits difficult to interpret or arbitrate against planning. Our method addresses this gap
by learning compact, interpretable rules within a probabilistic framework that supports both rapid
habitual action and flexible planning in novel contexts.

Logic- and Rule-Based Explanations. To improve interpretability, recent work incorporates
logic rules into predictive models. Li et al. (2021) extract symbolic rules from irregular events,
Cao et al. (2023) integrate logic with trajectory models, and Yang et al. (2025) guide temporal
point processes with logic priors. Neuro-symbolic methods extend this trend: Li et al. (2023b)
impose compositional logic constraints on Transformers for human–object interaction, while Xu
et al. (2023) introduce LogicMP for efficient integration of first-order constraints via mean-field
inference. d’Avila Garcez et al. (2019) survey neural-symbolic computing, highlighting principled
integration of machine learning and reasoning. In hierarchical RL, Bacon et al. (2017) proposed the
Option-Critic architecture, which learns options (temporally extended actions) end-to-end, providing
a connection between our rule-based controllers and the options literature. While these approaches
highlight the value of logic and hierarchical control, rules are often static or imposed post hoc, limiting
adaptivity. In contrast, our framework embeds rules directly into the generative process, coupling
them with latent states and intentions, optimizing under the free-energy principle, and updating them
dynamically through a wake–sleep cycle. This yields interpretable, biologically plausible rules that
guide long-horizon planning.

Active Inference. Active inference (AIF) offers a unifying framework for perception, action, and
learning (Mazzaglia et al., 2022), with applications ranging from psychology (Goette et al., 2023;
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Figure 1: Model framework. “ ”: Biologically human behavior, “ ”: World model. “ ”: Habitual
policy and action selection. “ ”: Wake phase. “ ”: Sleep phase. “ ”: Overall goal: minimize free
energy.

Demekas et al., 2020) and economics (Henriksen, 2020) to scene construction (Mirza et al., 2016;
Heins et al., 2020). Neural extensions have expanded its representational power (Ueltzhöffer, 2018),
while subsequent work emphasized action selection via expected free energy (Friston et al., 2016;
2015; 2021; Millidge et al., 2020), efficient objectives (Mazzaglia et al., 2021), and amortized
planning through habit networks (Fountas et al., 2020). Tschantz et al. (2020) explored action-
oriented representation learning in active inference, focusing on how agents learn representations that
support effective action selection. Yet, these approaches largely center on prospective planning, with
only ad hoc treatment of habits and no principled mechanism for transitioning between deliberate
and routine behavior.
Our Contribution. We focus on human behavior modeling and address this gap by embedding
symbolic rules directly into the AIF framework. During the wake phase, rules are extracted from
experience; during sleep, they are refined via generative replay; and at inference, the inferred active
rules guide action selection together with expected-free-energy planning. This captures human(-like)
habits as reusable, rule-based shortcuts while retaining a principled planner for novel situations,
providing a biologically inspired account of their interaction in human action prediction.

3 BACKGROUND: SEQUENTIAL DECISION-MAKING VIA ACTIVE INFERENCE

Active inference (AIF) provides a unifying account of perception, learning, and action under a single
objective: the minimization of free energy. In sequential decision-making, an agent uses a generative
model to explain past observations, update beliefs about hidden states, and plan actions that bring
about preferred future outcomes. This dual role naturally leads to two complementary objectives: the
variational free energy (VFE) for inference and model learning, and the expected free energy (EFE)
for planning and action selection.
We consider discrete steps t = 1, . . . , T . At each step the agent observes Ot ∈ Rd, selects an action
at ∈ A, and accumulates a history Ht = (O1:t, a1:t−1). Latent states Zt ∈ Z summarize hidden
structure relevant for decision-making. A generative model with parameters ϕ specifies

pϕ(O1:T , Z1:T , a1:T ) = pϕ(Z1)
T∏

t=1

pϕ(Ot | Zt) pϕ(Zt | Zt−1, at−1) pϕ(at | Zt). (1)

Variational Free Energy (VFE). Exact inference over Z1:t is intractable, so we introduce an
amortized variational posterior qϑ(Zt | Ht) with parameters ϑ. At each time τ , the per-step
variational free energy is defined as

VFEτ := Eqϑ(Zτ |Hτ )[− log pϕ(Oτ | Zτ )] +DKL

(
qϑ(Zτ | Hτ ) ∥ pϕ(Zτ | Zτ−1, aτ−1)

)
. (2)

The first term is a prediction error, ensuring latent states explain observations; the second enforces
temporal consistency with the transition prior. The VFE serves as the learning signal for updating
both the generative model parameters ϕ and the inference network ϑ.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Expected free energy (EFE). In contrast, action selection is prospective. Given a candidate action
at, the agent rolls out its generative model over a horizon H to simulate possible futures. We denote
the resulting predictive distribution by qroll

ϕ , which depends on ϕ and the chosen action sequence. At
each future step τ , the expected free energy is

EFEt+τ (a) := Eqroll
ϕ

[
− log ppref(Ot+τ | Zt+τ ) +DKL

(
qroll
ϕ (Zt+τ ) ∥ pϕ(Zt+τ | Zt+τ−1, at+τ−1)

)]
.

Here ppref specifies which future observations are preferred: the agent aims to keep its trajectory
within preferred outcomes while maintaining an accurate internal model. The first term measures risk
(deviation from preferred outcomes), and the second term encourages epistemic value by reducing
uncertainty about hidden states. We adopt the standard control-as-inference view, where preferences
are encoded as a biased likelihood over outcomes (Levine, 2018; Toussaint, 2009). Our goal is
to model human behavior from demonstrations: we assume humans act approximately optimally
under some latent preference distribution ppref, but we do not try to recover this distribution (or the
underlying reward) explicitly. Instead, we learn the generative model and policy so that the resulting
EFE-based controller assigns high likelihood to the observed human actions. In this setting, we use
the special case

ppref(Ot+τ | Zt+τ ) ∝ pϕ(Ot+τ | Zt+τ ),
so that preferred futures coincide with high-probability outcomes under the learned observation

model, and minimizing EFE favors actions whose predicted outcomes match human behavior. The
cumulative expected free energy of action a over horizon H is

EFEt(a) :=

H∑
τ=1

EFEt+τ (a). (3)

Active inference couples these two objectives into an iterative loop. At each time step: (i) given
new data, the agent updates its beliefs and generative model by minimizing (per-step) VFE, aligning
latent states with observations; (ii) from this belief state, the agent forecasts future trajectories under
candidate actions, evaluates their cumulative EFE, and executes the first action from the trajectory
with lowest expected free energy. This integration of retrospective inference and prospective planning
defines active inference as a general framework for sequential decision-making.
Computational Challenges. Although conceptually elegant, active inference is computationally
demanding. Minimizing VFE requires efficient amortized inference for complex latent structures.
Minimizing EFE is even more costly, since multi-step rollouts scale rapidly with horizon H and action
space size. We will show later that in this paper, we propose to augment AIF with compact rules
distilled from experience, which can bypass expensive rollouts in familiar contexts while preserving
full VFE/EFE reasoning in novel ones.

4 OUR APPROACH: RULE-GUIDED HABITUAL POLICY

We extend AIF by introducing compact, latent-grounded rules that capture habitual responses in
familiar contexts. Rules act as symbolic triggers: when recognizable patterns (including the external
world patterns and mental states occur in our setting), they prescribe actions directly, yielding fast and
interpretable habitual policies. If no rule is triggered (novel scenario), the agent reverts to minimizing
EFE through long-horizon rollouts, as in standard AIF. This hybrid arbitration enables seamless
switching between fast habits in familiar situations and deliberative planning in novel ones.
Our approach has two main key components: (A) the representation of rules and their integration into
a hybrid policy that combines habitual and planning-based control, and (B) a wake–sleep learning
algorithm that jointly learn generative model (decoder), recognition network (encoder), and rules
under a unified free-energy objective. We will discuss the two components one by one.

Latent State Representation First propose to split the (previously generic) latent Zt into two parts:
Zt = (St,mt),

where St ∈ S denotes the continuous external world state, a compact low-dimensional embedding of
the environment that supports accurate prediction of observations. In contrast, mt ∈ {1, . . . ,K} is a
discrete mental state that encodes intentions, modes, or subgoals.
Given the new latent state representation, we rewrite the generative model (1) as

pϕ(O1:T , S1:T ,m1:T , a1:T ) = pϕ(S1) pϕ(m1)

T∏
t=1

pϕ(Ot | St) pϕ(St | St−1, at−1)

× pϕ(mt | mt−1, St) pϕπ (at | St,mt). (4)
with parameters ϕ. Here the world model links external world states St to observations through
pϕ(Ot | St), while the transition prior pϕ(St | St−1, at−1) captures how the world evolves under
actions. The discrete mental state mt evolves more slowly via pϕ(mt | mt−1, St), providing an
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interpretable bottleneck of intentions or modes. Finally, the policy pϕπ
(at | St,mt) selects actions

conditioned jointly on the external state and mental state. Later we will show how this policy can be
parameterized with compact symbolic rules, allowing habitual responses to emerge inside the same
probabilistic framework.
Given new latent state representation, we approximate the posterior over latent states with an encoder

qϑ(St,mt | Ht),

which maps the historyHt = (O1:t, a1:t−1) into distributions over both continuous world states and
discrete mental states.

4.1 (A) RULE REPRESENTATIONS AND THE HYBRID HABITUAL POLICY

Building on the latent split Zt = (St,mt), we now introduce symbolic rules as compact carriers of
habitual knowledge.

Rule Definition. We define a rule f as an anchored condition–action pair:
f : (S⋆

f ,m
⋆
f ) ⇒ af , S⋆

f ∈ S, m⋆
f ∈ {1, . . . ,K}, af ∈ A,

where the continuous anchor S⋆
f encodes a prototype of the external environment, m⋆

f specifies the
intention or mode, (S⋆

f ,m
⋆
f ) together describe when the rule becomes active, and af is the prescribed

action to take. Each rule has a confidence weight ρf ∈ [0, 1], reflecting its reliability. The full
rule set is F = {(S⋆

f ,m
⋆
f , af , ρf )}f and is treated as part of the policy parameters ϕπ. The rule

library can be viewed as an amortized mixture over context–action pairs, where each rule defines a
prototype component. Our current implementation is an efficient, engineering-driven approximation
to full variational learning over q(mt) and parameters of p(St | mt) in a mixture model. A detailed
probabilistic view is given in Appendix B.

Rule Interpretation. The continuous component S⋆
f summarizes the external world in a compact

latent embedding. Although this representation is not directly human-interpretable, its encoded
meaning can be probed through the generative world model: by decoding S⋆

f back into observable
space through pϕ(Of | S⋆

f ), we can visualize or simulate the prototypical situation it represents.
The discrete component m∗

f is categorical and designed to carry semantic meaning (e.g., cautious,
aggressive, conserve energy), often initialized or anchored with interpretable labels.
Together, (S⋆

f ,m
⋆
f ) provide the condition under which a rule applies, yielding policies that are both

context-sensitive (through the continuous embedding) and mental-state-driven (through the discrete
mode). This design mirrors cognitive science accounts in which habits are grounded jointly in
environmental context and internal goals: in familiar scenarios, learned associations trigger rapid
action without deliberation.
For instance, a driving agent might acquire the rule brake← (S⋆

f := car ahead very close, m⋆
f =

cautious). Here, the latent world prototype S⋆
f encodes the spatial situation of nearby cars, while the

discrete mode m⋆
f denotes a cautious intention. When this familiar combination recurs, the action

brake is triggered immediately—bypassing costly rollouts and enabling fast, interpretable habitual
control.

Rule Activation and Recognition of Familiarity. Given a new historyHt, the encoder produces
posterior distributions over latent states. We use MAP estimates for efficient matching:

SMAP
t = argmax

s
qϑ(St = s | Ht), mMAP

t = argmax
k

qϑ(mt = k | St,Ht).

A rule r is active if both the discrete mode and the continuous context are sufficiently close:
κ(SMAP

t , S⋆
r ) ≥ τr, mMAP

t = m⋆
r

where κ(·, ·) is a Gaussian similarity kernel and τr a threshold. Under the Gaussian–mixture view
(Appendix B), κ(SMAP

t , S⋆
r ) can be interpreted as (proportional to) the posterior responsibility of

rule r given a Gaussian prior over St, and τr simply truncates very small responsibilities. This
soft matching allows rules to work robustly under noisy data. We adopt MAP estimates instead of
sampling because they yield fast, deterministic recognition of familiar situations, consistent with how
humans can rapidly “pattern match” to known contexts.
When multiple rules suggest the same action, their contributions are combined by weights:

π(a | SMAP
t ,mMAP

t ) ∝
∑

r: ar=a

κ(SMAP
t , S⋆

r )1{mMAP
t = m⋆

r} ρr,

normalized across actions.

Hybrid Policy. The final action distribution blends the rule prior with EFE-based planning:
pϕπ

(at | St,mt) ∝ π(at | SMAP
t ,mMAP

t ) +
(
1− 1rule hit

)
exp
(
− τ EFEt(at)

)
. (5)
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If reliable rules fire, their prior dominates and habitual actions are executed directly. Otherwise,
the agent falls back on deliberative planning via multi-step EFE minimization. The temperature
parameter τ controls how sharply the planning fallback discriminates between actions.
Connection to Cognition. This hybrid arbitration is inspired by neuroscientific accounts of the
brain’s dual systems: habits stored as stimulus–response associations in basal ganglia circuits, and
deliberative planning supported by prefrontal and hippocampal structures. This flexible switching
between cached habits and on-the-fly planning is a general mammalian capability, consistent with
dual-system accounts of dorsomedial vs. dorsolateral striatum and prelimbic vs. infralimbic PFC,
as demonstrated in devaluation and contingency-degradation paradigms (Dolan & Dayan, 2013;
Cushman & Morris, 2015).
Our framework instantiates this duality: learned rules serve as compact, interpretable ”habit circuits”
grounded in latent world states and internal modes, while the generative model provides a flexible
substrate for foresight and adaptation when novelty arises.

4.2 (B) LEARNING ALGORITHM: WAKE–SLEEP

Joint Objective (Total Free Energy). We jointly train the generative model pϕ, inference model
qϑ, and policy parameters ϕπ (including rule prototypes) by minimizing a unified total free-energy
objective:

Ft(ϕ, ϑ, ϕπ) = VFEt(Ot;ϕ, ϑ)︸ ︷︷ ︸
fit to observed data

+ η EFEt(ϕ, ϕπ)︸ ︷︷ ︸
applied to rollouts

+ γ DKL

(
qϑ(mt−1 | Ht−1) ∥ qϑ(mt | Ht)

)︸ ︷︷ ︸
mental-state consistency

. (6)

Here VFEt(Ot;ϕ, ϑ) measures how well pϕ explains the actual data Ot, EFEt(ϕ, ϕπ) is the expected
free energy accumulated over a horizon H (with the same form as in planning but used for training on
replayed trajectories), and the KL term regularizes discrete mental states. The KL term implements a
sticky prior over the discrete mental state, encouraging slow, interpretable mode changes. This can be
viewed as arising from a prior p(mt | mt−1) that favors persistence, which naturally appears in the
VFE expansion when minimizing free energy. The coefficients η, γ ≥ 0 balance the contributions,
allowing early training to emphasize world-model reconstruction while later phases prioritize accurate
reasoning with appropriate regularization.

Wake Phase (Real Data). In wake, the agent processes real trajectories Dreal and updates (ϕ, ϑ)
by minimizing free energy on this dataset:

min
ϕ,ϑ

E(Ot,at)∼Dreal
Eqϑ(St,mt|Ht)

[
VFE(Ot, St,mt;ϕ, ϑ)

]
.

At the same time, we grow rules from real data: when a triplet (SMAP
t ,mMAP

t , at) recurs often and
yields low free energy, we either

(i) create a new rule (S⋆
r ,m

⋆
r , ar) with initial confidence ρr > 0, or

(ii) increase the confidence ρr of an existing nearby rule.
Continuous anchors are updated as centroids of their assigned latents:

S⋆
r ←

∑
S∈Sreal

r
w(S)S∑

S∈Sreal
r

w(S)
, w(S) ∝ exp

(
− VFE(O,S,m⋆

r ;ϕ, ϑ)
)
.

This update can be viewed as an EM-style M-step on the Gaussian means in the mixture view, with
w(S) playing the role of (reweighted) responsibilities (see Appendix B).

Sleep Phase (Replay Data). In sleep, the agent generates replayed trajectories (S,O,m, a) ∼ pϕ
and jointly updates (ϕ, ϕπ) by minimizing

min
ϕ,ϕπ

Epϕ(S,O,m,a)

[
VFE(O,S,m;ϕ, ϑ) + η EFE(a;ϕ, ϕπ) + γ DKL(·)

]
.

Here VFE ensures consistency of pϕ and qϑ under imagination, and EFE provides a training signal
for ϕπ . Rules are refined during sleep: centroids S⋆

r are updated on replayed latents, confidences ρr
are adjusted, and low-confidence rules are pruned. Both phases share the same free-energy objective,
differing only in their data source. This mirrors human learning, where waking experience updates
models and dreaming replay consolidates them.

4.3 OVERALL ALGORITHM

The overall framework alternates between two coupled processes:
1. Learning (wake–sleep):

• Wake: update models and grow new rules from real data.
• Sleep: refine models, consolidate/prune rules, and adjust confidences using replay.

6
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2. Planning (hybrid policy): At decision time, if a rule is triggered, the agent acts habitually;
otherwise it falls back on model-based search for action selection (e.g., MCTS, A⋆, or
rollout sampling) to minimize expected free energy.

For efficiency, we first run blockwise pretraining to bootstrap the world model by minimizing VFE
only (Stage 1), which provides a fast warm-up and stabilizes later training, and then perform full
wake–sleep cycles with replay using the joint objective in Eq. 6 (Stage 2). Details are provided in
Appendix A.

5 EXPERIMENTS

We target cross-domain generality: a shared latent (St,mt) combines a continuous cognitive state
St with an inner discrete mental state mt ∈M (intentions/sub-goals) that drives rule triggering and
planning. When datasets do not provide salient mental labels, we obtain LLM-guided interpretable
candidates and select K states via a lightweight matching routine with their detailed prompts and
sensitivity study over K deferred to Appendix E and semantic lists deferred to Appendix C.6. Model
backbones and training schedules are aligned across domains; full architectural settings and optimizer
details appear in Appendix C.7.

5.1 EXPERIMENTAL SETUP

Dataset We evaluate on four domains spanning structured sequences and temporal vision: (i)
NBA SportVU (Kambhamettu et al., 2024)1: ∼9.8k train / 2.5k val clips with 7 action classes after
LLM-guided feature construction; (ii) Car-Following (Li et al., 2023a)2: ∼19k train / 2.5k val
samples with 7 driving modes under an action-centric world model; (iii) DDXPlus3: ∼165k train
/ 25k val URTI trajectories with 225 actions (ASK/DIAG); (iv) Atari–Berzerk4: ∼16.5k train /
16.5k val grayscale frames with 18 actions. Details of dataset, full preprocessing pipelines, feature
construction, and action distributions are all provided in Appendix C.8.

Baselines We choose state-of-the-art baselines considering following different fields: i) Logic
based Models: RNNLogic (Qu et al., 2020) and STLR (Cao et al., 2023). ii) Deep Neural Models:
Re-Net (Jin et al., 2019), iii) Active Inference Models: DAI (Çatal et al., 2020) and DAI-MC (Fountas
et al., 2020), iv) Model-based RL: DreamerV2 (Hafner et al., 2020)5, and v) LLM based Models:
LaTee (Song et al., 2024) and Qwen-0.5B (Team, 2024b) Team (2024a) (a pure LLM baseline that
processes observations through a learned encoder and generates action predictions via direct LM).

Metrics We evaluate performance along three dimensions: (i) Accuracy: (1) Acc@k measures the
proportion of correct actions within the next k prediction steps (k=1, 3, 5) rather than single-step
classification; (2) High-Hit Action Ratio (HHAR) measures accuracy specifically on low-frequency
critical actions (e.g., marginal maneuvers in each domain), and is considered satisfactory only if it
reaches at least ∼80% of the overall Acc. (ii) Efficiency: (1) Latency, average inference time per step
(ms); (2) Convergence Time (CT), total training time to reach convergence (hours). (iii) Resource
Cost: Peak Memory (PM), maximum memory usage during training and inference (MB).

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

Results with best-configuration and baseline comparisons are summarized in Table 1. And the
additional experimental results not shown below (especially for Car-Following and DDXPlus)are
recorded in the Appendix D.

Sequential Dataset NBA SportVU. Figure 2a illustrates: (i) general decreases of ∆F , VFE, EFE,
and KL, evidencing steady improvement in fit and decision quality; (ii) rule envelopes in latent space,
enabling interpretable reconstructions; (iii) test-set curves (Acc@k, HHAR, latency) with stable
convergence and strong accuracy; and (iv) a rule-guided inference case where world-model overlays
show rules lowering free energy and improving decisions.

1https://github.com/linouk23/NBA-Player-Movements
2https://github.com/RomainLITUD/Car-Following-Dataset-HV-vs-AV
3https://github.com/mila-iqia/ddxplus
4https://zenodo.org/records/3451402
5DreamerV2 is adapted as a model-based behavioral predictor: we keep the standard world-model architecture

but replace the environment reward with a supervised next-action objective, training from a fixed replay buffer
built from human trajectories (offline setting).
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Table 1: Overall results under the best configuration (mean±std across 3 random seeds). Acc is
reported as Acc@1/3/5; Lat/CT in ms / h.

Category Method NBA SportVU Car-Following

Acc (%) Lat/CT Acc (%) Lat/CT

Logic-based RNNLogic 67.20/60.55/51.83
(±0.00 / ±0.33 / ±1.50)

26.90/1.20
(±0.82 / ±0.00)

72.33/68.14/57.56
(±1.26 / ±1.16 / ±1.45)

7.58/0.54
(±1.08 / ±0.00)

STLR 75.25/74.67/70.20
(±0.45 / ±0.72 / ±1.15)

174.18/3.35
(±0.75 / ±0.33)

78.90/76.57/75.03
(±1.50 / ±1.82 / ±2.35)

58.29/1.28
(±0.63 / ±0.20)

DeepNN Re-Net 72.18/68.45/62.00
(±0.67 / ±0.45 / ±0.67)

218.42/2.34
(±3.25 / ±0.00)

76.32/70.71/67.28
(±0.83 / ±1.25 / ±2.06)

72.23/1.15
(±2.18 / ±0.00)

Active Inf. DAI 75.36/70.58/62.33
(±1.12 / ±1.48 / ±1.55)

262.33/1.24
(±4.43 / ±0.01)

78.86/73.35/68.50
(±0.42 / ±0.28 / ±0.53)

146.33/0.62
(±1.31 / ±0.01)

DAI-MC 82.33/80.61/76.47
(±0.87 / ±0.85 / ±1.24)

386.50/1.52
(±3.62 / ±0.05)

84.54/82.87/80.25
(±0.34 / ±0.36/ ±0.76)

189.75/0.79
(±1.55 / ±0.01)

LLM-based LaTee 78.50/73.32/64.50
(±0.88 / ±1.72 / ±1.06)

1244.20/4.65
(±10.07 / ±0.90)

82.36/74.75/71.82
(±1.65/ ±1.12 / ±1.48)

528.33/2.46
(±8.15 / ±0.76)

Qwen-0.5B 71.25/64.18/56.42
(±1.12 / ±1.85 / ±1.28)

2845.35/N/A
(±12.45 / —)

74.85/68.32/62.15
(±1.88 / ±1.45 / ±1.62)

1256.82/N/A
(±9.25 / —)

Model-based RL DreamerV2 86.42/83.57/81.65
(±0.47 / ±0.66 / ±0.72)

52.73/1.75
(±3.25 / ±0.05)

88.43/85.38/82.33
(±0.54 / ±0.78 / ±1.00)

38.57/0.92
(±1.04 / ±0.00)

Ours 97.00/91.32/85.69
(±0.51 / ±0.79 / ±0.89)

35.92/2.59
(±2.78 / ±0.22)

96.77/95.87/94.16
(±0.34 / ±0.40 / ±0.47)

10.44/0.65
(±0.59 / ±0.08)

Category Method DDXPlus (URTI) Atari–Berzerk

Acc (%) Lat/CT Acc (%) Lat/CT

Logic-based RNNLogic 18.75/16.29/13.28
(±0.00 / ±0.67 / ±1.83)

124.32/4.36
(±5.71 / ±0.39)

33.86/27.50/24.38
(±0.34 / ±0.57 / ±0.37)

72.46/2.04
(±3.27 / ±0.00)

STLR 22.45/18.33/15.59
(±0.00 / ±0.50 / ±1.18)

872.00/10.25
(±10.53 / ±0.74)

45.50/38.72/37.24
(±0.67 / ±1.83/ ±2.25)

432.35/7.18
(±8.20 / ±0.58)

DeepNN Re-Net 27.33/20.18/16.17
(±1.32 / ±1.54/ ±1.76)

1112.42/16.38
(±10.62 / ±0.42)

40.69/32.48/29.33
(±0.75 / ±0.50/ ±1.84)

723.02/4.42
(±5.48 / ±0.30)

Active Inf. DAI 46.82/39.27/34.20
(±0.82 / ±1.24/ ±1.33)

2033.25/3.88
(±4.59 / ±0.27)

59.97/52.28/41.46
(±0.72 / ±0.95 / ±1.30)

977.24/3.67
(±5.51 / ±0.93)

DAI-MC 57.20/52.15/43.67
(±0.67 / ±1.24/ ±1.49)

2304.23/4.75
(±6.29 / ±0.47)

66.82/58.20/48.20
(±0.64 / ±0.77/ ±0.90)

1429.00/4.95
(±4.87 / ±0.74)

LLM-based LaTee 28.16/22.14/20.38
(±0.32 / ±0.67/ ±0.92)

95028.72/20.39
(±45.88 / ±0.82)

62.18/54.21/49.28
(±0.46 / ±0.68 / ±0.94)

3230.43/11.64
(±7.61 / ±0.84)

Qwen-0.5B 24.85/19.62/17.35
(±0.42 / ±0.78 / ±1.05)

125842.15/N/A
(±52.35 / —)

58.42/51.25/46.18
(±0.58 / ±0.85 / ±1.12)

4856.72/N/A
(±8.75 / —)

Model-based RL DreamerV2 64.05/61.48/58.15
(±0.81 / ±0.99 / ±1.03)

452.25/10.08
(±5.36 / ±0.80)

76.33/72.18/69.47
(±0.67 / ±1.08 /±1.33)

108.02/6.87
(±0.98 / ±0.24)

Ours 79.63/73.58/68.07
(±1.54 / ±2.62 / ±2.60)

159.45/8.73
(±4.45 / ±0.29)

85.55/77.20/72.44
(±0.87 / ±0.92 / ±1.05)

92.63/3.53
(±2.29 / ±0.15)

Car-Following. This dataset exhibits a small-rule–high-payoff pattern: even compact rule sets saturate
accuracy (Acc@3 ≈96%) while keeping latency very low (≈10 ms). Training traces show consistent
decreases in all free energy components.
DDXPlus. On URTI with 225 actions, rule envelopes reliably capture low-frequency edge actions,
yielding pronounced gains on HHAR while sustaining strong Acc@k. Rule-triggered choices also
reduce per-step inference relative to model-only planning, though absolute latency remains higher
due to the large action space.

Temporal Visual Dataset Atari–Berzerk. With visual inputs (128×128 frames, 18 actions). To
further assess generalization, we conducted additional experiments on three Atari-100k games (Pong,
Breakout, Qbert) with varying complexity levels (see Appendix D.6). Fig. 2b shows that our encoder
extracts task-relevant signals structuring (St,mt) accurately with clear explanations after decoder,
and rule-guided inference examples demonstrate steady predictive rollouts and consistent decisions.

Baseline Limitations. Our baselines face distinct challenges: (i) Deep predictive models (Re-Net,
Transformer/BiGRU world models) lack rule libraries and explicit habit mechanisms, struggling with
rare actions and highly imbalanced action distributions (e.g., DDXPlus’s 225 actions with many rare
but critical diagnostic operations). (ii) Active inference baselines (DAI/DAI-MC) have only implicit
habit policies without explicit latent mental states and symbolic rules, making them inefficient for

8
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(a) NBA composite: training dynamics, rule visualization, test-set metrics, and inference with world-model
overlays. Additional qualitative figures and full curves in other datasets are in the Appendix D.
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(ii) Rule-guided inference with world-model overlays.

(b) Atari Berzerk: rule visualization and inference example, others deferred to the Appendix.

Figure 2: Composites for sequential (NBA) and temporal visual (Atari) datasets.

multimodal behaviors and rare actions, with high computational costs (e.g., DAI-MC latency: 2304ms
on DDXPlus). (iii) Model-based RL (DreamerV2) is limited by offline settings and sparse rewards,
underperforming on pure prediction tasks. (iv) Logic-based methods (RNNLogic, STLR) use static
or post-hoc extracted rules without joint optimization with world models. (v) LLM-based methods
(LaTee, Qwen-0.5B) suffer from high latency (e.g., LaTee: 95028ms, Qwen-0.5B: 125842ms on
DDXPlus), poor performance (Qwen-0.5B Acc@3: 19.62% vs ours: 73.58%), and lack of generative
world models or active inference mechanisms. Our rule-guided active inference addresses these
limitations by jointly learning rules and world models under a unified free-energy objective.

5.3 RULE–PERFORMANCE TRADE-OFF

Figure 3 shows the Pareto behavior between accuracy and latency as the rule bank grows. Four
consistent patterns emerge:
(1) Rules speed inference; accuracy is inverted-U in rule size. As rule count (RC) grows, reference
latency drops since cheap rule triggers replace costly planning. Accuracy first rises then falls: compact
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(a) Performance Trade-off Analysis for NBA
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(b) Performance Trade-off Analysis for Car-Following
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(c) Performance Trade-off Analysis for DDXPlus
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(d) Performance Trade-off Analysis for Atari–Berzerk

Figure 3: Rule–Performance trade-off across datasets. Each point corresponds to a rule-bank size
(RC/EN). Y-axis: accuracy (higher is better); X-axis: latency (lower is better). Bubble size encodes
peak memory (PM), color encodes HHAR, and vertical bars denote EN coverage. Stars indicate the
Pareto knees used in Table 1.

banks (e.g., NBA at RC≈6, Car-Following at RC≈3–4) capture reliable intents and boost Acc@k,
but excessive rules introduce spurious hits and conflicts, degrading decisions despite faster inference.
(2) Coverage vs. precision diverge after the knee. RC and rule-hit rate (RHR) keep increasing even
as Acc@k declines (HHAR may plateau). Thus which rules fire matters more than how many: too
many rules bias toward noisy or redundant envelopes that compete with the model (e.g., DDXPlus
peaks near RC≈376, Atari near RC≈64).
(3) Memory grows with RC; Pareto knee is optimal. Peak memory (bubble size) increases with
RC. The practical operating point is the knee, balancing accuracy, latency, and memory.
(4) Rules complement active inference. EFE-guided planning arbitrates between rollouts and rule
triggers via ∆F . With a compact, semantically grounded bank, triggers reduce ∆F and depth,
yielding large latency gains with robust accuracy. Oversized banks cause overlapping envelopes,
weakening arbitration and explaining post-peak accuracy drops.

5.4 ABLATION STUDY

We ablate four factors relative to the full model: (i) removing rules; (ii) removing the latent intention
mt; (iii) dropping generative consistency (VFE, or both VFE and KL); and (iv) greedy rule selection.
Key findings. Rules are essential: without them, both accuracy and latency degrade (e.g., NBA
Acc@3 91.4→79.5, latency 36→73ms). Latent intention mt organizes precision: removing z low-
ers accuracy and increases latency (e.g., Atari Acc@3 77.3→70.1). Generative consistency is critical:
−VFE or Only EFE keeps latency low but causes large accuracy drops (e.g., Car-Following Acc@3
95.9→ 78.5). Greedy rule selection yields the fastest inference (as low as 2.6 ms) but sacrifices
accuracy and HHAR, showing instability. Complete ablation study is provided in Appendix D.5.
Therefore, each ablated component removes a distinct capability: speed (no rules), precision (no z),
cognition grounding (no VFE), or stability (greedy).

6 CONCLUSION
We present a cognitive framework that jointly learns a world model and uses it to plan and select
future actions via active inference, while a rule engine provides fast, interpretable habitual control. A
universal mental-state set enables a single formulation across diverse domains. Experiments on sports
tracking, driving, clinical diagnosis, and Atari show strong accuracy under low latency, clear Pareto
trade-offs, and rule envelopes that align with human strategies. Overall, the framework captures key
aspects of human behavior and substantially enhances interpretability.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. The complete description
of both synthetic dataset generation and real-world dataset preprocessing methods are illustrated
in Appendix C. Details of the computational setup, including hardware configuration and software
environment, as well as the choice of hyper-parameters are documented in Appendix C.7. We will
release our code in the camera-ready stage to facilitate replication and further research.
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APPENDIX OVERVIEW

• Section A presents the rule-guided Wake–Sleep framework and online reasoning. It unifies
Wake and Sleep into a single pseudocode and details how state reconstruction, belief
updating, candidate rule extraction, and model optimization are integrated (Algorithms 1, 2,
3). All definitions (model factorization, VFE/EFE, policy, joint objective) strictly follow the
main text.

• Section B shows that our model is naturally equivalent to a mixture over latent states, and
that rule learning and activation can be interpreted as a lightweight EM-style approximation
to inference and parameter updates in this mixture.

• Section C describes dataset preprocessing and feature construction for NBA SportVU, Car-
Following, DDXPlus, and Atari–Berzerk, including the action spaces and the world-model
inputs. It also specifies the semantic interpretations of the discrete internal state m (Sec-
tion C.6), consolidates key hyperparameters for data/model and optimization/planning/rules
(Tables 2–3), and reports action distribution plots across all datasets (Figure 4).

• Section D provides additional experimental results beyond the main text: full training
dynamics (∆F , VFE, EFE, KL; Figure 5), testing metrics on held-out sets (Acc@K, rule-hit
rate, latency; Figure 6), rule envelopes and visualizations across domains (Figures 7 and 8),
end-to-end trajectory visualizations (Figures 9 and 10), full ablation study (Table 4), and
Atari-100k supplementary experiment (Section D.6, Table 5).

• Section E conducts sensitivity analyses and lists the exact LLM prompts used: NBA action-
parameter sensitivity curves (Figure 11), the effect of the latent mental-state cardinality m
(Figures 12–14; DDXPlus has fixed m), LLM prompts for all datasets (Section E.5), hy-
perparameter sensitivity analysis (Section E.3, Tables 6–7), and LLM-guided component
ablation study (Section E.4).

• Section F discusses limitations and broader impact, including domain specificity of mined
rules, sensitivity to thresholds and hyperparameters, computational considerations, depen-
dence on world-model quality, and potential directions such as hierarchical timescales and
real-world deployment.

A WAKE–SLEEP ALGORITHM

Algorithm 1 Rule-Guided Active Inference: Unified Wake–Sleep Cycle

Require: Dataset D, generative model pϕ, encoder qϑ, policy ϕπ , rule set F = {(S⋆
f ,m

⋆
f , af , ρf )}

1: Initialize parameters (ϕ, ϑ, ϕπ); set F ← ∅
2: for each epoch do
3: Wake phase (real trajectories)
4: for trajectory τ ∈ D do
5: for time t = 1:T do
6: Infer (St,mt) ∼ qϑ(St,mt | Ht)
7: Compute per-step free energy VFEt (Eq. 2); accumulate ∆F
8: if ∆F < −δF recurrently for (SMAP

t ,mMAP
t , at) then

9: Create or update rule (S⋆,m⋆, a, ρ) with confidence ρ← ρ+ δconf

10: Update centroid S⋆ ←
∑

S w(S)S∑
S w(S) , w(S)∝exp(−VFE(O,S,m⋆))

11: end if
12: end for
13: end for
14: Update (ϕ, ϑ) on real data by minimizing VFE (Eq. 2)

15: Sleep phase (replay)
16: for mini-batch (S,O,m, a) ∼ pϕ do
17: Minimize joint objective Ft = VFEt + η · EFEt + γ ·KL(·) (Eq. 6)
18: Update (ϕ, ϕπ) by ∇Ft; keep qϑ consistent
19: Refine S⋆, update ρ, prune rules with ρ < δconf
20: end for
21: end for
This section provides algorithmic details of our framework. We unify the Wake and Sleep phases into
a single pseudocode (Algorithm 1), describe the hybrid online reasoning procedure (Algorithm 2),
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and summarize the two-stage training schedule (Algorithm 3). All definitions and objectives strictly
follow the main text: the generative model factorization (Eq. 1), the variational free energy (VFE,
Eq. 2), the expected free energy (EFE, Eq. 3), the rule fusion policy (Eq. 5), and the joint objective
(Eq. 6).
Algorithm 2 Online Reasoning with Rule Fusion and Planning

Require: History Ht, encoder qϑ, model pϕ, rule set F , horizon H , beam width K
1: Infer (St,mt)∼qϑ(St,mt | Ht)
2: Rule prior: for each r ∈ F , if κ(St, S

⋆
r )≥τr and mt = m⋆

r , add weighted vote ρr for ar
3: If rules triggered, form πrule(a | St,mt); else set πrule ≡ 0
4: Planning fallback: evaluate candidate actions by EFE (Eq. 3) via beam search (width K,

horizon H)
5: Fuse distributions: pϕπ (at | St,mt,F) ∝ πrule(at) + (1− 1rule hit) exp{−η ·EFEt(at)} (Eq. 5)

A.1 WAKE & SLEEP PHASES

Wake. Operates on real trajectories: latent inference by qϑ, per-step free energy from Eq. 2, and
candidate rules from recurring (S,m, a) triplets that stably reduce free energy. Rule anchors are
updated as weighted centroids (exp(−VFE) as weights).
Sleep. Uses replay samples from pϕ, minimizing the composite loss Jt (Eq. (5)). Rules are refined
(anchor shift, confidence update) and pruned if redundant or low-confidence.
This division follows the classic wake–sleep paradigm (Hinton et al., 1995; Friston et al., 2015) but
adapted to rule-guided active inference.

A.2 TRAINING SCHEDULE

We adopt a two-stage schedule to stabilize learning.
Algorithm 3 Two-Stage Training: Blockwise Pretraining and Full Wake–Sleep

Require: Dataset D, blocks {Db}Bb=1
1: Stage 1: Blockwise pretraining
2: for block b = 1:B do
3: for mini-batch (O, a) ∈ Db do
4: Infer S ∼ qϑ(S | O); reconstruct O
5: Update (ϕ, ϑ) by minimizing VFE only (Eq. 2)
6: end for
7: end for
8: Stage 2: Full Wake–Sleep training
9: for epoch = 1:E do

10: Run Wake phase on real data (Alg. 1, lines 3–12)
11: Run Sleep phase with replay (Alg. 1, lines 14–18)
12: Refine/prune rule pool; update confidences
13: end for

A.3 SUMMARY

- Wake extracts rules via ∆F -based improvements and updates confidences. - Sleep uses replay to
refine rules and jointly minimize Jt (Eq. 6). - Online reasoning integrates rule priors and planning
(Eq. 5), realized via beam search or MCTS. - Training proceeds in two stages: blockwise pretraining
for fast bootstrapping, then full Wake–Sleep for convergence.

B MIXTURE MODEL OVER LATENT STATES AND CONNECTION TO EM-STYLE
UPDATES

In the main text (Sec. 4.1), we introduce rules as compact, latent-grounded carriers of habitual
knowledge. Here we make explicit a probabilistic interpretation of the rule library as a Gaussian
mixture over latent contexts, and clarify how our rule scores and updates correspond to approximate
EM steps.

Gaussian mixture over latent contexts. Recall that the latent state factorizes as Zt = (St,mt),
with continuous St and discrete mt ∈ {1, . . . ,K}. Each rule r stores a prototype

(S⋆
r ,m

⋆
r , ar, ρr),

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where S⋆
r is a continuous anchor in latent state space, m⋆

r is a discrete mental-state label, ar is the
associated action, and ρr ∈ [0, 1] is a nonnegative rule weight. The full rule set

F = {(S⋆
r ,m

⋆
r , ar, ρr)}r

can be viewed as the parameters of a Gaussian mixture over latent contexts.
Introduce a latent rule index rt ∈ {1, . . . , |F|} at each time step, with categorical prior

p(rt = r) = πr,
∑
r

πr = 1,

and component-specific priors over (St,mt) of the form
p(St | rt = r) = N (St; µr,Σr), p(mt | rt = r) = δ(mt = m⋆

r),
where N (·;µr,Σr) is a Gaussian over the continuous latent state and δ(·) is a Kronecker delta fixing
the discrete mental state. In our implementation, we tie the mean to the stored anchor, µr = S⋆

r , and
use a shared covariance Σr = σ2I , so

p(St | rt = r) = N (St; S
⋆
r , σ

2I) ∝ exp
(
− 1

2σ2 ∥St − S⋆
r∥2
)
.

Under this mixture, the posterior over rules factorizes as
q(rt = r | St,mt) ∝ p(rt = r) p(St | rt = r) p(mt | rt = r) (7)

∝ πrN (St; S
⋆
r , σ

2I)1{mt = m⋆
r}.

Thus the posterior responsibility of rule r is a Gaussian function of the distance between St and the
anchor S⋆

r , modulated by whether mt matches m⋆
r .

Connection to the encoder and rule scores. In the main text, given a new historyHt, the encoder
qϑ(Zt | Ht) produces a posterior over (St,mt), and we use its MAP estimate

SMAP
t = argmax

s
qϑ(St = s | Ht), mMAP

t = argmax
k

qϑ(mt = k | St,Ht).

Assuming qϑ(St | Ht) is approximately Gaussian with mean SMAP
t , combining this approximate

posterior with the Gaussian prior p(St | rt = r) yields log-responsibilities that are quadratic in
∥SMAP

t − S⋆
r∥, i.e. Gaussian in distance.

We instantiate this by defining Gaussian kernel scores

wr(t) = κ(SMAP
t , S⋆

r )1{mMAP
t = m⋆

r}, κ(SMAP
t , S⋆

r ) := exp
(
− 1

2σ2 ∥SMAP
t − S⋆

r∥2
)
.

These scores act as unnormalized responsibilities of rule r for the current context. Comparing with
the mixture posterior above, this corresponds to the approximation

q(rt = r | SMAP
t ,mMAP

t ) ∝ πr exp
(
− 1

2σ2 ∥SMAP
t − S⋆

r∥2
)
1{mMAP

t = m⋆
r},

i.e. a Gaussian posterior over the rule index as a function of the latent state. In our implementation,
we absorb πr into the learned rule weight ρr, and treat κ(·, ·) as the dominant distance-based term.
A rule is declared active if

max
r

wr(t) ≥ τr,

so the threshold τr simply truncates very small posterior responsibilities.
When multiple rules suggest the same action a, we define a rule-induced action distribution

π(a | SMAP
t ,mMAP

t ) ∝
∑

r: ar=a

wr(t) ρr,

normalized over a. Under the Gaussian mixture view, wr(t) approximates the context-dependent
responsibility q(rt = r | SMAP

t ,mMAP
t ), and ρr is the learned mixture weight of rule r.

Connection to EM-style updates. In the wake phase, we grow and refine rules from real trajectories.
When a triplet (SMAP

t ,mMAP
t , at) recurs often with low free energy, we either (i) create a new rule

(S⋆
r ,m

⋆
r , ar) with initial weight ρr > 0, or (ii) increase the weight ρr of an existing nearby rule.

Continuous anchors are updated as weighted Gaussian centroids:

S⋆
r ←

∑
S∈Sreal

r
u(S)S∑

S∈Sreal
r

u(S)
, u(S) ∝ exp

(
− VFE(O,S,m⋆

r ;ϕ, ϑ)
)
,

where Srealr collects latent states assigned to rule r on real data. This update is an EM-style M-
step on the Gaussian means µr in the mixture model, with u(S) playing the role of (reweighted)
responsibilities.
During sleep, rules are further refined using replayed trajectories: anchors S⋆

r are updated on replayed
latents, rule weights ρr are adjusted based on how often and how well they explain latent contexts,
and rules with persistently low effective weight are pruned. Birth (when no rule’s responsibility
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exceeds the threshold) and pruning (when a rule receives negligible responsibility) play the role of
cluster creation/deletion in nonparametric Gaussian mixture models (e.g., DP-means).
Although we present the rule mechanism in algorithmic terms (kernels, thresholds, centroids), it
admits a natural Bayesian interpretation: rules correspond to Gaussian mixture components over
latent contexts (St,mt), with Gaussian priors over St and fixed labels for mt; wr(t) approximate
posterior responsibilities over the rule index; and the anchor and weight updates correspond to
EM-style M-steps. This interpretation clarifies that the rule library is not an ad-hoc heuristic, but a
structured, lightweight and computationally efficient approximation to Gaussian mixture modeling in
latent AIF space.

C DATASET PREPROCESSING AND FEATURE CONSTRUCTION

C.1 DATASET

NBA SportVU. We extract frame-level coordinates of the ball and ten players from SportVU event
data, filtering invalid samples (e.g., missing entities or frames with fewer than 11 tracked objects)
and sampling up to 20 clips per game. Since raw coordinates are insufficient for rule construction,
we construct new parameterized features under the guidance of large language models (LLMs) and
conduct a rationality analysis to validate feature choices. This yields interpretable features such
as relative velocity, spacing, and formation compactness. The final dataset contains about 9.8k
training samples and 2.5k validation samples, with an action space of 7 classes (e.g., straight run,
turn, dribble).
Car-Following. The original traffic data do not explicitly provide environmental dynamics. We
therefore define an action world model, where observation features are constructed from action
sampling statistics (e.g., acceleration and headway patterns) to characterize driving dynamics. The
resulting dataset consists of about 19k training samples and 2.5k validation samples, with 7 driving
modes such as cruise, follow, and accelerate.
DDXPlus. The DDXPlus dataset consists of diagnostic trajectories generated by a multi-disease
Naive Bayes teacher model. We select URTI, the most frequent disease, as the target condition
for diagnostic inference. Each trajectory contains a sequence of ASK actions (doctor’s inquiries)
followed by a final DIAG action. After preprocessing and formatting, we obtain about 165k training
samples and 25k validation samples, with an action vocabulary of 225 classes.
Atari–Berzerk. We use high-score human demonstration trajectories in the Atari Berzerk game
(representing strong human intelligence). Raw RGB frames are converted into 128× 128 grayscale
images. Each frame is paired with the corresponding human action, drawn from 18 discrete classes
(movement, positioning, firing, etc.). The processed dataset contains about 16.5k training samples
and 16.5k validation samples.

C.2 NBA SPORTVU

Action space. We follow the analytic definitions and symbolic feature construction described in
the main text and experimental log. Seven discrete basketball actions are defined from player–ball
relations. Let pt ∈ R2 denote the player’s position, bt ∈ R2 the ball position, and ht ∈ R2 the unit
heading vector (ht =

pt−pt−1

∥pt−pt−1∥ ). Define constants
Ddribble = 2 ft, Drelease = 6 ft, Dreceive = 2 ft.

Then the discrete action at is given by

at =



4, ∥pt − bt∥ ≤ Ddribble,

5, ∥pt−1 − bt−1∥ ≤ Ddribble, ∥pt − bt∥ ≥ Drelease,minj ∥yjt − bt∥ ≤ Dreceive,

6, ∥pt−1 − bt−1∥ ≤ Ddribble, ∥pt − bt∥ ≥ Drelease,minj ∥yjt − bt∥ > Dreceive,

3, (ht−1 · ht) > ϵ,

2, (ht−1 · ht) < −ϵ,
1, otherwise if (ht−1 · ht) < 0,

0, otherwise if (ht−1 · ht) ≥ 0,

where ϵ = π/18 (10°) and yjt are defender positions.

Symbolic feature extraction. For each historical frame t = 1, . . . ,H:
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(i) Soft direction–kernel features. For opponent j and basis direction bi ∈
{(1, 0), (0, 1), (−1, 0), (0,−1)}, define

ϕdir
t,j,i = exp

(
−∥pt − yjt ∥2

2σ2

)
·max

(
b⊤i u

j
t , 0
)
,

where uj
t =

yj
t−pt

∥yj
t−pt∥

and σ = 10.

(ii) Relational distance/angle features. Let dj = ∥pt − yjt ∥ and sort d(1) ≤ d(2) ≤ d(3). Define

drim = ∥pt − r∥, θrim = arctan 2(ry − py, rx − px), dmean = 1
|O|−1

∑
j∈O\{handler}

dj .

Then form
ϕrel
t = [ d(1), d(2), d(3), drim, θrim, dmean ].

Further sensitivity analysis of LLM-guided action parameters, as well as the prompts used for
generating symbolic actions, are provided in Appendix E.

C.3 CAR-FOLLOWING

For the car-following domain, we use the open-source trajectory dataset where each run is recorded
as a sequence of driving regimes. Data are extracted from HDF5 files and organized into fixed-length
training samples.

Preprocessing. Each sample is represented by:
• Previous-K one-hot encoded regimes (history of executed actions).
• dt: time interval between consecutive frames.
• run len: cumulative length of the current driving run.
• since last: time elapsed since the last regime change.

This yields a structured observation vector per frame.

Action space. We adopt seven discrete regimes (e.g., constant speed, acceleration, deceleration,
free-flow, car-following, closing-in, and emergency braking), directly encoded in one-hot form.

C.4 DDXPLUS

We use the DDXPlus dataset, which consists of synthetic diagnostic dialogues covering multiple
pathologies. Each trajectory is represented as a sequence of evidence acquisition (ASK) and diagnostic
(DIAG) actions.

Preprocessing. Each record in the original dataset contains a set of evidences with associated
ground-truth diagnoses. We construct training samples as:

• Evidence parsing: convert raw evidences into tokenized observations.
• ASK/DIAG sequence construction: generate trajectories where the agent sequentially asks

for evidence or outputs a diagnosis.
• Subset selection: restrict to URTI pathology for controlled experiments, with limits on

train/val/test sizes as documented in the experimental log.

World model representation. For each evidence e, we compute an embedding E2V(e) (Evi-
dence2Vec). At each step, the state representation concatenates:

• The Evidence2Vec embedding of the most recent evidence.
• A Top-K posterior vector over candidate diagnoses.
• The entropy of the posterior distribution as an uncertainty measure.

Action space. The action vocabulary consists of all ASK tokens (corresponding to medical ev-
idences) and DIAG tokens (candidate diagnoses). This yields a discrete action set comparable to
multi-class classification.

C.5 ATARI-BERZERK

We use human gameplay trajectories on the Atari BERZERK environment, where each frame is a raw
image and actions correspond to discrete joystick commands.
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Preprocessing. Game episodes are unpacked into frame sequences. Each frame is preprocessed by:
• Resizing to 128× 128 pixels.
• Converting to grayscale.
• Normalizing pixel intensities to [0, 1].

Sequences are then segmented into fixed horizons with stride, producing training samples aligned
with action labels.

World model representation. A vision encoder–decoder architecture is used to reconstruct frames
and predict latent states. The encoder extracts spatial features, while the decoder ensures faithful
reconstruction for VFE minimization. Temporal dependencies are modeled by a Transformer-based
dynamics module.

Action space. We adopt the original Atari action set with 18 discrete joystick commands (e.g.,
move directions, fire, stay). Each action is treated as a one-hot token in training.

C.6 INTERNAL STATE DEFINITIONS

LLM-guided mental-state matching. We construct a uniform matching method for mental states
M = {m1, . . . ,mK}, which correspond to interpretable intentions or sub-goals and, together
with the external continuous state St, form the latent pair (St,mt) that drives rule triggering and
planning. Unless a dataset already provides salient labels that can directly play the role of mental
states (e.g., severity judgments in DDXPlus), we rely on large language models (LLMs) as expert
guidance to generate discrete candidate mental states conditioned on task-specific context, yielding
semantically grounded labels (e.g., defensive/offensive sub-goals in sports, conservative/aggressive
modes in driving). The exact prompts and semantic candidate lists are given in Appendix E.5, while
a sensitivity analysis over the number of mental states K appears in Appendix E.2.
At the optimal number of states, we interpret each m as follows:

NBA SportVU. Three mental states are used:
• m = 0: Habitual/exploit — stable ball handling or passing routines.
• m = 1: Explore — probing maneuvers or less frequent moves.
• m = 2: Subgoal switching — transitions between attack patterns (e.g., dribble→ shoot).

Car-Following. Two mental states are used:
• m = 0: Exploit — stable regimes such as constant speed or smooth following.
• m = 1: Explore — rare or abrupt switching regimes (e.g., sudden braking, acceleration).

DDXPlus. Five mental states are used:
• m = 1: Early exploration of evidences.
• m = 2: Focused questioning around relevant symptoms.
• m = 3: Transition phase toward diagnosis.
• m = 4: Confident diagnosis with supporting evidence.
• m = 5: Over-exploration or redundant questioning.

Atari-Berzerk. Four mental states are used:
• m = 0: Exploit — regular movement in safe zones.
• m = 1: Explore — irregular actions or novel paths.
• m = 2: Danger/Escape — evasive maneuvers when surrounded by enemies.
• m = 3: Aggressive attack — high-risk firing at opponents.

These semantic interpretations are derived from LLM-guided prompts and verified by sensitivity
analysis of the number of latent states (Appendix E.2).

C.7 TRAINING PARAMETERS

Model backbones across domains. For structured sequential data (NBA, Car-Following, DDX-
Plus), the generative model is parameterized by a Transformer (NBA, DDXPlus) or a Gaussian
BiGRU (Car-Following), modeling latent dynamics pϕ(St |St−1, at−1) and observation reconstruc-
tion pϕ(Ot |St). The inference model is a corresponding Transformer/BiGRU encoder approximating
qϑ(St,mt |Ht). The policy head conditions on (St,mt) and outputs discrete action distributions via
a fully connected layer with softmax or Gumbel-softmax. For temporal visual data (Atari–Berzerk),
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Table 2: Data windows, sizes, action vocab, model components, and parameter counts.

NBA SportVU Car-Following

Hist / Pred window 10 / 5 10 / 5
Train / Val / Test 9,840 / 2,460 / — 19,250 / 2,500 / —
#Actions 7 7
Batch 64 64
Input resolution — —
Model components Transformer BiGRU
Model input features obs hist / obs pred prevK, dt, run len, since last
#Params (×106) ∼3.5M ∼2.2M

DDXPlus Atari–Berzerk

Hist / Pred window all / 5 10 / 5
Train / Val / Test ≈165k / 25k / 25k (shard 5k) 16,541 / 16,581 / —
#Actions 225 (ASK+DIAG) 18
Batch 64 64
Input resolution — 128×128 (gray)
Model components Evidence2Vec + Transformer CNN encoder–decoder + Transformer
Model input features symptom/test embeddings (Evidence2Vec) raw frames
#Params (×106) ∼8.5M ∼13.6M

Table 3: Optimization schedule, planning, and rule-related hyperparameters.

NBA SportVU Car-Following DDXPlus Atari–Berzerk

Pretrain blocks / epochs 5 / 1 5 / 1 5 / 1 5 / 1
Pretrain LR 1×10−3 1×10−4 1×10−3 1×10−4

Full epochs 15 15 15 15
Full LR 3×10−4 1×10−4 3×10−4 1×10−4

Weight decay 0.01 0.01 0.01 0.01
Warmup steps 2000 4000 16000 2000
(η, γ) (0.05, 1) (0.01, 1) (0.01, 10) (0.2, 5)
Planning horizon 4 4 4 4
Beam width k 6 6 6 6
Rule thresholds
(∆F, δsup, δconf )

(0.25, 0.75, 0.75) (0.25, 0.75, 0.75) (0.5, —, 0.75) (5, 0.75, 0.75)

the generative model uses a convolutional encoder (CNN) to extract frame-level features, combined
with a temporal Transformer to model latent dynamics, and a decoder to reconstruct pϕ(Ot | St),
while the inference model jointly processes CNN features with temporal modules to approximate
qϑ(St,mt |Ht). The policy head applies an MLP with softmax on the latent representation to output
distributions over actions.
Tables 2 and 3 list dataset-specific settings strictly taken from the experimental log and consistent
with the main-text modules.

Notes. “—” indicates not specified in the log; we keep it unspecified here. Rule thresholds are
dataset-specific as recorded. Planning uses beam search; horizon refers to the planning horizon (not
the hist/pred window). All settings align with Appendix A.

C.8 ACTION DISTRIBUTION

To further illustrate the characteristics of our datasets, we plot the empirical action distributions for
all domains (NBA, Car-Following, DDXPlus, Atari–Berzerk) in Figure 4. These histograms reveal
highly imbalanced patterns: for instance, NBA is dominated by the straight action (∼69%),
Car-Following by cruising (F,∼55%), DDXPlus by a few high-frequency ASK/DIAG queries (top-10
actions > 60%), while Atari–Berzerk is dominated by move-and-fire combinations (> 50%) with
many rare actions < 5%.
Despite this imbalance, our framework adapts well: frequent actions are mainly handled by active
inference and multi-step planning, while infrequent actions are captured effectively by mined rules.
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Figure 4: Action distribution plots for all datasets. Each domain exhibits significant skew (e.g.,
NBA dominated by straight, Car-Following by F, DDXPlus by top ASK/DIAG queries, Atari by
move+fire combinations), yet our framework adapts by leveraging rules for rare actions and active
inference for frequent actions.

This synergy ensures that rare but semantically distinct behaviors (often tied to edge-case conditions)
form clean rule clusters that are easily separated, while frequent actions are supported by robust
predictive inference. As a result, our method naturally balances between rule coverage and world-
model planning, yielding strong performance even under skewed data distributions.
This also explains the improvements over baselines (Table 1): the rule-guided component is especially
beneficial for rare actions, while the world-model inference sustains accuracy on dominant classes,
leading to overall gains in accuracy, latency, and interpretability.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 TRAINING CURVES

Figure 5 reports the complete training dynamics for all datasets. Each panel shows the two–stage
schedule (blockwise pre-training followed by full wake–sleep training), including trajectories of ∆F ,
VFE, EFE, KL terms, as well as rule count and inference latency.
Across all domains, we observe a consistent pattern. In the pre-training stage, VFE drops quickly
as the world model learns to reconstruct observations, while ∆F remains relatively high due to
unexplored policies. During the wake–sleep stage, both EFE and KL steadily decrease, indicating
better exploitation of action sequences and improved belief calibration. Meanwhile, the number
of rules increases sharply before saturating, mirroring the consolidation of interpretable behavioral
motifs. This growth reduces inference latency since frequent or edge-case behaviors are matched
directly by rules rather than through full rollouts. Overall, the curves validate our design: pre-training
bootstraps stable perception, while full wake–sleep training integrates symbolic rules with active
inference to minimize free energy and accelerate decision making.

D.2 TESTING METRICS ON HELD-OUT SETS

Across datasets, several consistent trends emerge (Fig. 6): (i) Accuracy: All domains show monotonic
gains in Acc@1/3/5 after switching to full-training, with NBA and Car-Following saturating near
> 90% top-5 accuracy, and DDXPlus steadily climbing from low baselines to > 80%. Atari, despite
its image-based complexity, also benefits from rule integration to reach strong top-5 scores. (ii)
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Figure 5: Complete training curves for all datasets. Each panel shows the two–stage schedule
(pre-training then full-training) with the evolution of ∆F , VFE, EFE, KL, together with rule count
and inference latency.
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Figure 6: Testing metrics on held-out sets. Each panel shows the evolution of Acc@K, rule-hit-rate
(RHR), and inference latency during training. The transition from pre-training (grey) to full-training
(white) leads to stable improvements across datasets.

Rule-Hit Rate (RHR): Rare actions (e.g., NBA shoot, Car-Following regime switches, DDXPlus
rare ASK queries, Atari panic-fire) are disproportionately captured by rules, leading to elevated
RHR in the early epochs of full-training. This validates the complementary role of symbolic rules
in handling skewed action distributions. (iii) Latency: Inference latency drops sharply once the
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Figure 7: Rule envelopes and visualization across datasets (Part 1). Each panel shows representa-
tive encoder/decoder spaces or image states, where rules emerge as compact clusters or envelopes
(colored ellipses). The learned rules successfully capture domain-specific behaviors: (a) NBA:
interpretable envelopes around straight, dribble, pass, and shoot; (b) Car-Following: distinct clusters
separating acceleration/deceleration regimes.

model stabilizes after the pre-training phase, and remains low and consistent. This is because rules
bypass expensive inference for rare but critical cases, while frequent actions rely on streamlined
active inference.
Taken together, these results confirm that our hybrid framework achieves robust accuracy, rule
coverage, and efficiency simultaneously, and adapts well to domains with highly skewed action
distributions.

D.3 RULE ENVELOPES AND VISUALIZATION

Across datasets, the rule visualizations (Fig. 7 and Fig. 8) highlight the complementary role of
symbolic envelopes:
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Figure 8: Rule envelopes and visualization across datasets (Part 2). Continued from Figure 7. (c)
DDXPlus: ASK/DIAG trajectories forming well-separated thematic clusters; (d) Atari: pixel-level
rules aligned with human gameplay semantics (exploit, explore, danger).

• Compactness & interpretability. Rules appear as tight ellipsoidal regions in latent spaces,
clearly separating heterogeneous actions (e.g., NBA dribble vs. shoot, Car-Following accel-
erate vs. cruise).

• Low-frequency action capture. Rare but semantically important actions (e.g., DDXPlus
critical DIAG, Atari panic-fire) form easily isolatable clusters, supporting our earlier finding
that rules excel at handling imbalanced data distributions.

• Cross-domain generality. Despite domain differences (trajectories, medical dialogues, raw
pixels), the same principle holds: rules provide sharp local decision boundaries, while the
world-model sustains performance on frequent, high-density regions.

These visualizations complement the quantitative results: rule-guided inference consistently improves
on low-frequency actions, while active inference stabilizes dominant classes.
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(a) NBA SportVU
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(b) Car-Following

Figure 9: End-to-end trajectory visualizations (Part 1). Each panel summarizes one test trajectory
with four synchronized views: (i) GT vs. reconstruction (3D curve); (ii) latent path with rule
envelopes; (iii) interpretable reconstruction in the native domain (court/road/dialog/screen) with rule
matches; and (iv) time series of ∆F (t) and action confidence with shaded rule-matched spans.

D.4 TRAJECTORY VISUALIZATIONS

To further demonstrate how our framework integrates generative modeling and symbolic rules during
sequential decision-making, we provide trajectory-level visualizations across all datasets (Fig. 9 and
Fig. 10). These examples reveal the fine-grained dynamics of action prediction and rule invocation
on individual sequences.
Each panel illustrates four complementary perspectives: (i) GT vs. reconstruction in a 3D latent
space, highlighting the fidelity of the world model; (ii) the latent-state path overlaid with rule
envelopes (colored ellipsoids) where compact regions indicate high-confidence rule matches; (iii)
an interpretable reconstruction in the native action/spatial domain (e.g., court or road overlays,
dialog turn canvas, or game screen) showing how rules correspond to semantically meaningful
sub-sequences; and (iv) a time series of ∆F (t) (lower is better) and action confidence, with shaded
spans marking rule-matched intervals.
Across domains, a consistent pattern emerges: entering a rule envelope typically coincides with a
local decrease of ∆F (t) and a rise in confidence, indicating that rules complement the generative
model by stabilizing predictions in distinctive regions (often edge cases). Conversely, frequent
behaviors are primarily handled by active inference without rule triggers. This interplay yields both
stable performance and interpretable decision traces on held-out trajectories.
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Figure 10: End-to-end trajectory visualizations (Part 2). Continued from Figure 9. Across
datasets, rule matches align with local reductions of ∆F (t) and confidence peaks, supporting the
complementary mechanism: frequent patterns rely on active inference, while rare/edge-case segments
are captured by rules, yielding stable predictions and interpretable timelines.

D.5 ABLATION STUDY

We report the full ablation results across all four datasets in Table 4. Variants include: (i) w/o
Rules, removing all rule triggers; (ii) Rules w/o z, keeping rules but removing the latent intention;
(iii) −VFE and Only EFE, dropping generative consistency; (iv) Greedy, using rule hits without
probabilistic arbitration.

Findings per dataset. NBA. Rules deliver clear accuracy and latency gains: without them, Acc@3
drops from 91.4% to 79.5% and latency doubles (36→73 ms). Latent mt sharpens envelopes:
removing z reduces Acc@3 to 85.9%. Generative consistency is crucial: −VFE lowers Acc@3 to
67.4%, showing that observation-consistent dynamics are necessary for reliable arbitration. Greedy
selection is very fast but unstable (Acc@3 87.1%).

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 4: Full ablation results across four datasets (mean±std across 3 random seeds). Columns report
top-k accuracy (%), latency per step (ms), and HHAR (%).

NBA SportVU Car-Following

Variant Acc@1 Acc@3 Acc@5 Lat HHAR Acc@1 Acc@3 Acc@5 Lat HHAR

Full (Ours) 97.00±0.51 91.32±0.79 85.69±0.89 35.92±2.78 85.24±2.15 96.77±0.34 95.87±0.40 94.16±0.47 10.44±0.59 56.82±0.96
w/o Rules 83.25±0.18 79.23±0.32 61.72±0.28 72.18±1.02 23.63±0.51 92.37±0.07 87.30±0.36 83.09±0.20 18.68±0.03 24.38±0.27
Rules w/o z 93.46±0.11 86.45±0.54 80.01±0.43 49.63±0.44 71.46±0.76 93.48±0.08 89.75±0.30 86.01±0.25 14.02±0.30 43.10±0.76
−VFE (Rules+z) 72.60±0.33 67.23±0.51 58.56±0.58 30.60±1.72 38.42±1.61 84.69±0.21 78.41±0.26 71.04±0.38 10.04±0.36 35.29±0.38
Only EFE (−VFE,−KL) 71.64±0.30 67.21±0.48 58.39±0.55 29.87±1.61 36.51±1.57 84.15±0.20 77.15±0.24 69.57±0.35 10.03±0.33 33.51±0.35
Greedy (Rules+z) 94.70±0.28 87.28±0.45 69.14±0.53 14.84±1.53 44.56±1.50 93.82±0.19 87.23±0.31 81.46±0.27 2.74±0.33 28.49±0.27

DDXPlus (URTI) Atari–Berzerk

Variant Acc@1 Acc@3 Acc@5 Lat HHAR Acc@1 Acc@3 Acc@5 Lat HHAR

Full (Ours) 79.63±1.54 73.58±2.62 68.07±2.60 159.45±4.45 73.39±1.05 85.55±0.87 77.20±0.92 72.44±1.05 92.63±2.29 66.35±0.96
w/o Rules 39.27±0.35 33.82±0.48 28.48±0.75 222.95±1.71 7.05±0.45 71.39±0.30 60.37±0.64 56.39±0.20 119.92±1.40 38.52±0.07
Rules w/o z 71.96±0.16 67.44±0.66 56.88±0.69 201.94±2.16 38.96±0.40 76.12±0.05 70.93±0.26 65.94±0.45 101.90±1.23 61.33±0.74
−VFE (Rules+z) 73.58±0.97 65.19±1.70 52.33±1.77 150.47±2.76 58.53±1.36 74.38±0.56 66.09±0.79 60.55±0.91 100.53±1.58 52.43±0.73
Only EFE (−VFE,−KL) 72.68±0.91 64.63±1.60 49.56±1.66 149.26±2.58 56.51±1.28 74.01±0.53 65.74±0.74 59.12±0.85 99.71±1.48 50.51±0.68
Greedy (Rules+z) 71.03±0.85 64.16±1.51 49.77±1.56 106.86±2.38 52.23±1.18 79.11±0.50 69.37±0.71 63.20±0.81 78.90±1.37 38.94±0.63

Car-Following. Compact rules already saturate performance, and ablations confirm their necessity:
without rules Acc@3 falls to 87.3%. Dropping VFE causes large accuracy losses (78.5%). Greedy
gives minimal latency (2.6 ms) but sacrifices accuracy and HHAR.
DDXPlus. With a large 225-action vocabulary, rules especially benefit low-frequency actions.
Removing them collapses Acc@3 from 73.6% to 33.2%. Removing z or VFE also yields severe
drops.
Atari–Berzerk. Rules and mt jointly structure pixel-based latents. Removing rules lowers Acc@3
from 77.3% to 60.3%, and removing z reduces it further. VFE consistency again proves critical,
while greedy selection gains speed but loses accuracy.

Conclusion. Across all domains, the full model (rules + latent intentions + generative consistency)
provides the best balance of accuracy and latency. Each ablation removes a distinct capability: speed
(no rules), precision (no z), grounding (no VFE), or stability (greedy).

D.6 ATARI-100K SUPPLEMENTARY EXPERIMENT

To evaluate our algorithm’s performance on larger-scale datasets and assess model generalization
under data-limited conditions, we conduct a supplementary experiment following the Atari-100k
benchmark protocol (Kaiser et al., 2020). Atari-100k is a low-interaction budget benchmark that limits
each game to 100,000 agent steps (approximately 2 hours of human gameplay), emphasizing data
efficiency and rapid learning—a more challenging setting that better reflects real-world constraints.
Unlike online RL settings where agents interact with the environment, we use offline data from the
DQN Replay Dataset (Agarwal et al., 2020) to construct frame-action pairs for world model learning.
We subsample to 100,000 steps per game to match the Atari-100k benchmark protocol, selecting
top-scoring trajectories to ensure expert-level demonstrations.

Dataset Description. We select 3 representative games from the Atari-100k benchmark, spanning
different complexity levels. The games are chosen to represent a spectrum of difficulties: from
simple games with minimal visual information to more complex games requiring sophisticated
decision-making:

• Pong: Simple game with minimal visual information (only paddles and ball). This tests our
method’s ability to handle games with sparse visual cues.

• Breakout: Medium complexity game with moderate visual information (bricks, paddle,
ball). This represents similar complexity to Berzerk but with different game mechanics.

• Qbert: Medium-to-high complexity game with moderate visual information (pyramid
structure, enemies, player character). This tests requiries more sophisticated decision-
making than Breakout.

For each game, we follow the same preprocessing and action space configuration as Atari-Berzerk
(see Section C.5 and C.7 for details). We also use the same model architecture and training procedure
as Atari-Berzerk. All other hyperparameters (encoder architecture, world model, mental states,
planning configuration, optimizer settings) are identical to Berzerk to ensure fair comparison. The
key differences are:

• Training Data Limit: Due to the 100k-step constraint, we train for 40 epochs with early
stopping (vs. unlimited training for Berzerk).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 5: Results on 3 selected Atari-100k games and Atari-Berzerk for comparison (mean±std
across 3 random seeds). Columns report top-k accuracy (%), latency per step (ms), and HHAR (%).
Atari-100k games are limited to 100,000 training steps, while Berzerk uses ∼16.5k samples with
unlimited training.

Game Acc@1 (%) Acc@3 (%) Acc@5 (%) Latency (ms) HHAR (%)

Pong 86.18±0.65 90.28±0.58 92.51±0.72 32.41±1.15 78.15±0.85
Breakout 72.17±0.75 76.69±0.68 79.29±0.82 75.91±1.35 58.13±0.92
Qbert 68.17±0.82 73.18±0.78 76.42±0.88 82.31±1.42 52.13±1.05

Atari-Berzerk 85.55±0.87 77.20±0.92 72.44±1.05 92.63±2.29 66.35±0.96

• Rule Bank Sizes: Game-specific rule bank capacities: Pong (max 80 rules), Breakout (max
120 rules), Qbert (max 150 rules), reflecting the complexity differences. Rule-hit threshold
τr = 0.75 for all games (same as Berzerk).

Results. Table 5 reports results on the 3 selected Atari-100k games, along with our main Atari-
Berzerk results for direct comparison. Performance varies across games, reflecting their inherent
difficulty differences and the data-limited setting:
Analysis by Game Complexity:
Pong (simple, sparse visual): Achieves high accuracy (Acc@1: 86.18%) with low latency (32.41
ms), slightly higher than Berzerk’s 85.55% but with significantly better latency due to simpler visual
processing (only paddles and ball). The minimal visual information allows the model to learn effective
rules quickly even under the 100k-step constraint. HHAR is high (78.15%) because rare actions (e.g.,
specific paddle movements) are well-captured by rules.
Breakout (medium complexity): Achieves moderate accuracy (Acc@1: 72.17%) with reasonable
latency (75.91 ms), lower than Berzerk’s 85.55% due to the 100k-step data constraint. The moderate
visual complexity (bricks, paddle, ball) requires more sophisticated feature extraction, and the limited
training data makes it harder to learn effective rules compared to Berzerk’s unlimited training. The
latency is lower than Berzerk (75.91 ms vs. 92.63 ms) because Breakout’s visual scenes are less
complex than Berzerk’s dynamic combat scenarios.
Qbert (medium-to-high complexity): Achieves lower accuracy (Acc@1: 68.17%) with higher latency
(82.31 ms) due to spatial reasoning requirements (jumping on pyramid tiles, avoiding enemies, timing
jumps). The game requires precise timing and spatial awareness, making it more challenging than
Breakout, especially under the 100k-step constraint. The latency is lower than Berzerk but still
substantial due to the need for spatial reasoning.

Discussion. This experiment demonstrates that our framework can scale to diverse Atari games
with varying complexity levels under data-limited conditions. The results show clear performance
differences across games: simple games with sparse visual information (Pong) achieve high accuracy
with low latency, while more complex games requiring spatial reasoning (Qbert) achieve lower but
still reasonable accuracy. The direct comparison with Berzerk in Table 5 clearly illustrates the impact
of data constraints: the 100k-step limit significantly affects performance on complex games (Breakout
and Qbert show 13-17% accuracy drop compared to Berzerk), while simple games (Pong) can still
achieve comparable performance. This addresses the reviewer’s suggestion to test on the Atari-
100k benchmark, demonstrating that our framework is game-agnostic and can handle larger-scale
benchmarks even under data constraints. The primary challenge is data efficiency (learning from
limited trajectories) rather than methodological limitations, validating that our approach can scale to
diverse sequential decision-making tasks.

E SENSITIVITY ANALYSIS AND LLM PROMPTS

E.1 NBA ACTION PARAMETER SENSITIVITY

We analyze how LLM-guided thresholds in the NBA action definitions (Sec. C.2) impact performance.
Figure 11 reports Acc@3 under controlled sweeps of eight parameters: dribble dist, release dist,
receive dist, straight deg, turnaround deg, post release lookahead, pass persist, and ball speed thr.
Each panel shows a smooth unimodal trend with performance dropping at extremes, and a star “best”
marker at the selected setting used in experiments; the gray dashed line indicates the default prior
suggested by the LLM.
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NBA: Sensitivity analysis of action parameters (metric: acc@3)

Figure 11: NBA: sensitivity analysis of LLM-guided action parameters (Acc@3). The star marks the
selected value; the vertical dashed line shows the LLM prior suggestion.
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NBA: Effect of z on Acc@5, Training time and Inference latency

Figure 12: NBA: effect of the number of mental states m on Acc@5, training time, and inference
latency.
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Car Following: Effect of z on Acc@5, Training time and Inference latency

Figure 13: Car-Following: effect of the number of mental states m on Acc@5, training time, and
inference latency.

E.2 LATENT MENTAL STATE SENSITIVITY

We further study the cardinality of the discrete mental state m (semantic interpretations in Ap-
pendix C.6). For NBA, Car-Following, and Atari–Berzerk, Figures 12–14 plot three views: (left)
Acc@5 versus epochs, (middle) training time, and (right) inference latency. Increasing the number
of states improves early learning but may increase compute; a modest cardinality yields a favorable
accuracy–efficiency tradeoff (the selected m per dataset is reported in Appendix C.6). For DDXPlus,
the number of states is fixed per the experimental log, so no sweep is reported.
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Atari berzerk: Effect of z on Acc@5, Training time and Inference latency

Figure 14: Atari–Berzerk: effect of the number of mental states m on Acc@5, training time, and
inference latency.

Table 6: Sensitivity analysis of rule-hit threshold τr across datasets. Columns report Acc@3 (%) for
each threshold value. The optimal value is highlighted in bold. Note that optimal thresholds vary by
dataset, reflecting domain-specific characteristics.

Dataset τr = 0.6 τr = 0.7 τr = 0.8 τr = 0.9

NBA SportVU 88.24 90.18 91.32 89.67
Car-Following 94.12 95.87 95.41 95.23
DDXPlus 70.84 72.31 73.58 71.92
Atari-Berzerk 74.63 77.20 76.18 75.88

E.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct a comprehensive sensitivity analysis of key hyperparameters across all datasets to assess
the robustness of our method. The analysis focuses on two critical parameters: the rule-hit threshold
(τr) and the planning temperature (τ ). Results demonstrate that parameter choices have substantial
impact on performance, with accuracy variations of 2-8% across reasonable parameter ranges. This
sensitivity is consistent with the rule trade-off analysis (see Figure 3), which shows that rule bank
size significantly affects performance (e.g., NBA Acc@3 varies from 79.5% to 91.4% to 61.9% as
rule count changes from 0 to 6 to 256), indicating that careful hyperparameter tuning is important for
optimal performance.

Rule-hit Threshold (τr). The rule-hit threshold controls when a rule is triggered versus when
the agent falls back to planning. We sweep τr ∈ {0.6, 0.7, 0.8, 0.9} across all datasets. Table 6
reports Acc@3 for each dataset and threshold value. Lower thresholds increase rule usage but may
trigger rules too aggressively, causing conflicts and degrading accuracy. Higher thresholds reduce rule
benefits, forcing more expensive planning. The results show that optimal threshold selection is critical
and dataset-dependent: NBA and DDXPlus favor τr = 0.8, while Car-Following and Atari-Berzerk
achieve optimal performance at τr = 0.7, reflecting differences in action space complexity and rule
bank characteristics. Accuracy swings range from 1.8-3.1% across datasets.

Planning Temperature (τ ). The planning temperature controls exploration-exploitation balance
in expected free energy minimization. We sweep τ ∈ {0.5, 1.0, 2.0} across all datasets. Table 7
reports Acc@3 for each dataset and temperature value. Lower temperatures favor exploitation (greedy
selection), while higher temperatures increase exploration. The results demonstrate that temperature
selection has substantial impact and is dataset-dependent: Car-Following, with its stable driving
patterns, benefits from lower temperature (τ = 0.5) favoring exploitation, while NBA, DDXPlus, and
Atari-Berzerk achieve optimal performance at τ = 1.0, requiring balanced exploration-exploitation.
Accuracy swings range from 1.6-2.7% across datasets.

Discussion. The sensitivity analysis reveals several key findings:
Parameter impact is substantial and dataset-dependent. Complex action spaces (DDXPlus)
and visual inputs (Atari) show higher sensitivity (2-3% accuracy swings), while simpler structured
sequences (Car-Following) are more robust but still show meaningful variation (1-2%). This aligns
with the rule trade-off analysis (see Figure 3), where rule bank size changes cause 15-40% accuracy
variations, demonstrating that hyperparameters significantly influence performance.
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Table 7: Sensitivity analysis of planning temperature τ across datasets. Columns report Acc@3 (%)
for each temperature value. The optimal value is highlighted in bold. Note that optimal temperatures
vary by dataset, with simpler domains (Car-Following) favoring lower temperatures for exploitation,
while complex domains (DDXPlus, Atari) benefit from balanced exploration-exploitation.

Dataset τ = 0.5 τ = 1.0 τ = 2.0

NBA SportVU 88.76 91.32 89.94
Car-Following 95.87 95.41 94.28
DDXPlus 70.92 73.58 72.18
Atari-Berzerk 74.86 77.20 76.14

Optimal parameters are dataset-dependent. Performance does not collapse at suboptimal parame-
ters, but accuracy degradation of 2-3% can be substantial in practice, especially for complex domains.
The optimal parameter values vary by dataset: NBA and DDXPlus favor τr = 0.8 and τ = 1.0,
Car-Following achieves optimal performance at τr = 0.7 and τ = 0.5 (reflecting its simpler, more
predictable patterns), while Atari-Berzerk favors τr = 0.7 and τ = 1.0. This dataset-dependent
variation indicates that careful domain-specific tuning is important.
Practical implications. While default values (τr = 0.8, τ = 1.0) work reasonably well across
datasets, domain-specific tuning is important, especially for complex action spaces. The variation in
optimal parameters across datasets (e.g., Car-Following benefits from lower temperature for exploita-
tion, while complex domains require balanced exploration-exploitation) suggests that practitioners
should tune hyperparameters for their specific domain. Suboptimal parameter choices can lead to
2-3% accuracy degradation, which is significant in practice and comparable to the impact of rule
bank size selection (as shown in the trade-off analysis).
Limitations. The analysis reveals that parameter sensitivity is a real limitation, particularly for
DDXPlus with its 225 actions (showing ∼2.7% accuracy swings) and visual domains like Atari
(∼2.3-2.6% variation). This suggests that the method requires careful hyperparameter tuning and that
future work could benefit from adaptive parameter selection or meta-learning approaches to reduce
this burden. The sensitivity is consistent with the rule trade-off behavior, where performance varies
substantially with rule bank size, indicating that both rule quantity and rule triggering thresholds are
critical hyperparameters.
Detailed sensitivity curves for all datasets are provided in the supplementary material. The results
demonstrate that hyperparameter choices have substantial impact on performance (2-3% accuracy
variations), consistent with the rule trade-off analysis showing that rule bank size significantly affects
performance. This indicates that careful hyperparameter tuning is important for optimal results,
though the method remains functional across reasonable parameter ranges.

E.4 LLM-GUIDED COMPONENT ABLATION

We conduct ablation studies to assess the contribution of LLM-guided components across datasets.
While LLMs are used for initialization and feature construction (not as hard-coded rules), we evaluate
their impact by comparing our full method (with LLM guidance) against variants that remove LLM
components and use alternative initialization strategies.

DDXPlus. DDXPlus uses LLM guidance for mental state initialization. We compare three configu-
rations:

• With LLM (Ours): Uses LLM-guided semantic labels to initialize mental states, achieving
Acc@3: 73.62%.

• Without LLM (Random Init): Replaces LLM guidance with random initialization, achiev-
ing Acc@3: 72.08% (1.54% drop).

• Without LLM (K-means Init): Uses K-means clustering on training features for initializa-
tion, achieving Acc@3: 72.78% (0.84% drop).

Results show that LLM guidance provides a modest but consistent improvement (0.84-1.54% accuracy
gain), demonstrating that while our method benefits from semantic initialization, it does not critically
depend on LLMs. The K-means alternative performs better than random initialization, suggesting
that any reasonable initialization strategy can work, with LLM guidance providing the best semantic
alignment.

NBA SportVU. NBA uses LLM guidance for both feature construction and mental state initializa-
tion. We ablate both components:
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• With LLM (Ours): Full LLM-guided feature construction and mental state initialization,
achieving Acc@3: 91.42%.

• Without LLM Feature: Removes LLM-guided feature construction (uses random features),
achieving Acc@3: 90.88% (0.54% drop).

• Without LLM Mental State: Removes LLM-guided mental state initialization (uses K-
means clustering), achieving Acc@3: 91.18% (0.24% drop).

The results indicate that LLM-guided mental state initialization has a smaller impact (0.24% drop)
compared to feature construction (0.54% drop), but both contribute positively. The relatively small
drops (0.24-0.54%) demonstrate that our method is robust and does not heavily rely on LLM
components, while still benefiting from semantic guidance when available.

Atari-Berzerk. Atari uses LLM guidance only for mental state initialization. We compare:
• With LLM (Ours): Uses LLM-guided semantic labels for mental state initialization,

achieving Acc@3: 77.27%.

• Without LLM Mental State (Random Init): Uses random initialization, achieving Acc@3:
76.88% (0.39% drop).

• Without LLM Mental State (K-means Init): Uses K-means clustering on visual features,
achieving Acc@3: 77.09% (0.18% drop).

Similar to DDXPlus, LLM guidance provides a modest improvement (0.18-0.39% accuracy gain),
with K-means performing better than random initialization. This confirms that LLM guidance
is beneficial but not essential, and alternative initialization strategies can still achieve reasonable
performance.

Car-Following. Car-Following does not use LLM guidance, relying instead on domain-specific
action definitions and feature engineering. This demonstrates that our framework can work effectively
without LLM components when domain knowledge is available through other means.

Discussion. The LLM ablation studies reveal several key insights:
1. LLM guidance is beneficial but not critical: Removing LLM components causes modest

accuracy drops (0.18-1.54%), indicating that our method is robust and does not heavily
depend on LLMs. This addresses reviewer concerns about LLM dependence.

2. Alternative initialization strategies work: K-means clustering on training features provides
a reasonable alternative to LLM guidance, achieving performance within 0.18-0.84% of the
LLM-guided version. This suggests that any semantic initialization strategy can work, with
LLMs providing the best semantic alignment when available.

3. Dataset-dependent impact: The impact of LLM guidance varies by dataset: DDXPlus
shows the largest benefit (0.84-1.54%), likely due to its complex medical domain where
semantic labels are particularly valuable, while Atari shows the smallest benefit (0.18-
0.39%), where visual features may be sufficient.

4. Practical implications: In domains where LLMs are unavailable or impractical, our method
can still achieve strong performance using alternative initialization strategies (K-means,
random, or domain-specific heuristics), making it applicable to a wide range of scenarios.

These results demonstrate that LLMs serve as a helpful tool for semantic initialization and feature
construction, but our framework’s core contributions (rule-guided active inference, world model
learning, hybrid arbitration) are independent of LLM components and can work effectively with
alternative initialization strategies.

E.5 LLM PROMPTS

We include the exact prompts used to elicit symbolic actions, feature predicates, and mental-state
semantics.
NBA (feature construction + action definition + z design).
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You are given NBA play-by-play frames, where each frame contains only the 2D coordinates
of 11 entities (the ball + 10 players) with timestamps, plus team and ball-possession labels. No
actions or features are predefined; only raw positions are available.
Your task is to:
1. Inspect the distribution of the data and decide how many latent z states should be used. For
each z, provide a semantic interpretation (e.g., habitual/exploit, explore, subgoal switch) and
define triggering conditions.
2. Define a set of interpretable basketball actions (e.g., straight move, left turn, right turn,
turnaround, dribble, shoot, pass) and specify the measurable thresholds (angles, distances,
speeds, frame persistence, ball speed) for classifying them.
3. Construct interpretable features from raw coordinates, such as speed, heading angle, relative
distances, angle changes, and possession switches, with formulas and units.
4. For each threshold, provide default values and ranges (conservative / standard / aggressive
settings).

Car-Following (feature construction + z design).

You are given car-following data represented as sequences of discrete regimes. The regime set is
fixed as Fa, Fd, C, A, D, F, S, where each regime represents a specific driving behavior such as
cruising, accelerating, or decelerating. Only these sequences are available, with no additional
environment variables.
Your task is to:
1. Inspect the distribution of these regime sequences and decide how many latent z states should
be defined. Provide semantic interpretations for each z (e.g., conservative driving, aggressive
driving, bursty switching).
2. Design interpretable features that can be derived from the regime sequences, such as switching
rate, run length of consecutive regimes, time since last switch, or ratios of sudden accelera-
tions/decelerations. Provide formulas for these features.
3. For each feature, propose thresholds with default values and ranges (conservative / standard /
aggressive).

DDXPlus (feature construction suggestions; actions fixed; z given = severity 1–5).

You are given patient diagnostic trajectories from the DDXPlus dataset. Each trajectory consists
of sequential actions of two types: ASK: querying a symptom, sign, or test and DIAG: issuing a
diagnosis. The latent z state (severity from 1 to 5) is already provided by the dataset, and the
action vocabulary is fixed.
Your task is to:
1. Suggest how to construct interpretable features from the raw evidences. For example,
propose ways to group evidences into thematic clusters (such as URTI core symptoms, systemic
symptoms, or risk factors) or embed them into low-dimensional representations.
2. Provide recommendations for feature engineering choices such as embedding dimension,
normalization, or grouping heuristics.

Atari–Berzerk (z design from pixels; actions fixed).

You are given raw Atari Berzerk gameplay frames, each being a 128×128 grayscale or RGB
image. The action space is fixed at 18 discrete actions (combinations of movement and firing).
No explicit state features are provided; the world model will learn directly from pixels.
Your task is to:
1. Based on typical human gameplay strategies, decide how many latent z states should be used.
2. Provide a semantic interpretation for each z (e.g., exploit = repetitive safe movement, explore
= trying rare actions or new regions, danger = escaping when enemies cluster).
3. Estimate the relative prevalence of each z (e.g., most frames are exploit, fewer are explore or
danger).

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

F LIMITATIONS AND BROADER IMPACT

While our framework demonstrates strong performance and interpretability across diverse domains,
several limitations remain. First, the rule extraction process is still partly dependent on the quality of
predicates or action abstractions available in each dataset. Although our wake–sleep cycles mitigate
this by progressively refining rules, fully unsupervised discovery of symbolic structures remains an
open challenge. Second, our current design balances rules and active inference at a single timescale;
extending the framework to explicitly multi-level hierarchies (e.g., subgoals and long-term planning)
is a natural next step. Third, although rule-based reasoning improves robustness on rare or edge-case
behaviors, its coverage is inherently sparse, and rule confidence thresholds must be tuned to avoid
spurious activations.
Regarding scalability to more complex tasks: For multi-game or multi-task setups, potential chal-
lenges include rule interference across tasks and the need to encode task identity in mt or maintain
per-task rule banks. For high-dimensional visual or sparse-reward tasks, stronger world models, hier-
archical planning, or merging with model-based RL may be beneficial. Long-horizon planning with
EFE remains computationally challenging and is a direction for future work. For continuous control,
conceptual extensions include using Gaussian policies over continuous actions and treating mental
states as option/skill indices for hierarchical action spaces. Finally, our experiments are conducted
on curated benchmarks; evaluating the method in highly dynamic or noisy real-world environments
(e.g., human–robot collaboration, autonomous driving in open traffic) remains important future work.
Despite these limitations, we believe the broader impact of our approach is promising. By combining
generative models with symbolic rules, the framework offers a path toward transparent, human-
interpretable decision-making, potentially increasing trust in safety-critical applications such as
healthcare, transportation, and multi-agent coordination. The ability to capture both frequent and
rare behaviors in a complementary manner also suggests that our method can generalize to domains
where data imbalance or uncertainty is prevalent. More broadly, the work illustrates how insights
from cognitive science—such as rule-guided inference and predictive coding—can inspire practical
algorithms that balance performance with interpretability. We hope this line of research stimulates
further integration of symbolic reasoning and active inference in future intelligent systems.

G USE OF LLMS

In this paper, LLMs were used solely for writing polishing in several paragraphs, like the Experiment
section. All the key ideas, proofs, research, and writing are created completely by human authors.
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