

000 001 002 003 004 005 006 007 008 009 010 LEARNING HUMAN HABITS WITH RULE-GUIDED AC- TIVE INFERENCE

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
Anonymous authors
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

011 Humans navigate daily life by combining two modes of behavior: *deliberate planning* in *novel* situations and *fast, automatic responses* in *familiar* ones. Modeling
012 human decision-making therefore requires capturing how people switch between
013 these modes. We present a framework for *learning human habits with rule-guided*
014 *active inference*, extending the view of the brain as a prediction machine that min-
015 imizes mismatches between expectations and observations, and *computationally*
016 *modeling of human(-like) behavior and habits*. In our approach, habits emerge as
017 *symbolic rules* that serve as compact, interpretable shortcuts for action. To learn
018 these rules alongside the human models, we design a biologically inspired *wake-
019 sleep algorithm*. In the *wake phase*, the agent engages in active inference on real
020 trajectories: reconstructing states, updating beliefs, and harvesting candidate rules
021 that reliably reduce free energy. In the *sleep phase*, the agent performs generative
022 replay with its world model, refining parameters and consolidating or pruning rules
023 by minimizing joint free energy. This alternating rule–model consolidation lets
024 the agent build a reusable habit library while preserving the flexibility to plan.
025 Experiments on basketball player movements, car-following behavior, medical
026 diagnosis, and visual game strategy demonstrate that our framework improves
027 predictive accuracy and efficiency compared to *logic-based, deep learning, LLM-
028 based, model-based RL, and prior active inference baselines*, while producing
029 interpretable rules that mirror human-like habits.

1 INTRODUCTION

030 Understanding human behavior in complex environments has long been a central goal in both
031 cognitive science (Pylyshyn, 1980) and artificial intelligence (Leichtmann et al., 2023). A large
032 body of work suggests that behavior in humans and other mammals is supported by at least two
033 complementary modes of control: a *goal-directed system* that evaluates actions based on their
034 consequences, and a *habit system* that relies on learned stimulus–response routines, with evidence
035 for partially distinct corticostriatal circuits underlying each (Balleine & O’doherty, 2010; Dolan &
036 Dayan, 2013). In *novel situations*, they engage in *deliberate planning*, drawing on *internal models* of
037 the world to simulate possibilities and anticipate outcomes. In *familiar contexts*, they shift effortlessly
038 into *habitual control*, relying on *rules or shortcuts* (Neal et al., 2012) that bypass heavy deliberation
039 and allow *rapid, efficient action*. This smooth interplay between flexible reasoning and automatic
040 habits is a hallmark of *human intelligence*—and capturing it in a *biologically plausible* way remains
041 a key challenge for building models that aspire to human-like adaptability.

042 Active inference (AIF) (Mazzaglia et al., 2022), a framework rooted in neuroscience and Bayesian
043 principles, offers a *biologically inspired, brain-like* account of adaptive behavior. It portrays the
044 person as a *prediction-driven mind* that minimizes *free energy* (Parr & Friston, 2019; Millidge et al.,
045 2021): through *variational free energy* it makes sense of sensations by inferring hidden causes, and
046 through *expected free energy* it *imagines plausible futures*—favoring scenarios that both reduce
047 uncertainty (curiosity-driven understanding) and align with the person’s preferences (goal-congruent
048 intentions). In doing so, AIF maintains an *internal generative (world) model* that is continually
049 refined to reduce surprise—providing a principled, unified lens on perception, learning, and action.
050 In this work, we use AIF in the control-as-inference sense as a modeling framework for human(-like)
051 behavior (Levine, 2018; Toussaint, 2009), rather than as a new reward-maximizing control agent.

052 Yet, classical AIF largely operationalizes behavior via *prospective planning* at each step, and
053 thus under-specifies three ingredients that are central to human behavior: *habit acquisition*, *habit*
054 *consolidation*, and *meta-control* over *when to plan* versus *when to act automatically* (Han et al., 2024;

054 Dung Nguyen et al., 2024). Concretely, (i) it lacks a mechanism to compress repeated successes into
 055 compact, reusable *rules* with confidence; (ii) it lacks a principled way to switch modes—using instant,
 056 rule-based actions in familiar situations, and calling on costly look-ahead only when uncertainty is
 057 high; and (iii) it offers no offline process to *consolidate*, *prune*, or *semantically anchor* such rules.
 058 These gaps motivate our approach. We propose a *rule-guided active inference framework* that
 059 augments AIF with *habitual policies* learned and refined through a biologically inspired *wake–sleep*
 060 *process* (Hinton et al., 1995; Hewitt et al., 2020; Ellis et al., 2023). **Our aim is to use this framework**
 061 **to fit and explain human (and human-like) action sequences via a control-as-inference objective.**
 062 In the *wake phase*, the agent harvests candidate rules from real experience by identifying state–
 063 intention–action triples that consistently reduce free energy. In the *sleep phase*, it performs *generative*
 064 *replay* to consolidate, prune, and semantically anchor these rules, so that useful ones are reinforced
 065 while spurious ones are discarded. Each rule is grounded in latent state prototypes and interpretable
 066 discrete intentions, forming a *neural–symbolic unit* that bridges continuous world models with
 067 symbolic decision-making. This hybrid structure enables *instant action* in familiar scenarios through
 068 high-confidence rules, while retaining *flexible planning* via expected free energy in novel cases.
 069 Beyond efficiency, the learned rules provide *interpretable structure* that facilitates knowledge transfer
 070 and offers insights into the agent’s behavior. Altogether, our contributions are threefold: *i) a* **biologically inspired extension of active inference tailored to computational modeling of human(-like)**
 071 **habits via rule-guided policies**, *ii) a* novel wake–sleep algorithm that jointly learns generative models
 072 and symbolic rules under a unified free-energy objective, and *iii) empirical evidence on* **human action**
 073 **prediction** tasks such as NBA player trajectories, car-following dynamics, medical diagnosis, and
 074 visual game strategy, where our framework improves both predictive performance and interpretability
 075 compared to deep learning, logic-based, and prior AIF baselines.

2 RELATED WORK

076 **Human Behavior Modeling.** Modeling human behavior is central to applications in public
 077 health (Ferguson, 2007; Marsch, 2021), crime analysis (Savage & Vila, 2003), and human–robot
 078 collaboration (Dragan & Srinivasa, 2013; Maeda et al., 2017). Probabilistic and deep approaches
 079 often focus on predicting dynamics of discrete events: Shen et al. (2018) developed deep models
 080 for spatio-temporal events, Zhou et al. (2022) combined neural networks with spatio-temporal point
 081 processes, and Chen et al. (2020) proposed continuous-time normalizing flows. These methods
 082 achieve strong predictive performance but largely act as black boxes, offering limited insight into the
 083 structure of human decisions.

084 A complementary line emphasizes the role of *habit* in behavior maintenance (Rothman et al., 2009).
 085 Examples include HAT (Serra et al., 2018) for cross-task stability, Markovian models of decision-
 086 making (Pentland & Liu, 1999), and imitation learning (Ho & Ermon, 2016; Li et al., 2017; Duan
 087 et al., 2017) for reproducing expert routines. Yet these approaches encode regularities implicitly,
 088 making habits difficult to interpret or arbitrate against planning. Our method addresses this gap
 089 by learning compact, interpretable rules within a probabilistic framework that supports both rapid
 090 habitual action and flexible planning in novel contexts.

091 **Logic- and Rule-Based Explanations.** To improve interpretability, recent work incorporates
 092 logic rules into predictive models. Li et al. (2021) extract symbolic rules from irregular events,
 093 Cao et al. (2023) integrate logic with trajectory models, and Yang et al. (2025) guide temporal
 094 point processes with logic priors. Neuro-symbolic methods extend this trend: Li et al. (2023b)
 095 impose compositional logic constraints on Transformers for human–object interaction, while Xu
 096 et al. (2023) introduce LogicMP for efficient integration of first-order constraints via mean-field
 097 inference. d’Avila Garcez et al. (2019) survey neural-symbolic computing, highlighting principled
 098 integration of machine learning and reasoning. In hierarchical RL, Bacon et al. (2017) proposed the
 099 Option-Critic architecture, which learns options (temporally extended actions) end-to-end, providing
 100 a connection between our rule-based controllers and the options literature. While these approaches
 101 highlight the value of logic and hierarchical control, rules are often static or imposed post hoc, limiting
 102 adaptivity. In contrast, our framework embeds rules directly into the generative process, coupling
 103 them with latent states and intentions, optimizing under the free-energy principle, and updating them
 104 dynamically through a wake–sleep cycle. This yields interpretable, biologically plausible rules that
 105 guide long-horizon planning.

106 **Active Inference.** Active inference (AIF) offers a unifying framework for perception, action, and
 107 learning (Mazzaglia et al., 2022), with applications ranging from psychology (Goette et al., 2023;

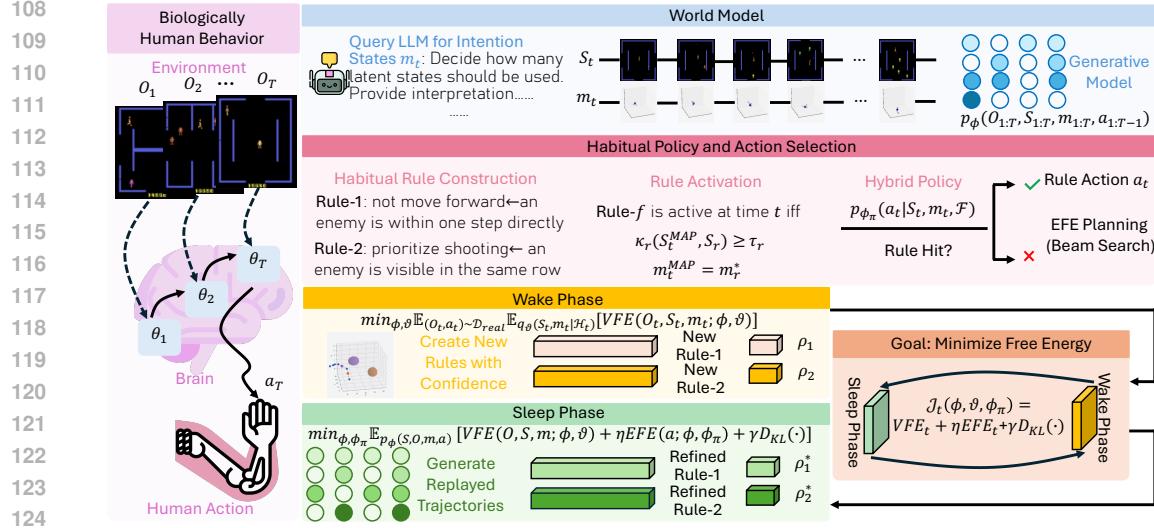


Figure 1: Model framework. “■”: Biologically human behavior, “■”: World model. “■”: Habitual policy and action selection. “■”: Wake phase. “■”: Sleep phase. “■”: Overall goal: minimize free energy.

Demekas et al., 2020) and economics (Henriksen, 2020) to scene construction (Mirza et al., 2016; Heins et al., 2020). Neural extensions have expanded its representational power (Ueltzhöffer, 2018), while subsequent work emphasized action selection via expected free energy (Friston et al., 2016; 2015; 2021; Millidge et al., 2020), efficient objectives (Mazzaglia et al., 2021), and amortized planning through habit networks (Fountas et al., 2020). Tschantz et al. (2020) explored action-oriented representation learning in active inference, focusing on how agents learn representations that support effective action selection. Yet, these approaches largely center on prospective planning, with only ad hoc treatment of habits and no principled mechanism for transitioning between deliberative and routine behavior.

Our Contribution. We focus on human behavior modeling and address this gap by embedding symbolic rules directly into the AIF framework. During the wake phase, rules are extracted from experience; during sleep, they are refined via generative replay; and at inference, the inferred active rules guide action selection together with expected-free-energy planning. This captures human(-like) habits as reusable, rule-based shortcuts while retaining a principled planner for novel situations, providing a biologically inspired account of their interaction in human action prediction.

3 BACKGROUND: SEQUENTIAL DECISION-MAKING VIA ACTIVE INFERENCE

Active inference (AIF) provides a unifying account of *perception*, *learning*, and *action* under a single objective: the minimization of free energy. In sequential decision-making, an agent uses a generative model to explain past observations, update beliefs about hidden states, and plan actions that bring about preferred future outcomes. This dual role naturally leads to two complementary objectives: the *variational free energy* (VFE) for inference and model learning, and the *expected free energy* (EFE) for planning and action selection.

We consider discrete steps $t = 1, \dots, T$. At each step the agent observes $O_t \in \mathbb{R}^d$, selects an action $a_t \in \mathcal{A}$, and accumulates a history $\mathcal{H}_t = (O_{1:t}, a_{1:t-1})$. Latent states $Z_t \in \mathcal{Z}$ summarize hidden structure relevant for decision-making. A generative model with parameters ϕ specifies

$$p_\phi(O_{1:T}, Z_{1:T}, a_{1:T}) = p_\phi(Z_1) \prod_{t=1}^T p_\phi(O_t | Z_t) p_\phi(Z_t | Z_{t-1}, a_{t-1}) p_\phi(a_t | Z_t). \quad (1)$$

Variational Free Energy (VFE). Exact inference over $Z_{1:t}$ is intractable, so we introduce an amortized variational posterior $q_\vartheta(Z_t | \mathcal{H}_t)$ with parameters ϑ . At each time τ , the per-step *variational free energy* is defined as

$$VFE_\tau := \mathbb{E}_{q_\vartheta(Z_\tau | \mathcal{H}_\tau)} [-\log p_\phi(O_\tau | Z_\tau)] + D_{KL}(q_\vartheta(Z_\tau | \mathcal{H}_\tau) \| p_\phi(Z_\tau | Z_{\tau-1}, a_{\tau-1})). \quad (2)$$

The first term is a *prediction error*, ensuring latent states explain observations; the second enforces *temporal consistency* with the transition prior. The VFE serves as the learning signal for updating both the generative model parameters ϕ and the inference network ϑ .

162 **Expected free energy (EFE).** In contrast, action selection is prospective. Given a candidate action
 163 a_t , the agent *rolls out* its generative model over a horizon H to simulate possible futures. We denote
 164 the resulting predictive distribution by q_ϕ^{roll} , which depends on ϕ and the chosen action sequence. At
 165 each future step τ , the *expected free energy* is

$$166 \quad \text{EFE}_{t+\tau}(a) := \mathbb{E}_{q_\phi^{\text{roll}}} \left[-\log p_{\text{pref}}(O_{t+\tau} | Z_{t+\tau}) + D_{\text{KL}}(q_\phi^{\text{roll}}(Z_{t+\tau}) \| p_\phi(Z_{t+\tau} | Z_{t+\tau-1}, a_{t+\tau-1})) \right].$$

167 Here p_{pref} specifies which future observations are preferred: the agent aims to keep its trajectory
 168 within preferred outcomes while maintaining an accurate internal model. The first term measures *risk*
 169 (deviation from preferred outcomes), and the second term encourages *epistemic value* by reducing
 170 uncertainty about hidden states. We adopt the standard *control-as-inference* view, where preferences
 171 are encoded as a biased likelihood over outcomes (Levine, 2018; Toussaint, 2009). Our goal is
 172 to *model human behavior from demonstrations*: we assume humans act approximately optimally
 173 under some latent preference distribution p_{pref} , but we do not try to recover this distribution (or the
 174 underlying reward) explicitly. Instead, we learn the generative model and policy so that the resulting
 175 EFE-based controller assigns high likelihood to the observed human actions. In this setting, we use
 176 the special case

$$176 \quad p_{\text{pref}}(O_{t+\tau} | Z_{t+\tau}) \propto p_\phi(O_{t+\tau} | Z_{t+\tau}),$$

177 so that preferred futures coincide with high-probability outcomes under the learned observation
 178 model, and minimizing EFE favors actions whose predicted outcomes match human behavior. The
 179 cumulative expected free energy of action a over horizon H is

$$180 \quad \text{EFE}_t(a) := \sum_{\tau=1}^H \text{EFE}_{t+\tau}(a). \quad (3)$$

182 Active inference couples these two objectives into an iterative loop. At each time step: (i) given
 183 new data, the agent *updates its beliefs and generative model* by minimizing (per-step) VFE, aligning
 184 latent states with observations; (ii) from this belief state, the agent *forecasts future trajectories* under
 185 candidate actions, evaluates their cumulative EFE, and executes the *first action* from the trajectory
 186 with lowest expected free energy. This integration of retrospective inference and prospective planning
 187 defines active inference as a general framework for sequential decision-making.

188 *Computational Challenges.* Although conceptually elegant, active inference is computationally
 189 demanding. Minimizing VFE requires efficient amortized inference for complex latent structures.
 190 Minimizing EFE is even more costly, since multi-step rollouts scale rapidly with horizon H and action
 191 space size. We will show later that in this paper, we propose to augment AIF with compact *rules*
 192 distilled from experience, which can bypass expensive rollouts in *familiar* contexts while preserving
 193 full VFE/EFE reasoning in novel ones.

194 4 OUR APPROACH: RULE-GUIDED HABITUAL POLICY

195 We extend AIF by introducing *compact, latent-grounded rules* that capture habitual responses in
 196 familiar contexts. Rules act as symbolic triggers: when recognizable patterns (including the external
 197 world patterns and mental states occur in our setting), they prescribe actions directly, yielding fast and
 198 interpretable habitual policies. If no rule is triggered (novel scenario), the agent reverts to minimizing
 199 EFE through long-horizon rollouts, as in standard AIF. This hybrid arbitration enables seamless
 200 switching between fast habits in familiar situations and deliberative planning in novel ones.

201 Our approach has two main key components: (A) the representation of rules and their integration into
 202 a hybrid policy that combines habitual and planning-based control, and (B) a wake–sleep learning
 203 algorithm that jointly learn generative model (decoder), recognition network (encoder), and rules
 204 under a unified free-energy objective. We will discuss the two components one by one.

205 **Latent State Representation** First propose to split the (previously generic) latent Z_t into two parts:

$$206 \quad Z_t = (S_t, m_t),$$

207 where $S_t \in \mathcal{S}$ denotes the *continuous external world state*, a compact low-dimensional embedding of
 208 the environment that supports accurate prediction of observations. In contrast, $m_t \in \{1, \dots, K\}$ is a
 209 *discrete mental state* that encodes intentions, modes, or subgoals.

210 Given the new latent state representation, we rewrite the generative model (1) as

$$211 \quad p_\phi(O_{1:T}, S_{1:T}, m_{1:T}, a_{1:T}) = p_\phi(S_1) p_\phi(m_1) \prod_{t=1}^T p_\phi(O_t | S_t) p_\phi(S_t | S_{t-1}, a_{t-1}) \\ 212 \quad \times p_\phi(m_t | m_{t-1}, S_t) p_{\phi\pi}(a_t | S_t, m_t). \quad (4)$$

213 with parameters ϕ . Here the *world model* links external world states S_t to observations through
 214 $p_\phi(O_t | S_t)$, while the transition prior $p_\phi(S_t | S_{t-1}, a_{t-1})$ captures how the world evolves under
 215 actions. The discrete mental state m_t evolves more slowly via $p_\phi(m_t | m_{t-1}, S_t)$, providing an

interpretable bottleneck of intentions or modes. Finally, the *policy* $p_{\phi_\pi}(a_t | S_t, m_t)$ selects actions conditioned jointly on the external state and mental state. Later we will show how this policy can be parameterized with compact symbolic rules, allowing habitual responses to emerge inside the same probabilistic framework.

Given new latent state representation, we approximate the posterior over latent states with an encoder $q_\theta(S_t, m_t | \mathcal{H}_t)$,

which maps the history $\mathcal{H}_t = (O_{1:t}, a_{1:t-1})$ into distributions over both continuous world states and discrete mental states.

4.1 (A) RULE REPRESENTATIONS AND THE HYBRID HABITUAL POLICY

Building on the latent split $Z_t = (S_t, m_t)$, we now introduce *symbolic rules* as compact carriers of habitual knowledge.

Rule Definition. We define a rule f as an anchored condition–action pair:

$$f : (S_f^*, m_f^*) \Rightarrow a_f, \quad S_f^* \in \mathcal{S}, \quad m_f^* \in \{1, \dots, K\}, \quad a_f \in \mathcal{A},$$

where the continuous anchor S_f^* encodes a prototype of the external environment, m_f^* specifies the intention or mode, (S_f^*, m_f^*) together describe when the rule becomes active, and a_f is the prescribed action to take. Each rule has a confidence weight $\rho_f \in [0, 1]$, reflecting its reliability. The full rule set is $\mathcal{F} = \{(S_f^*, m_f^*, a_f, \rho_f)\}_f$ and is treated as part of the policy parameters ϕ_π . The rule library can be viewed as an amortized mixture over context–action pairs, where each rule defines a prototype component. Our current implementation is an efficient, engineering-driven approximation to full variational learning over $q(m_t)$ and parameters of $p(S_t | m_t)$ in a mixture model. A detailed probabilistic view is given in Appendix B.

Rule Interpretation. The continuous component S_f^* summarizes the external world in a compact latent embedding. Although this representation is not directly human-interpretable, its encoded meaning can be probed through the generative world model: by decoding S_f^* back into observable space through $p_\phi(O_f | S_f^*)$, we can visualize or simulate the prototypical situation it represents. The discrete component m_f^* is categorical and designed to carry semantic meaning (e.g., *cautious*, *aggressive*, *conserve energy*), often initialized or anchored with interpretable labels.

Together, (S_f^*, m_f^*) provide the condition under which a rule applies, yielding policies that are both context-sensitive (through the continuous embedding) and mental-state-driven (through the discrete mode). This design mirrors cognitive science accounts in which habits are grounded jointly in environmental context and internal goals: in familiar scenarios, learned associations trigger rapid action without deliberation.

For instance, a driving agent might acquire the rule `brake ← ($S_f^* :=$ car ahead very close, $m_f^* =$ cautious)`. Here, the latent world prototype S_f^* encodes the spatial situation of nearby cars, while the discrete mode m_f^* denotes a cautious intention. When this familiar combination recurs, the action `brake` is triggered immediately—bypassing costly rollouts and enabling fast, interpretable habitual control.

Rule Activation and Recognition of Familiarity. Given a new history \mathcal{H}_t , the encoder produces posterior distributions over latent states. We use MAP estimates for efficient matching:

$$S_t^{\text{MAP}} = \arg \max_s q_\theta(S_t = s | \mathcal{H}_t), \quad m_t^{\text{MAP}} = \arg \max_k q_\theta(m_t = k | S_t, \mathcal{H}_t).$$

A rule r is *active* if both the discrete mode and the continuous context are sufficiently close:

$$\kappa(S_t^{\text{MAP}}, S_r^*) \geq \tau_r, \quad m_t^{\text{MAP}} = m_r^*$$

where $\kappa(\cdot, \cdot)$ is a Gaussian similarity kernel and τ_r a threshold. Under the Gaussian–mixture view (Appendix B), $\kappa(S_t^{\text{MAP}}, S_r^*)$ can be interpreted as (proportional to) the posterior responsibility of rule r given a Gaussian prior over S_t , and τ_r simply truncates very small responsibilities. This soft matching allows rules to work robustly under noisy data. We adopt MAP estimates instead of sampling because they yield fast, deterministic recognition of familiar situations, consistent with how humans can rapidly “pattern match” to known contexts.

When multiple rules suggest the same action, their contributions are combined by weights:

$$\pi(a | S_t^{\text{MAP}}, m_t^{\text{MAP}}) \propto \sum_{r: a_r = a} \kappa(S_t^{\text{MAP}}, S_r^*) \mathbf{1}\{m_t^{\text{MAP}} = m_r^*\} \rho_r,$$

normalized across actions.

Hybrid Policy. The final action distribution blends the rule prior with EFE-based planning:

$$p_{\phi_\pi}(a_t | S_t, m_t) \propto \pi(a_t | S_t^{\text{MAP}}, m_t^{\text{MAP}}) + (1 - \mathbf{1}_{\text{rule hit}}) \exp(-\tau \text{EFE}_t(a_t)). \quad (5)$$

If reliable rules fire, their prior dominates and habitual actions are executed directly. Otherwise, the agent falls back on deliberative planning via multi-step EFE minimization. The temperature parameter τ controls how sharply the planning fallback discriminates between actions.

Connection to Cognition. This hybrid arbitration is inspired by neuroscientific accounts of the brain’s dual systems: habits stored as stimulus–response associations in basal ganglia circuits, and deliberative planning supported by prefrontal and hippocampal structures. This flexible switching between cached habits and on-the-fly planning is a general mammalian capability, consistent with dual-system accounts of dorsomedial vs. dorsolateral striatum and prelimbic vs. infralimbic PFC, as demonstrated in devaluation and contingency-degradation paradigms (Dolan & Dayan, 2013; Cushman & Morris, 2015).

Our framework instantiates this duality: learned rules serve as compact, interpretable “habit circuits” grounded in latent world states and internal modes, while the generative model provides a flexible substrate for foresight and adaptation when novelty arises.

4.2 (B) LEARNING ALGORITHM: WAKE–SLEEP

Joint Objective (Total Free Energy). We jointly train the generative model p_ϕ , inference model q_ϑ , and policy parameters ϕ_π (including rule prototypes) by minimizing a unified *total free-energy objective*:

$$F_t(\phi, \vartheta, \phi_\pi) = \underbrace{\text{VFE}_t(O_t; \phi, \vartheta)}_{\text{fit to observed data}} + \eta \underbrace{\text{EFE}_t(\phi, \phi_\pi)}_{\text{applied to rollouts}} + \gamma \underbrace{D_{\text{KL}}(q_\vartheta(m_{t-1} | \mathcal{H}_{t-1}) \| q_\vartheta(m_t | \mathcal{H}_t))}_{\text{mental-state consistency}}. \quad (6)$$

Here $\text{VFE}_t(O_t; \phi, \vartheta)$ measures how well p_ϕ explains the actual data O_t , $\text{EFE}_t(\phi, \phi_\pi)$ is the expected free energy accumulated over a horizon H (with the same form as in planning but used for training on replayed trajectories), and the KL term regularizes discrete mental states. **The KL term implements a sticky prior over the discrete mental state, encouraging slow, interpretable mode changes.** This can be viewed as arising from a prior $p(m_t | m_{t-1})$ that favors persistence, which naturally appears in the VFE expansion when minimizing free energy. The coefficients $\eta, \gamma \geq 0$ balance the contributions, allowing early training to emphasize world-model reconstruction while later phases prioritize accurate reasoning with appropriate regularization.

Wake Phase (Real Data). In wake, the agent processes *real trajectories* $\mathcal{D}_{\text{real}}$ and updates (ϕ, ϑ) by minimizing free energy on this dataset:

$$\min_{\phi, \vartheta} \mathbb{E}_{(O_t, a_t) \sim \mathcal{D}_{\text{real}}} \mathbb{E}_{q_\vartheta(S_t, m_t | \mathcal{H}_t)} [\text{VFE}(O_t, S_t, m_t; \phi, \vartheta)].$$

At the same time, we *grow rules* from real data: when a triplet $(S_t^{\text{MAP}}, m_t^{\text{MAP}}, a_t)$ recurs often and yields low free energy, we either

- (i) create a new rule (S_r^*, m_r^*, a_r) with initial confidence $\rho_r > 0$, or
- (ii) increase the confidence ρ_r of an existing nearby rule.

Continuous anchors are updated as centroids of their assigned latents:

$$S_r^* \leftarrow \frac{\sum_{S \in \mathcal{S}_r^{\text{real}}} w(S) S}{\sum_{S \in \mathcal{S}_r^{\text{real}}} w(S)}, \quad w(S) \propto \exp(-\text{VFE}(O, S, m_r^*; \phi, \vartheta)).$$

This update can be viewed as an EM-style M-step on the Gaussian means in the mixture view, with $w(S)$ playing the role of (reweighted) responsibilities (see Appendix B).

Sleep Phase (Replay Data). In sleep, the agent generates *replayed trajectories* $(S, O, m, a) \sim p_\phi$ and jointly updates (ϕ, ϕ_π) by minimizing

$$\min_{\phi, \phi_\pi} \mathbb{E}_{p_\phi(S, O, m, a)} [\text{VFE}(O, S, m; \phi, \vartheta) + \eta \text{EFE}(a; \phi, \phi_\pi) + \gamma D_{\text{KL}}(\cdot)].$$

Here VFE ensures consistency of p_ϕ and q_ϑ under imagination, and EFE provides a training signal for ϕ_π . Rules are *refined* during sleep: centroids S_r^* are updated on replayed latents, confidences ρ_r are adjusted, and low-confidence rules are pruned. Both phases share the same free-energy objective, differing only in their data source. This mirrors human learning, where waking experience updates models and dreaming replay consolidates them.

4.3 OVERALL ALGORITHM

The overall framework alternates between two coupled processes:

1. Learning (wake–sleep):

- Wake: update models and grow new rules from real data.
- Sleep: refine models, consolidate/prune rules, and adjust confidences using replay.

324 2. **Planning (hybrid policy):** At decision time, if a rule is triggered, the agent acts habitually;
 325 otherwise it falls back on model-based search for action selection (e.g., MCTS, A^{*}, or
 326 rollout sampling) to minimize expected free energy.

327 For efficiency, we first run *blockwise pretraining* to bootstrap the world model by minimizing VFE
 328 only (Stage 1), which provides a fast warm-up and stabilizes later training, and then perform *full*
 329 *wake–sleep* cycles with replay using the joint objective in Eq. 6 (Stage 2). Details are provided in
 330 Appendix A.

331 5 EXPERIMENTS

333 We target cross-domain generality: a shared latent (S_t, m_t) combines a continuous cognitive state
 334 S_t with an inner discrete mental state $m_t \in \mathcal{M}$ (intentions/sub-goals) that drives rule triggering and
 335 planning. When datasets do not provide salient mental labels, we obtain *LLM-guided* interpretable
 336 candidates and select K states via a lightweight matching routine with their detailed prompts and
 337 sensitivity study over K deferred to Appendix E and semantic lists deferred to Appendix C.6. Model
 338 backbones and training schedules are aligned across domains; full architectural settings and optimizer
 339 details appear in Appendix C.7.

340 5.1 EXPERIMENTAL SETUP

341 **Dataset** We evaluate on four domains spanning structured sequences and temporal vision: (i) *NBA SportVU* (Kambhamettu et al., 2024)¹: ~9.8k train / 2.5k val clips with 7 action classes after
 342 LLM-guided feature construction; (ii) *Car-Following* (Li et al., 2023a)²: ~19k train / 2.5k val
 343 samples with 7 driving modes under an action-centric world model; (iii) *DDXPlus*³: ~165k train /
 344 25k val URTI trajectories with 225 actions (ASK/DIAG); (iv) *Atari-Berzerk*⁴: ~16.5k train /
 345 16.5k val grayscale frames with 18 actions. Details of dataset, full preprocessing pipelines, feature
 346 construction, and action distributions are all provided in Appendix C.8.

347 **Baselines** We choose state-of-the-art baselines considering following different fields: i) *Logic*
 348 *based Models*: RNNLogic (Qu et al., 2020) and STLR (Cao et al., 2023). ii) *Deep Neural Models*:
 349 Re-Net (Jin et al., 2019), iii) *Active Inference Models*: DAI (Çatal et al., 2020) and DAI-MC (Fountas
 350 et al., 2020), iv) *Model-based RL*: DreamerV2 (Hafner et al., 2020)⁵, and v) *LLM based Models*:
 351 LaTee (Song et al., 2024) and *Qwen-0.5B (Team, 2024b) Team (2024a)* (a pure LLM baseline that
 352 processes observations through a learned encoder and generates action predictions via direct LM).

353 **Metrics** We evaluate performance along three dimensions: (i) *Accuracy*: (1) Acc@k measures the
 354 proportion of correct actions within the next k prediction steps ($k=1, 3, 5$) rather than single-step
 355 classification; (2) High-Hit Action Ratio (HHAR) measures accuracy specifically on low-frequency
 356 critical actions (e.g., marginal maneuvers in each domain), and is considered satisfactory only if it
 357 reaches at least ~80% of the overall Acc. (ii) *Efficiency*: (1) Latency, average inference time per step
 358 (ms); (2) Convergence Time (CT), total training time to reach convergence (hours). (iii) *Resource*
 359 *Cost*: Peak Memory (PM), maximum memory usage during training and inference (MB).

360 5.2 EXPERIMENTAL RESULTS AND ANALYSIS

361 Results with best-configuration and baseline comparisons are summarized in Table 1. And the
 362 additional experimental results not shown below (especially for Car-Following and DDXPlus) are
 363 recorded in the Appendix D.

364 **Sequential Dataset** *NBA SportVU*. Figure 2a illustrates: (i) general decreases of ΔF , VFE, EFE,
 365 and KL, evidencing steady improvement in fit and decision quality; (ii) rule envelopes in latent space,
 366 enabling interpretable reconstructions; (iii) test-set curves (Acc@k, HHAR, latency) with stable
 367 convergence and strong accuracy; and (iv) a rule-guided inference case where world-model overlays
 368 show rules lowering free energy and improving decisions.

369 ¹<https://github.com/linouk23/NBA-Player-Movements>

370 ²<https://github.com/RomainLITUD/Car-Following-Dataset-HV-vs-AV>

371 ³<https://github.com/mila-iqia/ddxplus>

372 ⁴<https://zenodo.org/records/3451402>

373 ⁵DreamerV2 is adapted as a model-based behavioral predictor: we keep the standard world-model architecture
 374 but replace the environment reward with a supervised next-action objective, training from a fixed replay buffer
 375 built from human trajectories (offline setting).

378 Table 1: Overall results under the best configuration (mean \pm std across 3 random seeds). Acc is
 379 reported as Acc@1/3/5; Lat/CT in ms / h.
 380

381 Category	382 Method	383 NBA SportVU		384 Car-Following	
		385 Acc (%)	386 Lat/CT	387 Acc (%)	388 Lat/CT
389 Logic-based	RNNLogic	67.20/60.55/51.83 ($\pm 0.00 / \pm 0.33 / \pm 1.50$)	26.90/1.20 ($\pm 0.82 / \pm 0.00$)	72.33/68.14/57.56 ($\pm 1.26 / \pm 1.16 / \pm 1.45$)	7.58/0.54 ($\pm 1.08 / \pm 0.00$)
	STLR	75.25/74.67/70.20 ($\pm 0.45 / \pm 0.72 / \pm 1.15$)	174.18/73.35 ($\pm 0.75 / \pm 0.33$)	78.90/76.57/75.03 ($\pm 1.50 / \pm 1.82 / \pm 2.35$)	58.29/1.28 ($\pm 0.63 / \pm 0.20$)
390 DeepNN	Re-Net	72.18/68.45/62.00 ($\pm 0.67 / \pm 0.45 / \pm 0.67$)	218.42/2.34 ($\pm 3.25 / \pm 0.00$)	76.32/70.71/67.28 ($\pm 0.83 / \pm 1.25 / \pm 2.06$)	72.23/1.15 ($\pm 2.18 / \pm 0.00$)
	DAI	75.36/70.58/62.33 ($\pm 1.12 / \pm 1.48 / \pm 1.55$)	262.33/1.24 ($\pm 4.43 / \pm 0.01$)	78.86/73.35/68.50 ($\pm 0.42 / \pm 0.28 / \pm 0.53$)	146.33/0.62 ($\pm 1.31 / \pm 0.01$)
391 Active Inf.	DAI-MC	82.33/80.61/76.47 ($\pm 0.87 / \pm 0.85 / \pm 1.24$)	386.50/1.52 ($\pm 3.62 / \pm 0.05$)	84.54/82.87/80.25 ($\pm 0.34 / \pm 0.36 / \pm 0.76$)	189.75/0.79 ($\pm 1.55 / \pm 0.01$)
	LaTee	78.50/73.32/64.50 ($\pm 0.88 / \pm 1.72 / \pm 1.06$)	1244.20/4.65 ($\pm 10.07 / \pm 0.90$)	82.36/74.75/71.82 ($\pm 1.65 / \pm 1.12 / \pm 1.48$)	528.33/2.46 ($\pm 8.15 / \pm 0.76$)
392 LLM-based	Qwen-0.5B	71.25/64.18/56.42 ($\pm 1.12 / \pm 1.85 / \pm 1.28$)	2845.35/N/A ($\pm 12.45 / \text{—}$)	74.85/68.32/62.15 ($\pm 1.88 / \pm 1.45 / \pm 1.62$)	1256.82/N/A ($\pm 9.25 / \text{—}$)
	Model-based RL DreamerV2	86.42/83.57/81.65 ($\pm 0.47 / \pm 0.66 / \pm 0.72$)	52.73/1.75 ($\pm 3.25 / \pm 0.05$)	88.43/85.38/82.33 ($\pm 0.54 / \pm 0.78 / \pm 1.00$)	38.57/0.92 ($\pm 1.04 / \pm 0.00$)
393 Ours		97.00/91.32/85.69 ($\pm 0.51 / \pm 0.79 / \pm 0.89$)	35.92/2.59 ($\pm 2.78 / \pm 0.22$)	96.77/95.87/94.16 ($\pm 0.34 / \pm 0.40 / \pm 0.47$)	10.44/0.65 ($\pm 0.59 / \pm 0.08$)
394 Category	395 Method	396 DDXPlus (URTI)		397 Atari–Berzerk	
		398 Acc (%)	399 Lat/CT	400 Acc (%)	401 Lat/CT
402 Logic-based	RNNLogic	18.75/16.29/13.28 ($\pm 0.00 / \pm 0.67 / \pm 1.83$)	124.32/4.36 ($\pm 5.71 / \pm 0.39$)	33.86/27.50/24.38 ($\pm 0.34 / \pm 0.57 / \pm 0.37$)	72.46/2.04 ($\pm 3.27 / \pm 0.00$)
	STLR	22.45/18.33/15.59 ($\pm 0.00 / \pm 0.50 / \pm 1.18$)	872.00/10.25 ($\pm 10.53 / \pm 0.74$)	45.50/38.72/37.24 ($\pm 0.67 / \pm 1.83 / \pm 2.25$)	432.35/7.18 ($\pm 8.20 / \pm 0.58$)
404 DeepNN	Re-Net	27.33/20.18/16.17 ($\pm 1.32 / \pm 1.54 / \pm 1.76$)	1112.42/16.38 ($\pm 10.62 / \pm 0.42$)	40.69/32.48/29.33 ($\pm 0.75 / \pm 0.50 / \pm 1.84$)	723.02/4.42 ($\pm 5.48 / \pm 0.30$)
	DAI	46.82/39.27/34.20 ($\pm 0.82 / \pm 1.24 / \pm 1.33$)	2033.25/3.88 ($\pm 4.59 / \pm 0.27$)	59.97/52.28/41.46 ($\pm 0.72 / \pm 0.95 / \pm 1.30$)	977.24/3.67 ($\pm 5.51 / \pm 0.93$)
407 Active Inf.	DAI-MC	57.20/52.15/43.67 ($\pm 0.67 / \pm 1.24 / \pm 1.49$)	2304.23/4.75 ($\pm 6.29 / \pm 0.47$)	66.82/58.20/48.20 ($\pm 0.64 / \pm 0.77 / \pm 0.90$)	1429.00/4.95 ($\pm 4.87 / \pm 0.74$)
	LaTee	28.16/22.14/20.38 ($\pm 0.32 / \pm 0.67 / \pm 0.92$)	95028.72/20.39 ($\pm 45.88 / \pm 0.82$)	62.18/54.21/49.28 ($\pm 0.46 / \pm 0.68 / \pm 0.94$)	3230.43/11.64 ($\pm 7.61 / \pm 0.84$)
411 LLM-based	Qwen-0.5B	24.85/19.62/17.35 ($\pm 0.42 / \pm 0.78 / \pm 1.05$)	125842.15/N/A ($\pm 52.35 / \text{—}$)	58.42/51.25/46.18 ($\pm 0.58 / \pm 0.85 / \pm 1.12$)	4856.72/N/A ($\pm 8.75 / \text{—}$)
	Model-based RL DreamerV2	64.05/61.48/58.15 ($\pm 0.81 / \pm 0.99 / \pm 1.03$)	452.25/10.08 ($\pm 5.36 / \pm 0.80$)	76.33/72.18/69.47 ($\pm 0.67 / \pm 1.08 / \pm 1.33$)	108.02/6.87 ($\pm 0.98 / \pm 0.24$)
414 Ours		79.63/73.58/68.07 ($\pm 1.54 / \pm 2.62 / \pm 2.60$)	159.45/8.73 ($\pm 4.45 / \pm 0.29$)	85.55/77.20/72.44 ($\pm 0.87 / \pm 0.92 / \pm 1.05$)	92.63/3.53 ($\pm 2.29 / \pm 0.15$)

Car-Following. This dataset exhibits a small-rule–high-payoff pattern: even compact rule sets saturate accuracy (Acc@3 \approx 96%) while keeping latency very low (\approx 10 ms). Training traces show consistent decreases in all free energy components.

DDXPlus. On URTI with 225 actions, rule envelopes reliably capture low-frequency edge actions, yielding pronounced gains on HHAR while sustaining strong Acc@k. Rule-triggered choices also reduce per-step inference relative to model-only planning, though absolute latency remains higher due to the large action space.

423 Temporal Visual Dataset *Atari–Berzerk.* With visual inputs (128 \times 128 frames, 18 actions). To
 424 further assess generalization, we conducted additional experiments on three *Atari-100k* games (Pong,
 425 Breakout, Qbert) with varying complexity levels (see Appendix D.6). Fig. 2b shows that our encoder
 426 extracts task-relevant signals structuring (S_t, m_t) accurately with clear explanations after decoder,
 427 and rule-guided inference examples demonstrate steady predictive rollouts and consistent decisions.

428 Baseline Limitations. Our baselines face distinct challenges: (i) Deep predictive models (Re-Net,
 429 Transformer/BiGRU world models) lack rule libraries and explicit habit mechanisms, struggling with
 430 rare actions and highly imbalanced action distributions (e.g., DDXPlus’s 225 actions with many rare
 431 but critical diagnostic operations). (ii) Active inference baselines (DAI/DAI-MC) have only implicit
 432 habit policies without explicit latent mental states and symbolic rules, making them inefficient for

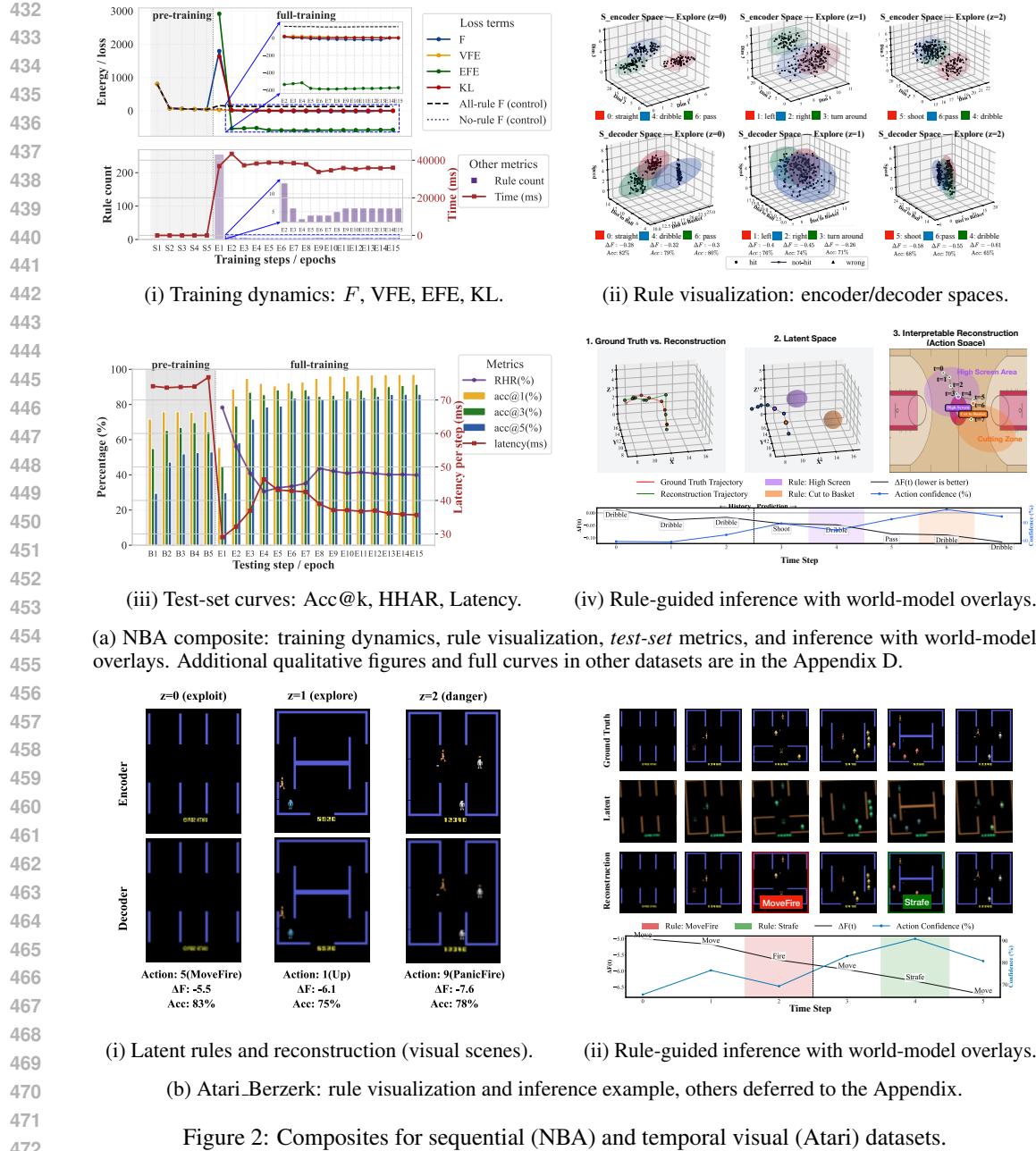


Figure 2: Composites for sequential (NBA) and temporal visual (Atari) datasets.

473 multimodal behaviors and rare actions, with high computational costs (e.g., DAI-MC latency: 2304ms
474 on DDXPlus). (iii) Model-based RL (DreamerV2) is limited by offline settings and sparse rewards,
475 underperforming on pure prediction tasks. (iv) Logic-based methods (RNNLogic, STL) use static
476 or post-hoc extracted rules without joint optimization with world models. (v) LLM-based methods
477 (LaTee, Qwen-0.5B) suffer from high latency (e.g., LaTee: 95028ms, Qwen-0.5B: 125842ms on
478 DDXPlus), poor performance (Qwen-0.5B Acc@3: 19.62% vs ours: 73.58%), and lack of generative
479 world models or active inference mechanisms. Our rule-guided active inference addresses these
480 limitations by jointly learning rules and world models under a unified free-energy objective.

5.3 RULE-Performance TRADE-OFF

483 Figure 3 shows the Pareto behavior between *accuracy* and *latency* as the rule bank grows. Four
484 consistent patterns emerge:

485 **(1) Rules speed inference; accuracy is inverted-U in rule size.** As rule count (RC) grows, reference
latency drops since cheap rule triggers replace costly planning. Accuracy first rises then falls: compact

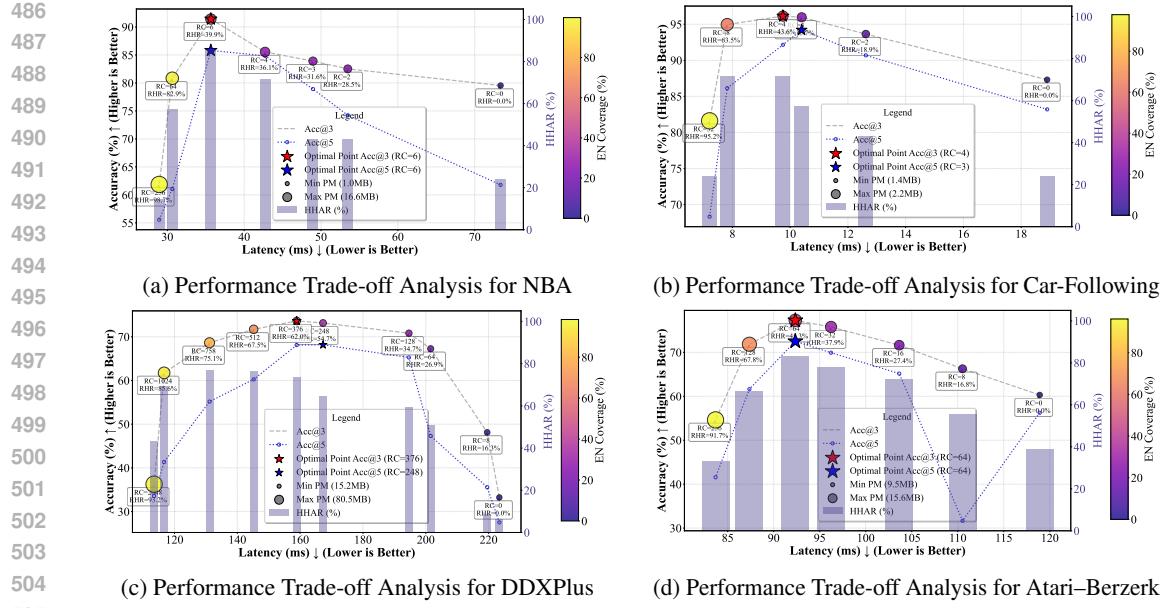


Figure 3: Rule-Performance trade-off across datasets. Each point corresponds to a rule-bank size (RC/EN). Y-axis: accuracy (higher is better); X-axis: latency (lower is better). Bubble size encodes peak memory (PM), color encodes HHAR, and vertical bars denote EN coverage. Stars indicate the Pareto knees used in Table 1.

banks (e.g., NBA at $RC \approx 6$, Car-Following at $RC \approx 3-4$) capture reliable intents and boost $Acc@k$, but excessive rules introduce spurious hits and conflicts, degrading decisions despite faster inference. **(2) Coverage vs. precision diverge after the knee.** RC and rule-hit rate (RHR) keep increasing even as $Acc@k$ declines (HHAR may plateau). Thus *which* rules fire matters more than *how many*: too many rules bias toward noisy or redundant envelopes that compete with the model (e.g., DDXPlus peaks near $RC \approx 376$, Atari near $RC \approx 64$).

(3) Memory grows with RC; Pareto knee is optimal. Peak memory (bubble size) increases with RC. The practical operating point is the knee, balancing accuracy, latency, and memory.

(4) Rules complement active inference. EFE-guided planning arbitrates between rollouts and rule triggers via ΔF . With a compact, semantically grounded bank, triggers reduce ΔF and depth, yielding large latency gains with robust accuracy. Oversized banks cause overlapping envelopes, weakening arbitration and explaining post-peak accuracy drops.

5.4 ABLATION STUDY

We ablate four factors relative to the full model: (i) removing rules; (ii) removing the latent intention m_t ; (iii) dropping generative consistency (VFE, or both VFE and KL); and (iv) greedy rule selection.

Key findings. Rules are essential: without them, both accuracy and latency degrade (e.g., NBA $Acc@3$ 91.4 \rightarrow 79.5, latency 36 \rightarrow 73 ms). Latent intention m_t organizes precision: removing z lowers accuracy and increases latency (e.g., Atari $Acc@3$ 77.3 \rightarrow 70.1). Generative consistency is critical: –VFE or Only EFE keeps latency low but causes large accuracy drops (e.g., Car-Following $Acc@3$ 95.9 \rightarrow 78.5). Greedy rule selection yields the fastest inference (as low as 2.6 ms) but sacrifices accuracy and HHAR, showing instability. Complete ablation study is provided in Appendix D.5.

Therefore, each ablated component removes a distinct capability: speed (no rules), precision (no z), cognition grounding (no VFE), or stability (greedy).

6 CONCLUSION

We present a cognitive framework that jointly learns a world model and uses it to plan and select future actions via active inference, while a rule engine provides fast, interpretable habitual control. A universal mental-state set enables a single formulation across diverse domains. Experiments on sports tracking, driving, clinical diagnosis, and Atari show strong accuracy under low latency, clear Pareto trade-offs, and rule envelopes that align with human strategies. Overall, the framework captures key aspects of human behavior and substantially enhances interpretability.

540 REPRODUCIBILITY STATEMENT
541

542 We have made extensive efforts to ensure the reproducibility of our results. The complete description
543 of both synthetic dataset generation and real-world dataset preprocessing methods are illustrated
544 in Appendix C. Details of the computational setup, including hardware configuration and software
545 environment, as well as the choice of hyper-parameters are documented in Appendix C.7. We will
546 release our code in the camera-ready stage to facilitate replication and further research.

547 REFERENCES
548

549 Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
550 reinforcement learning. In *Proceedings of the 37th International Conference on Machine Learning*,
551 2020.

552 Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. *Proceedings of the
553 AAAI Conference on Artificial Intelligence*, 31(1):1726–1734, 2017.

554 Bernard W Balleine and John P O’doherty. Human and rodent homologies in action control:
555 corticostriatal determinants of goal-directed and habitual action. *Neuropsychopharmacology*,
556 35(1):48–69, 2010.

557 Chengzhi Cao, Chao Yang, Ruimao Zhang, and Shuang Li. Discovering intrinsic spatial-temporal
558 logic rules to explain human actions. *Advances in Neural Information Processing Systems*, 36:
559 67948–67959, 2023.

560 Ozan Çatal, Tim Verbelen, Johannes Nauta, Cedric De Boom, and Bart Dhoedt. Learning perception
561 and planning with deep active inference. In *ICASSP 2020-2020 IEEE International Conference on
562 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 3952–3956. IEEE, 2020.

563 Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
564 *arXiv preprint arXiv:2011.04583*, 2020.

565 Fiery A. Cushman and Adam Morris. Habitual control of goal selection in humans. *Proceedings of
566 the National Academy of Sciences*, 112(45):13817–13822, 2015.

567 Artur S. d’Avila Garcez, Marco Gori, Luis C. Lamb, Luciano Serafini, Michael Spranger, and Son N.
568 Tran. Neural-symbolic computing: An effective methodology for principled integration of machine
569 learning and reasoning. *Journal of Applied Logics*, 6(4):611–632, 2019.

570 Daphne Demekas, Thomas Parr, and Karl J Friston. An investigation of the free energy principle for
571 emotion recognition. *Frontiers in Computational Neuroscience*, 14:30, 2020.

572 Ray J Dolan and Peter Dayan. Goals and habits in the brain. *Neuron*, 80(2):312–325, 2013.

573 Anca D Dragan and Siddhartha S Srinivasa. A policy-blending formalism for shared control. *The
574 International Journal of Robotics Research*, 32(7):790–805, 2013.

575 Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
576 Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. *Advances in neural
577 information processing systems*, 30, 2017.

578 Viet Dung Nguyen, Zhizhuo Yang, Christopher L Buckley, and Alexander Ororbia. R-aif: Solving
579 sparse-reward robotic tasks from pixels with active inference and world models. *arXiv e-prints*, pp.
580 arXiv–2409, 2024.

581 Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke
582 Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable,
583 interpretable knowledge with wake–sleep bayesian program learning. *Philosophical Transactions of
584 the Royal Society A*, 381(2251):20220050, 2023.

585 Neil Ferguson. Capturing human behaviour. *Nature*, 446(7137):733–733, 2007.

586 Zafeirios Fountas, Noor Sajid, Pedro Mediano, and Karl Friston. Deep active inference agents using
587 monte-carlo methods. *Advances in neural information processing systems*, 33:11662–11675, 2020.

594 Karl Friston, Francesco Rigoli, Dimitri Ognibene, Christoph Mathys, Thomas Fitzgerald, and
 595 Giovanni Pezzulo. Active inference and epistemic value. *Cognitive neuroscience*, 6(4):187–214,
 596 2015.

597 Karl Friston, Thomas Fitzgerald, Francesco Rigoli, Philipp Schwartenbeck, Giovanni Pezzulo, et al.
 598 Active inference and learning. *Neuroscience & Biobehavioral Reviews*, 68:862–879, 2016.

600 Karl Friston, Lancelot Da Costa, Danijar Hafner, Casper Hesp, and Thomas Parr. Sophisticated
 601 inference. *Neural Computation*, 33(3):713–763, 2021.

602 William F Goette, Anne R Carlew, Jeff Schaffert, Ben K Mokhtari, and C Munro Cullum. Validation
 603 of a bayesian diagnostic and inferential model for evidence-based neuropsychological practice.
 604 *Journal of the International Neuropsychological Society*, 29(2):182–192, 2023.

605 Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
 606 world models. *arXiv preprint arXiv:2010.02193*, 2020.

607 Dongqi Han, Kenji Doya, Dongsheng Li, and Jun Tani. Synergizing habits and goals with variational
 608 bayes. *Nature Communications*, 15(1):4461, 2024.

609 R Conor Heins, M Berk Mirza, Thomas Parr, Karl Friston, Igor Kagan, and Arezoo Pooresmaili.
 610 Deep active inference and scene construction. *Frontiers in Artificial Intelligence*, 3:509354, 2020.

611 Morten Henriksen. Variational free energy and economics optimizing with biases and bounded
 612 rationality. *Frontiers in Psychology*, 11:549187, 2020.

613 Luke Hewitt, Tuan Anh Le, and Joshua Tenenbaum. Learning to learn generative programs with
 614 memoised wake-sleep. In *Conference on Uncertainty in Artificial Intelligence*, pp. 1278–1287.
 615 PMLR, 2020.

616 Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The “wake-sleep” algorithm
 617 for unsupervised neural networks. *Science*, 268(5214):1158–1161, 1995.

618 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural
 619 information processing systems*, 29, 2016.

620 Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Autoregressive
 621 structure inference over temporal knowledge graphs. *arXiv preprint arXiv:1904.05530*, 2019.

622 Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
 623 Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
 624 reinforcement learning for atari. In *International Conference on Learning Representations*, 2020.

625 Archit Ramanasai Kambhamettu, Abhinav Shrivastava, and Matthew Gwilliam. Quantifying nba
 626 shot quality: A deep network approach. In *Proceedings of the 7th ACM International Workshop on
 627 Multimedia Content Analysis in Sports*, pp. 91–95, 2024.

628 Benedikt Leichtmann, Christina Humer, Andreas Hinterreiter, Marc Streit, and Martina Mara. Effects
 629 of explainable artificial intelligence on trust and human behavior in a high-risk decision task.
 630 *Computers in Human Behavior*, 139:107539, 2023.

631 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
 632 *arXiv preprint arXiv:1805.00909*, 2018.

633 Guopeng Li, Yiru Jiao, Victor L Knoop, Simeon C Calvert, and JWC van Lint. Large car-following
 634 data based on lyft level-5 open dataset: Following autonomous vehicles vs. human-driven vehicles.
 635 *arXiv preprint arXiv:2305.18921*, 2023a.

636 Liulei Li, Jianan Wei, Wenguan Wang, and Yi Yang. Neural-logic human-object interaction detection.
 637 *Advances in Neural Information Processing Systems*, 36:21158–21171, 2023b.

638 Shuang Li, Mingquan Feng, Lu Wang, Abdelmajid Essofi, Yufeng Cao, Junchi Yan, and Le Song. Ex-
 639 plaining point processes by learning interpretable temporal logic rules. In *International Conference
 640 on Learning Representations*, 2021.

648 Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
 649 demonstrations. *Advances in neural information processing systems*, 30, 2017.

650

651 Guilherme J Maeda, Gerhard Neumann, Marco Ewerthon, Rudolf Lioutikov, Oliver Kroemer, and Jan
 652 Peters. Probabilistic movement primitives for coordination of multiple human–robot collaborative
 653 tasks. *Autonomous Robots*, 41:593–612, 2017.

654 Lisa A Marsch. Digital health data-driven approaches to understand human behavior. *Neuropsychopharmacology*,
 655 46(1):191–196, 2021.

656

657 Pietro Mazzaglia, Tim Verbelen, and Bart Dhoedt. Contrastive active inference. *Advances in neural
 658 information processing systems*, 34:13870–13882, 2021.

659

660 Pietro Mazzaglia, Tim Verbelen, Ozan Çatal, and Bart Dhoedt. The free energy principle for
 661 perception and action: A deep learning perspective. *Entropy*, 24(2):301, 2022.

662

663 Beren Millidge, Alexander Tschantz, Anil K Seth, and Christopher L Buckley. On the relationship
 664 between active inference and control as inference. In *International workshop on active inference*,
 pp. 3–11. Springer, 2020.

665 Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Whence the expected free energy?
 666 *Neural Computation*, 33(2):447–482, 2021.

667

668 M Berk Mirza, Rick A Adams, Christoph D Mathys, and Karl J Friston. Scene construction, visual
 669 foraging, and active inference. *Frontiers in computational neuroscience*, 10:56, 2016.

670

671 David T Neal, Wendy Wood, Jennifer S Labrecque, and Phillipa Lally. How do habits guide
 672 behavior? perceived and actual triggers of habits in daily life. *Journal of experimental social
 psychology*, 48(2):492–498, 2012.

673

674 Thomas Parr and Karl J Friston. Generalised free energy and active inference. *Biological cybernetics*,
 113(5):495–513, 2019.

675

676 Alex Pentland and Andrew Liu. Modeling and prediction of human behavior. *Neural computation*,
 11(1):229–242, 1999.

677

678 Zenon W Pylyshyn. Computation and cognition: Issues in the foundations of cognitive science.
 679 *Behavioral and Brain sciences*, 3(1):111–132, 1980.

680

681 Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic: Learning
 682 logic rules for reasoning on knowledge graphs. *arXiv preprint arXiv:2010.04029*, 2020.

683

684 Alexander J Rothman, Paschal Sheeran, and Wendy Wood. Reflective and automatic processes in the
 685 initiation and maintenance of dietary change. *Annals of behavioral medicine*, 38(suppl_1):s4–s17,
 2009.

686

687 Joanne Savage and Bryan Vila. Human ecology, crime, and crime control: Linking individual
 688 behavior and aggregate crime. *Social Biology*, 50(1-2):77–101, 2003.

689

690 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 691 forgetting with hard attention to the task. In *International conference on machine learning*, pp.
 4548–4557. PMLR, 2018.

692

693 Bilong Shen, Xiaodan Liang, Yufeng Ouyang, Miaofeng Liu, Weimin Zheng, and Kathleen M
 694 Carley. Stepdeep: A novel spatial-temporal mobility event prediction framework based on deep
 695 neural network. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge
 discovery & data mining*, pp. 724–733, 2018.

696

697 Zitao Song, Chao Yang, Chaojie Wang, Bo An, and Shuang Li. Latent logic tree extraction for event
 698 sequence explanation from llms. *arXiv preprint arXiv:2406.01124*, 2024.

699

700 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024a.

701 Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL <https://qwenlm.github.io/blog/qwen2.5/>.

702 Marc Toussaint. Robot trajectory optimization using approximate inference. In *Proceedings of the*
703 *26th annual international conference on machine learning*, pp. 1049–1056, 2009.
704

705 Alexander Tschantz, Anil K. Seth, and Christopher L. Buckley. Learning action-oriented models
706 through active inference. *PLOS Computational Biology*, 16(4):e1007805, 2020.
707

708 Kai Ueltzhöffer. Deep active inference. *Biological cybernetics*, 112(6):547–573, 2018.
709

709 Weidi Xu, Jingwei Wang, Lele Xie, Jianshan He, Hongting Zhou, Taifeng Wang, Xiaopei Wan,
710 Jingdong Chen, Chao Qu, and Wei Chu. Logicmp: A neuro-symbolic approach for encoding
711 first-order logic constraints. *arXiv preprint arXiv:2309.15458*, 2023.
712

712 Chao Yang, Shuting Cui, Yang Yang, and Shuang Li. Evolving minds: Logic-informed inference
713 from temporal action patterns. In *Forty-second International Conference on Machine Learning*,
714 2025.
715

716 Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point process for
717 learning spatiotemporal event dynamics. In *Learning for Dynamics and Control Conference*, pp.
718 777–789. PMLR, 2022.
719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX OVERVIEW

- **Section A** presents the rule-guided Wake–Sleep framework and online reasoning. It unifies Wake and Sleep into a single pseudocode and details how state reconstruction, belief updating, candidate rule extraction, and model optimization are integrated (Algorithms 1, 2, 3). All definitions (model factorization, VFE/EFE, policy, joint objective) strictly follow the main text.
- **Section B** shows that our model is naturally equivalent to a mixture over latent states, and that rule learning and activation can be interpreted as a lightweight EM-style approximation to inference and parameter updates in this mixture.
- **Section C** describes dataset preprocessing and feature construction for NBA SportVU, Car-Following, DDXPlus, and Atari–Berzerk, including the action spaces and the world-model inputs. It also specifies the semantic interpretations of the discrete internal state m (Section C.6), consolidates key hyperparameters for data/model and optimization/planning/rules (Tables 2–3), and reports action distribution plots across all datasets (Figure 4).
- **Section D** provides additional experimental results beyond the main text: full training dynamics (ΔF , VFE, EFE, KL; Figure 5), testing metrics on held-out sets (Acc@K, rule-hit rate, latency; Figure 6), rule envelopes and visualizations across domains (Figures 7 and 8), end-to-end trajectory visualizations (Figures 9 and 10), full ablation study (Table 4), and **Atari-100k supplementary experiment (Section D.6, Table 5)**.
- **Section E** conducts sensitivity analyses and lists the exact LLM prompts used: NBA action-parameter sensitivity curves (Figure 11), the effect of the latent mental-state cardinality m (Figures 12–14; DDXPlus has fixed m), LLM prompts for all datasets (Section E.5), **hyperparameter sensitivity analysis (Section E.3, Tables 6–7)**, and **LLM-guided component ablation study (Section E.4)**.
- **Section F** discusses limitations and broader impact, including domain specificity of mined rules, sensitivity to thresholds and hyperparameters, computational considerations, dependence on world-model quality, and potential directions such as hierarchical timescales and real-world deployment.

A WAKE–SLEEP ALGORITHM

Algorithm 1 Rule-Guided Active Inference: Unified Wake–Sleep Cycle

Require: Dataset \mathcal{D} , generative model p_ϕ , encoder q_θ , policy ϕ_π , rule set $\mathcal{F} = \{(S_f^*, m_f^*, a_f, \rho_f)\}$

- 1: Initialize parameters $(\phi, \vartheta, \phi_\pi)$; set $\mathcal{F} \leftarrow \emptyset$
- 2: **for** each epoch **do**
- 3: **Wake phase (real trajectories)**
- 4: **for** trajectory $\tau \in \mathcal{D}$ **do**
- 5: **for** time $t = 1:T$ **do**
- 6: Infer $(S_t, m_t) \sim q_\theta(S_t, m_t \mid H_t)$
- 7: Compute per-step free energy VFE_t (Eq. 2); accumulate ΔF
- 8: **if** $\Delta F < -\delta_F$ recurrently for $(S_t^{\text{MAP}}, m_t^{\text{MAP}}, a_t)$ **then**
- 9: Create or update rule (S^*, m^*, a, ρ) with confidence $\rho \leftarrow \rho + \delta_{\text{conf}}$
- 10: Update centroid $S^* \leftarrow \frac{\sum_S w(S)S}{\sum_S w(S)}$, $w(S) \propto \exp(-\text{VFE}(O, S, m^*))$
- 11: **end if**
- 12: **end for**
- 13: **end for**
- 14: Update (ϕ, ϑ) on real data by minimizing VFE (Eq. 2)
- 15: **Sleep phase (replay)**
- 16: **for** mini-batch $(S, O, m, a) \sim p_\phi$ **do**
- 17: Minimize joint objective $F_t = \text{VFE}_t + \eta \cdot \text{EFE}_t + \gamma \cdot \text{KL}(\cdot)$ (Eq. 6)
- 18: Update (ϕ, ϕ_π) by ∇F_t ; keep q_θ consistent
- 19: Refine S^* , update ρ , prune rules with $\rho < \delta_{\text{conf}}$
- 20: **end for**
- 21: **end for**

This section provides algorithmic details of our framework. We unify the Wake and Sleep phases into a single pseudocode (Algorithm 1), describe the hybrid online reasoning procedure (Algorithm 2),

810 and summarize the two-stage training schedule (Algorithm 3). All definitions and objectives strictly
 811 follow the main text: the generative model factorization (Eq. 1), the variational free energy (VFE,
 812 Eq. 2), the expected free energy (EFE, Eq. 3), the rule fusion policy (Eq. 5), and the joint objective
 813 (Eq. 6).

Algorithm 2 Online Reasoning with Rule Fusion and Planning

814 **Require:** History H_t , encoder q_θ , model p_ϕ , rule set \mathcal{F} , horizon H , beam width K
 815 1: Infer $(S_t, m_t) \sim q_\theta(S_t, m_t \mid H_t)$
 816 2: **Rule prior:** for each $r \in \mathcal{F}$, if $\kappa(S_t, S_r^*) \geq \tau_r$ and $m_t = m_r^*$, add weighted vote ρ_r for a_r
 817 3: If rules triggered, form $\pi_{\text{rule}}(a \mid S_t, m_t)$; else set $\pi_{\text{rule}} \equiv 0$
 818 4: **Planning fallback:** evaluate candidate actions by EFE (Eq. 3) via beam search (width K ,
 819 horizon H)
 820 5: Fuse distributions: $p_{\phi_\pi}(a_t \mid S_t, m_t, \mathcal{F}) \propto \pi_{\text{rule}}(a_t) + (1 - \mathbf{1}_{\text{rule hit}}) \exp\{-\eta \cdot \text{EFE}_t(a_t)\}$ (Eq. 5)
 821

822 A.1 WAKE & SLEEP PHASES

823 **Wake.** Operates on real trajectories: latent inference by q_θ , per-step free energy from Eq. 2, and
 824 candidate rules from recurring (S, m, a) triplets that stably reduce free energy. Rule anchors are
 825 updated as weighted centroids ($\exp(-\text{VFE})$ as weights).

826 **Sleep.** Uses replay samples from p_ϕ , minimizing the composite loss J_t (Eq. (5)). Rules are refined
 827 (anchor shift, confidence update) and pruned if redundant or low-confidence.

828 This division follows the classic wake–sleep paradigm (Hinton et al., 1995; Friston et al., 2015) but
 829 adapted to rule-guided active inference.

830 A.2 TRAINING SCHEDULE

831 We adopt a two-stage schedule to stabilize learning.

Algorithm 3 Two-Stage Training: Blockwise Pretraining and Full Wake–Sleep

832 **Require:** Dataset \mathcal{D} , blocks $\{\mathcal{D}_b\}_{b=1}^B$
 833 1: **Stage 1: Blockwise pretraining**
 834 2: **for** block $b = 1:B$ **do**
 835 3: **for** mini-batch $(O, a) \in \mathcal{D}_b$ **do**
 836 4: Infer $S \sim q_\theta(S \mid O)$; reconstruct O
 837 5: Update (ϕ, θ) by minimizing VFE only (Eq. 2)
 838 6: **end for**
 839 7: **end for**
 840 8: **Stage 2: Full Wake–Sleep training**
 841 9: **for** epoch $= 1:E$ **do**
 842 10: Run Wake phase on real data (Alg. 1, lines 3–12)
 843 11: Run Sleep phase with replay (Alg. 1, lines 14–18)
 844 12: Refine/prune rule pool; update confidences
 845 13: **end for**

846 A.3 SUMMARY

847 - Wake extracts rules via ΔF -based improvements and updates confidences. - Sleep uses replay to
 848 refine rules and jointly minimize J_t (Eq. 6). - Online reasoning integrates rule priors and planning
 849 (Eq. 5), realized via beam search or MCTS. - Training proceeds in two stages: blockwise pretraining
 850 for fast bootstrapping, then full Wake–Sleep for convergence.

851 **B MIXTURE MODEL OVER LATENT STATES AND CONNECTION TO EM-STYLE**
 852 **UPDATES**

853 In the main text (Sec. 4.1), we introduce rules as compact, latent-grounded carriers of habitual
 854 knowledge. Here we make explicit a probabilistic interpretation of the rule library as a *Gaussian*
 855 *mixture* over latent contexts, and clarify how our rule scores and updates correspond to approximate
 856 EM steps.

857 **Gaussian mixture over latent contexts.** Recall that the latent state factorizes as $Z_t = (S_t, m_t)$,
 858 with continuous S_t and discrete $m_t \in \{1, \dots, K\}$. Each rule r stores a prototype
 859 $(S_r^*, m_r^*, a_r, \rho_r)$,

864 where S_r^* is a continuous anchor in latent state space, m_r^* is a discrete mental-state label, a_r is the
 865 associated action, and $\rho_r \in [0, 1]$ is a nonnegative rule weight. The full rule set

$$866 \quad \mathcal{F} = \{(S_r^*, m_r^*, a_r, \rho_r)\}_r$$

867 can be viewed as the parameters of a Gaussian mixture over latent contexts.

868 Introduce a latent rule index $r_t \in \{1, \dots, |\mathcal{F}|\}$ at each time step, with categorical prior

$$869 \quad p(r_t = r) = \pi_r, \quad \sum_r \pi_r = 1,$$

871 and component-specific priors over (S_t, m_t) of the form

$$872 \quad p(S_t | r_t = r) = \mathcal{N}(S_t; \mu_r, \Sigma_r), \quad p(m_t | r_t = r) = \delta(m_t = m_r^*),$$

873 where $\mathcal{N}(\cdot; \mu_r, \Sigma_r)$ is a Gaussian over the continuous latent state and $\delta(\cdot)$ is a Kronecker delta fixing
 874 the discrete mental state. In our implementation, we tie the mean to the stored anchor, $\mu_r = S_r^*$, and
 875 use a shared covariance $\Sigma_r = \sigma^2 I$, so

$$876 \quad p(S_t | r_t = r) = \mathcal{N}(S_t; S_r^*, \sigma^2 I) \propto \exp\left(-\frac{1}{2\sigma^2} \|S_t - S_r^*\|^2\right).$$

877 Under this mixture, the posterior over rules factorizes as

$$878 \quad q(r_t = r | S_t, m_t) \propto p(r_t = r) p(S_t | r_t = r) p(m_t | r_t = r) \quad (7)$$

$$879 \quad \propto \pi_r \mathcal{N}(S_t; S_r^*, \sigma^2 I) \mathbf{1}\{m_t = m_r^*\}.$$

880 Thus the posterior responsibility of rule r is a *Gaussian function* of the distance between S_t and the
 881 anchor S_r^* , modulated by whether m_t matches m_r^* .

882 **Connection to the encoder and rule scores.** In the main text, given a new history \mathcal{H}_t , the encoder
 883 $q_\vartheta(Z_t | \mathcal{H}_t)$ produces a posterior over (S_t, m_t) , and we use its MAP estimate

$$884 \quad S_t^{\text{MAP}} = \arg \max_s q_\vartheta(S_t = s | \mathcal{H}_t), \quad m_t^{\text{MAP}} = \arg \max_k q_\vartheta(m_t = k | S_t, \mathcal{H}_t).$$

885 Assuming $q_\vartheta(S_t | \mathcal{H}_t)$ is approximately Gaussian with mean S_t^{MAP} , combining this approximate
 886 posterior with the Gaussian prior $p(S_t | r_t = r)$ yields log-responsibilities that are quadratic in
 887 $\|S_t^{\text{MAP}} - S_r^*\|$, i.e. Gaussian in distance.

888 We instantiate this by defining Gaussian kernel scores

$$889 \quad w_r(t) = \kappa(S_t^{\text{MAP}}, S_r^*) \mathbf{1}\{m_t^{\text{MAP}} = m_r^*\}, \quad \kappa(S_t^{\text{MAP}}, S_r^*) := \exp\left(-\frac{1}{2\sigma^2} \|S_t^{\text{MAP}} - S_r^*\|^2\right).$$

890 These scores act as unnormalized responsibilities of rule r for the current context. Comparing with
 891 the mixture posterior above, this corresponds to the approximation

$$892 \quad q(r_t = r | S_t^{\text{MAP}}, m_t^{\text{MAP}}) \propto \pi_r \exp\left(-\frac{1}{2\sigma^2} \|S_t^{\text{MAP}} - S_r^*\|^2\right) \mathbf{1}\{m_t^{\text{MAP}} = m_r^*\},$$

893 i.e. a Gaussian posterior over the rule index as a function of the latent state. In our implementation,
 894 we absorb π_r into the learned rule weight ρ_r , and treat $\kappa(\cdot, \cdot)$ as the dominant distance-based term.

895 A rule is declared *active* if

$$896 \quad \max_r w_r(t) \geq \tau_r,$$

897 so the threshold τ_r simply truncates very small posterior responsibilities.

898 When multiple rules suggest the same action a , we define a rule-induced action distribution

$$899 \quad \pi(a | S_t^{\text{MAP}}, m_t^{\text{MAP}}) \propto \sum_{r: a_r = a} w_r(t) \rho_r,$$

900 normalized over a . Under the Gaussian mixture view, $w_r(t)$ approximates the context-dependent
 901 responsibility $q(r_t = r | S_t^{\text{MAP}}, m_t^{\text{MAP}})$, and ρ_r is the learned mixture weight of rule r .

902 **Connection to EM-style updates.** In the wake phase, we grow and refine rules from real trajectories.
 903 When a triplet $(S_t^{\text{MAP}}, m_t^{\text{MAP}}, a_t)$ recurs often with low free energy, we either (i) create a new rule
 904 (S_r^*, m_r^*, a_r) with initial weight $\rho_r > 0$, or (ii) increase the weight ρ_r of an existing nearby rule.
 905 Continuous anchors are updated as weighted Gaussian centroids:

$$906 \quad S_r^* \leftarrow \frac{\sum_{S \in \mathcal{S}_r^{\text{real}}} u(S) S}{\sum_{S \in \mathcal{S}_r^{\text{real}}} u(S)}, \quad u(S) \propto \exp(-\text{VFE}(O, S, m_r^*; \phi, \vartheta)),$$

907 where $\mathcal{S}_r^{\text{real}}$ collects latent states assigned to rule r on real data. This update is an EM-style M-
 908 step on the Gaussian means μ_r in the mixture model, with $u(S)$ playing the role of (reweighted)
 909 responsibilities.

910 During sleep, rules are further refined using replayed trajectories: anchors S_r^* are updated on replayed
 911 latents, rule weights ρ_r are adjusted based on how often and how well they explain latent contexts,
 912 and rules with persistently low effective weight are pruned. Birth (when no rule's responsibility

918 exceeds the threshold) and pruning (when a rule receives negligible responsibility) play the role of
 919 cluster creation/deletion in nonparametric Gaussian mixture models (e.g., DP-means).

920 Although we present the rule mechanism in algorithmic terms (kernels, thresholds, centroids), it
 921 admits a natural Bayesian interpretation: rules correspond to Gaussian mixture components over
 922 latent contexts (S_t, m_t), with Gaussian priors over S_t and fixed labels for m_t ; $w_r(t)$ approximate
 923 posterior responsibilities over the rule index; and the anchor and weight updates correspond to
 924 EM-style M-steps. This interpretation clarifies that the rule library is not an ad-hoc heuristic, but a
 925 structured, *lightweight and computationally efficient* approximation to Gaussian mixture modeling in
 926 latent AIF space.

928 C DATASET PREPROCESSING AND FEATURE CONSTRUCTION

930 C.1 DATASET

931 **NBA SportVU.** We extract frame-level coordinates of the ball and ten players from SportVU event
 932 data, filtering invalid samples (e.g., missing entities or frames with fewer than 11 tracked objects)
 933 and sampling up to 20 clips per game. Since raw coordinates are insufficient for rule construction,
 934 we construct new parameterized features under the guidance of large language models (LLMs) and
 935 conduct a rationality analysis to validate feature choices. This yields interpretable features such
 936 as relative velocity, spacing, and formation compactness. The final dataset contains about 9.8k
 937 training samples and 2.5k validation samples, with an action space of 7 classes (e.g., straight run,
 938 turn, dribble).

939 **Car-Following.** The original traffic data do not explicitly provide environmental dynamics. We
 940 therefore define an *action world model*, where observation features are constructed from action
 941 sampling statistics (e.g., acceleration and headway patterns) to characterize driving dynamics. The
 942 resulting dataset consists of about 19k training samples and 2.5k validation samples, with 7 driving
 943 modes such as cruise, follow, and accelerate.

944 **DDXPlus.** The DDXPlus dataset consists of diagnostic trajectories generated by a multi-disease
 945 Naive Bayes teacher model. We select URTI, the most frequent disease, as the target condition
 946 for diagnostic inference. Each trajectory contains a sequence of ASK actions (doctor’s inquiries)
 947 followed by a final DIAG action. After preprocessing and formatting, we obtain about 165k training
 948 samples and 25k validation samples, with an action vocabulary of 225 classes.

949 **Atari–Berzerk.** We use high-score human demonstration trajectories in the Atari *Berzerk* game
 950 (representing strong human intelligence). Raw RGB frames are converted into 128×128 grayscale
 951 images. Each frame is paired with the corresponding human action, drawn from 18 discrete classes
 952 (movement, positioning, firing, etc.). The processed dataset contains about 16.5k training samples
 953 and 16.5k validation samples.

954 C.2 NBA SPORTVU

955 **Action space.** We follow the analytic definitions and symbolic feature construction described in
 956 the main text and experimental log. Seven discrete basketball actions are defined from player–ball
 957 relations. Let $p_t \in \mathbb{R}^2$ denote the player’s position, $b_t \in \mathbb{R}^2$ the ball position, and $h_t \in \mathbb{R}^2$ the unit
 958 heading vector ($h_t = \frac{p_t - p_{t-1}}{\|p_t - p_{t-1}\|}$). Define constants

$$959 D_{\text{dribble}} = 2 \text{ ft}, \quad D_{\text{release}} = 6 \text{ ft}, \quad D_{\text{receive}} = 2 \text{ ft}.$$

960 Then the discrete action a_t is given by

$$961 a_t = \begin{cases} 4, & \|p_t - b_t\| \leq D_{\text{dribble}}, \\ 5, & \|p_{t-1} - b_{t-1}\| \leq D_{\text{dribble}}, \|p_t - b_t\| \geq D_{\text{release}}, \min_j \|y_t^j - b_t\| \leq D_{\text{receive}}, \\ 6, & \|p_{t-1} - b_{t-1}\| \leq D_{\text{dribble}}, \|p_t - b_t\| \geq D_{\text{release}}, \min_j \|y_t^j - b_t\| > D_{\text{receive}}, \\ 3, & (h_{t-1} \cdot h_t) > \epsilon, \\ 2, & (h_{t-1} \cdot h_t) < -\epsilon, \\ 1, & \text{otherwise if } (h_{t-1} \cdot h_t) < 0, \\ 0, & \text{otherwise if } (h_{t-1} \cdot h_t) \geq 0, \end{cases}$$

962 where $\epsilon = \pi/18$ (10°) and y_t^j are defender positions.

963 **Symbolic feature extraction.** For each historical frame $t = 1, \dots, H$:

972 (i) **Soft direction-kernel features.** For opponent j and basis direction $b_i \in$
 973 $\{(1, 0), (0, 1), (-1, 0), (0, -1)\}$, define
 974

$$\phi_{t,j,i}^{\text{dir}} = \exp\left(-\frac{\|p_t - y_t^j\|^2}{2\sigma^2}\right) \cdot \max(b_i^\top u_t^j, 0),$$

977 where $u_t^j = \frac{y_t^j - p_t}{\|y_t^j - p_t\|}$ and $\sigma = 10$.
 978

979 (ii) **Relational distance/angle features.** Let $d_j = \|p_t - y_t^j\|$ and sort $d_{(1)} \leq d_{(2)} \leq d_{(3)}$. Define
 980

$$d_{\text{rim}} = \|p_t - r\|, \quad \theta_{\text{rim}} = \arctan 2(r_y - p_y, r_x - p_x), \quad d_{\text{mean}} = \frac{1}{|\mathcal{O}| - 1} \sum_{j \in \mathcal{O} \setminus \{\text{handler}\}} d_j.$$

982 Then form

$$\phi_t^{\text{rel}} = [d_{(1)}, d_{(2)}, d_{(3)}, d_{\text{rim}}, \theta_{\text{rim}}, d_{\text{mean}}].$$

984 Further sensitivity analysis of LLM-guided action parameters, as well as the prompts used for
 985 generating symbolic actions, are provided in Appendix E.

986 C.3 CAR-FOLLOWING

988 For the car-following domain, we use the open-source trajectory dataset where each run is recorded
 989 as a sequence of driving regimes. Data are extracted from HDF5 files and organized into fixed-length
 990 training samples.

991 **Preprocessing.** Each sample is represented by:

- 992 • Previous- K one-hot encoded regimes (history of executed actions).
- 993 • dt : time interval between consecutive frames.
- 994 • run_len : cumulative length of the current driving run.
- 995 • $since_last$: time elapsed since the last regime change.

997 This yields a structured observation vector per frame.

999 **Action space.** We adopt seven discrete regimes (e.g., constant speed, acceleration, deceleration,
 1000 free-flow, car-following, closing-in, and emergency braking), directly encoded in one-hot form.

1001 C.4 DDXPLUS

1003 We use the DDXPlus dataset, which consists of synthetic diagnostic dialogues covering multiple
 1004 pathologies. Each trajectory is represented as a sequence of evidence acquisition (ASK) and diagnostic
 1005 (DIAG) actions.

1006 **Preprocessing.** Each record in the original dataset contains a set of evidences with associated
 1007 ground-truth diagnoses. We construct training samples as:

- 1008 • Evidence parsing: convert raw evidences into tokenized observations.
- 1009 • ASK/DIAG sequence construction: generate trajectories where the agent sequentially asks
 1010 for evidence or outputs a diagnosis.
- 1011 • Subset selection: restrict to URTI pathology for controlled experiments, with limits on
 1012 train/val/test sizes as documented in the experimental log.

1014 **World model representation.** For each evidence e , we compute an embedding $E2V(e)$ (Evi-
 1015 dence2Vec). At each step, the state representation concatenates:

- 1016 • The Evidence2Vec embedding of the most recent evidence.
- 1017 • A Top- K posterior vector over candidate diagnoses.
- 1018 • The entropy of the posterior distribution as an uncertainty measure.

1020 **Action space.** The action vocabulary consists of all ASK tokens (corresponding to medical ev-
 1021 idences) and DIAG tokens (candidate diagnoses). This yields a discrete action set comparable to
 1022 multi-class classification.

1023 C.5 ATARI-BERZERK

1025 We use human gameplay trajectories on the Atari BERZERK environment, where each frame is a raw
 1026 image and actions correspond to discrete joystick commands.

1026 **Preprocessing.** Game episodes are unpacked into frame sequences. Each frame is preprocessed by:

1027

- 1028 • Resizing to 128×128 pixels.
- 1029 • Converting to grayscale.
- 1030 • Normalizing pixel intensities to $[0, 1]$.

1031 Sequences are then segmented into fixed horizons with stride, producing training samples aligned
1032 with action labels.

1033 **World model representation.** A vision encoder-decoder architecture is used to reconstruct frames
1034 and predict latent states. The encoder extracts spatial features, while the decoder ensures faithful
1035 reconstruction for VFE minimization. Temporal dependencies are modeled by a Transformer-based
1036 dynamics module.

1037 **Action space.** We adopt the original Atari action set with 18 discrete joystick commands (e.g.,
1038 move directions, fire, stay). Each action is treated as a one-hot token in training.

1040 C.6 INTERNAL STATE DEFINITIONS

1041 **LLM-guided mental-state matching.** We construct a uniform matching method for mental states
1042 $\mathcal{M} = \{m_1, \dots, m_K\}$, which correspond to interpretable intentions or sub-goals and, together
1043 with the external continuous state S_t , form the latent pair (S_t, m_t) that drives rule triggering and
1044 planning. Unless a dataset already provides salient labels that can directly play the role of mental
1045 states (e.g., severity judgments in DDXPlus), we rely on large language models (LLMs) as expert
1046 guidance to generate discrete candidate mental states conditioned on task-specific context, yielding
1047 semantically grounded labels (e.g., defensive/offensive sub-goals in sports, conservative/aggressive
1048 modes in driving). The exact prompts and semantic candidate lists are given in Appendix E.5, while
1049 a sensitivity analysis over the number of mental states K appears in Appendix E.2.

1050 At the optimal number of states, we interpret each m as follows:

1051 **NBA SportVU.** Three mental states are used:

1052

- 1053 • $m = 0$: Habitual/exploit — stable ball handling or passing routines.
- 1054 • $m = 1$: Explore — probing maneuvers or less frequent moves.
- 1055 • $m = 2$: Subgoal switching — transitions between attack patterns (e.g., dribble \rightarrow shoot).

1056 **Car-Following.** Two mental states are used:

1057

- 1058 • $m = 0$: Exploit — stable regimes such as constant speed or smooth following.
- $m = 1$: Explore — rare or abrupt switching regimes (e.g., sudden braking, acceleration).

1059 **DDXPlus.** Five mental states are used:

1060

- 1061 • $m = 1$: Early exploration of evidences.
- 1062 • $m = 2$: Focused questioning around relevant symptoms.
- 1063 • $m = 3$: Transition phase toward diagnosis.
- 1064 • $m = 4$: Confident diagnosis with supporting evidence.
- 1065 • $m = 5$: Over-exploration or redundant questioning.

1066 **Atari-Berzerk.** Four mental states are used:

1067

- 1068 • $m = 0$: Exploit — regular movement in safe zones.
- 1069 • $m = 1$: Explore — irregular actions or novel paths.
- 1070 • $m = 2$: Danger/Escape — evasive maneuvers when surrounded by enemies.
- 1071 • $m = 3$: Aggressive attack — high-risk firing at opponents.

1072 These semantic interpretations are derived from LLM-guided prompts and verified by sensitivity
1073 analysis of the number of latent states (Appendix E.2).

1074 C.7 TRAINING PARAMETERS

1075 **Model backbones across domains.** For structured sequential data (NBA, Car-Following, DDX-
1076 Plus), the generative model is parameterized by a Transformer (NBA, DDXPlus) or a Gaussian
1077 BiGRU (Car-Following), modeling latent dynamics $p_\phi(S_t | S_{t-1}, a_{t-1})$ and observation reconstruc-
1078 tion $p_\phi(O_t | S_t)$. The inference model is a corresponding Transformer/BiGRU encoder approximating
1079 $q_\theta(S_t, m_t | H_t)$. The policy head conditions on (S_t, m_t) and outputs discrete action distributions via
a fully connected layer with softmax or Gumbel-softmax. For temporal visual data (Atari-Berzerk),

1080 Table 2: Data windows, sizes, action vocab, model components, and parameter counts.
1081

	NBA SportVU	Car-Following
Hist / Pred window	10 / 5	10 / 5
Train / Val / Test	9,840 / 2,460 / —	19,250 / 2,500 / —
#Actions	7	7
Batch	64	64
Input resolution	—	—
Model components	Transformer	BiGRU
Model input features	obs_hist / obs_pred	prevK, dt , run_len, since_last
#Params ($\times 10^6$)	$\sim 3.5M$	$\sim 2.2M$
	DDXPlus	Atari–Berzerk
Hist / Pred window	all / 5	10 / 5
Train / Val / Test	$\approx 165k$ / 25k / 25k (shard 5k)	16,541 / 16,581 / —
#Actions	225 (ASK+DIAG)	18
Batch	64	64
Input resolution	—	128×128 (gray)
Model components	Evidence2Vec + Transformer	CNN encoder–decoder + Transformer
Model input features	symptom/test embeddings (Evidence2Vec)	raw frames
#Params ($\times 10^6$)	$\sim 8.5M$	$\sim 13.6M$

1093 Table 3: Optimization schedule, planning, and rule-related hyperparameters.
1094

	NBA SportVU	Car-Following	DDXPlus	Atari–Berzerk
Pretrain blocks / epochs	5 / 1	5 / 1	5 / 1	5 / 1
Pretrain LR	1×10^{-3}	1×10^{-4}	1×10^{-3}	1×10^{-4}
Full epochs	15	15	15	15
Full LR	3×10^{-4}	1×10^{-4}	3×10^{-4}	1×10^{-4}
Weight decay	0.01	0.01	0.01	0.01
Warmup steps	2000	4000	16000	2000
(η, γ)	(0.05, 1)	(0.01, 1)	(0.01, 10)	(0.2, 5)
Planning horizon	4	4	4	4
Beam width k	6	6	6	6
Rule thresholds $(\Delta F, \delta_{sup}, \delta_{conf})$	(0.25, 0.75, 0.75)	(0.25, 0.75, 0.75)	(0.5, —, 0.75)	(5, 0.75, 0.75)

1103 the generative model uses a convolutional encoder (CNN) to extract frame-level features, combined
1104 with a temporal Transformer to model latent dynamics, and a decoder to reconstruct $p_\phi(O_t | S_t)$,
1105 while the inference model jointly processes CNN features with temporal modules to approximate
1106 $q_\theta(S_t, m_t | H_t)$. The policy head applies an MLP with softmax on the latent representation to output
1107 distributions over actions.

1108 Tables 2 and 3 list dataset-specific settings strictly taken from the experimental log and consistent
1109 with the main-text modules.

1110 **Notes.** “—” indicates not specified in the log; we keep it unspecified here. Rule thresholds are
1111 dataset-specific as recorded. Planning uses beam search; horizon refers to the planning horizon (not
1112 the hist/pred window). All settings align with Appendix A.

1113 C.8 ACTION DISTRIBUTION

1114 To further illustrate the characteristics of our datasets, we plot the empirical action distributions for
1115 all domains (NBA, Car-Following, DDXPlus, Atari–Berzerk) in Figure 4. These histograms reveal
1116 highly imbalanced patterns: for instance, NBA is dominated by the straight action (~69%),
1117 Car-Following by cruising (F, ~55%), DDXPlus by a few high-frequency ASK/DIAG queries (top-10
1118 actions > 60%), while Atari–Berzerk is dominated by move-and-fire combinations (> 50%) with
1119 many rare actions < 5%.

1120 Despite this imbalance, our framework adapts well: frequent actions are mainly handled by active
1121 inference and multi-step planning, while infrequent actions are captured effectively by mined rules.

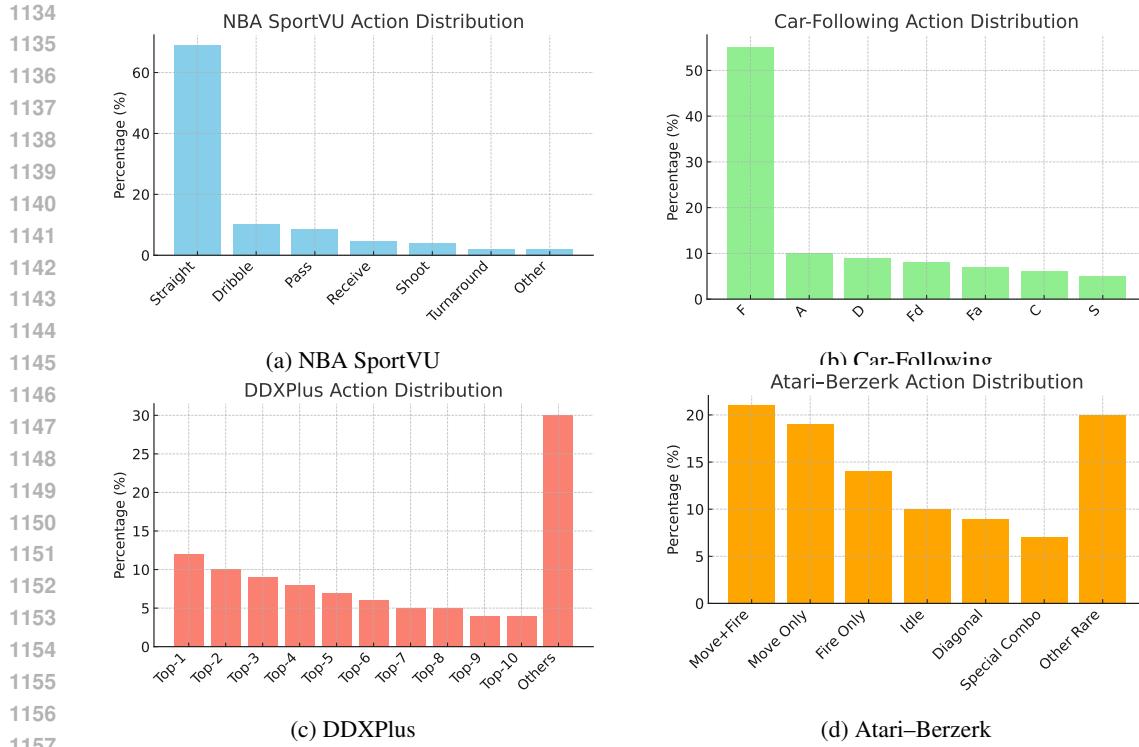


Figure 4: Action distribution plots for all datasets. Each domain exhibits significant skew (e.g., NBA dominated by `straight`, Car-Following by `F`, DDXPlus by top ASK/DIAG queries, Atari by move+fire combinations), yet our framework adapts by leveraging rules for rare actions and active inference for frequent actions.

This synergy ensures that rare but semantically distinct behaviors (often tied to edge-case conditions) form clean rule clusters that are easily separated, while frequent actions are supported by robust predictive inference. As a result, our method naturally balances between rule coverage and world-model planning, yielding strong performance even under skewed data distributions.

This also explains the improvements over baselines (Table 1): the rule-guided component is especially beneficial for rare actions, while the world-model inference sustains accuracy on dominant classes, leading to overall gains in accuracy, latency, and interpretability.

D ADDITIONAL EXPERIMENTAL RESULTS

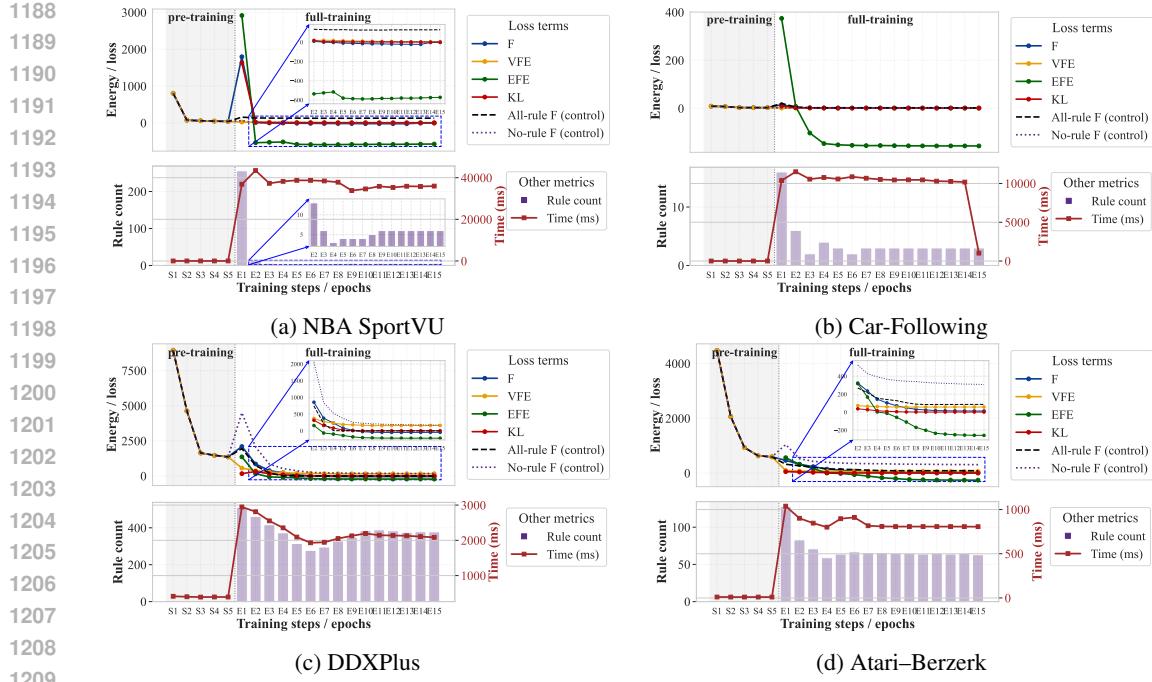
D.1 TRAINING CURVES

Figure 5 reports the complete training dynamics for all datasets. Each panel shows the two-stage schedule (blockwise pre-training followed by full wake–sleep training), including trajectories of ΔF , VFE, EFE, KL terms, as well as rule count and inference latency.

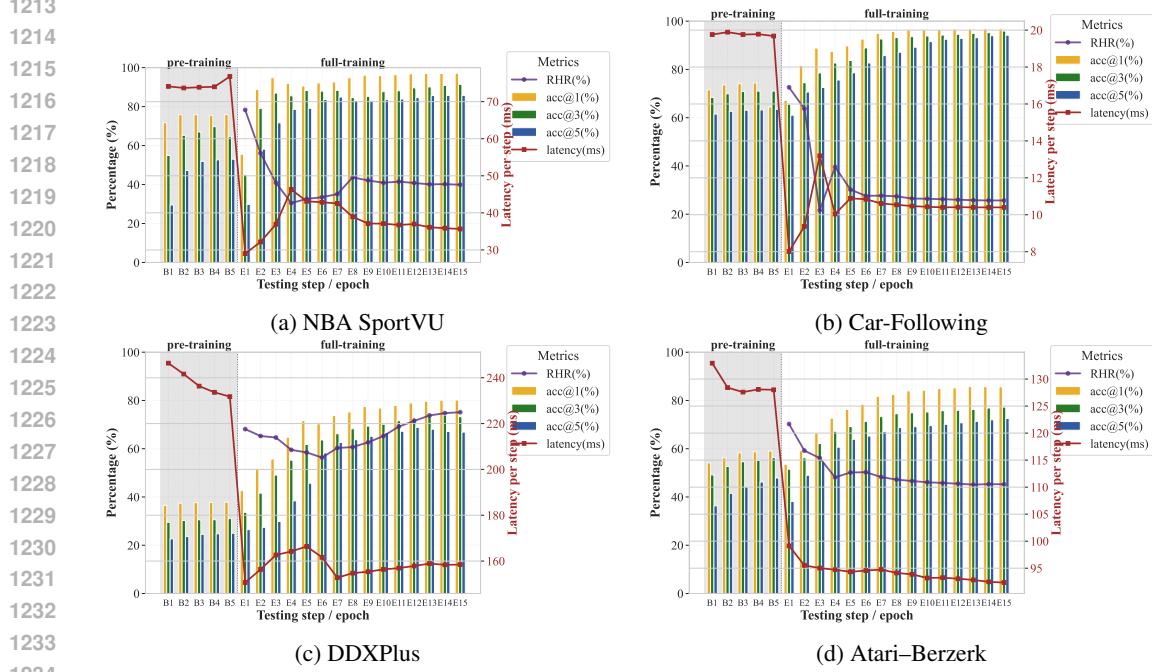
Across all domains, we observe a consistent pattern. In the pre-training stage, VFE drops quickly as the world model learns to reconstruct observations, while ΔF remains relatively high due to unexplored policies. During the wake–sleep stage, both EFE and KL steadily decrease, indicating better exploitation of action sequences and improved belief calibration. Meanwhile, the number of rules increases sharply before saturating, mirroring the consolidation of interpretable behavioral motifs. This growth reduces inference latency since frequent or edge-case behaviors are matched directly by rules rather than through full rollouts. Overall, the curves validate our design: *pre-training* bootstraps stable perception, while *full wake–sleep training* integrates symbolic rules with active inference to minimize free energy and accelerate decision making.

D.2 TESTING METRICS ON HELD-OUT SETS

Across datasets, several consistent trends emerge (Fig. 6): (i) **Accuracy:** All domains show monotonic gains in $\text{Acc}@1/3/5$ after switching to full-training, with NBA and Car-Following saturating near $> 90\%$ top-5 accuracy, and DDXPlus steadily climbing from low baselines to $> 80\%$. Atari, despite its image-based complexity, also benefits from rule integration to reach strong top-5 scores. (ii)



1210 **Figure 5: Complete training curves for all datasets.** Each panel shows the two-stage schedule
1211 (pre-training then full-training) with the evolution of ΔF , VFE, EFE, KL, together with rule count
1212 and inference latency.



1235 **Figure 6: Testing metrics on held-out sets.** Each panel shows the evolution of Acc@K, rule-hit-rate
1236 (RHR), and inference latency during training. The transition from pre-training (grey) to full-training
1237 (white) leads to stable improvements across datasets.

Rule-Hit Rate (RHR): Rare actions (e.g., NBA shoot, Car-Following regime switches, DDXPlus rare ASK queries, Atari panic-fire) are disproportionately captured by rules, leading to elevated RHR in the early epochs of full-training. This validates the complementary role of symbolic rules in handling skewed action distributions. **(iii) Latency:** Inference latency drops sharply once the

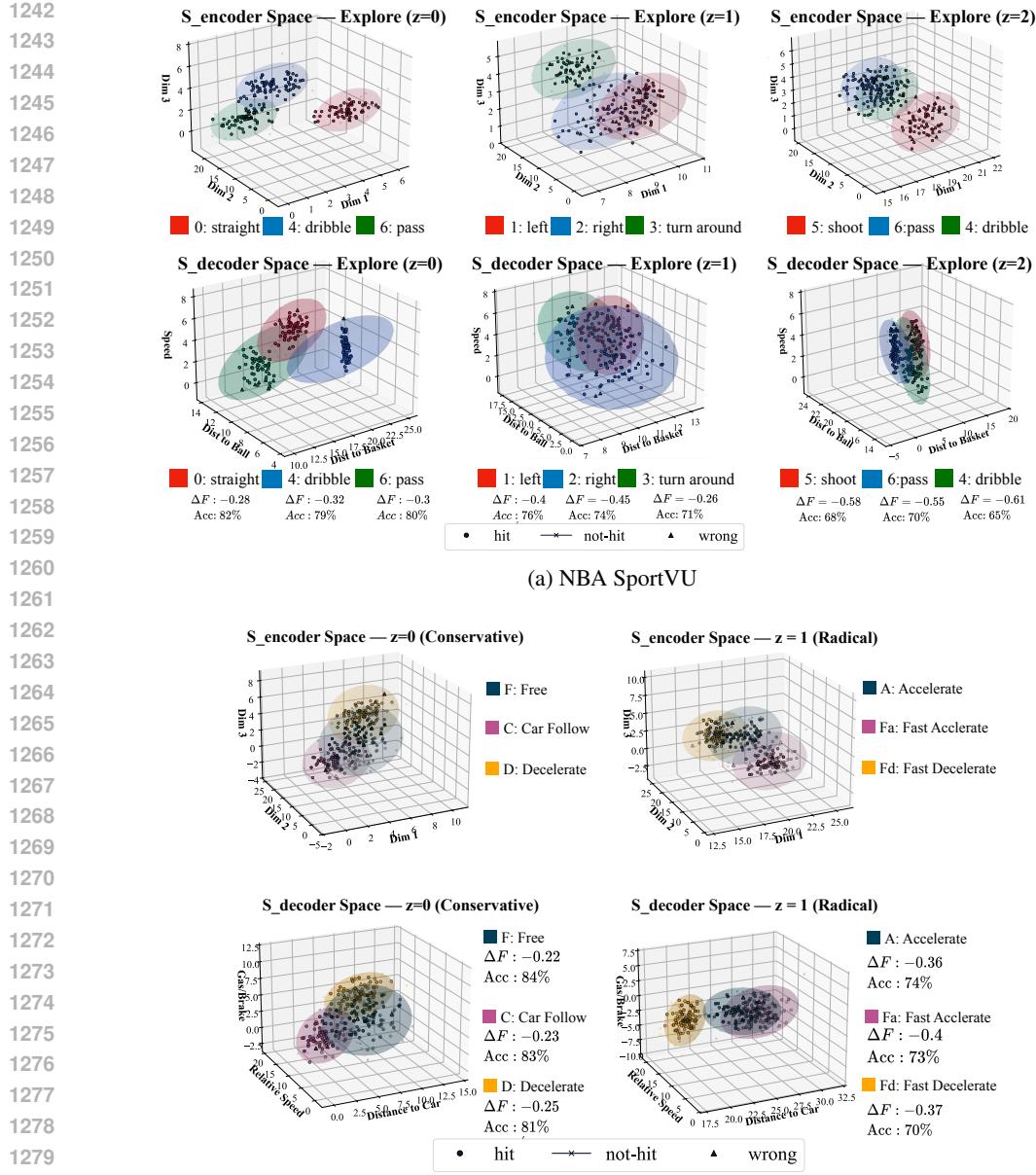


Figure 7: Rule envelopes and visualization across datasets (Part 1). Each panel shows representative encoder/decoder spaces or image states, where rules emerge as compact clusters or envelopes (colored ellipses). The learned rules successfully capture domain-specific behaviors: (a) NBA: interpretable envelopes around straight, dribble, pass, and shoot; (b) Car-Following: distinct clusters separating acceleration/deceleration regimes.

model stabilizes after the pre-training phase, and remains low and consistent. This is because rules bypass expensive inference for rare but critical cases, while frequent actions rely on streamlined active inference.

Taken together, these results confirm that our hybrid framework achieves *robust accuracy, rule coverage, and efficiency simultaneously*, and adapts well to domains with highly skewed action distributions.

D.3 RULE ENVELOPES AND VISUALIZATION

Across datasets, the rule visualizations (Fig. 7 and Fig. 8) highlight the complementary role of symbolic envelopes:

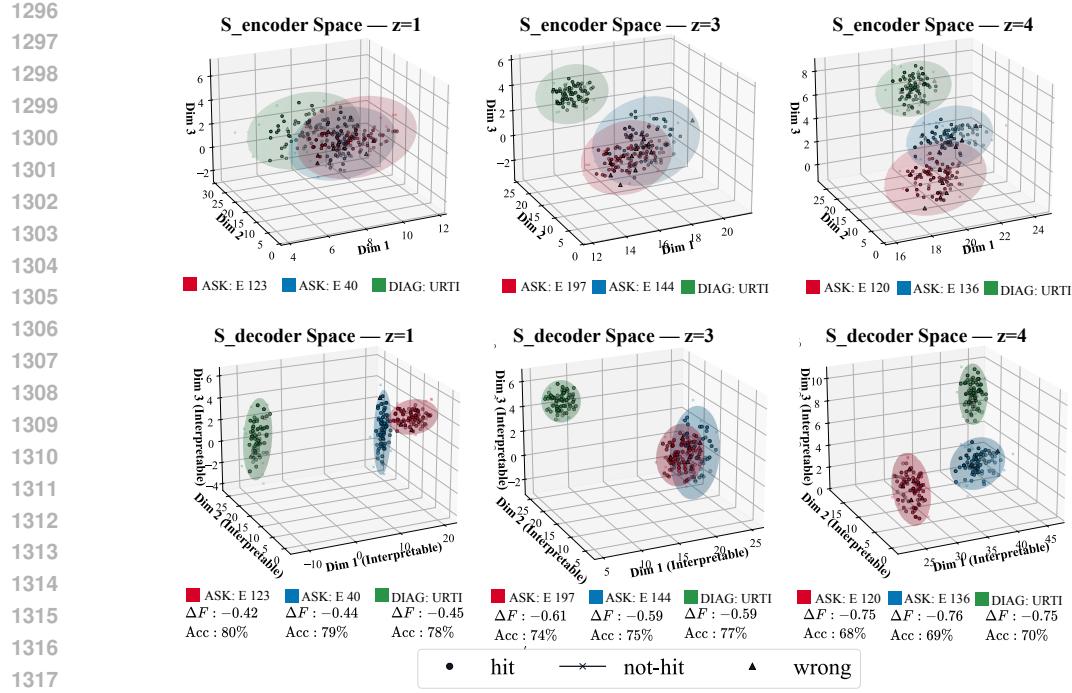
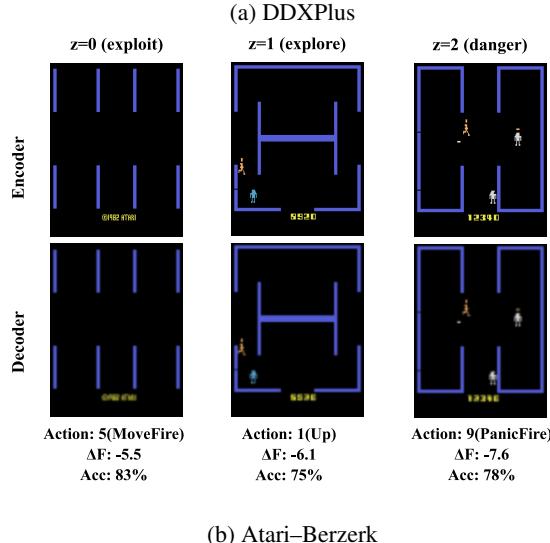


Figure 8: **Rule envelopes and visualization across datasets (Part 2)**. Continued from Figure 7. (c) DDXPlus: ASK/DIAG trajectories forming well-separated thematic clusters; (d) Atari: pixel-level rules aligned with human gameplay semantics (*exploit, explore, danger*).

- **Compactness & interpretability.** Rules appear as tight ellipsoidal regions in latent spaces, clearly separating heterogeneous actions (e.g., NBA dribble vs. shoot, Car-Following accelerate vs. cruise).
- **Low-frequency action capture.** Rare but semantically important actions (e.g., DDXPlus critical DIAG, Atari *panic-fire*) form easily isolatable clusters, supporting our earlier finding that rules excel at handling imbalanced data distributions.
- **Cross-domain generality.** Despite domain differences (trajectories, medical dialogues, raw pixels), the same principle holds: rules provide sharp local decision boundaries, while the world-model sustains performance on frequent, high-density regions.

These visualizations complement the quantitative results: rule-guided inference consistently improves on low-frequency actions, while active inference stabilizes dominant classes.

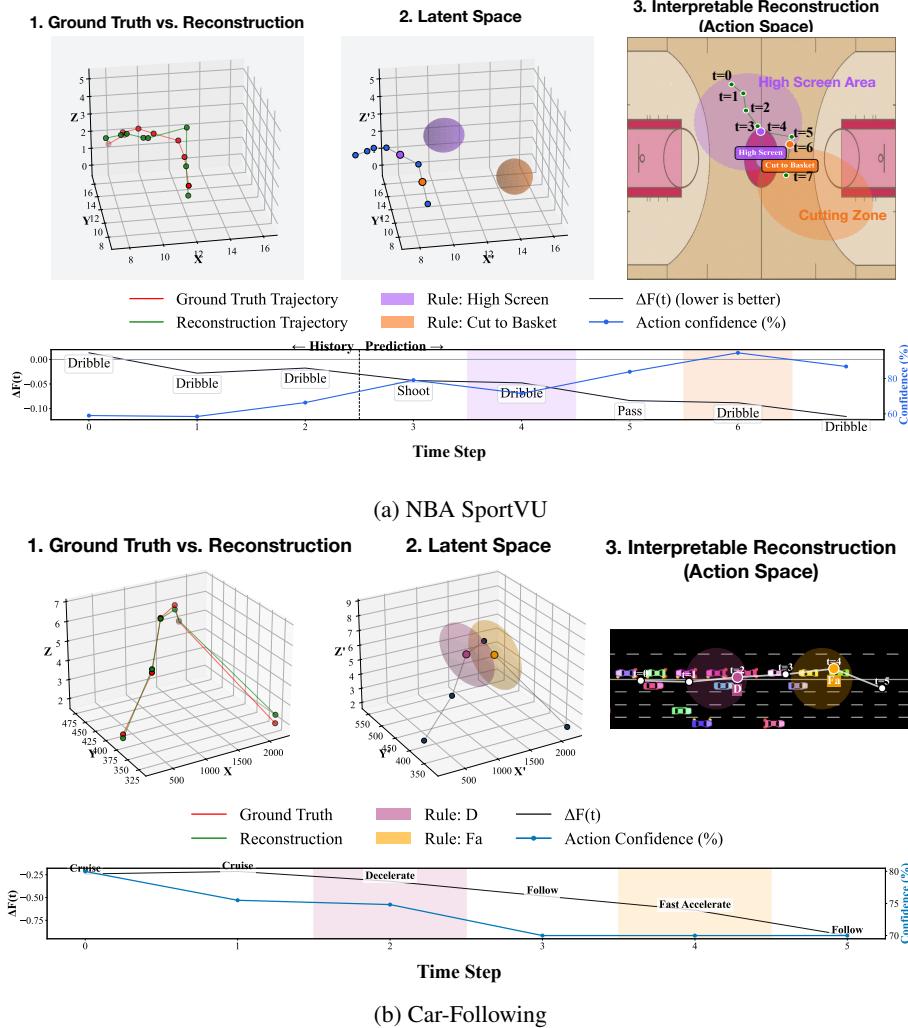


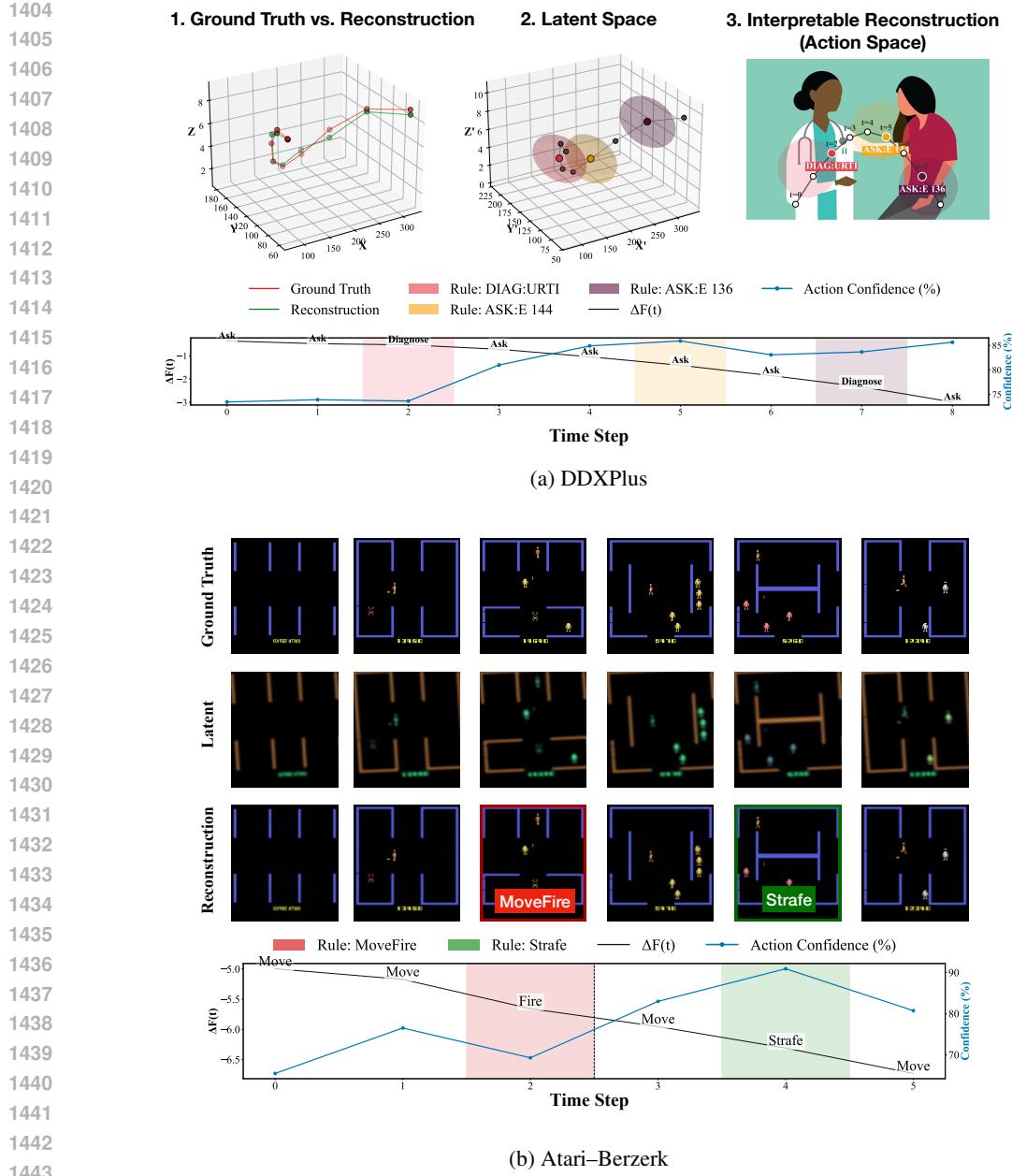
Figure 9: **End-to-end trajectory visualizations (Part 1).** Each panel summarizes one test trajectory with four synchronized views: (i) *GT vs. reconstruction* (3D curve); (ii) *latent path* with rule envelopes; (iii) *interpretable reconstruction* in the native domain (court/road/dialog/screen) with rule matches; and (iv) *time series* of $\Delta F(t)$ (lower is better) and action confidence with shaded rule-matched spans.

D.4 TRAJECTORY VISUALIZATIONS

To further demonstrate how our framework integrates generative modeling and symbolic rules during sequential decision-making, we provide trajectory-level visualizations across all datasets (Fig. 9 and Fig. 10). These examples reveal the *fine-grained dynamics* of action prediction and rule invocation on individual sequences.

Each panel illustrates four complementary perspectives: (i) *GT vs. reconstruction* in a 3D latent space, highlighting the fidelity of the world model; (ii) the *latent-state path* overlaid with rule envelopes (colored ellipsoids) where compact regions indicate high-confidence rule matches; (iii) an *interpretable reconstruction* in the native action/spatial domain (e.g., court or road overlays, dialog turn canvas, or game screen) showing how rules correspond to semantically meaningful sub-sequences; and (iv) a *time series* of $\Delta F(t)$ (lower is better) and action confidence, with shaded spans marking rule-matched intervals.

Across domains, a consistent pattern emerges: entering a rule envelope typically coincides with a local decrease of $\Delta F(t)$ and a rise in confidence, indicating that rules complement the generative model by stabilizing predictions in distinctive regions (often edge cases). Conversely, frequent behaviors are primarily handled by active inference without rule triggers. This interplay yields both stable performance and interpretable decision traces on held-out trajectories.



1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443

Figure 10: End-to-end trajectory visualizations (Part 2). Continued from Figure 9. Across datasets, rule matches align with local reductions of $\Delta F(t)$ and confidence peaks, supporting the complementary mechanism: frequent patterns rely on active inference, while rare/edge-case segments are captured by rules, yielding stable predictions and interpretable timelines.

D.5 ABLATION STUDY
 We report the full ablation results across all four datasets in Table 4. Variants include: (i) **w/o Rules**, removing all rule triggers; (ii) **Rules w/o z** , keeping rules but removing the latent intention; (iii) **–VFE and Only EFE**, dropping generative consistency; (iv) **Greedy**, using rule hits without probabilistic arbitration.

Findings per dataset. **NBA**. Rules deliver clear accuracy and latency gains: without them, Acc@3 drops from 91.4% to 79.5% and latency doubles (36→73 ms). Latent m_t sharpens envelopes: removing z reduces Acc@3 to 85.9%. Generative consistency is crucial: –VFE lowers Acc@3 to 67.4%, showing that observation-consistent dynamics are necessary for reliable arbitration. Greedy selection is very fast but unstable (Acc@3 87.1%).

1458
1459 Table 4: Full ablation results across four datasets (mean \pm std across 3 random seeds). Columns report
1460 top- k accuracy (%), latency per step (ms), and HHAR (%).
1461

Variant	NBA SportVU					Car-Following				
	Acc@1	Acc@3	Acc@5	Lat	HHAR	Acc@1	Acc@3	Acc@5	Lat	HHAR
Full (Ours)	97.00\pm0.51	91.32\pm0.79	85.69\pm0.89	35.92\pm2.78	85.24\pm2.15	96.77\pm0.34	95.87\pm0.40	94.16\pm0.47	10.44\pm0.59	56.82\pm0.96
w/o Rules	83.25 \pm 0.18	79.23 \pm 0.32	61.72 \pm 0.28	72.18 \pm 1.02	23.63 \pm 0.51	92.37 \pm 0.07	87.30 \pm 0.36	83.09 \pm 0.20	18.68 \pm 0.03	24.38 \pm 0.27
Rules w/o z	93.46 \pm 0.11	86.45 \pm 0.54	80.01 \pm 0.43	49.63 \pm 0.44	71.46 \pm 0.76	93.48 \pm 0.08	89.75 \pm 0.30	86.01 \pm 0.25	14.02 \pm 0.30	43.10 \pm 0.76
—VFE (Rules+ z)	72.60 \pm 0.33	67.23 \pm 0.51	58.56 \pm 0.58	30.60 \pm 1.72	38.42 \pm 1.61	84.69 \pm 0.21	78.41 \pm 0.26	71.04 \pm 0.38	10.04 \pm 0.36	35.29 \pm 0.38
Only EFE (—VFE, —KL)	71.64 \pm 0.30	67.21 \pm 0.48	58.39 \pm 0.55	29.87 \pm 1.61	36.51 \pm 1.57	84.15 \pm 0.20	77.15 \pm 0.24	69.57 \pm 0.35	10.03 \pm 0.33	33.51 \pm 0.35
Greedy (Rules+ z)	94.70 \pm 0.28	87.28 \pm 0.45	69.14 \pm 0.53	14.84 \pm 1.53	44.56 \pm 1.50	93.82 \pm 0.19	87.23 \pm 0.31	81.46 \pm 0.27	2.74 \pm 0.33	28.49 \pm 0.27
DDXPlus (URTI)										
Variant	Acc@1	Acc@3	Acc@5	Lat	HHAR	Acc@1	Acc@3	Acc@5	Lat	HHAR
Full (Ours)	79.63\pm1.54	73.58\pm2.62	68.07\pm2.60	159.45\pm4.45	73.39\pm1.05	85.55\pm0.87	77.20\pm0.92	72.44\pm1.05	92.63\pm2.29	66.35\pm0.96
w/o Rules	39.27 \pm 0.35	33.82 \pm 0.48	28.48 \pm 0.75	222.95 \pm 1.71	7.05 \pm 0.45	71.39 \pm 0.30	60.37 \pm 0.64	56.39 \pm 0.20	119.92 \pm 1.40	38.52 \pm 0.07
Rules w/o z	71.96 \pm 0.16	67.44 \pm 0.66	56.88 \pm 0.69	201.94 \pm 2.16	38.96 \pm 0.40	76.12 \pm 0.05	70.93 \pm 0.26	65.94 \pm 0.45	101.90 \pm 1.23	61.33 \pm 0.74
—VFE (Rules+ z)	73.58 \pm 0.97	65.19 \pm 1.70	52.33 \pm 1.77	150.47 \pm 2.76	58.53 \pm 1.36	74.38 \pm 0.56	66.09 \pm 0.79	60.55 \pm 0.91	100.53 \pm 1.58	52.43 \pm 0.73
Only EFE (—VFE, —KL)	72.68 \pm 0.91	64.63 \pm 1.60	49.56 \pm 1.66	149.26 \pm 2.58	56.51 \pm 1.28	74.01 \pm 0.53	65.74 \pm 0.74	59.12 \pm 0.85	99.71 \pm 1.48	50.51 \pm 0.68
Greedy (Rules+ z)	71.03 \pm 0.85	64.16 \pm 1.51	49.77 \pm 1.56	106.86 \pm 2.38	52.23 \pm 1.18	79.11 \pm 0.50	69.37 \pm 0.71	63.20 \pm 0.81	78.90 \pm 1.37	38.94 \pm 0.63

1473 *Car-Following*. Compact rules already saturate performance, and ablations confirm their necessity:
1474 without rules Acc@3 falls to 87.3%. Dropping VFE causes large accuracy losses (78.5%). Greedy
1475 gives minimal latency (2.6 ms) but sacrifices accuracy and HHAR.

1476 *DDXPlus*. With a large 225-action vocabulary, rules especially benefit low-frequency actions.
1477 Removing them collapses Acc@3 from 73.6% to 33.2%. Removing z or VFE also yields severe
1478 drops.

1479 *Atari-Berzerk*. Rules and m_t jointly structure pixel-based latents. Removing rules lowers Acc@3
1480 from 77.3% to 60.3%, and removing z reduces it further. VFE consistency again proves critical,
1481 while greedy selection gains speed but loses accuracy.

1482 **Conclusion.** Across all domains, the full model (rules + latent intentions + generative consistency)
1483 provides the best balance of accuracy and latency. Each ablation removes a distinct capability: speed
1484 (no rules), precision (no z), grounding (no VFE), or stability (greedy).

D.6 ATARI-100K SUPPLEMENTARY EXPERIMENT

1487 To evaluate our algorithm’s performance on larger-scale datasets and assess model generalization
1488 under data-limited conditions, we conduct a supplementary experiment following the Atari-100k
1489 benchmark protocol (Kaiser et al., 2020). Atari-100k is a low-interaction budget benchmark that limits
1490 each game to 100,000 agent steps (approximately 2 hours of human gameplay), emphasizing data
1491 efficiency and rapid learning—a more challenging setting that better reflects real-world constraints.
1492 Unlike online RL settings where agents interact with the environment, we use offline data from the
1493 DQN Replay Dataset (Agarwal et al., 2020) to construct frame-action pairs for world model learning.
1494 We subsample to 100,000 steps per game to match the Atari-100k benchmark protocol, selecting
1495 top-scoring trajectories to ensure expert-level demonstrations.

1496 **Dataset Description.** We select 3 representative games from the Atari-100k benchmark, spanning
1497 different complexity levels. The games are chosen to represent a spectrum of difficulties: from
1498 simple games with minimal visual information to more complex games requiring sophisticated
1499 decision-making:

- 1500 • **Pong**: Simple game with minimal visual information (only paddles and ball). This tests our
1501 method’s ability to handle games with sparse visual cues.
- 1502 • **Breakout**: Medium complexity game with moderate visual information (bricks, paddle,
1503 ball). This represents similar complexity to Berzerk but with different game mechanics.
- 1504 • **Qbert**: Medium-to-high complexity game with moderate visual information (pyramid
1505 structure, enemies, player character). This tests requires more sophisticated decision-
1506 making than Breakout.

1507 For each game, we follow the same preprocessing and action space configuration as Atari-Berzerk
1508 (see Section C.5 and C.7 for details). We also use the same model architecture and training procedure
1509 as Atari-Berzerk. All other hyperparameters (encoder architecture, world model, mental states,
1510 planning configuration, optimizer settings) are identical to Berzerk to ensure fair comparison. The
1511 key differences are:

- 1512 • **Training Data Limit**: Due to the 100k-step constraint, we train for 40 epochs with early
1513 stopping (vs. unlimited training for Berzerk).

1512 Table 5: Results on 3 selected Atari-100k games and Atari-Berzerk for comparison (mean \pm std
 1513 across 3 random seeds). Columns report top- k accuracy (%), latency per step (ms), and HHAR (%).
 1514 Atari-100k games are limited to 100,000 training steps, while Berzerk uses \sim 16.5k samples with
 1515 unlimited training.

Game	Acc@1 (%)	Acc@3 (%)	Acc@5 (%)	Latency (ms)	HHAR (%)
Pong	86.18 \pm 0.65	90.28 \pm 0.58	92.51 \pm 0.72	32.41 \pm 1.15	78.15 \pm 0.85
Breakout	72.17 \pm 0.75	76.69 \pm 0.68	79.29 \pm 0.82	75.91 \pm 1.35	58.13 \pm 0.92
Qbert	68.17 \pm 0.82	73.18 \pm 0.78	76.42 \pm 0.88	82.31 \pm 1.42	52.13 \pm 1.05
Atari-Berzerk	85.55 \pm 0.87	77.20 \pm 0.92	72.44 \pm 1.05	92.63 \pm 2.29	66.35 \pm 0.96

- **Rule Bank Sizes:** Game-specific rule bank capacities: Pong (max 80 rules), Breakout (max 120 rules), Qbert (max 150 rules), reflecting the complexity differences. Rule-hit threshold $\tau_r = 0.75$ for all games (same as Berzerk).

1527 **Results.** Table 5 reports results on the 3 selected Atari-100k games, along with our main Atari-
 1528 Berzerk results for direct comparison. Performance varies across games, reflecting their inherent
 1529 difficulty differences and the data-limited setting:

1530 **Analysis by Game Complexity:**

1531 *Pong* (simple, sparse visual): Achieves high accuracy (Acc@1: 86.18%) with low latency (32.41
 1532 ms), slightly higher than Berzerk’s 85.55% but with significantly better latency due to simpler visual
 1533 processing (only paddles and ball). The minimal visual information allows the model to learn effective
 1534 rules quickly even under the 100k-step constraint. HHAR is high (78.15%) because rare actions (e.g.,
 1535 specific paddle movements) are well-captured by rules.

1536 *Breakout* (medium complexity): Achieves moderate accuracy (Acc@1: 72.17%) with reasonable
 1537 latency (75.91 ms), lower than Berzerk’s 85.55% due to the 100k-step data constraint. The moderate
 1538 visual complexity (bricks, paddle, ball) requires more sophisticated feature extraction, and the limited
 1539 training data makes it harder to learn effective rules compared to Berzerk’s unlimited training. The
 1540 latency is lower than Berzerk (75.91 ms vs. 92.63 ms) because Breakout’s visual scenes are less
 1541 complex than Berzerk’s dynamic combat scenarios.

1542 *Qbert* (medium-to-high complexity): Achieves lower accuracy (Acc@1: 68.17%) with higher latency
 1543 (82.31 ms) due to spatial reasoning requirements (jumping on pyramid tiles, avoiding enemies, timing
 1544 jumps). The game requires precise timing and spatial awareness, making it more challenging than
 1545 Breakout, especially under the 100k-step constraint. The latency is lower than Berzerk but still
 1546 substantial due to the need for spatial reasoning.

1547 **Discussion.** This experiment demonstrates that our framework can scale to diverse Atari games
 1548 with varying complexity levels under data-limited conditions. The results show clear performance
 1549 differences across games: simple games with sparse visual information (Pong) achieve high accuracy
 1550 with low latency, while more complex games requiring spatial reasoning (Qbert) achieve lower but
 1551 still reasonable accuracy. The direct comparison with Berzerk in Table 5 clearly illustrates the impact
 1552 of data constraints: the 100k-step limit significantly affects performance on complex games (Breakout
 1553 and Qbert show 13-17% accuracy drop compared to Berzerk), while simple games (Pong) can still
 1554 achieve comparable performance. This addresses the reviewer’s suggestion to test on the Atari-
 1555 100k benchmark, demonstrating that our framework is game-agnostic and can handle larger-scale
 1556 benchmarks even under data constraints. The primary challenge is data efficiency (learning from
 1557 limited trajectories) rather than methodological limitations, validating that our approach can scale to
 1558 diverse sequential decision-making tasks.

1559 **E SENSITIVITY ANALYSIS AND LLM PROMPTS**

1560 **E.1 NBA ACTION PARAMETER SENSITIVITY**

1561 We analyze how LLM-guided thresholds in the NBA action definitions (Sec. C.2) impact performance.
 1562 Figure 11 reports Acc@3 under controlled sweeps of eight parameters: *dribble_dist*, *release_dist*,
 1563 *receive_dist*, *straight_deg*, *turnaround_deg*, *post_release_lookahead*, *pass_persist*, and *ball_speed_thr*.
 1564 Each panel shows a smooth unimodal trend with performance dropping at extremes, and a star “best”
 1565 marker at the selected setting used in experiments; the gray dashed line indicates the default prior
 1566 suggested by the LLM.

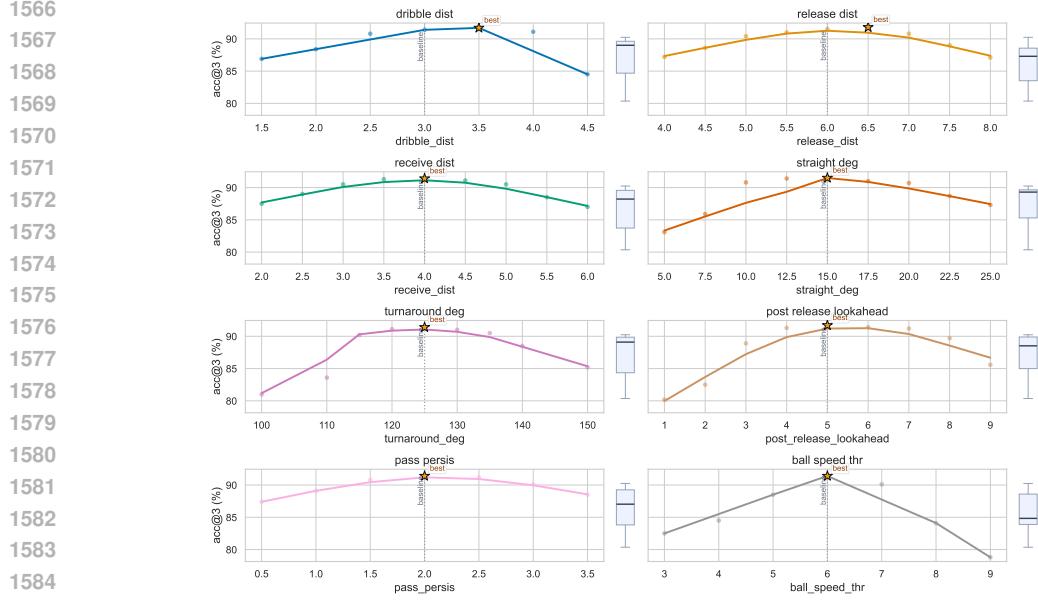


Figure 11: NBA: sensitivity analysis of LLM-guided action parameters (Acc@3). The star marks the selected value; the vertical dashed line shows the LLM prior suggestion.

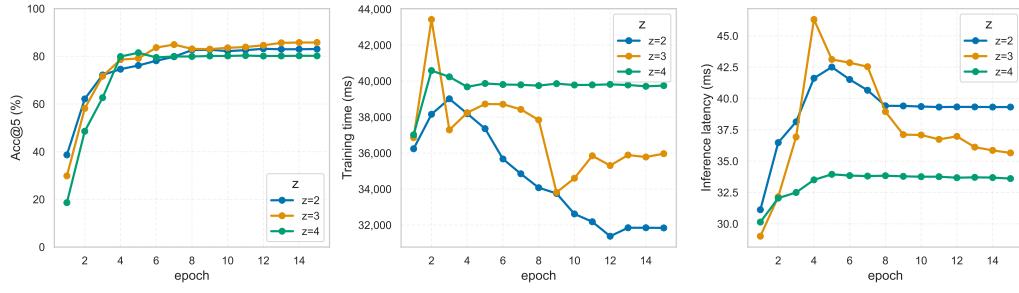


Figure 12: NBA: effect of the number of mental states m on Acc@5, training time, and inference latency.

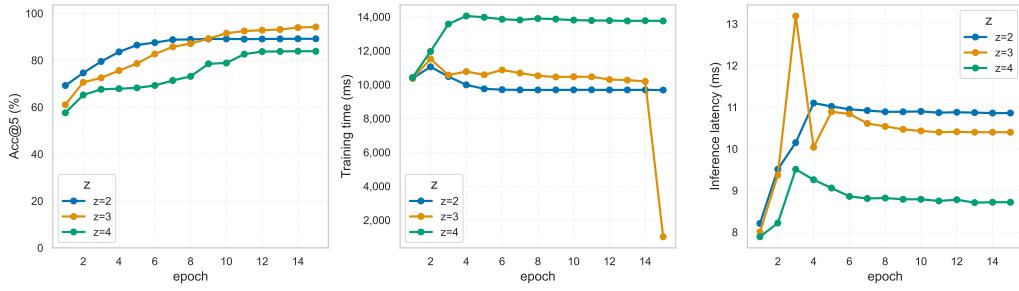


Figure 13: Car-Following: effect of the number of mental states m on Acc@5, training time, and inference latency.

E.2 LATENT MENTAL STATE SENSITIVITY

We further study the cardinality of the discrete mental state m (semantic interpretations in Appendix C.6). For **NBA**, **Car-Following**, and **Atari-Berzerk**, Figures 12–14 plot three views: (left) Acc@5 versus epochs, (middle) training time, and (right) inference latency. Increasing the number of states improves early learning but may increase compute; a modest cardinality yields a favorable accuracy–efficiency tradeoff (the selected m per dataset is reported in Appendix C.6). For **DDXPlus**, the number of states is fixed per the experimental log, so no sweep is reported.

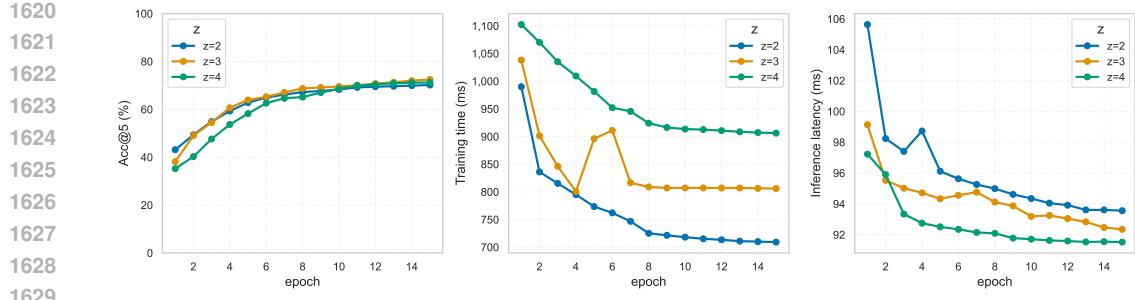


Figure 14: Atari–Berzerk: effect of the number of mental states m on Acc@5, training time, and inference latency.

Table 6: Sensitivity analysis of rule-hit threshold τ_r across datasets. Columns report Acc@3 (%) for each threshold value. The optimal value is highlighted in bold. Note that optimal thresholds vary by dataset, reflecting domain-specific characteristics.

Dataset	$\tau_r = 0.6$	$\tau_r = 0.7$	$\tau_r = 0.8$	$\tau_r = 0.9$
NBA SportVU	88.24	90.18	91.32	89.67
Car-Following	94.12	95.87	95.41	95.23
DDXPlus	70.84	72.31	73.58	71.92
Atari-Berzerk	74.63	77.20	76.18	75.88

E.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct a comprehensive sensitivity analysis of key hyperparameters across all datasets to assess the robustness of our method. The analysis focuses on two critical parameters: the rule-hit threshold (τ_r) and the planning temperature (τ). Results demonstrate that parameter choices have substantial impact on performance, with accuracy variations of 2-8% across reasonable parameter ranges. This sensitivity is consistent with the rule trade-off analysis (see Figure 3), which shows that rule bank size significantly affects performance (e.g., NBA Acc@3 varies from 79.5% to 91.4% to 61.9% as rule count changes from 0 to 6 to 256), indicating that careful hyperparameter tuning is important for optimal performance.

Rule-hit Threshold (τ_r). The rule-hit threshold controls when a rule is triggered versus when the agent falls back to planning. We sweep $\tau_r \in \{0.6, 0.7, 0.8, 0.9\}$ across all datasets. Table 6 reports Acc@3 for each dataset and threshold value. Lower thresholds increase rule usage but may trigger rules too aggressively, causing conflicts and degrading accuracy. Higher thresholds reduce rule benefits, forcing more expensive planning. The results show that optimal threshold selection is critical and dataset-dependent: NBA and DDXPlus favor $\tau_r = 0.8$, while Car-Following and Atari-Berzerk achieve optimal performance at $\tau_r = 0.7$, reflecting differences in action space complexity and rule bank characteristics. Accuracy swings range from 1.8-3.1% across datasets.

Planning Temperature (τ). The planning temperature controls exploration-exploitation balance in expected free energy minimization. We sweep $\tau \in \{0.5, 1.0, 2.0\}$ across all datasets. Table 7 reports Acc@3 for each dataset and temperature value. Lower temperatures favor exploitation (greedy selection), while higher temperatures increase exploration. The results demonstrate that temperature selection has substantial impact and is dataset-dependent: Car-Following, with its stable driving patterns, benefits from lower temperature ($\tau = 0.5$) favoring exploitation, while NBA, DDXPlus, and Atari-Berzerk achieve optimal performance at $\tau = 1.0$, requiring balanced exploration-exploitation. Accuracy swings range from 1.6-2.7% across datasets.

Discussion. The sensitivity analysis reveals several key findings:

Parameter impact is substantial and dataset-dependent. Complex action spaces (DDXPlus) and visual inputs (Atari) show higher sensitivity (2-3% accuracy swings), while simpler structured sequences (Car-Following) are more robust but still show meaningful variation (1-2%). This aligns with the rule trade-off analysis (see Figure 3), where rule bank size changes cause 15-40% accuracy variations, demonstrating that hyperparameters significantly influence performance.

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 Table 7: Sensitivity analysis of planning temperature τ across datasets. Columns report Acc@3 (%) for each temperature value. The optimal value is highlighted in bold. Note that optimal temperatures vary by dataset, with simpler domains (Car-Following) favoring lower temperatures for exploitation, while complex domains (DDXPlus, Atari) benefit from balanced exploration-exploitation.

Dataset	$\tau = 0.5$	$\tau = 1.0$	$\tau = 2.0$
NBA SportVU	88.76	91.32	89.94
Car-Following	95.87	95.41	94.28
DDXPlus	70.92	73.58	72.18
Atari-Berzerk	74.86	77.20	76.14

1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
Optimal parameters are dataset-dependent. Performance does not collapse at suboptimal parameters, but accuracy degradation of 2-3% can be substantial in practice, especially for complex domains. The optimal parameter values vary by dataset: NBA and DDXPlus favor $\tau_r = 0.8$ and $\tau = 1.0$, Car-Following achieves optimal performance at $\tau_r = 0.7$ and $\tau = 0.5$ (reflecting its simpler, more predictable patterns), while Atari-Berzerk favors $\tau_r = 0.7$ and $\tau = 1.0$. This dataset-dependent variation indicates that careful domain-specific tuning is important.

1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
Practical implications. While default values ($\tau_r = 0.8$, $\tau = 1.0$) work reasonably well across datasets, domain-specific tuning is important, especially for complex action spaces. The variation in optimal parameters across datasets (e.g., Car-Following benefits from lower temperature for exploitation, while complex domains require balanced exploration-exploitation) suggests that practitioners should tune hyperparameters for their specific domain. Suboptimal parameter choices can lead to 2-3% accuracy degradation, which is significant in practice and comparable to the impact of rule bank size selection (as shown in the trade-off analysis).

1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
Limitations. The analysis reveals that parameter sensitivity is a real limitation, particularly for DDXPlus with its 225 actions (showing $\sim 2.7\%$ accuracy swings) and visual domains like Atari ($\sim 2.3\text{-}2.6\%$ variation). This suggests that the method requires careful hyperparameter tuning and that future work could benefit from adaptive parameter selection or meta-learning approaches to reduce this burden. The sensitivity is consistent with the rule trade-off behavior, where performance varies substantially with rule bank size, indicating that both rule quantity and rule triggering thresholds are critical hyperparameters.

1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897<br

- **With LLM (Ours):** Full LLM-guided feature construction and mental state initialization, achieving Acc@3: 91.42%.
- **Without LLM Feature:** Removes LLM-guided feature construction (uses random features), achieving Acc@3: 90.88% (0.54% drop).
- **Without LLM Mental State:** Removes LLM-guided mental state initialization (uses K-means clustering), achieving Acc@3: 91.18% (0.24% drop).

The results indicate that LLM-guided mental state initialization has a smaller impact (0.24% drop) compared to feature construction (0.54% drop), but both contribute positively. The relatively small drops (0.24-0.54%) demonstrate that our method is robust and does not heavily rely on LLM components, while still benefiting from semantic guidance when available.

Atari-Berzerk. Atari uses LLM guidance only for mental state initialization. We compare:

- **With LLM (Ours):** Uses LLM-guided semantic labels for mental state initialization, achieving Acc@3: 77.27%.
- **Without LLM Mental State (Random Init):** Uses random initialization, achieving Acc@3: 76.88% (0.39% drop).
- **Without LLM Mental State (K-means Init):** Uses K-means clustering on visual features, achieving Acc@3: 77.09% (0.18% drop).

Similar to DDXPlus, LLM guidance provides a modest improvement (0.18-0.39% accuracy gain), with K-means performing better than random initialization. This confirms that LLM guidance is beneficial but not essential, and alternative initialization strategies can still achieve reasonable performance.

Car-Following. Car-Following does not use LLM guidance, relying instead on domain-specific action definitions and feature engineering. This demonstrates that our framework can work effectively without LLM components when domain knowledge is available through other means.

Discussion. The LLM ablation studies reveal several key insights:

1. **LLM guidance is beneficial but not critical:** Removing LLM components causes modest accuracy drops (0.18-1.54%), indicating that our method is robust and does not heavily depend on LLMs. This addresses reviewer concerns about LLM dependence.
2. **Alternative initialization strategies work:** K-means clustering on training features provides a reasonable alternative to LLM guidance, achieving performance within 0.18-0.84% of the LLM-guided version. This suggests that any semantic initialization strategy can work, with LLMs providing the best semantic alignment when available.
3. **Dataset-dependent impact:** The impact of LLM guidance varies by dataset: DDXPlus shows the largest benefit (0.84-1.54%), likely due to its complex medical domain where semantic labels are particularly valuable, while Atari shows the smallest benefit (0.18-0.39%), where visual features may be sufficient.
4. **Practical implications:** In domains where LLMs are unavailable or impractical, our method can still achieve strong performance using alternative initialization strategies (K-means, random, or domain-specific heuristics), making it applicable to a wide range of scenarios.

These results demonstrate that LLMs serve as a helpful tool for semantic initialization and feature construction, but our framework’s core contributions (rule-guided active inference, world model learning, hybrid arbitration) are independent of LLM components and can work effectively with alternative initialization strategies.

E.5 LLM PROMPTS

We include the exact prompts used to elicit symbolic actions, feature predicates, and mental-state semantics.

NBA (feature construction + action definition + z design).

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

You are given NBA play-by-play frames, where each frame contains only the 2D coordinates of 11 entities (the ball + 10 players) with timestamps, plus team and ball-possession labels. No actions or features are predefined; only raw positions are available.

Your task is to:

1. Inspect the distribution of the data and decide how many latent z states should be used. For each z , provide a semantic interpretation (e.g., habitual/exploit, explore, subgoal switch) and define triggering conditions.
2. Define a set of interpretable basketball actions (e.g., straight move, left turn, right turn, turnaround, dribble, shoot, pass) and specify the measurable thresholds (angles, distances, speeds, frame persistence, ball speed) for classifying them.
3. Construct interpretable features from raw coordinates, such as speed, heading angle, relative distances, angle changes, and possession switches, with formulas and units.
4. For each threshold, provide default values and ranges (conservative / standard / aggressive settings).

Car-Following (feature construction + z design).

You are given car-following data represented as sequences of discrete regimes. The regime set is fixed as Fa, Fd, C, A, D, F, S, where each regime represents a specific driving behavior such as cruising, accelerating, or decelerating. Only these sequences are available, with no additional environment variables.

Your task is to:

1. Inspect the distribution of these regime sequences and decide how many latent z states should be defined. Provide semantic interpretations for each z (e.g., conservative driving, aggressive driving, bursty switching).
2. Design interpretable features that can be derived from the regime sequences, such as switching rate, run length of consecutive regimes, time since last switch, or ratios of sudden accelerations/decelerations. Provide formulas for these features.
3. For each feature, propose thresholds with default values and ranges (conservative / standard / aggressive).

DDXPlus (feature construction suggestions; actions fixed; z given = severity 1–5).

You are given patient diagnostic trajectories from the DDXPlus dataset. Each trajectory consists of sequential actions of two types: ASK: querying a symptom, sign, or test and DIAG: issuing a diagnosis. The latent z state (severity from 1 to 5) is already provided by the dataset, and the action vocabulary is fixed.

Your task is to:

1. Suggest how to construct interpretable features from the raw evidences. For example, propose ways to group evidences into thematic clusters (such as URTI core symptoms, systemic symptoms, or risk factors) or embed them into low-dimensional representations.
2. Provide recommendations for feature engineering choices such as embedding dimension, normalization, or grouping heuristics.

Atari–Berzerk (z design from pixels; actions fixed).

You are given raw Atari Berzerk gameplay frames, each being a 128×128 grayscale or RGB image. The action space is fixed at 18 discrete actions (combinations of movement and firing). No explicit state features are provided; the world model will learn directly from pixels.

Your task is to:

1. Based on typical human gameplay strategies, decide how many latent z states should be used.
2. Provide a semantic interpretation for each z (e.g., exploit = repetitive safe movement, explore = trying rare actions or new regions, danger = escaping when enemies cluster).
3. Estimate the relative prevalence of each z (e.g., most frames are exploit, fewer are explore or danger).

1836 **F LIMITATIONS AND BROADER IMPACT**

1837 While our framework demonstrates strong performance and interpretability across diverse domains,
 1838 several limitations remain. First, the rule extraction process is still partly dependent on the quality of
 1839 predicates or action abstractions available in each dataset. Although our wake–sleep cycles mitigate
 1840 this by progressively refining rules, fully unsupervised discovery of symbolic structures remains an
 1841 open challenge. Second, our current design balances rules and active inference at a single timescale;
 1842 extending the framework to explicitly multi-level hierarchies (e.g., subgoals and long-term planning)
 1843 is a natural next step. Third, although rule-based reasoning improves robustness on rare or edge-case
 1844 behaviors, its coverage is inherently sparse, and rule confidence thresholds must be tuned to avoid
 1845 spurious activations.

1846 **Regarding scalability to more complex tasks:** For multi-game or multi-task setups, potential chal-
 1847 lenges include rule interference across tasks and the need to encode task identity in m_t or maintain
 1848 per-task rule banks. For high-dimensional visual or sparse-reward tasks, stronger world models, hier-
 1849 archical planning, or merging with model-based RL may be beneficial. Long-horizon planning with
 1850 EFE remains computationally challenging and is a direction for future work. For continuous control,
 1851 conceptual extensions include using Gaussian policies over continuous actions and treating mental
 1852 states as option/skill indices for hierarchical action spaces. Finally, our experiments are conducted
 1853 on curated benchmarks; evaluating the method in highly dynamic or noisy real-world environments
 1854 (e.g., human–robot collaboration, autonomous driving in open traffic) remains important future work.
 1855 Despite these limitations, we believe the broader impact of our approach is promising. By combining
 1856 generative models with symbolic rules, the framework offers a path toward *transparent, human-*
 1857 *interpretable decision-making*, potentially increasing trust in safety-critical applications such as
 1858 healthcare, transportation, and multi-agent coordination. The ability to capture both frequent and
 1859 rare behaviors in a complementary manner also suggests that our method can generalize to domains
 1860 where data imbalance or uncertainty is prevalent. More broadly, the work illustrates how insights
 1861 from cognitive science—such as rule-guided inference and predictive coding—can inspire practical
 1862 algorithms that balance performance with interpretability. We hope this line of research stimulates
 1863 further integration of symbolic reasoning and active inference in future intelligent systems.

1863 **G USE OF LLMs**

1864 In this paper, LLMs were used solely for writing polishing in several paragraphs, like the Experiment
 1865 section. All the key ideas, proofs, research, and writing are created completely by human authors.

1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889