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Abstract. Most medical vision-language models (VLMs) excel at open-
ended report generation and VQA but lack native support for struc-
tured, fine-grained perception (detection, counting, regression) within
one interface. We present QwenVLConnector, a Qwen2.5-VL-based chat-
bot that unifies classification, multi-label classification, textualized detec-
tion, counting, regression, and free-form report generation under a single
next-token objective via a lightweight dense multi-layer Connector that
fuses multi-scale visual features without increasing sequence length. On
FLARE-2D, QwenVLConnector improves detection F1 from 0.55 to 0.85
(4+0.30), raises single-label classification from 0.37 to 0.51 (+0.15), and
boosts report-generation GREEN by up to 18.3 points. Our code is avail-
able at https://github.com/plnguyen2908/QuwenConnector.

Keywords: Multimodal large language model - Medical VLM - Dense
connector - FLARE 2D

1 Introduction

Medical vision—language chatbots have progressed rapidly from task-specific
tools to assistants that can describe, reason about, and converse over clini-
cal imagery. Systems such as LLaVA-Med [6] and HuatuoGPT-Vision [3] al-
ready deliver strong open-ended report generation and VQA; however, most
models remain optimized for text generation. They answer fluently but provide
limited support for the structured, fine-grained perception clinicians routinely
need—detection, counting, and regression—within a single conversational inter-
face. The FLARE 2D challenge [9], spanning diverse modalities and task types,
makes this gap especially salient and provides a concrete, clinically meaningful
testbed.

* These authors contributed equally.


https://github.com/plnguyen2908/QwenConnector

2 Le Thien Phuc Nguyen & Hoang-Thien Nguyen et al.

Question: What is the correct . . . K: Acute lymphoblastic leukemia. Assistant: J

0 0 e o

LLM Decoder

R

Question: What is the correct . . . K: Acute lymphoblastic leukemia. Assistant:
Connector |+
Yo

Vision Encoder

L )
A4l <

Fig. 1: High-level architecture of QwenVLConnector. A Vision Encoder
extracts features from medical images; a lightweight dense multi-layer Connector
fuses low/high-level cues and projects them to the LLM without increasing se-
quence length. The fused visual tokens (green) are prepended to the text tokens
(pink), and a decoder-only LLM performs next-token generation for every task.

Modern VLMs typically couple a pretrained vision encoder to a decoder-
only LLM via a lightweight connector and train the stack with next-token pre-
diction over image/video—text corpora. Variants explore stronger backbones,
smarter adapters, and refined alignment /instruction curricula—e.g., PandaGPT
aligns multiple perceptual encoders via small projections for unified image/video
QA [12]; Video-LLaMA extends to long-form video with temporal reasoning [16];
and Qwen2.5-VL enhances the vision stack with a ViT tower, a Merger to con-
solidate patch embeddings, and improved positional encoding [2]. In medicine,
2D MLLMs (LLaVA-Med, HuatuoGPT-Vision/PubMedVision) adapt this recipe
through domain alignment and medical instruction tuning, while 3D frame-
works pair volumetric encoders with LLMs for CT/MRI dialogue and local-
ization [6,3,5,13]. Building on these insights, we introduce QwenVLConnector, a
clinical VLM chatbot that unifies classification, multi-label classification, object
detection (textualized outputs), counting, regression, and free-form report gen-
eration under a single next-token interface. The key design choice is a dense,
multi-layer Connector that aggregates low- and high-level visual features before
the LLM via channel-wise fusion, enriching tokens without increasing sequence
length (Figure 1 and 2).

Contributions: (i) We create an unified medical VLM chatbot that executes both
open-ended text generation and structured tasks (classification, multi-label clas-
sification, detection, counting, regression). (ii) We introduce QwenVLConnector,
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a lightweight dense connector that enriches visual tokens with multi-layer cues,
improving fine-grained performance while meeting the challenge’s fast and effi-
cient requirement. (iii) We introduce an in-context learning strategy to improve
report generation’s score.

2 QwenVLConnector

In this section, we first summarize preliminaries of our method and fix nota-
tion (Section 2.1), grounding our setup in prior work [2]. Next, we present the
proposed QwenVLConnector architecture that fuses high- and low-level visual
features (Section 2.2). We then detail the training data (Section 2.3). Finally,
we describe our multimodal in-context learning strategies for prompting and
adaptation (Section 2.4).

2.1 Preliminaries

Our model builds on the Qwen2.5-VL architecture, which employs a vision
encoder fy (ViT with windowed attention) to extract hierarchical visual fea-
tures from an image or video z,. In Qwen2.5-VL, a Merger module aggre-
gates patch-level embeddings into a sequence of high-level visual tokens. We
introduce a QwenVLConnector module, a custom adapter, that fuses these
high-level embeddings with selected low-level features from early encoder lay-
ers, enriching the visual representation with fine-grained spatial detail before
integration with the language model. Let V denote the LLM vocabulary and
Wiy = (w1, ..., wy,) € V" denote a length-n sequence of text tokens. The fused
representation Z is fed into a decoder-only LLM Js as an interleaved sequence
[Z,w.n] for autoregressive text generation.

2.2 QwenVLConnector Architecture

The vision encoder is a ViT with L=32 blocks. After windowed attention, the
hidden state from block ¢ is hY) € RN*4v where N is number of visual tokens,
and d, is ViT width. The encoder’s built-in Merger produces output tokens
Zy € RV>*dm We reuse that Merger as a mapping my RNxdv s RNXdm t4 align
intermediate features. P denotes the permutation induced by windowing; P~!
restores the original token order. The connector MLP is ¢, : RV *3dm — RN xde
where d; matches the LLM embedding size.

Computation. We average features over two depth groups to obtain comple-
mentary summaries: G1={1,...,16} (edge/texture-heavy) and Go={17,...,32}
(semantic-heavy),

_ 1 () _ 1 (©)  RNXdy
A1_|G1|Zh , Ag—‘GﬂZh € RVxdv,
LeGy LeGo
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Fig. 2: Dense multi-layer connector in QwenVLConnector. Early and late
ViT features are depth-averaged, aligned via the backbone Merger, concatenated
channel-wise with the encoder output, and projected by a lightweight MLP to
LLM visual tokens.

Each is aligned by the Merger and de-permuted, then concatenated channel-wise
with the encoder output and projected:

Z = cy([Zo, P™'my (A1), P7'my(A2)])

yielding visual tokens Z € RVN*4 at the same token length N. These tokens are
prepended to the text tokens wi., and consumed by the decoder-only LLM for
next-token generation as mentioned in 2.1. Detailed visualization of our method
is provided in Figure 2.

2.3 Training Data

We use a two-stream mixture for both alignment and instruction tuning. For
alignment, general LLaVA-style image—caption pairs (e.g., LAION [11,7]) are
combined with the PubMedVision alignment split of denoised PubMed im-
age—text pairs [3], yielding ~1.2M examples that stabilize open-domain ground-
ing while injecting clinical vocabulary and fine-grained cues. For instruction tun-
ing, we merge LLaVA-Instruct with PubMedVision’s medical instructions [7,3],
formatting all samples in a unified chat-style template with interleaved image
tokens and prompts (~1.3M examples).

As a final stage, we fine-tune on FLARE-2D Task 5 [9], a multimodal medical
VQA corpus spanning 8 imaging modalities and 7 task types. We use the official
training split (45k question—answer pairs aggregated from 19 datasets) and apply
the same chat-style formatting.
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2.4 In-Context Learning

Motivated by prior findings that in-context learning (ICL) improves domain use
of LLMs without extra training [1,10], we apply ICL to the report-generation
task. Concretely, we form a support pool S of NV distinct training examples and,
at inference, uniformly sample k& demonstrations (k < N). Each demonstration
is an image-prompt-response triple formatted in our chat template and con-
catenated before the user query inside a fixed instruction wrapper (Table 1). No
model weights are updated; the LLM conditions on the k& demonstrations plus
the query to generate the final report.

Table 1: Prompt template with ICL mechanism.
Prompt

Instruction: [Task Instruction]
User: [Demonstration 1]
Response: [Answer 1]

User: [Demonstration k|
Response: [Answer k|
User: [Question]
Response:

3 Experimental Results

In this section, we present: (i) Hyperparameter setup (Section 3.1); (ii) Ewval-
uation protocol detailing splits, metrics, prompting templates, and evaluation
procedure (Section 3.2); (iii) Validation results across classification, multi-label
classification, detection, counting, and regression (Section 3.3); (iv) In-context
learning analyses with zero- /few-shot prompting and ablations (Section 3.4); and
(v) Qualitative results including case studies and error analyses (Section 3.5).

3.1 Implementation details

Training Protocols. We adopt a three-stage training pipeline: (i) Vision-language
alignment using large-scale image-text corpora to map visual features into the
LLM embedding space while stabilizing the language backbone; (ii) Visual in-
struction tuning on curated multimodal dialogue datasets to elicit robust instruction-
following behavior; (iii) Domain-specific finetuning on the FLARE dataset to
adapt the model for specialized clinical image understanding tasks.

Environmental settings. We use AdamW 8-bit [4], bfloat16 precision, a cosine
learning-rate scheduler with warmup ratio = 0.03 [8], and max sequence length



6 Le Thien Phuc Nguyen & Hoang-Thien Nguyen et al.

= 2048. Also, we train our model under 8-bit quantization for memory efficient.
Other hyperparameters follow Huggingface’s trainer library defaults unless spec-
ified in Table 2. Other dependencies and code-related information are available
in the codebase provided in the abstract.

Table 2: Key hyperparameters per training stage.

Alignment |Instruction FLARE tuning
Epochs 1 1 3
Learning rate 2e-3 2e-4 2e-4
Per-device batch 1 1 1
Number of devices |8 8 8
GPU type A40 A40 A40
Training Time 3 days 7 days 1 day
Grad. accumulation |64 64 16
LoRA (rank, «) - (32,32) |(32, 64)

3.2 Evaluation Protocol

We use the FLARE challenge’s two-track validation [9]: val-hidden (Codabench)
for classification, multi-label, detection, instance detection, regression; and val-
public (local) for counting and report generation. Metrics are Balanced Accu-
racy (classification), micro-F1 (multi-label), F1 at IoU>0.5 (detection/instance),
MAE (regression/counting), and GREEN score (report generation).

3.3 Validation Results

Table 3: Classification evaluation. The result is reported on validiation-
hidden subset on Codabench. All metrics are reported as fractions in [0,1].

Model Classification 1|Multi-label classification 1
4-bit QwenVL 2.5 7B [15] 0.37 0.57
8-bit QwenVL 2.5 7B [15] 0.36 0.56
16-bit QwenVL 2.5 7B [15] 0.35 0.55
4-bit QwenVLConnector 7B (Ours) |0.51 0.49
8-bit QwenVLConnector 7B (Ours) |0.46 0.53
16-bit QwenVLConnector 7B (Ours)|0.50 0.54
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Table 4: Detection evaluation. The result is reported on validiation-hidden
subset on Codabench. All metrics are reported as fractions in [0,1].

Model Detection 1|Instance Detection 1
4-bit QwenVL 2.5 7B [15] 0.51 0
8-bit QwenVL 2.5 7B [15] 0.55 0
16-bit QwenVL 2.5 7B [17] 0.53 0
4-bit QwenVLConnector 7B (Ours) |0.76 0
8-bit QwenVLConnector 7B (Ours) [0.85 0
16-bit QwenVLConnector 7B (Ours)|0.81 0

Classification evaluation. On the Codabench validation-hidden split (Table 3),
QwenVLConnector surpasses the Qwen2.5-VL baseline in single-label classifica-
tion at all bit-widths: +0.14 at 4-bit quantization (from 0.37 to 0.51), +0.1 at
8-bit quantization (from 0.36 to 0.46), and +0.15 at 16-bit quantization (from
0.35 to 0.50). For multi-label classification, as the Micro-averaged F1 increases
with precision - 0.49 (4-bit quantization), 0.53 (8-bit), and 0.54 (16-bit) - Qwen-
VLConnector approaches the baseline (0.57), reducing the gap from —0.08 to
—0.03. Overall, 8-bit quantization offers a strong efficiency—accuracy trade-off
(large single-label gains with competitive multi-label scores), while 16-bit quan-
tization maximizes multi-label performance.

Detection evaluation. Using F1 as the metric, QwenVLConnector markedly out-
performs the Qwen2.5-VL baseline on detection in Table 4: 0.76 at 4-bit quanti-
zation (+0.25, from 0.51 to 0.76), 0.85 at 8-bit quantization (40.3, from 0.55 to
0.85), and 0.81 at 16-bit quantization (40.28, from 0.53 to 0.81). The best F1 is
achieved at 8-bit quantization, suggesting an effective efficiency—accuracy sweet
spot. Instance detection F1 is 0 across all settings, indicating that our current
textualized detection output does not satisfy the instance-level scoring protocol;
enabling structured instance outputs is left for future work.

Regression, counting, and report generation. From Table 5, counting decreases
at all settings: from 287.30 to 284.44 (—2.86) at 4-bit quantization, from 276.77
to 275.81 (—0.96) at 8-bit quantization, and from 268.24 to 266.70 (—1.54) at
16-bit quantization, with the best MAE at 16-bit. Report generation increases
at 4-bit quantization from 65.74 to 76.01 (4+10.27), at 8-bit quantization from
55.77 to 74.05 (+18.28), and at 16-bit quantization from 74.78 to 74.93 (40.15),
peaking at 4-bit. In contrast, regression increases—at 4-bit quantization from
15.51 to 20.91 (+5.40), at 8-bit quantization from 15.19 to 21.13 (4+5.94), and at
16-bit quantization from 15.43 to 19.04 (43.61)—highlighting a remaining gap
for purely numeric targets.
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Table 5: Regression, Counting, and Report Generation evaluation. The
result of Regression is reported on validation-hidden subset on Codabench. The
result of Counting and Report Generation is reported on validation-public sub-
set. Report Generation is reported as decimal number in [0, 100].

Model Regression ||Counting ||Report Generation 1
4-bit QwenVL 2.5 7B [15] 15.51 287.3 65.74
8-bit QwenVL 2.5 7B [15] 15.19 216.77 5577
16-bit QwenVL 2.5 7B [15] 15.43 268.24 74.78
4-bit QwenVLConnector 7B (Ours) [20.91 284.44 76.01
8-bit QwenVLConnector 7B (Ours) [21.13 275.81 74.05
16-bit QwenVLConnector 7B (Ours)|19.04 266.7 74.93

3.4 In-Context Learning Results

Figure 3 summarizes the effect of adding & in-context demonstrations for re-
port generation on the validation-public split. Across all four metrics—BLEU,
GREEN Clinical Significance, GREEN Entity Matching, and overall GREEN
Score—ICL consistently improves performance compared with prompts without
demonstrations. These gains indicate that brief, in-domain exemplars help the
model follow radiology style and terminology more faithfully, complementing
our connector-based improvements without additional finetuning. Due to com-
pute/memory limits on the competition testing server and Docker submission
constraints, ICL was not enabled in our container; the results in Figure 3 are
from offline runs and are shown as a potential future direction.

3.5 Qualitative Result

Qualitative results. Figure 4 showcases ultrasound images for two tasks. Left
(classification): QwenVLConnector selects the correct option (A), whereas QwenVL
2.5 [15] predicts C. Right (detection): our textualized box (green) aligns more
closely with the ground truth (blue), achieving IoU = 0.70, while QwenVL 2.5’s [15]
box (red) attains IoU =0.25. These examples underscore QwenVLConnector’s
stronger recognition and localization on ultrasound imagery.

4 Limitation and future work

Despite unifying open-ended and structured tasks, the system has several gaps:
instance-level prediction is not realized because textualized detection cannot
satisfy instance scoring; numeric grounding is weak, with regression lagging and
counting improvements modest; performance is sensitive to precision/quantization
and training remains compute-intensive; and safety/consistency checks remain
limited relative to clinical requirements. In addition, the in-context learning
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Fig. 3: Effect of in-context learning (ICL) on QwenVLConnector for the report-
generation task: BLEU, GREEN Clinical Significance, GREEN Entity Matching,
and overall GREEN Score on the validation-public split. Incorporating k& demon-

strations consistently improves performance over no-ICL prompts.

(ICL) strategy substantially increases prompt length and inference memory /latency.
Therefore, an in-depth, task-specific study of demonstration budgeting is needed

to balance accuracy, cost, and latency. Future work will need to explore stronger
connector architectures that more effectively fuse multi-layer visual cues, im-
proving structured prediction while preserving efficiency.

5 Conclusion

QwenVLConnector advances medical VLMs by unifying open-ended report gen-
eration with structured perception—classification, multi-label classification, de-
tection, counting, and regression—within a single next-token interface. Built on
Qwen2.5-VL with a lightweight dense multi-layer connector, the system improves
fine-grained recognition while preserving efficiency and delivers consistent gains
on FLARE 2D tasks, particularly for classification and detection. Nonetheless,
gaps remain in instance-level prediction and numeric grounding. Future work
will need to explore stronger connector architectures that fuse multi-layer visual
cues more effectively to enhance structured prediction while maintaining speed
and simplicity.
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radiologist’s assessment? Options: A) Benign image with [x_min, y_min, x_max, y_max]

lesion B) Malignant lesion C) No lesion coordinates, nesting results for multiple lesions.
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Answer: A Answer: [[222, 59, 451, 253]]
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Question: After reviewing the scan, what is the J |
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Describe the lesion positions in the ultrasound J

[ Ours: [[179, 62, 442, 225]] v iou=0.70

QwenVL: [[1, 51, 584, 353]] X iou=0.25

Fig. 4: Qualitative examples on Ultrasound images. Left: multiple-choice
classification task. Right: lesion detection task where green is our detection,
blueis ground truth, and red is QwenVL’s [15] detection.
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Table 6: Checklist Table. Please fill out this checklist table in the answer column.
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A meaningful title Yes
The number of authors (<6) 6
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Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes

Introduction includes at least three parts:

background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1, 2
Pre-processing (Training data) Page 4
Strategies to improve model inference Page 4
The dataset and evaluation metric section are presented Page 5
Environment setting table is provided Table 2
Training protocol table is provided Page 5
Visualized example is provided Figure 4
Limitation and future work are presented Yes

Reference format is consistent. Yes




