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ABSTRACT

There is a fundamental limitation in the prediction performance that a machine
learning model can achieve due to the inevitable uncertainty of the prediction target.
In classification problems, this can be characterized by the Bayes error, which is the
best achievable error with any classifier. The Bayes error can be used as a criterion
to evaluate classifiers with state-of-the-art performance and can be used to detect
test set overfitting. We propose a simple and direct Bayes error estimator, where we
just take the mean of the labels that show uncertainty of the class assignments. Our
flexible approach enables us to perform Bayes error estimation even for weakly
supervised data. In contrast to others, our method is model-free and even instance-
free. Moreover, it has no hyperparameters and gives a more accurate estimate of
the Bayes error than several baselines empirically. Experiments using our method
suggest that recently proposed deep networks such as the Vision Transformer may
have reached, or is about to reach, the Bayes error for benchmark datasets. Finally,
we discuss how we can study the inherent difficulty of the acceptance/rejection
decision for scientific articles, by estimating the Bayes error of the ICLR papers
from 2017 to 2023.

1 INTRODUCTION

Comparing the prediction performance of a deep neural network with the state-of-the-art (SOTA)
performance is a common approach to validating advances brought by a new proposal in machine
learning research. By definition, SOTA performance such as error or 1—AUC' monotonically
decreases over time, but there is a fundamental limitation in the prediction performance that a
machine learning model can achieve. Hence, it is important to figure out how close the current SOTA
performance is to the underlying best performance achievable (Theisen et al., 2021). For example,
Henighan et al. (2020) studied the scaling law (Kaplan et al., 2020) of Transformers (Vaswani et al.,
2017) by distinguishing the reducible and irreducible errors.

In classification problems, one way to characterize the irreducible part is the Bayes error (Cover
& Hart, 1967; Fukunaga, 1990), which is the best achievable expected error with any measurable
function. The Bayes error will become zero in the special case where class distributions are completely
separable, but in practice, we usually deal with complex distributions with some class overlap.
Natural images tend to have a lower Bayes error (e.g., 0.21% test error on MNIST (LeCun et al.,
1998) in Wan et al. (2013)), while medical images tend to have a higher Bayes error, since even
medical technologists can disagree on the ground truth label (Sasada et al., 2018). If the current
model’s performance has already achieved the Bayes error, it is meaningless to aim for further error
improvement. We may even find out that the model’s error has exceeded the Bayes error. This may
imply fest set overfitting (Recht et al., 2018) is taking place. Knowing the Bayes error will be helpful
to avoid such common pitfalls.

Estimating the Bayes error has been a topic of interest in the research community (Fukunaga &
Hostetler, 1975; Fukunaga, 1990; Devijver, 1985; Berisha et al., 2016; Noshad et al., 2019; Michelucci

*Currently at Preferred Networks.
'AUC stands for “Area under the ROC Curve.”
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et al., 2021; Theisen et al., 2021). To the best of our knowledge, all previous papers have proposed
ways to estimate the Bayes error from a dataset consisting of pairs of instances and their hard labels.
When instances and hard labels are available, one can also train a supervised classifier, which is
known to approach the Bayes classifier (that achieves the Bayes error) with sufficient training data
provided that the model is correctly specified.

This is an interesting research problem from the point of view of Vapnik’s principle’ (Vapnik, 2000)
since we can derive the Bayes error from the Bayes classifier (and the underlying distribution) while
we cannot recover the Bayes classifier from the knowledge of the Bayes error, which is just a scalar.
How can we take full advantage of this property? While the Bayes error is usually defined as the best
achievable expected error with any measurable function, it is known to be equivalent to the expectation
of the minimum of class-posteriors with respect to classes for binary classification. Inspired by
Vapnik’s principle, our main idea is to skip the intermediate step of learning a function model, and
we directly approximate the minimum of the class-posteriors by using soft labels (corresponding to
the class probability) or uncertainty labels (corresponding to the class uncertainty). *

Our proposed method has two benefits. Firstly, our method is model-free. Since we do not learn a
model, we can escape the curse of dimensionality, while dealing with high-dimensional instances
would cause issues such as overfitting if we were to train a model. High dimensionality may cause
performance deterioration for other Bayes error estimation methods (Berisha et al., 2016; Noshad
et al., 2019) due to divergence estimation. We experimentally show how our method can more
accurately estimate the Bayes error than baselines that utilize instances and soft labels. Our model-
free method is also extremely fast since we do not have any hyperparameters to tune nor a function
model to train.

The second benefit is a more practical one: our method is completely instance-free. Suppose our
final goal is to estimate the Bayes error instead of training a classifier. In that case, we do not need
to collect instance-label pairs, and it may be less costly to collect soft/uncertainty labels without
instances. Dealing with instances can cause privacy issues, and it can be expensive due to data storage
costs especially when they are high-dimensional or can come in large quantities. It may lead to
security costs to protect instances from a data breach. As an example of an instance-free scenario,
we can consider doctors who are diagnosing patients by inspecting symptoms and asking questions,
without explicitly collecting or storing the patients’ data in the database. In this scenario, the hospital
will only have the decisions and confidence of doctors, which can be used as soft labels.

The contributions of the paper is as follows. We first propose a direct way to estimate the Bayes error
from soft (or uncertainty) labels without a model nor instances. We show that our estimator is unbiased
and consistent. In practice, collecting soft/uncertainty labels can be difficult since the labelling process
can become noisy. We propose a modified estimator that is still unbiased and consistent even when
the soft labels are contaminated with zero-mean noise. We also show that our approach can be
applied to other classification problems, such as weakly supervised learning (Sugiyama et al., 2022).
Finally, we show the proposed methods’ behavior through various experiments. Our results suggest
that recently proposed deep networks such as the Vision Transformer (Dosovitskiy et al., 2021) has
reached or is about to reach the Bayes error for benchmark datasets, such as CIFAR-10H (Peterson
et al., 2019) and Fashion-MNIST-H (which is a new dataset we present; explained in Sec. 5.3). We
also demonstrate how our proposed method can be used to estimate the Bayes error for academic
conferences such as ICLR, by regarding them as an accept/reject binary classification problem.

2 BACKGROUND

Before we discuss our setup, we will review ordinary binary classification from positive and negative
data and binary classification from positive-confidence data in this section.

Learning from positive-negative data Suppose a pair of d-dimensional instance € R¢ and
its class label y € {+1, —1} follows an unknown probability distribution with probability density

The Vapnik’s principle is known as the following: “When solving a given problem, try to avoid solving a
more general problem as an intermediate step.” (Sec. 1.2 of Vapnik, 2000)

3 An uncertainty label is 1 subtracted by the dominant class posterior. We will discuss how to obtain soft
labels in practice in Sec. 3.
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function p(x, y). The goal of binary classification is to train a binary classifier g: R? — R so that
the following classification risk R(g) will be minimized: R(g) = Ep5,,)[¢(yg(x))], where £ is a
margin-based surrogate loss function such as the logistic loss 41,(z) = log(1 + exp(—z)) or the
squared loss /g(z) = (z — 1)?. The classification error is Ro1(g) = Epa,y)[lo1(yg(x))], where
we use the zero-one loss y1, which takes 0 when y - g(x) > 0 and 1 otherwise. In empirical risk
minimization, the following estimator of R(g) is often used:

R(g) = 5 iy Uyig(:), M
5 idd.
where {(mu yi)}izl ~ p(ma y)
In this paper, our focus is not on the classifier itself but on the value of Ry1(g) when a good classifier
is learned. This can be nicely captured by the notion of the Bayes error, defined as follows:

Definition 2.1. (Mobhri et al., 2018) The Bayes error is the infimum of the classification risk with
respect to all measurable functions: 3 = inf,. ga R measurable Ep(a,y) [fo1 (yg(x))].

Learning from positive-confidence data In positive-confidence classification (Ishida et al., 2018;
Shinoda et al., 2020), we only have access to positive data equipped with confidence {(z;,7;)};,,
where @; is a positive instance drawn independently from p(x | y = +1) and 7; is the positive
confidence given by r; = p(y = +1|x;). Since we only have positive instances, we cannot directly
minimize Eq. (1). However, Ishida et al. (2018) showed that the following theorem holds.

Theorem 2.2. (Ishida et al., 2018) The classification risk can be expressed as
R(g) = mEy [U(g(x)) + 7 (—g(x)) @

if we have r(x) = p(y = +1|x) # 0 for all © sampled from p(x). Ey is the expectation over the
positive density p(z|ly = +1) and 74 = p(y = +1).

Since the expectation is over p(x|y = +1), we do not have to prepare negative data. Although 7
is usually unknown, we do not need this knowledge since 74 can be regarded as a proportional
constant when minimizing Eq. (2). Hence, we can see how learning a classifier is possible in this
weakly-supervised setup, but is estimating the Bayes error also possible? We will study this problem
further in Sec. 4.

3 ESTIMATION WITH ORDINARY DATA
In this section, we propose our direct approach to Bayes error estimation.

Clean soft labels First of all, it is known that the Bayes error can be rewritten as follows (Devroye
et al., 1996; Mohri et al., 2018):

B = Egmpe) min{p(y = +1 | x),ply = -1 | z)}]. 3)
This means that we can express the Bayes error 5 without explicitly involving the classifier g.
If we assume that we have soft labels, which are {¢;} ,, where ¢; = p(y = +1 | x;) and

{x;}7, "< p(x), we can construct an extremely straightforward estimator for the Bayes error:

B=15" min{e;,1— ¢} 4)
In fact, Eq. (4) is just the empirical version of Eq. (3). However, the significance lies in the observation
that this can be performed in a model-free and instance-free fashion, since taking the averages of the
smaller one out of ¢; and 1 — ¢; in Eq. (4) does not require model training and does not involve x;.

Note that we can further weaken the supervision by sampling uncertainty labels, i.e., ¢, =

K2
minyer+13 p(y | ;). Practically, this would mean that the label provider does not need to re-
veal the soft label. Although the two are similar, we can see how uncertainty labels are weaker by the
fact that we cannot recover p(y = +1 | ) from min,ec 41y p(y | «)*. Furthermore, we can recover
74 = p(y = +1) by the expectation of soft labels E,(4)[p(y = +1 | )] = 7, but m cannot be

recovered by averaging uncertainty labels.

Our estimator enjoys the following theoretical properties.

*For example, if min,c 41} p(y | ) = 0.1, we do not know whether p(y = +1 | ) is 0.9 or 0.1.
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Proposition 3.1. B is an unbiased estimator of the Bayes error.
/1 2

The proofs are shown in App. C.1 and App. C.2, respectively. This implies that /3 is a consistent
estimator to the Bayes error, i.e., Ve > 0, lim,, o P(|B — B| > €) = 0. The rate of convergence is
|3 — B = Op(1//n), where Op is the stochastic big-O notation, cf. App. D. This rate is the same
as classifier training and is the optimal parametric rate (Mendelson, 2008) although our method can
be regarded as non-parametric. We are also free from the curse of dimensionality since the instance
dimension d does not appear in the bound.

Proposition 3.2. For any § > 0, with probability at least 1 — 9, we have,

Noisy soft labels So far, our discussions were based on an assumption that soft (or uncertainty)
labels is precisely the class-posterior ¢; (or ¢;). Since this may not be satisfied in practice, we consider
a situation where noise &; is added to the class-posterior values. We observe noisy soft labels {u; }?_;
where u; = ¢; + &;. Since we ask labellers to give us a probability, a constraint is 0 < u; < 1, and
we assume E[¢;|¢;] = 0. If we naively use these noisy versions, our estimator becomes

B= & 301y fmin (ui, 1 — )] ®)
However, we can show the following negative result.

(B8] # B.

Theorem 3.3. 3 is generally a biased estimator of the Bayes error: E fid.

{(ei &)o'~ p(e6)

This is basically due to the noise inside the nonlinear min operation. We show the proof in App. C.3.

This issue can be fixed if we have an additional binary signal that shows if the instance is
likely to be more positive or negative. Formally, if we have access to sign labels, i.e., s; =
+ —
sign [p(y = +1la;) — 0.5] Vi € {1,2,...,n}, we can divide {u;};, into {u; };*; and {u; }i2;
depending on the sign label, with n = nf —|— n . Then we can construct the following estimator:

Broise = £ (X0, (1= ) + 2002y ). (©)

With this modified estimator BNoise, we can show the following propositions.

Proposition 3.4. BNOiSe is an unbiased estimator of the Bayes error.

The proof is shown in App. C.5. The proof itself is simple, but the main idea lies in where we
modified the estimator from Eq. (4) to avoid dealing with the noise inside the min operator, by
utilizing the additional information of s;.

Proposition 3.5. For any § > 0, with probability at least 1 — 0, we have, \BNOiSG — B <4/ i log %.

The proof is shown in App. C.6. This implies that BNoise is a consistent estimator to the Bayes error,
i.e., for Ve > 0, lim,, 00 P(|BNoise — 8| > €) = 0. The rate of convergence is Op(1/+/n).

In practice, one idea of obtaining soft labels is to ask many labellers to give a hard label for each
instance and then use the proportion of the hard labels as a noisy soft label. This is the main
idea which we use later on in Sec. 5.2 with CIFAR-10H (Peterson et al., 2019). For simplicity,
suppose that we have m labels for every instance ¢, and u; is the sample average of those labels:
u; = L >iy Lyi; = 1], where y, ; is the jth hard label for the ith instance and 1 denotes
the indicator function. This satisfies our assumptions for noisy soft labels since 0 < u; < 1 and

E[& | ¢;] = 0 for any m € N. If in practice we do not have access to sign labels, we cannot use the
unbiased estimator BNOM and we have no choice but to use the biased estimator 5 However, in the
following proposition, we show that the bias can be bounded with respect to m.

Proposition 3.6. The estimator (3 is asympiotically unbiased, i.e., |3 — E[f]] < ﬁ +
V1og(2n+/m)/(2m), where m is the number of labellers for each of the n instances.

The proof is shown in App. C.4. The rate of convergence is O(4/log(2nm)/m).
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Hard labels Surprisingly, we can regard the usual hard labels as a special case of noisy soft labels.
This enables us to estimate the Bayes error with hard labels and sign labels. To see why this is
the case, we consider a specific type of noise: & is 1 — p(y = +1 | ;) w.p. p(y = +1 | x;) and
—p(y = +1 | x;) wp. 1—p(y = +1 | ;). Since u; = ¢;+¢&;, this implies u; = 1 w.p. p(y = +1|x;)
and u; = 0 w.p. p(y = —1|x;). We can easily confirm that our assumptions for noisy soft labels are
satisfied: 0 < &; < land E[§; | ¢;] = 0.

If we assign y = +1 for u; = 1 and y = —1 for u; = 0, this will be equivalent to providing a hard
label based on a Bernoulli distribution Be(p(y = +1|x;)) for an instance @; sampled from p(x).
This corresponds to the usual data generating process in supervised learning.

4 ESTIMATION WITH POSITIVE-CONFIDENCE DATA

In this section, we move our focus to the problem of estimating the Bayes error with positive-
confidence (Pconf) data (Sec. 2). First, we show the following theorem.

Theorem 4.1. The Bayes error can be expressed with positive-confidence data and class prior:
e R () I

Recall that E is E(5|y—1) and r(x) = p(y = +1|x). The proof is shown in App. C.7. Based on
Theorem 4.1, we can derive the following estimator:

BPconf =T+ (1 - i Z:L:Jrl max <07 2 - r%)) y ®)

where 7; = p(y = +1|x;) for &; ~ p(x|y = +1), and ny is the number of Pconf data. We can
estimate the Bayes error in an instance-free fashion, even if we do not have any r; from the negative
distribution. All we require is instance-free positive data and 7. A counter-intuitive point of Eq. (8)
is that we can throw away r; when 7; < 0.5, due to the max operation. If the labeler is confident that
r; < 0.5, we do not need the specific value of r;. Note that in practice, ; = 0 may occur for positive
samples. This will cause an issue for classifier training (since Eq. (2) will diverge), but such samples
can be ignored in Bayes error estimation (due to the max in Eq. (8)).

As discussed in Sec. 2, m was unnecessary when learning a Pconf classifier, but it is necessary for
Bayes error estimation. Fortunately, this is available from other sources depending on the task, e.g.,
market share, government statistics, or other domain knowledge (Quadrianto et al., 2009; Patrini
et al., 2014). Instead of the Bayes error itself, we may be interested in the following: 1) the relative
comparison between the Bayes error and the classifier’s error, 2) whether the classifier’s error has
exceeded the Bayes error or not. In these cases, 7 is unnecessary since we can divide both errors
(Eq. (8) and empirical version of Eq. (2) by w4 without changing the order of the two.

~ [ r2 B
6Pconf - 6| S ﬁ log R

The proofs are shown in App. C.8 and App. C.9, respectively. This implies that the estimator chonf
is consistent to the Bayes error, i.e., for Ve > 0, lim,,_, P(|/3’pc0nf — B| > €) = 0. The rate of
convergence is Op(1/,/n7). We can also see that the upper bound in Prop. 4.3 is equivalent to the
upper bound in Prop. 3.2 when the data is balanced, i.e., 7 = 0.5.

We can derive the following two propositions.

Proposition 4.2. chonf is an unbiased estimator of the Bayes error.

Proposition 4.3. For any 6 > 0, with probability at least 1 — 6§, we have,

5 EXPERIMENTS

In this section, we first perform synthetic experiments to investigate the behavior of our methods.
Then, we use benchmark datasets to compare the estimated Bayes error with SOTA classifiers. Finally,
we show a real-world application by estimating the Bayes error for ICLR papers. °

3Our code will be available at https://github.com/takashiishida/irreducible.
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Figure 1: Comparison of the proposed method (blue) with the true Bayes error (black), a recent
Bayes error estimator “Ensemble” (orange) (Noshad et al., 2019), and the test error of a multilayer
perceptron (hard labels: green, soft labels: purple). We also use the classifier’s probabilistic output
and plug it into the Bayes error equation in Eq. (3), shown as “Classifier-BER” (hard labels: red, soft
labels: brown). The vertical/horizontal axis is the test error or estimated Bayes error/# of training
samples per class, respectively. Instance-free data was used for Bayes error estimation, while fully
labelled data was used for training classifiers. We plot the mean and standard error for 10 trials.

» Figure 2: Bayes error with and without noise
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(a) Setup A (b) Setup B our modified estimator, the bias vanishes.

5.1 ILLUSTRATION

Positive-negative data Setup: We use two Gaussian distributions to construct a binary classification
dataset. We then derive the positive-class posterior analytically for each data and use it as our label.
We use Eq. (4) to estimate the Bayes error. We change the number of training samples per class
(2,4,8,...,1028) to observe how quickly we can approach the true Bayes error. We perform
experiments with four setups (A, B, C, and D) and the details are explained after Sec. 6. To compare
with the true Bayes error of the setup, we take the average of ¢(x) for 10,000 samples. We expect
this to be a good substitute because we are using the analytically derived class posteriors for the
soft labels. Although our problem setting does not require instances, we also compare with a
recent Bayes error estimator that uses instances and hard labels (Noshad et al., 2019) and classifiers
trained from instances and hard labels. We train a multi-layer perceptron model with two hidden
layers (500 units each, followed by BatchNorm (loffe & Szegedy, 2015) and ReLU (Nair & Hinton,
2010)). We use the following cross-entropy loss: —1[y; = +1]logpe(y = +1|x;) — L[y; =
—1]log pe(y = —1|x;), where pg(y|x) is the probabilistic output of the trained classifier and ¢
represents the model parameters. We chose the cross entropy loss because it is a proper scoring
rule (Kull & Flach, 2015). We use stochastic gradient descent for 150 epochs with a learning rate
of 0.005 and momentum of 0.9. We also compare with another baseline (“classifier-BER”), where
we plug in py(y|x) to Eq. (3). Finally, we add a stronger baseline “soft classifier” which utilizes
soft labels. If the soft label is r; for sample x;, then the cross-entropy loss is modified as follows:

—r;logpo(y = +1|x;) — (1 — ;) log po(y = —1|x;).

Results: We construct a dataset with the same underlying distribution ten times and report the means
and standard error for the final epoch in Fig. 1. We can see how the estimated Bayes error is relatively
accurate even when we have few samples. The benefit against classifier training is clear: the MLP
model requires much more samples before the test error approaches the Bayes error. The classifier is
slightly better when it can use soft labels but is not as good as our proposed method. It is interesting
how the “hard classifier-BER” tends to underestimate the Bayes error (except Fig. 1d). This can be
explained by the overconfidence of neural networks (Guo et al., 2017), which will lead to a small
minye 413 P(y|x). This underestimation does not occur with “soft classifier-BER,” implying that
there are less room to be overconfident when we learn with the modified cross-entropy loss.
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Positive-negative data with noise Setup: Next, we perform experiments when we have noise
on the labels. We follow the assumption in Sec. 3, and we design the noise to have mean 0 and
the label to be between 0 and 1 after adding this noise, to be a valid probability. For this purpose,
we add noise to the underlying class posterior and use a truncated Gaussian distribution p(z) with
standard deviation 0.4. We truncate the left tail {z € R|z < p — min(1 — p, x — 0)} and the right
tail {z € R|z > p + min(1 — p, p — 0)} where g € [0, 1] is the mean of the distribution, i.e., the
true class posterior. We compare three estimators: 1) Original estimator 5 in Eq. (4) with clean labels,
2) original estimator ﬂ in Eq. (4) with noisy labels, and 3) proposed estimator BNome in Eq. (6) with
noisy labels. We repeat the experiment 10 times with different data realizations. Results: The mean
and standard error for 10 trials are shown in Fig. 2, for varying number of training samples. As
expected, using noisy soft labels lead to worse results for /3, as we can see with the larger standard
errors. Increasing the sample size is effective to some degree, but the bias does not vanish. However,
if we use a modified estimator BNoise, the bias vanishes completely and works well even with noise.

Positive-confidence data  Setup: Similarly, we perform experiments for positive-confidence (Pconf)
data. The data is generated so that the class prior 74 is 0.5, and we assume this information is available.
We only use the confidence of data from the positive distribution and do not use the confidence of data
from the negative distribution. We use this data to estimate chonf and compare it with the B derived
earlier. Results: We report the mean and standard error for 10 trials in Fig. 3. Although Bayes error
estimation tends to be inaccurate with Pconf data for fewer samples, the difference between the two
disappears with more samples.

5.2 EXPERIMENTS WITH BENCHMARK DATASETS: CIFAR-10

Setup: We use CIFAR-10 (C10) (Krizhevsky, 2009), ciFAIR-10 (C10F) (Barz & Denzler, 2020),
CIFAR-10.1 (C10.1) (Recht et al., 2018), and CIFAR-10H (C10H) (Peterson et al., 2019). C10 is an
image dataset of 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
However, the test set in C10 is known to include complete duplicates and near-duplicates from the
training dataset. C10F replaces the duplicates in the test set with a different image. C10.1 is a new
test set to evaluate C10 classifiers. It ensures the underlying distribution to be as close to the original
distribution as possible, but it does not include any images from the original test set. C10H is a dataset
with additional human annotations for the C10 test set. Each image in the test set has class labels
annotated by around 50 different human labelers. We can take the proportion to construct soft labels
that we will use for Bayes error estimation. Although these datasets are originally multi-class setups
with 10 classes, we re-construct binary datasets in the following four ways: animals vs. artifacts, land
vs. other (water/sky), odd vs. even, and first five vs. last five. See the details after Sec. 6.

We compare the estimated Bayes error B with the base model of Vision Transformer (Dosovitskiy
et al., 2021) with 16 x 16 input patch size (ViT B/16), DenseNet169 (Huang et al., 2017), ResNet50
(He et al., 2016), and VGG11 (Simonyan & Zisserman, 2015). For ViT B/16, we downloaded the
official pretrained model (Dosovitskiy et al., 2021) and used the implementation by Jeon (2020) to
fine-tune on C10. For others, we use the models provided in Phan (2021), which are trained on C10.
Although these are ten-class classifiers, we transform them into binary classifiers by swapping the
predictions into positive and negative based on the setups (details shown after Sec. 6). For example, a
prediction of “cat” would be swapped with a positive label in “animals vs. artifacts”.

Results: We compare the estimated Bayes error 3 with classifier training in Fig. 4. As expected,
the test error (shown in light blue) is lower for newer network architectures, with ViT achieving the



Published as a conference paper at ICLR 2023

Figure 4: Comparing the estimated Bayes er-
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lowest test error. An interesting observation is that the test error of ViT has exceeded the estimated
Bayes error in all four setups, which theoretically should not take place. We first suspected that ViT’s
error is too low (overfitting to the test set; Sec. B) but found out this is not necessarily the case. We
investigated the degree of overfitting to the test set by performing experiments with C10F and C10.1.
The former dataset excludes the duplicated images between training and test set, and the latter dataset
is a fresh test set that is designed to be close to the original distribution of C10. The test error for
the C10F dataset becomes slightly worse and much worse for C10.1. This is what we expected and
implies that overfitting to the test set may be happening to some degree. However, ViT’s error is still
below the estimated Bayes error even for C10.1.

To explain why ViT’s error is still below the estimated Bayes error, we discuss the discrepancy
between the underlying p(y|x) for C10 and C10H. C10 is constructed with a three-step procedure:
first, collect images by searching for specific terms in search engines, downscale them to 32 x 32
(Torralba et al., 2008), and finally ask labelers to filter out mislabelled images (Krizhevsky, 2009).
On the other hand, C10H constructs the labels by asking labelers to choose the correct class out of ten
classes after seeing each downscaled image of C10. This makes it visually harder for human labellers.
Hence, the labelling process will become less confident, and this may lead to a higher entropy of the

distribution of the human labels. According to Eq. (4), this will lead to an overestimation of /.

To adjust for the distribution discrepancy, we also plot the test errors when we sample a test label for
each sample from the C10H dataset (repeated 20 times) and show this in Fig. 4 with pink. Note that
this generally will not go below the estimated Bayes error. For example, consider an extreme case
with zero test error for the original test set. If a test sample has p(y = +1|x) = 0.8 in C10H, then it
will incur an error of 0.2 on average for the new test labels. After adjusting for the discrepancy, we
can see how the test error of ViT is on par with or slightly higher than the estimated Bayes error. This
implies that we have reached (or is about to reach) the Bayes error for C10H.

5.3 EXPERIMENTS WITH BENCHMARK DATASETS: FASHION-MNIST

Setup: To our knowledge there is only one large-scale dataset with over 10 annotations per sample
(Peterson et al., 2019), which we used in Sec. 5.2. Hence, it would be beneficial to construct
another benchmark dataset with multiple annotations. We collected multiple annotations for each
test image in Fashion-MNIST (Xiao et al., 2017). Similar to CIFAR-10H, we name our dataset as
Fashion-MNIST-H. See our data collection details in App. E.

Since aiming for SOTA performance on Fashion-MNIST is less common in our community compared
with CIFAR-10, we simply chose ResNet-18 (He et al., 2016) for our model architecture. We trained
for 100 epochs with batch size 128, learning rate 0.001 on the original labels (no data augmentation)
and reconstructed the 10-class predictions into binary predictions by grouping shirt, dress, coat,
pullover, and t-shirt/top as the positive class, and the other 5 categories as the negative class.

Results: We compared the binary predictions with a test label sampled from the multiple annotations
(repeated 10 times) and derived the error, which is basically the same procedure of the pink bar in
Fig. 4. The error was 3.852% (£ 0.041%), where the percentage in the parentheses is the standard
error. On the other hand, the estimated Bayes error was 3.478% (+ 0.079%), where the percentage
in the parentheses is the 95% confidence interval. We can see how the estimated Bayes error is
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higher than the results for CIFAR-10H in Fig. 4, implying that Fashion-MNIST is more difficult than
CIFAR-10. This is intuitive as the 28 x 28 grayscale images are ambiguous while the original 51 x 73
PNG image is much more clear, e.g., see Fig. 1 in Xiao et al. (2017), and also consistent with the
results in Theisen et al. (2021). The ResNet-18 error is approaching the estimated Bayes error, but
may still have room for small improvement. Since we made a simple choice of model architecture,
we may be able to close this gap by other architectures that are more suited for Fashion-MNIST
images, adding data augmentation, and trying extensive hyper-parameter tuning.

5.4 EXPERIMENTS WITH REAL-WORLD DATASETS: ACADEMIC PAPER CLASSIFICATION

We consider an accept/reject binary classification task for ICLR papers and estimate the Bayes error
for this task. We believe this is an interesting real-world application because it may be used as a tool
to help us gain a deeper understanding of the trends/characteristics of academic conferences.

Setup: We used the OpenReview API to get data from ICLR 2017 to 2023. We removed papers
that do not have a decision, e.g., withdrawn or desk-rejected papers. This real-world application
is interesting because we have access to expert soft labels, i.e., the recommendation scores of the
reviewers. We can derive a weighted average of the scores based on the confidence provided by
the reviewer, (>, ¢; - s;)/(D_, ¢i), where ¢; is the confidence and s; is the score for reviewer i,
respectively. In ICLR, this average is between 1 and 10 and is not a probability. Fortunately, we also
have access to the hard label (final decision) for each paper which we can use for calibration. We
used Platt scaling (Platt et al., 1999) with the hard labels so that we have a calibrated score between 0
and 1. Then we use our proposed estimator to derive the Bayes error for each year of ICLR.

Assumptions of the data generation process: First, a reviewer provides
a score between 0 and 1 for each paper. Then the Area Chair (or SAC/PC) ICLR’s Bayes error
samples a binary label (accept/reject) based on a Bernoulli distribution 5077 T 6. 8%(£1.0%)
with the score provided by the reviewers. We feel this is realistic since | 7018 8.7%(£0.9%)
the AC usually accepts/rejects papers with very high/low average scores | 2019 7.9%(£0.7%)
while the AC puts more effort into papers with borderline scores meaning | 7000 | 8. 8% (+0.5%)
that papers close to borderline can end up both ways. These are the papers | 7)1 9.3%(+0.5%)

( )

( )

responsible for raising the Bayes error. Our motivation for deriving | 2022 | 9.6%(40.5%
Bayes error estimates for conference venues is to investigate this kind | 2023 | 8.0%(40.4%
of intrinsic difficulty.

Table 1: Parenthesis is

Results: From Table 1, we can see that the Bayes error is stable to some :
95% confidence interval.

extent and there are no disruptive changes over the years, e.g., Bayes
error is not doubling or tripling. We can also confirm that Bayes error for
ICLR paper accept/reject prediction is higher than the other benchmark experiments with CIFAR-10
and Fashion-MNIST, which is expected since understanding the value of a paper is much more
difficult than identifying dogs, cars, t-shirts, etc.

This example demonstrates the benefit of our instance-free approach. At least at the time of writing,
we do not rely on state-of-the-art ML to review papers submitted to academic conferences/journals.
Even if we wanted to, it is not clear what the features would be. Since new papers are reviewed based
on the novelty compared to all previous papers, how to handle this is nontrivial. This implies we
cannot easily use instance-based Bayes error estimators. It also demonstrates a real-world situation
where we can directly sample soft labels from experts instead of collecting multiple hard labels.

6 CONCLUSIONS

We proposed a model-free/instance-free Bayes error estimation method that is unbiased and consistent.
We showed how we can estimate it with uncertainty labels, noisy soft labels, or positive-confidence.
In experiments, we demonstrated how Bayes error estimation can be used to compare with the SOTA
performance for benchmark datasets, and how it can be used to study the difficulty of datasets,
e.g., paper selection difficulty. Although we did not detect strong evidence of test set overfitting in
Secs. 5.2 and 5.3, we are interested in investigating other benchmark datasets in the future.
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ETHICS STATEMENT

Constructing soft labels may rely on collecting human annotations. This may potentially have a
negative impact, e.g., cost of the annotations. We are hoping to lower the cost of annotations in our
future work. We will only publish our annotations we collected in Sec. 5.3 in a way that does not
contain any private information, e.g., only the category counts for each images and drop all other
worker-related information.

REPRODUCIBILITY STATEMENT

We will upload the code for implementing our proposed methods and labels of Fashion-MNIST-H in
https://github.com/takashiishida/irreducible.

Synthetic experiments: In the synthetic experiments, we used four setups: A, B, C, and D. A and B
are 2-dimensional anisotropic setups and is borrowed from the first two synthetic datasets in Ishida
et al. (2018), where the code is provided in ht tps://github.com/takashiishida/pconf.
C is a 10-dimensional isotropic setup with means g = [0,...,0]" and p_ = [1,...,1]" with
identity matrices for the covariance matrices. D is the same as C except that the dimension is doubled
to 20.

We used https://github.com/mrtnoshad/Bayes_Error_Estimator for the ensem-
ble method (Noshad et al., 2019). To make it advantageous for this baseline, we used KNN for
bw_selection when we had 16 or more samples per class but used manual when we had less
than 16. We partially used https://github.com/takashiishida/flooding for training
classifiers in synthetic experiments with Gaussian distributions.

Benchmark experiments: We used data and code provided in https://cvjena.github.
io/cifair/ for ciFAIR-10 (Barz & Denzler, 2020). We used data and code provided
in https://github.com/jcpeterson/cifar—-10h for CIFAR-10H (Peterson et al.,
2019). We used data and code provided in https://github.com/modestyachts/
CIFAR-10.1 for CIFAR-10.1 (Recht et al, 2019) and PyTorch wrapper provided in
https://github.com/kharvd/cifar-10.1-pytorch. We used data provided
in https://www.cs.toronto.edu/~kriz/cifar.html for CIFAR-10. We used
https://github.com/huyvnphan/PyTorch CIFAR10 for VGGI11, ResNet50, and
DenseNet169 models trained on CIFAR-10. We used the ResNet-18 implementation provided in
https://github.com/rasbt/deeplearning-models. We used https://github.
com/jeonsworld/ViT-pytorch to fine-tune ViT and downloaded pretrained weights from
https://console.cloud.google.com/storage/browser/vit_models; tab=
objects?pli=l&prefix=&forceOnObjectsSortingFiltering=false.

We are not aware of any personally identifiable information or offensive content in the datasets we
used. We also collected annotations by using Amazon Mechanical Turk (Buhrmester et al., 2016).
We explained the details of how we collected the annotations in Sec. 5.3, and we plan to remove all
personally identifiable information when we publish the data.

The details of the two (or four) binary datasets that are used in Sec. 5.2 (or App. 8) are as follows.

* Animals vs. artifacts: we divide the dataset into cat, deer, dog, frog, and horse for the
positive class and plane, car, ship, truck, and bird for the negative class.

* Land vs. other (water/sky): we divide the dataset into car, truck, cat, deer, dog, horse for the
positive class and plane, ship, bird, and frog for the negative class.

* Odd vs. even: we divide the dataset into odd and even class numbers, with plane, bird, deer,
frog, and ship for the positive class and car, cat, dog, horse, and truck for the negative class.

« First five vs. last five: we divide the dataset into the first five and last five classes based on
the class number, with plane, car, bird, cat, and deer for the positive class and dog, frog,
horse, ship, and truck for the negative class.

Real-world experiments: We used the OpenReview API (https://docs.openreview.
net/) and openreview-py (https://pypi.org/project/openreview—py/) to collect
reviewers’ scores for papers from ICLR 2017 to ICLR 2023.
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All of our experiments were conducted with a single Mac Studio except when we trained ResNet-18
in Sec. 5.3 and fine-tuned ViT in Sec. 5.2, which was when we utilized Google Colab Pro+ in
https://colab.research.google.com.
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A SUMMARY OF THE PROPOSED METHODS

Our proposed method can be summarized into two steps as shown in the following table.

Table 2: A summary of our proposed methods.

Situation Step 1: collect data Step 2: estimate Bayes error
Clean soft labels {ci}izy B = Ly min{ei, 1 — ¢}
Uncertainty labels {c}, 8= Ly d
. + -
Noisy soft labels {(ui, 85) }izq BNoise = + (Z?;l(l —uf)+ 30, ui_)

Multiple hard labels ~ {y;;}72 fori € [n] 8= 23, min{ui, 1 — w;} where w; = = > 1fyi; = 1]

n

Positive confidence {ri}i~; and w4 Breont = T4 (1 - i St max (0, 2— %))

B RELATED WORK

Bayes error estimation has been a topic of interest for nearly half a century (Fukunaga & Hostetler,
1975). Several works have derived upper and lower bounds of the Bayes error and proposed ways
to estimate those bounds. Various f-divergences, such as the Bhattacharyya distance (Fukunaga,
1990) or the Henze-Penrose divergence (Berisha et al., 2016; Sekeh et al., 2020), were studied. Other
approaches include Noshad et al. (2019), which directly estimated the Bayes error with f-divergence
representation instead of using a bound, and Theisen et al. (2021), which computed the Bayes error
of generative models learned using normalizing flows (Kingma & Dhariwal, 2018). Michelucci et al.
(2021) proposed a method to estimate the Bayes error and the best possible AUC for categorical
features. More recently, Renggli et al. (2021) proposed a method to evaluate Bayes error estimators
on real-world datasets, for which we usually do not have access to the true Bayes error.

All of these works that estimate the Bayes error are based on instance-label pairs. Not only do
they require instances, but they also usually have a model, which may need careful tuning of
hyperparameters to avoid overfitting. Li et al. (2021) proposed to estimate the maximal performance
for regression problems, while we focus on the classification problem.

Weakly supervised learning tries to learn with a weaker type of supervision, e.g., semi-supervised
learning (Chapelle et al., 2006; Sakai et al., 2017), positive-unlabeled learning (du Plessis et al.,
2014), similar-unlabeled learning (Bao et al., 2018), unlabeled-unlabeled learning (Lu et al., 2019),
and others (Zhou, 2018; Sugiyama et al., 2022).

On the other hand, the focus of most previous works on estimating the Bayes error is on ordinary
classification problems with full supervision. To our knowledge, Bayes error estimation for weakly
supervised data has not been studied. We discussed how our formulation introduced in this paper is
flexible and can be extended to weakly supervised learning in Sec. 4.

Opverfitting to the test dataset is one of the issues that concerns the machine learning community
(Mania et al., 2019; Werpachowski et al., 2019; Kiela et al., 2021). Models can overfit to the test
dataset by training on the test set, explicitly or implicitly. Barz & Denzler (2020) reported that 3% of
the test data in CIFAR-10 has duplicates and near-duplicates in the training set. Lewis et al. (2020)
studied popular open-domain question answering datasets and reported that 30% of test questions
have a near-duplicate in the training data. These are examples of when we may explicitly train on the
test set. Barz & Denzler (2020) and Lewis et al. (2020) showed how removing the duplicates will
lead to substantially worse results.

Overfitting to the test set can also happen implicitly because research is conducted on the same test
data that is public for many years (often with a fixed train/test partition), in contrast to how engineers
in industry can sample fresh unseen data for evaluation. Recht et al. (2018) constructed CIFAR-10.1,
an alternative unseen test set for CIFAR-10 classifiers and showed how deep learning models became
worse with respect to the test error, with a 4% to 10% increase. Yadav & Bottou (2019) and Recht
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et al. (2019) showed similar results for MNIST (LeCun et al., 1998) and ImageNet (Deng et al.,
2009), respectively. With closer inspection, however, Recht et al. (2019) discussed how the accuracy
improvement proportional to that in the original test set was observed in the new test set, for both
CIFAR-10 and ImageNet. Roelofs et al. (2019) studied Kaggle competition datasets by comparing
accuracies based on a public test set (which is used repeatedly by practitioners) and a private test set
(which is used to determine the final rankings), but found little evidence of overfitting.

Constructing new test datasets is one way to examine the degree of overfitting to the test dataset. In
Sec. 5, we discussed how estimating the Bayes error can be another way to detect overfitting to the
test dataset. If models have lower test error than the estimated Bayes error, that is a strong signal
for this type of overfitting. We compared the test error of recent classifiers with the estimated Bayes
error in Sec. 5.

C PROOFS

C.1 PROOF OF PROPOSITION 3.1

Proof.

n

1 . . _ 1

i o) = By iy a) H;[mm {ply = Hfeo) ply = ==}l ©)
1 n

== > Ea,mpie) min {p(y = +1]@:), p(y = —1]z:)}] (10)
=1
1 n

_ 1y ()
n =1

- 8. (12)

[

C.2 PROOF OF PROPOSITION 3.2

Proof. Since 0 < min[p(y = +1|x),p(y = —1|x)] < 0.5, we can use the Hoeffding’s inequality as
follows:
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C.3 PROOF THAT B IS A BIASED ESTIMATOR
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For simplicity, suppose that we have m labels for every sample ¢, and u; is the sample average of
those labels:
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Since 1[y; ; = 1] € [0, 1], using Hoeffding’s inequality, we get

for any € > 0. In other words, for any ¢’ > 0, with probability at least 1 — ¢’, we have
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The conditional bias can be bounded as
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where the last line follows from Eq. (26. Eq. (36 holds because min{¢;, 1—¢;} € [0,1/2], min{u;, 1—

u;} € [0,1/2], and |u; — ¢;| < € (") implies that u; > ¢; — €/ (') and 1 — u; > 1 — ¢; — €' (8").
Further taking the expectation on both sides, we get a bound on the bias:
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C.5 PROOF OF PROPOSITION 3.4

Proof. Broise can be expressed as
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The second term in Eq. (44) is,
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Similarly, the fourth term in Eq. (44) becomes zero. Then,
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Since we can derive that 0 < b; < 1, we can again use the Hoeffding’s inequality:
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C.7 PROOF OF THEOREM 4.1

Proof.
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In the third equality, we used max{a,b} = —min{—a,—b}. In the fourth equality, we used
E, [min {0, % — QH = 1 which can be derived from Eq. (64). O]

C.9 PROOF OF PROPOSITION 4.3

We can rewrite Spcont as
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Although 1/r(x;) is not bounded, since 0 < 74 — 74 max (0, 2— ﬁ) < 74, we can use the
Hoeffding’s inequality to derive,
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D STOCHASTIC BIG-O NOTATION

Suppose {X,,} (n = 1,2,...) is a sequence of random variables and {a,} (n = 1,2,...)is a
sequence of positive numbers, respectively. We say X,, = Op(a,,) when for all € > 0, there exists

C € R and finite N such that for all n > N, P(% > () <e

E DATA COLLECTION

We chose the Fashion-MNIST dataset (Xiao et al., 2017) as a more challenging dataset. This is a 10
class classification dataset with small fashion images with categories such as dress, bag, and sneaker. °
We used Amazon Mechanical Turk (Buhrmester et al., 2016) to collect multiple annotations per each
image in the test dataset with 10,000 images. We designed the task so that the worker is instructed to
annotate 10 randomly chosen fashion images, with a multiple choice of 10 labels. We showed several
correct images for each of categories in the beginning of the task, so that the worker can have a good
understanding of each labels. For each task with 10 image annotations, we paid $0.06 or $0.08 to
the worker. We removed the duplicates when the same worker provide a label for the same image
more than once. We further removed the annotation when the worker provided an answer within 30
seconds, which we considered as too short, e.g., when we performed the task, it took us 45 seconds
when we skipped reading the instructions. After removing the shorter ones, the mean and median
answering time was about 147 and 78 seconds, respectively. Finally, we ended up with around 67
annotations per image. The least number was 53 and the largest number was 79 annotations. By
following the naming convention of CIFAR-10H, we call this dataset as Fashion-MNIST-H.

F FULL RESULTS FOR SEC. 5.1 AND SEC. 5.2

In Sec. 5.1 and Sec. 5.2, we only showed two setups for each set of experiments. In this section, we
show all four setups.

—}— Proposed method —— Proposed method —— Proposed method —— Proposed method
Ensemble 30 Ensemble 30 Ensemble Ensemble
|+ Hard classifier |+ Hard classifier | Hard classifier Hard classifier
-4~ Hard classifierBER | 25 -4~ Hard classifierBER | 25 -4~ Hard classifier-BER -4~ Hard classifierBER
|- Soft classifier A Soft classifier } |- Soft classifier 20 Soft classifier
| 4~ Soft classifierBER | 20 E (.- softclassifier8ER | 20 -4 Soft classifier-BER -4 Soft classifierBER

2 4 8 16 32 64 128 256 5121028 2 4 8 16 32 64 128 256 5121028 2 4 8 16 32 64 128 256 5121028 2 4 8 16 32 64 128 256 5121028

(a) Setup A (b) Setup B (c) Setup C (d) Setup D

Figure 5: Comparison of the proposed method (blue) with the true Bayes error (black), a recent
Bayes error estimator “Ensemble” (orange) (Noshad et al., 2019), and the test error of a multilayer
perceptron (hard labels: green, soft labels: purple). We also use the classifier’s probabilistic output
and plug it into the Bayes error equation in Eq. (3), shown as “Classifier-BER” (hard labels: red, soft
labels: brown). The vertical/horizontal axis is the test error or estimated Bayes error/# of training
samples per class, respectively. Instance-free data was used for Bayes error estimation, while fully
labelled data was used for training classifiers. We plot the mean and standard error for 10 trials.

8Other popular datasets such as CIFAR-100 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009) are
problematic because they are known to be essentially multi-label classification datasets rather than single-label
(Shankar et al., 2020; Beyer et al., 2020; Yun et al., 2021; Wei et al., 2022). Since the Bayes error is defined for
the single-labeled case, this means we have to define a similar but different and novel concept that corresponds
to the lowest error for multi-label classification if we want to estimate the best possible performance on datasets
such as CIFAR-100 and ImageNet. This is definitely an interesting direction to pursue in the future, but is out of
the scope of the current paper since we are focusing on the Bayes error.
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Figure 6: Bayes error with and without noise on the labels, with mean and standard error for 10
trials. The vertical/horizontal axis is the estimated Bayes error/the number of samples. With noisy
labels, the estimation tends to become inaccurate with a larger standard error. With more samples,
the difference between clean labels becomes smaller, but a small bias remains. With our modified
estimator, the bias vanishes.
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Figure 7: Estimated Bayes error with PN (positive and negative) and Pconf (positive-confidence).
The vertical/horizontal axis is the estimated Bayes error/number of samples. We plot the mean and
standard error for 10 trials. The difference between the two becomes smaller as we increase the
number of training samples.
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Figure 8: Comparing the estimated Bayes error with four classifiers and four setups (Figures 8a,
8b, 8c, and 8d). Although it seems that ViT B/16 has surpassed the Bayes error for all four setups
for CIFAR-10 (C10), ciFAIR-10 (C10F), and CIFAR-10.1 (C10.1), it is still comparable or larger
than the Bayes error for CIFAR-10H (C10H). In Sec. 5.2, we discuss how this has to be investigated
carefully. The black error bar for the Bayes error is the 95% confidence interval. The black error bar
for the C10H is the standard error for sampling test labels 20 times.
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