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ABSTRACT

Protein inter-chain contact prediction is a key intelligent biology computation
technology for protein multimer function analysis but still suffers from low ac-
curacy. An important problem is that the number of training data cannot meet the
requirements of deep-learning-based methods due to the expensive cost of cap-
turing structure information of multimer data. In this paper, we solve this data
volume bottleneck in a cheap way, borrowing rich information from monomer
data. To utilize monomer (single chain) data in this multimer (multiple chains)
problem, we propose a simple but effective pre-training method called Split and
Merge Proxy (SMP), which utilizes monomer data to construct a proxy task for
model pre-training. This proxy task cuts monomer data into two sub-parts, called
pseudo multimer, and pre-trains the model to merge them back together by pre-
dicting their pseudo contacts. The pre-trained model is then used to initialize our
target – protein inter-chain contact prediction. Because of the consistency between
this proxy task and the final target, the whole method brings a stronger pre-trained
model for subsequent fine-tuning, leading to significant performance gains. Ex-
tensive experiments validate the effectiveness of our method and show the model
performs better than the state-of-the-art (SOTA) method by 11.40% and 2.97%
on the P@ L/10 metric for bounded benchmarks DIPS-Plus and CASP-CAPRI,
respectively. Further, the model also achieves almost 1.5 times performance supe-
riority to the SOTA approach on the harder unbounded benchmark DB5. Finally,
we also effectively apply our SMP on docking and interaction site prediction tasks
to verify the SMP is a general method for other multimer-related tasks. The code,
model, and pre-training data will be released after this paper is accepted.

1 INTRODUCTION

Proteins are large molecules consisting of amino acid (also called residue) sequences. Protein inter-
chain contact prediction aims to compute the binding between chains for given protein sequences
(specifically whether an individual amino acid on one chain is in contact with residue on the other
chain), which is important for the structural or functional analysis of protein complexes. The pre-
dicted binding reveals the geometric relationships between each residue pair of the two chains, which
can not only benefit multimer structure prediction but also be useful for many kinds of protein func-
tion analysis scenarios, e.g. developing new drugs and designing new proteins. The success of
RaptorX (Wang et al., 2017; Xu et al., 2021) and AlphaFold2 (Jumper et al., 2021) demonstrates the
application potential of deep learning in the computational biology field and inspired a series of new
biological computation methods. However, when extending the deep model to protein inter-chain
contact prediction, recent works have not achieved satisfying performance as the aforementioned
successful works do. An important bottleneck is data quantity limitation.

Many well-known successful deep learning systems are trained under large-scale datasets. For ex-
ample, in computer vision (CV), ConvNet (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
He et al., 2016)) and ViT (Dosovitskiy et al., 2020; Liu et al., 2021; Yuan et al., 2021) are trained on
ImageNet (Deng et al., 2009) which has 14 million labeled data who provide enough vision category
information of real word. For natural language processing (NLP), the most popular language model
BERT (Devlin et al., 2018) is trained on document-level data BooksCorpus (Zhu et al., 2015) and En-
glish Wikipedia with 3,300 million words in an unsupervised manner. In computational biology, the
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Figure 1: The main idea of Split and Merge Proxy (best viewed in color). In the pre-training stage, a
monomer (single chain) is firstly split into two sub-parts that are treated as pseudo multimers (a pair
of chains). Then the deep model is trained by learning to merge the pseudo multimers back through
predicting their inter-chain contacts.

recent most famous protein structure prediction model AlphaFold2 (Jumper et al., 2021) is trained
on about 400k monomer data, 60k with 3D structure labels of Protein Data Bank (PDB) (wwp,
2019) and 350k protein sequence, and achieves electron microscope accuracy. Obviously, existing
human-level accurate and successful artificial intelligence models also need big data to train. How-
ever, the number of the current largest open-sourced multimer training data is much lower than the
aforementioned topics. For instance, there is only 15k training data in the protein inter-chain con-
tact prediction task which could limit the performance of the deep model. The main reason is the
expensive cost of capturing the protein complex structural information by high-accurate devices. So
to tackle the problem of the scarcity of training data, we focus on finding a cheap way to obtain
additional data and avoid the extra cost.

Our main idea is to expand the training data by introducing the monomer data into the training
step for protein inter-chain contact prediction. The existing monomer data is free and also can
provide useful biological prior. Some works (Zeng et al., 2018; Bryant et al., 2022; Gao et al.,
2022) introduce the monomer data into the multimer-related tasks. These works treat the multimer
as a monomer and try to directly feed it into a monomer-based model without any modification.
It proves the potential value of the monomer data to the multimer task. But obviously, there is an
unneglectable task gap between the monomer and the multimer. Specifically, the monomer can only
provide information about one chain while the multimer task requires more. So the above methods
suffer from that task gap and existing contact prediction methods often neglect these data. In this
paper, we design a novel and effective pre-training method called Split and Merge Proxy (SMP) to
introduce monomer data into the protein inter-chain contact prediction task more effectively, which
reduces the aforementioned task gap and leads to better results.

The proposed SMP is a proxy task for contact prediction pre-training. As shown in Figure 1, SMP
generates pseudo multimer data from monomers and utilizes that data to pre-train the contact predic-
tion model. In particular, a protein with a single chain is split into two sub-parts that are treated as
a pseudo multimer. That pseudo data are used to train the contact prediction model, equal to guide
the model to merge these split data back. Although the pseudo multimer data contain biological
noise, they can provide additional richer information that complements the existing multimer data.
The training targets of SMP and the final task are both contact predictions, so there is no task gap
in the fine-tuning stage. The pre-trained model can be fine-tuned on the real multimer data without
any modification, leading to a better final model and more accurate contact results.

Our main contributions are as follows:

• We design a novel proxy task, Split and Merge Proxy (SMP), to pre-train contact prediction
models on the monomer data more effectively. To the best of our knowledge, this is the first
work to leverage the monomer data to pre-train the multimer contact prediction task.

• Experiments show that we achieve a new state of the art and improve the P@ L/10 met-
ric by a large margin – 11.40% and 2.97% respectively on DIPS-Plus and CASP-CAPRI
benchmarks when compared with the SOTA GeoTrans (Morehead et al., 2022). Moreover,
we almost achieve 1.5 times more performance than GeoTrans on the harder unbounded
benchmark DB5.

• We also use the SMP for other multimer-related tasks, especially protein docking and pro-
tein interaction site prediction. The experiments indicate that the SMP could effectively
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improve the results of the current popular model, which demonstrates that the SMP is a
general method that can be combined with other methods to use in multimer-related tasks.

2 RELATED WORKS

Protein inter-chain contact prediction. Protein intra-chain contact prediction has been well
treated in the past methods (Jumper et al., 2021; Baek et al., 2021), but protein inter-chain contact
prediction has not been extensively studied. Some early works (Weigt et al., 2009; Morcos et al.,
2011; Ekeberg et al., 2014) used direct-coupling analysis (DCA) to disentangle direct and indirect
correlations to infer potential relationships between amino acids at different positions. With the great
success of Convolutional Neural Network (CNN) (LeCun et al., 1998) in CV area, Zeng et al. (2018);
Yan & Huang (2021); Roy et al. (2022); Lin et al. (2023) applied CNN to multimer contact predic-
tion. Zeng et al. (2018) used two CNNs, one with 1D convolution processed sequence information
and the other with 2D convolution encoded multimer multiple sequence alignment (MSA) informa-
tion. Yan & Huang (2021); Lin et al. (2023) utilized more biological features (e.g., inter-protein
docking pattern, physico-chemical information, and sequence conservation) as inputs to the neural
network to enrich the information carried by multimer data. Because He et al. (2016) demonstrated
that deeper networks could learn more discriminative features from the dataset, Roy et al. (2022);
Guo et al. (2022b) used a deeper dilated residual network (Yu et al., 2017) to capture relationships
between residues. Due to each protein has a 3D structure, Fout et al. (2017); Liu et al. (2020); More-
head et al. (2022); Xie & Xu (2022) designed graph neural network (GNN) (Scarselli et al., 2008) to
predict contacts between chains. They first built a graph for each protein, the residue on each protein
is regarded as a node, and whether the residues in the protein are connected is regarded as an edge.
Fout et al. (2017) used graph convolution (Kipf & Welling, 2016) to get the graph representation
of the underlying protein structure and a fully convolutional network (FCN) was utilized to deter-
mine contacts between two proteins. Liu et al. (2020) employed weights-sharing GNNs to obtain
the residue features of each protein, then they devised multilayer CNNs as the interaction module
to perform contact prediction. Based on this, Morehead et al. (2022) designed graph transformers
to encode the geometric information in multimers, e.g., the distance and direction between residues
and the amide angle. Xie & Xu (2022) believed that simply building the residue graph was not
enough, so they built two more graphs, e.g., atom graph and surface graph, then they did message
passing in each graph. Since AlphaFold2 (Jumper et al., 2021) has achieved surprising results in
monomer structure prediction, Evans et al. (2021); Bryant et al. (2022); Gao et al. (2022) extended
it to multimer contact prediction. Evans et al. (2021) took into account permutation symmetry,
position encoding of different chains in multimer, and multimer MSA construction for contact pre-
diction. Bryant et al. (2022); Gao et al. (2022) directly spliced multimer as monomer and fed it into
AlphaFold2 to get contact prediction. However, due to the small scale of existing multimer data,
current models are less accurate in protein inter-chain contact prediction.
Pre-training in protein modeling. Pre-training from a lot of data can provide good prior knowl-
edge for the model, so it achieves great success in the data science community, such as CV and
NLP areas. Some recent works introduced the pre-training paradigm to the protein modeling area.
Rao et al. (2021); Rives et al. (2021); Elnaggar et al. (2021); Chowdhury et al. (2021); Fang et al.
(2022); Lin et al. (2022) used Masked Language Model (MLM) proxy task (Devlin et al., 2018) to
learn residue embedding from massive protein sequences. Rives et al. (2021); Elnaggar et al. (2021);
Chowdhury et al. (2021) directly utilized transformer (Vaswani et al., 2017) as a pre-training network
to capture potential biological patterns of amino acids. Since MSAs can provide a certain biological
prior for the model, Fang et al. (2022); Lin et al. (2022) devised the same Evoformer network as
AlphaFold2 (Jumper et al., 2021) and Rao et al. (2021) designed MSA transformer to fully integrate
the MSA information into the transformer architecture in pre-training stage, which can make the
network directly learn evolutionary information. Because each atom of the protein in PDB Database
(wwp, 2019) has 3D coordinates, Gligorijević et al. (2021); Chen et al. (2022) designed distance
prediction and the dihedral angle prediction proxy tasks, then they got the underlying structural rep-
resentations for monomers and achieved excellent performance in protein classification tasks. Guo
et al. (2022a) thought the natural protein coordinates are noisy, they proposed a proxy task that es-
timates the gradient of the perturbed 3D structure of the protein. The model used SE(3)-invariant
representation as the inputs and got better results on protein structure quality assessment and protein
interaction site prediction tasks. Zhang et al. (2022) used the multiview contrastive learning and
self-prediction tasks to pre-train the monomer graph encoder, they outperformed the past methods
in function prediction and fold classification tasks. Due to the lack of multimer data and the cost
of collecting multimer data is expensive, it is difficult to build an effective pre-training paradigm on
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Figure 2: The Framework of the proposed Split and Merge Proxy (SMP) pre-training method (best
viewed in color). The split stage cuts a monomer (the sequence “APFLDLRL” in the figure) into a
pseudo multimer consisting of two sub-parts (the two sub-parts “APFLD” and “LRL” in the figure)
and computes the contact ground truth. The merge step is the pre-training process, which trains the
model to predict the contact relationships on the split data, essentially equal to merging the split
sequences back. Note that the sequence here is just an example, not the real chain. In the fine-tuning
stage, the whole contact predictor, including the graph feature extractor and the interleave module,
is directly fine-tuned without any modification on the real multimer data.

existing multimer data. So in this paper, we design a novel proxy task to adapt the monomer into
multimer contact prediction, which can pre-train the model to get stronger performance.

3 METHOD

3.1 TASK DEFINITION

The protein inter-chain contact prediction aims to compute the contact relationship map A ∈
(0, 1)L1×L2 between the two given protein chains. The element Ai,j is 0 or 1, indicating whether
the i-th residue in one sequence interacts with the j-th residue in another sequence or not. The
contact prediction models take multiple kinds of biological features as inputs, such as amino acid
sequences s ∈ PL (P is the set of the amino acid, including 20 kinds of amino acids) and residue 3D
coordinates c ∈ RL×3 which is essentially the location of the non-hydrogen or carbon-alpha (Cα)
atoms. The computation pipeline can be defined as:

Apred = f(x1, x2), where xi = {si, ci} , i ∈ {1, 2} (1)

To achieve this, whatever details of the function f , proteins are often regarded as a graph so the
residues are treated as nodes and processed by graphic models to extract features. After that, an
interleave module fuses these node features and measures the similarities between each residue pair
to calculate the contact scores. The whole process is the same as the Fine-tuning block in Figure 2.

3.2 SPLIT AND MERGE PROXY

The Split and Merge Proxy (SMP) is an effective proxy task proposed to pre-train the contact pre-
diction model. The main pipeline includes a split step and a merge step, shown in Figure 2. Each
monomer sequence is cut into two sub-parts to generate the pseudo multimer data. In the merge
step, the model learns the contact prediction task directly on the aforementioned split data without
any modification. After that, the model would be fine-tuned on real multimer data.

Split stage: We use the monomers from the PDB (wwp, 2019) dataset because of its monomer data
including both amino acid sequences and corresponding 3D coordinates. The target of the split stage
is to generate the pseudo multimer that has the same data structure as the real one, including two
sub-sequences (s1 and s2) with structural information (c1 and c2) and their corresponding contact
ground truth A. We first cut the amino acid sequence into two sub-sequences at a random location:

s1 = s[: l], s2 = s[l :], (2)

where l means the random split index uniformly sampled from the range R, keeping each cut se-
quence informative and avoiding too short split results that contain only small amounts of residues.
In other words, this split location is around the center of the given sequence.
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And for the 3D structure, we do a similar split operation:

c1 = c[: l], c2 = c[l :]. (3)

We do not operate any normalization on these 3D coordinates, keeping their values still in the
monomer coordinate system so ground-truth A could be computed by the following formula:

Ai,j =

{
1 Di,j ≤ λ

0 Di,j > λ
, Di,j = ||c1[i]− c2[j]||2, (4)

where λ is the threshold to determine whether the i-th and j-th residue pair contact or not. ||·|| means
the Euclidean distance. This process could be interpreted that the ground-truth contact of pseudo
multimer is equal to the intra-chain contact of the original monomer. Based on the steps mentioned
above, monomer data is converted to the pseudo multimer in the form of {s1, s2, c1, c2, A}.

Merge stage: The merge stage is essentially the mimicking learning of the standard contact pre-
diction training. The model learns to predict the A based on the given pseudo multimer inputs
{s1, s2, c1, c2}. Specifically, We first extract the sequence and structure information for each cut sub-
sequence by MSA and Protein Structure and Interaction Analyzer (PSAIA), respectively. And then,
these pieces of information combined with the original protein sequence and 3D structural informa-
tion are sent to a graph feature extractor to extract residue features F1 ∈ RL1×C and F2 ∈ RL2×C

like Figure 2 shows. Note that the coordinate values in c1, c2 all belong in the same monomer co-
ordinate system. So they are all treated to the relative distances of residue pairs in each protein
sequence to avoid information leakage. After that, an interleave module computes the interaction
features FI ∈ RL1×L2×C′

, which stores the high-level relationship patterns for each residue pair.
Finally, a contact prediction head, often a fully convolutional neural network (FCN), predicts a con-
tact map based on those features. For the prediction, we train it as a binary classification task by
utilizing the cross-entropy loss function.

Fine-tuning stage: The SMP task is the same as the final contact prediction task, both predicting
the protein inter-chain contact maps. So there is not any task gap between this proxy task and fine-
tuning. Every module and parameter of the pre-trained model could be re-used in the final model.
So, We feed the real multimer data into the pre-trained model and fine-tune the whole model directly.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION PROTOCOL

In this section, we conduct several experiments on three popular benchmarks DIPS-Plus (Morehead
et al., 2021), CASP-CAPRI (Lensink et al., 2019; 2021) and DB5 (Vreven et al., 2015) datasets.

DIPS-Plus is the latest open-sourced dataset for protein inter-chain contact prediction. It provides
amino acid sequences and residue coordinates for each multimer data. Except for these pieces of
basic information, DIPS-Plus also offers additional different types of biological features such as
protrusion index and amide plane normal vector, composing much richer information. After filter-
ing extreme data, such as too long, too short sequences and high relative data with other datasets,
the DIPS-Plus dataset still has 15,618 and 3,548 protein complexes for training and validation, re-
spectively, which is the recent known largest open-sourced benchmark. For testing, it provides 32
protein complexes consisting of 16 homodimers and 16 heterodimers to evaluate the model’s ability
to handle samples of different difficulties.

CASP-CAPRI has been well known as a biologically joint challenge since 2014, aiming to assess
the computational methods of modeling protein structures. Morehead et al. (2022) re-organized the
data of the 13th and 14th CASP-CAPRI challenge sessions (Lensink et al., 2019; 2021), filtering the
overlap between the original CASP-CAPRI data and the DIPS-Plus. These filtered data include 14
homodimers and 5 heterodimers and are used to evaluate the ability of real-world applications and
cross-set generalization of models trained on the DIPS-Plus training set.

DB5 (Docking Benchmarks version 5 (Vreven et al., 2015)) is a traditional benchmark for inter-chain
contact prediction, including 140 training, 35 evaluation, and 55 testing samples. DB5 consists of
unbounded protein complexes that have varying contact types. In contrast, complexes in DIPS-Plus
and CASP-CAPRI are bounded and their multiple chains are already conformed with each other. So
it can indicate the performance and effectiveness of our model on different types of complexes.
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Table 1: The average top-k precision (P@k) and recall (R@k) on DIPS-Plus test dataset (%).
16 (Homo) 16 (Hetero)

Method P@ L/10 P@ L/5 P@ L/2 P@ L/10 P@ L/5 P@ L/2
BIPSPI (Sanchez-Garcia et al., 2018) 0 0 - 2.00 2.00 -

DeepHomo (Yan & Huang, 2021) 12.00 9.00 - - - -
ComplexContact (Zeng et al., 2018) - - - 16.00 15.00 -

GCN (Morehead et al., 2022) 20.00 18.00 - 8.00 7.00 -
GeoTrans (Morehead et al., 2022) 25.00 23.00 - 14.00 11.00 -

GeoTrans + SMP 39.81 33.33 26.02 20.99 20.07 15.00
32 (All Proteins)

Method P@ L/10 P@ L/5 P@ L/2 R@ L R@ L/2 R@ L/5
BIPSPI (Sanchez-Garcia et al., 2018) 1.00 1.00 - 1.00 0.40 0.30

GCN (Morehead et al., 2022) 16.00 12.00 - 10.00 6.00 3.00
GeoTrans (Morehead et al., 2022) 19.00 17.00 - 15.00 9.00 4.00

GeoTrans + SMP 30.40 26.70 20.51 24.00 16.02 8.56

Table 2: The average top-k precision and recall on CASP-CAPRI 13 & 14 dataset.
14 (Homo) 5 (Hetero)

Method P@ L/10 P@ L/5 P@ L/2 P@ L/10 P@ L/5 P@ L/2
BIPSPI (Sanchez-Garcia et al., 2018) 0 0 - 0 3.00 -

DeepHomo (Yan & Huang, 2021) 2.00 2.00 - - - -
ComplexContact (Zeng et al., 2018) - - - 8.00 5.00 -

GCN (Morehead et al., 2022) 11.00 13.00 - 11.00 9.00 -
GeoTrans (Morehead et al., 2022) 13.00 11.00 - 31.00 24.00 -

GeoTrans + SMP 18.63 14.37 11.57 32.00 23.49 18.35
19 (All Proteins)

Method P@ L/10 P@ L/5 P@ L/2 R@ L R@ L/2 R@ L/5
BIPSPI (Sanchez-Garcia et al., 2018) 0 1.00 - 2.00 1.00 0.1

GCN (Morehead et al., 2022) 10.00 9.00 - 11.00 6.00 2.00
GeoTrans (Morehead et al., 2022) 19.00 14.00 - 13.00 8.00 4.00

GeoTrans + SMP 21.97 16.77 13.36 14.33 8.34 3.91

Evaluation All the experiments follow the standard evaluation protocol in existing inter-chain con-
tact prediction benchmarks. To assess the accuracy of the prediction, the top-k precision and recall
are adopted as the evaluation metrics, where k ∈ {L/30, L/20, L/10, L/5, L/2, L} with L is the
length of the shortest chain.

4.2 IMPLEMENTATION DETAILS

We generate the pseudo multimer from all monomers before 2018-4-30 from PDB (wwp, 2019).
There are 60,206 data in total. Each file contains sequence and structural information for the protein.
Monomers that cannot be parsed by Biopython (Cock et al., 2009) (containing unknown atoms;
missing atoms; chain numbers are not in order and so on) are filtered out. Except that each protein
file contains several conformations, we only keep the first one and abandon the other. We set the
split range R = {1/3 ∼ 2/3} so that the cut position is close to the middle of the given sequence to
get pseudo multimers. Too short split proteins whose length of any chain is less than 20 are dropped.
The threshold λ used to calculate the contact ground truth is set as 6 Å following the same procedure
that real multimer utilizes in Morehead et al. (2021). Finally, there are 22,589 pseudo multimers,
about 1.5 times the existing real multimer contact dataset. Due to the ID numbers of monomer and
multimer in PDB being different, there is no overlap between pseudo multimer and real multimer
data. We also discuss the potential leakage of pre-training data in the appendix. Whatever for the
pseudo or real multimer data, we all use HHBlits (Remmert et al., 2012) with Uniclust30 (Mirdita
et al., 2017) database for MSA, and PSAIA (Mihel et al., 2008) to calculate geometric features.

Our SMP is a pre-training method that is not tightly bound to a specific model. So we combine SMP
with the GeoTrans (Morehead et al., 2022) to evaluate the effectiveness of SMP in the following
experiments. The batch size of pre-training and fine-tuning are all set as 48 (except the fine-tuning
one of CASP-CAPRI is set as 32 because of the cross-domain evaluation setting of CASP-CAPRI).
Other experimental settings, including loss function, learning rate, and so on, are all kept the same as
the latest open-sourced SOTA GeoTrans. More implementation details can be seen in the appendix.

4.3 COMPARISON WITH SOTA METHODS

We compare several SOTA multimer contact prediction methods including BIPSPI (Sanchez-Garcia
et al., 2018), ComplexContact (Zeng et al., 2018), DeepHomo (Yan & Huang, 2021), GCN (More-
head et al., 2022) and GeoTrans (Morehead et al., 2022). Except that the input of ComplexContact
is the amino acid sequence, the other methods take both amino acid sequence and 3D structural
information as inputs, which are the same as our model.

Table 1 shows the comparison results between SMP and other methods on the DIPS-Plus dataset,
demonstrating that SMP outperforms existing SOTA GeoTrans by a large margin. For homologous
complexes, SMP outperforms GeoTrans by 10.33% on the harder metric P@ L/5 and even 14.81%
on P@ L/10, demonstrating that SMP can learn more useful residue representation and contact
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Table 3: The average top-k precision and recall on DB5 test dataset.
55 (Hetero)

Method P@ L/10 P@ L/5 P@ L/2 R@ L R@ L/2 R@ L/5
BIPSPI (Sanchez-Garcia et al., 2018) 0.20 0.10 - 0.30 0.10 0.04
ComplexContact (Zeng et al., 2018) 0.30 0.30 - 0.70 0.30 0.10

GCN (Morehead et al., 2022) 0.60 0.70 - 1.30 0.80 0.30
GeoTrans (Morehead et al., 2022) 0.90 1.10 - 1.80 1.00 0.34

GeoTrans + SMP 1.78 1.88 1.55 2.53 1.45 0.69

Table 4: SMP vs self-supervised pre-training (SSL) on DIPS-Plus test dataset.
Row Model PreTrain P@ L/10 P@ L/5 P@ L/2 P@ L R@ L R@ L/2 R@ L/5 R@ L/10

1 GCN - 16.00 12.00 - - 10.00 6.00 3.00 -
2 GCN SMP 18.96 15.64 11.61 8.24 13.58 10.04 5.36 3.14
3 GeoTrans - 19.00 17.00 - - 15.00 9.00 4.00 -
4 GeoTrans Mask-node (Hu et al., 2020) 20.87 18.19 14.62 12.40 17.46 9.88 4.87 2.83
5 GeoTrans Mask-edge (Hu et al., 2020) 20.26 17.67 14.31 11.34 16.37 10.47 5.16 2.71
6 GeoTrans PHD (Li et al., 2021) 20.19 17.32 14.50 11.05 16.51 10.75 5.34 2.83
7 GeoTrans SMP 30.40 26.70 20.51 15.87 24.00 16.02 8.56 4.79

prediction knowledge from additional pseudo multimer data. For more difficult heterologous com-
plexes, SMP also surpasses GeoTrans 9.07% on harder P@ L/5. These heterologous performances
benefit from the potential consistency with the pseudo multimer and heterologous proteins. Specif-
ically, the cut chains usually have low sequence identities, sharing certain similar properties and
distributions of the real heterologous data, making SMP an obvious improvement on heterologous
multimers. From an overall perspective, the proposed SMP brings significant gains compared with
GeoTrans by 11.40% at P@ L/10 and 9.00% at R @L, proving that SMP brings more discriminative
expression for multimer contact prediction whatever homologous or heterologous complexes.

Table 2 presents the average top-k metrics of SMP on the CASP-CAPRI dataset, specifically, 19
challenging protein complexes (14 homodimers and 5 heterodimers). SMP also surpasses the state-
of-the-art method GeoTrans on P@ L/10 by 5.63% on 14 homologous when keeping comparable
performances for 5 heterologous. SMP achieves improvements for several different settings, demon-
strating that the pre-training of SMP learns many valuable patterns of contact prediction from pseudo
multimers to help learn real multimer prediction effectively.

On the DB5 dataset in Table 3, SMP also exceeds the precision of GeoTrans for all metrics. All
methods perform poorly due to testing hard and unseen unbound complexes with varying contact
types that are not necessarily conformal. However, SMP still shows more than 1.5 times better
performance than GeoTrans in almost all metrics. It indicates that SMP has good cross-domain
capabilities and has the potential to be used in real-world applications of complex contact prediction.

Overall, this pre-training paradigm plays a considerable role in various types of downstream multi-
mer contact prediction tasks (cross set and unbound set), showing good robustness with SMP. We
also compare the SMP with the AlphaFold series model, the results can be seen in the appendix.

4.4 ABLATION STUDIES

4.4.1 COMPARISON WITH DIFFERENT PRE-TRAINING PARADIGM AND CONTACT PREDICTOR

Previous comparisons show the effectiveness of the combination of our SMP with the SOTA Geo-
Trans. In this ablation study, we further investigate the superiority of our SMP. We combine SMP
with different contact predictors to prove its generalization and also compare the SMP with other
pre-training methods to show the advantage of the SMP design. All results are shown in Table 4.

To investigate the influence of the combined contact predictor with SMP, we change the graph feature
transfer module from the Transformer into the GCN (Kipf & Welling, 2016). This GCN only has
a total of 33K parameters, which is quite much lower than the 1.4M parameters of the Transformer
one. So this setting can show the generalization of the SMP on a small-scale model. From the 1st and
2nd lines of Table 4, it can be seen that our SMP still brings a 3.64% performance increase under the
P@ L/5. It indicates that the SMP paradigm keeps strong generalization on the small-scale model,
showing the potential for extensions of future different types and levels of contact predictors.

To show the superiority of the SMP design, we construct another experiment to pre-train the graph
encoder by adapting popular mask modeling paradigm (Hu et al., 2020) and the PHD method (Li
et al., 2021) on the monomer data with 3D structural cues. The mask paradigm pre-trains the model
by reconstructing the masked parts through partial unmasked observation. The PHD method defines
the proxy task as discriminating whether two half-graphs are derived from the same source or not.
These approaches provide different pre-training mechanisms compared with our SMP. As shown in
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Table 5: Partial pre-training and fine-tuning results on DIPS-Plus test dataset.
Partial pre-training w/ full-finetuning Partial fine-tuning w/ full-pretraining

Row Ratio P@ L/10 P@ L/5 R@ L/2 R@ L P@ L/2 P@ L R@ L/5 R@ L/10
1 0 19.00 17.00 9.00 15.00 2.08 1.98 0.62 0.56
2 1/5 18.22 15.58 10.48 16.80 12.25 9.63 4.20 1.96
3 1/4 18.61 19.02 11.14 17.08 12.53 10.80 4.91 3.10
4 1/3 24.64 21.36 12.08 16.93 12.96 10.62 4.56 2.50
5 1/2 26.20 21.29 11.50 18.09 15.49 11.92 5.53 3.22
6 1 30.40 26.70 16.02 24.00 20.51 15.87 8.56 4.79

Table 6: Different split ranges results on DIPS-Plus validation dataset.
Row Range P@ L/10 P@ L/5 P@ L/2 P@ L R@ L R@ L/2 R@ L/5 R@ L/10

1 2/5∼ 3/5 46.57 43.62 36.42 28.16 41.89 28.91 14.72 7.84
2 1/3∼ 2/3 49.82 46.44 38.02 28.71 43.28 30.63 15.84 8.49
3 1/4∼ 3/4 49.14 45.66 37.25 28.25 42.07 29.58 15.41 8.27
4 1/5∼ 4/5 41.90 39.08 32.34 24.75 37.53 25.95 13.30 7.08

the 3rd ∼ 6th lines of Table 4, The mask modeling and PHD method provide average 1% gains on all
metrics, proving the fact that monomers bring much useful information for this multimer task from a
different view. When compared with the SMP (7th line), SMP still shows stronger performance and
outperforms the mask paradigm by 5.89% on the harder metric P@ L/2, indicating the superiority of
the SMP design that can utilize information in 3D structures more effectively and further eliminate
the task gap between the pre-training and fine-tuning stage.

4.4.2 PARTIAL PRE-TRAINING RESULTS

We study the effectiveness of pre-training data volume for SMP and conduct partial pre-training
experiments with different degrees of monomer data. We set five partial pre-training ratios
{1/5, 1/4, 1/3, 1/2, 1}. When comparing the 2nd line of Table 5 with the 1st line (without pre-
training), we find that the performance has some fluctuation when the number of introduced pseudo
multimers is small. This is caused by the biological noise introduced by the small-scale pseudo
data, which is eliminated when the scale increases and clearly indicated in Table 5 3rd∼6th lines.
Obviously, when the amount of pre-trained data reaches 1/4 (in the 3rd line), SMP has introduced
certain precision and recall gains except on P@ L/10 metric than GeoTrans (in the 1st line), with
an average improvement of 2%. Moreover, as the amount of pre-trained data increases, the perfor-
mance gradually improves, proving that SMP guides the model to learn rich contact prediction to
provide beneficial initialization parameters for contact prediction models.
4.4.3 PARTIAL FINE-TUNING RESULTS
The pre-trained model has the potential to achieve satisfying performances only trained with small-
scale training data. So we aim to explore the effect of SMP for fine-tuning with different scale
data. We use six partial fine-tuning ratios, which belong to the set {0, 1/5, 1/4, 1/3, 1/2, 1}. The
1st line of Table 5 shows that SMP surpasses the traditional method BIPSPI (Table 1) without any
fine-tuning, which indicates that pseudo multimer can provide prior knowledge that is relevant to the
real multimers contact prediction. Moreover, the 3rd line of Table 5 shows that our model achieves
comparable results to the SOTA predictor GeoTrans only with 1/4 training data demonstrating that
the SMP pre-training can provide knowledge that can be effectively re-used and transferred to the
real multimer scenario. With further increasing the data volume in the 4th ∼ 6th line of Table 5,
it can finally achieve 8.56% on metric R@ L/5, surpassing the previous SOTA GeoTrans. These
experiments prove that our pre-training paradigm can effectively reduce the dependence on real data
and make the model adapt to different volume-level training data situations, having the potential to
save the extra cost of collecting multimer data. We provide more detailed results in the appendix.

4.4.4 DIFFERENT SPLIT RANGE RESULTS

We study the influence of different split ranges on the split stage for SMP to find the optimal one. We
set four split intervals settings {2/5 ∼ 3/5, 1/3 ∼ 2/3, 1/4 ∼ 3/4, 1/5 ∼ 4/5} on the validation
set. Because the validation set has more samples than the test set (3548 v.s 32), it could provide
more stable results. As shown in the 2nd line of Table 6, we find the performance is best when
the split interval is 1/3 ∼ 2/3. The other split positions have similar results except for the range
1/5 ∼ 4/5. Because splitting at 1/5 ∼ 4/5 would cause some too-short chains which are trivial and
will be filtered out by the pre-processing step, it achieves worse results than other split ranges. We
also provide the additional result of the DIPS-Plus test set in the appendix.

4.5 VISUALIZATION

We also visualize some prediction results of GeoTrans in Figure 3. We exhibit a homologous mul-
timer (i.e., PDB ID: 4LIW) and a heterologous multimer (i.e., PDB ID: 4DR5) from the DIPS-Plus
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GeoTrans SMP Ground Truth

PDB ID: 4LIW

GeoTrans

PDB ID: 4DR5

SMP Ground Truth

Figure 3: Contact visualization results of the 2 multimer 4LIW (left) and 4DR5 (right). The Geo-
Trans’s predictions, SMP’s predictions, and ground truths correspond to the left, middle, and right
columns, respectively (best viewed in color).

Table 7: Protein interaction site prediction results on four datasets (%).
Test 60 (Yuan et al., 2022) Test 315 (Yuan et al., 2022)

Method F1 MCC AUROC AUPRC F1 MCC AUROC AUPRC
PSIVER (Murakami & Mizuguchi, 2010) 0.0 0.0 57.83 18.92 0.0 0.0 55.96 16.52

DeepPPISP (Zeng et al., 2020) 3.21 5.08 64.05 23.75 4.87 8.13 66.96 25.41
GraphPPIS (Yuan et al., 2022) 22.90 24.00 77.89 41.89 30.26 27.54 79.62 40.70

GraphPPIS + SMP 28.76 27.82 78.04 42.39 30.71 27.93 79.45 41.02
GraphBind (Xia et al., 2021) 38.98 31.86 77.38 40.88 43.31 33.64 78.77 40.93

GraphBind + SMP 48.76 43.90 86.47 57.43 53.50 47.28 87.55 58.13
Btest 31 (Yuan et al., 2022) UBtest 31 (Yuan et al., 2022)

PSIVER (Murakami & Mizuguchi, 2010) 0.0 0.0 59.92 16.53 0.0 0.0 59.35 15.82
DeepPPISP (Zeng et al., 2020) 3.45 5.62 65.75 21.66 3.02 5.06 66.07 20.94
GraphPPIS (Yuan et al., 2022) 21.13 22.02 79.06 38.16 17.13 15.39 76.18 30.58

GraphPPIS + SMP 26.07 26.44 79.14 38.70 23.01 20.74 76.37 31.61
GraphBind (Xia et al., 2021) 37.76 33.12 77.58 40.68 31.60 26.48 76.42 35.54

GraphBind + SMP 43.95 40.36 85.96 51.60 30.48 25.84 80.68 36.15

Table 8: Complex prediction results on DIPS and DB5.5 datasets. ∗: Results reported in the original
paper. †: Results reproduced by ourselves. Note: The first four lines are the traditional methods.

DIPS Test set (Townshend et al., 2019) DB5.5 Test set (Guest et al., 2021)
Complex RMSD ↓ Interface RMSD ↓ Complex RMSD ↓ Interface RMSD ↓

Method Mean Std Mean Std Mean Std Mean Std
ATTRACT (de Vries et al., 2015) 14.93 10.39 14.02 11.81 10.09 9.88 10.69 10.90

HDOCK (Yan et al., 2017) 10.77 11.39 8.88 10.95 5.34 12.04 4.76 10.83
CLUSPRO (Kozakov et al., 2017) 14.47 10.24 13.62 11.11 8.25 7.92 8.71 9.89

PATCHDOCK (Schneidman-Duhovny et al., 2005) 13.58 10.30 12.15 10.50 18.00 10.12 18.75 10.06
EQUIDOCK∗ (Ganea et al., 2021) 14.52 7.13 11.92 7.01 14.72 5.31 13.23 4.93
EQUIDOCK† (Ganea et al., 2021) 15.19 7.71 12.59 6.31 15.02 6.10 14.03 5.60

EQUIDOCK + SMP 14.55 7.16 11.31 5.72 15.84 5.61 13.61 4.47

test set. The blue box in Figure 3 indicates that SMP can successfully predict several positive con-
tacts that GeoTrans neglects. The green box in Figure 3 shows that our SMP can eliminate some
false positives provided by GeoTrans. All these bounded areas demonstrate that SMP is more accu-
rate in multimer contact prediction than the SOTA method GeoTrans, demonstrating that the model
pre-trained by SMP can carry several types of new advantages over the original one.

4.6 APPLICATIONS FOR OTHER TASKS

To verify our SMP is a general method, we apply the SMP in protein interaction site prediction
(PISP) and protein docking tasks, respectively. These two tasks used the same pseudo multimer
data as in contact prediction. We integrate SMP with two methods GraphBind (Xia et al., 2021) and
GraphPPIS (Yuan et al., 2022) to demonstrate that SMP could be effectively applied to the PISP
task. It shows that SMP achieves better results than the past methods in Table 7, indicating that
the SMP pre-trained on the pseudo multimer data could improve protein representation to help the
downstream task. For the protein docking task, we use EQUIDOCK (Ganea et al., 2021) as the
baseline model and combine SMP to show the advantage in structure-related fields. From Table 8,
we could observe that SMP achieves better performance on the DIPS dataset (Townshend et al.,
2019) and holds comparable results on the DB5.5 dataset (Guest et al., 2021). It demonstrates that
SMP could help the model obtain a more precise multimer structure with no model framework
change. More implementation details and the visualization results can be seen in the appendix.

5 CONCLUSION
This paper introduces the Split and Merge Proxy (SMP), a simple yet effective pre-training frame-
work for protein inter-chain contact prediction to solve the limited number of multimers by using
rich monomer information. SMP splits monomer data into pseudo multimers and trains the model to
merge them back together by predicting its pseudo contact interaction, which reduces the task gap
between this proxy task and the final target, leading to significant performance gain. It demonstrates
that splitting monomers benefits multimer contact prediction tasks. SMP could also apply to other
multimer-related tasks (e.g. protein docking and protein interaction site), which achieves better re-
sults than the previous methods. It shows that SMP is a general method that has the potential for
other downstream computational multimer tasks.
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Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature communications,
12(1):1–14, 2021.

Johnathan D Guest, Thom Vreven, Jing Zhou, Iain Moal, Jeliazko R Jeliazkov, Jeffrey J Gray,
Zhiping Weng, and Brian G Pierce. An expanded benchmark for antibody-antigen docking and
affinity prediction reveals insights into antibody recognition determinants. Structure, 29(6):606–
621, 2021.

Yuzhi Guo, Jiaxiang Wu, Hehuan Ma, and Junzhou Huang. Self-supervised pre-training for pro-
tein embeddings using tertiary structures. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 6801–6809, 2022a.

Zhiye Guo, Jian Liu, Jeffrey Skolnick, and Jianlin Cheng. Prediction of inter-chain distance maps
of protein complexes with 2d attention-based deep neural networks. Nature Communications, 13
(1):6963, 2022b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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