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Abstract
Models like HuBERT have shown signifi-001
cant promise in automatic speech recognition002
(ASR). In this work, we explore both vanilla003
fine-tuning and parameter-efficient fine-tuning004
of the HuBERT model for speech emotion005
recognition (SER). While most previous re-006
search on SER has focused on four basic emo-007
tions—happy, sad, angry, and neutral—we ex-008
tend this by incorporating additional emotions:009
surprise, fear, disgust, and calm, bringing the010
total to eight. Our experiments utilize four di-011
verse datasets to enhance the robustness of our012
findings. Our methodology involves using the013
Wav2Vec2FeatureExtractor from the HuBERT014
model to extract features from raw audio files.015
These features are fed into a sequence classi-016
fication model built on the HuBERT architec-017
ture. We fine-tuned the model in three different018
approaches -vanilla Finetuning, Parameter effi-019
cient finetuning over QKV projection and clas-020
sifier using LoRA over a combination of several021
publicly available emotional speech datasets,022
including RAVDESS, CREMA-D, TESS, and023
SAVEE. The vanilla fine-tuned method outper-024
forms all fine-tuned approaches overall. How-025
ever, parameter-efficient approaches are still026
satisfactory and can be used in case of low re-027
sources and limited computational power.028

1 Introduction029

Speech Emotion Recognition (SER) is an essential030

aspect of human-computer interaction, significantly031

contributing to more natural and effective com-032

munication systems.(Ramakrishnan and El Emary,033

2013) While traditional SER systems primarily034

focus on basic emotions such as happy, sad, an-035

gry, and neutral,(Busso et al., 2004)(Durand et al.,036

2007) there is a growing need to encompass a037

broader range of emotions for more comprehen-038

sive applications. This research aims to extend the039

emotional categories to include surprise, fear, dis-040

gust, and calm, thereby covering a total of eight041

distinct emotions.042

HuBERT (Hsu et al., 2021), known for its robust 043

feature extraction capabilities (Wu et al., 2024), 044

leverages self-supervised learning to pretrain mod- 045

els on large-scale unlabelled data, which can then 046

be fine-tuned for specific tasks. This study explores 047

both vanilla fine-tuning and parameter-efficient 048

fine-tuning of the HuBERT model to enhance its 049

performance in SER. We used the ported version of 050

S3PRL’s Hubert for the SUPERB Emotion Recog- 051

nition task from hugging face. 1 052

The challenge of limited annotated data in SER 053

remains a significant bottleneck especially when 054

compared to the vast datasets available for ASR(Ao 055

et al., 2022). To address this, our experiments uti- 056

lize a combination of several publicly available 057

emotional speech datasets , including RAVDESS 058

(Ryerson Audio-Visual Database of Emotional 059

Speech and Song)(Livingstone and Russo, 2018), 060

CREMA-D (Crowd-sourced Emotional Multi- 061

modal Actors Dataset)(Cao et al., 2014), TESS 062

(Toronto Emotional Speech Set)Pichora-Fuller and 063

Dupuis, 2020, and SAVEE (Surrey Audio-Visual 064

Expressed Emotion). These datasets are split into 065

training, validation and evaluation sets to ensure 066

the robustness and generalization of our findings. 067

Our methodology involves using the 068

Wav2Vec2FeatureExtractor from the HuBERT 069

model (Yang et al., 2021) to extract features from 070

raw audio files, since it seemed to perform well 071

on previous works.(Pepino et al., 2021) (Chen and 072

Rudnicky, 2023)These extracted features serve as 073

inputs to a sequence classification model built on 074

the HuBERT architecture.(CHAKHTOUNA et al., 075

2024) The feature extraction process is crucial as 076

it captures the intricate details of speech signals, 077

which are pivotal for accurate emotion recognition. 078

We implement data augmentation techniques, 079

including pitch shifting, time stretching, and 080

1https://huggingface.co/superb/
hubert-large-superb-er
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noise addition, to artificially expand the dataset081

and improve model robustness. (Grichkovtsova082

et al., 2012)Additionally, batch normalization and083

dropout are employed during training to prevent084

overfitting and enhance generalization.085

In conclusion, this study aims to push the bound-086

aries of SER by leveraging the powerful feature087

extraction capabilities of the HuBERT model, com-088

bined with innovative fine-tuning strategies and089

comprehensive emotional datasets. The outcomes090

of this research have the potential to significantly091

enhance the accuracy and applicability of SER sys-092

tems in various domains, from customer service093

interactions to mental health monitoring.094

2 Methodology095

2.1 HubertModel096

The HuBERT (Hidden-Unit BERT) model is a self-097

supervised learning model designed for speech098

representation. It operates on a masked predic-099

tion framework, where portions of the input au-100

dio sequence are masked, and the model is trained101

to predict these masked sections. This approach102

leverages hidden units—discrete representations103

formed by clustering acoustic features—allowing104

the model to capture various nuances in speech,105

such as intonation, pitch, and rhythm. Although106

HuBERT does not directly classify emotions, it107

learns rich speech features that are invaluable for108

downstream tasks like emotion recognition. By109

fine-tuning HuBERT on a labeled emotion dataset,110

these learned features can be adapted for the spe-111

cific task of speech emotion detection. In this study,112

we fine-tuned the HuBERT model using three dif-113

ferent approaches and analyzed their performance114

to enhance the accuracy of emotion classification115

in speech.116

2.2 Fine Tuning117

We experimented with three different fine-tuning118

techniques 2 to adapt the pretrained model to119

our specific task. Previous works have demon-120

strated that fine-tuning large models on domain-121

specific tasks, such as emotion recognition, yields122

excellent performance.(Cao et al., 2014)(Siriward-123

hana et al., 2020)(Gao et al., 2023) Moreover,124

parameter-efficient fine-tuning techniques are par-125

ticularly advantageous, as they optimize resource126

and time utilization while delivering effective re-127

2https://github.com/usc-sail/peft-ser

sults. (Lashkarashvili et al., 2024) (Gao et al., 128

2024)(Li et al., 2023) 129

2.2.1 Full Fine-Tuning 130

This approach involves updating all the parameters 131

of the model during training. It allows the model to 132

learn task-specific features but requires more com- 133

putational resources and training time. The entire 134

model, including the feature extractor, encoder, and 135

classification head, was fine-tuned on our dataset. 136

2.2.2 Parameter-Efficient Fine-Tuning (PEFT) 137

with LoRA on K, Q, V Projection Layers 138

This method involves adding low-rank matrices 139

to the key (K), query (Q), and value (V) projec- 140

tion layers in the self-attention mechanism.(Feng 141

and Narayanan, 2023) It significantly reduces the 142

number of trainable parameters while retaining the 143

majority of the pretrained weights. Only the K, 144

Q, and V projection layers were fine-tuned with 145

the Lora technique, keeping the rest of the model 146

parameters frozen. 147

2.2.3 Parameter-Efficient Fine-Tuning (PEFT) 148

with LoRA on Classifier Layer 149

This approach focuses on updating only the classi- 150

fication head of the model while keeping the pre- 151

trained feature extractor and encoder layers fixed. 152

It is useful when the amount of labeled data is lim- 153

ited. Only the classification head was fine-tuned to 154

adapt the model to our specific task. 155

3 Experiment 156

In our experiment, we performed extensive fine- 157

tuning on a pre-trained Hubert model, focusing on 158

optimizing key parameters for the Q,K,V projec- 159

tion layers and the classifier layer to enhance per- 160

formance on the target dataset. We utilized various 161

configurations and components in our model train- 162

ing. The optimizer used for training was Adam, 163

with a learning rate of 1e-5. The training was con- 164

ducted over 50 epochs. 165

The hardware configuration included an 166

NVIDIA L40 GPU with 46068 MB of memory. 167

Each fine-tuning approach took approximately 2 168

hours to complete. 169

The rest of the configuration settings are stan- 170

dard, as the model was sourced from the Hugging 171

Face repository. Additional details can be found in 172

Table 1 The subsequent sections provide detailed 173

insights into the dataset and fine-tuning parameters 174

used. 175

2

https://github.com/usc-sail/peft-ser


Layer Type Input Shape Output Shape Param #
Input [1, 16000]
HubertFeatureEncoder [1, 16000] [1, 512, 49] 3,945,696
Conv1d (Layer 0) [1, 1, 16000] [1, 512, 3199] 5,632
Conv1d (Layers 1-4) [1, 512, 3199] [1, 512, 199] 3,147,776
Conv1d (Layers 5-6) [1, 512, 199] [1, 512, 49] 786,944
FeatureProjection [1, 512, 49] [1, 49, 1024] 525,824
HubertEncoderStableLayerNorm [1, 49, 1024] [1, 49, 1024] 433,012,992
HubertEncoderLayerStableLayerNorm [1, 49, 1024] [1, 49, 1024] 17,958,528 (each)
Projector [1, 49, 1024] [1, 49, 256] 262,400
Classifier [1, 49, 256] [1, 49, 8] 2,056
Total Parameters 437,865,352

Table 1: Summary of the Hubert Model used for Fine-tuning on SER with 8 Emotions

3.1 Datasets176

Emotion Source Count
Angry CREMA-D 1271

RAVDESS 192
SAVEE 60
TESS 400

Calm RAVDESS 192
Disgust CREMA-D 1271

RAVDESS 192
SAVEE 60
TESS 400

Fear CREMA-D 1271
RAVDESS 192
SAVEE 60
TESS 400

Happy CREMA-D 1271
RAVDESS 192
SAVEE 60
TESS 400

Neutral CREMA-D 1087
RAVDESS 96
SAVEE 120
TESS 400

Sad CREMA-D 1271
RAVDESS 192
SAVEE 60
TESS 400

Surprise RAVDESS 192
SAVEE 60
TESS 400

Table 2: Count of files for each emotion and source

In our study on speech emotion recognition177

(SER), we utilized four key datasets to train and178

evaluate our emotion classification models. Table 2179

summarizes the number of files for each emotion180

and source.181

We utilized the following datasets for our182

experiments: Toronto Emotional Speech Set183

(TESS) The TESS dataset consists of 2,800184

high-quality audio recordings from two female185

actresses, each portraying seven emotions (anger,186

disgust, fear, happiness, pleasant surprise, sadness, 187

and neutral) across 200 target words. 188

Ryerson Audio-Visual Database of Emotional 189

Speech and Song (RAVDESS) The RAVDESS 190

includes 1,440 speech audio files from 24 profes- 191

sional actors (12 female, 12 male), each expressing 192

seven emotions with varying intensity. 193

Surrey Audio-Visual Expressed Emotion 194

(SAVEE) The SAVEE dataset contains recordings 195

from four male speakers, each delivering 120 196

utterances across seven emotions. Despite its male- 197

only composition, SAVEE offers high-quality, 198

phonetically balanced sentences that complement 199

the other datasets. 200

Crowd Sourced Emotional Multimodal Actors 201

Dataset (CREMA-D) The CREMA-D features 202

7,442 audio clips from 91 diverse actors, spanning 203

multiple races and ethnicities. Each actor delivers 204

sentences in one of six emotions at various 205

intensity levels. The diversity and volume of 206

CREMA-D ensure robust model training and 207

prevent overfitting. 208

These datasets collectively provide a comprehen- 209

sive foundation for developing a robust SER model 210

capable of accurately identifying emotions from 211

diverse audio sources. 212

3.2 Pretrained Model 213

We utilized the HubertForSequenceClassification 214

model, which is based on the HuBERT architecture. 215

It consists of several components: 216

• Feature Extractor: Utilizes multiple convo- 217

lutional layers to process raw audio inputs. 218

• Feature Projection: Projects extracted fea- 219

tures into a higher-dimensional space. 220
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• Encoder: Composed of multiple transformer221

layers to capture temporal dependencies in the222

audio sequence.223

• Classification Head: A final linear layer to224

map the encoder outputs to class probabilities.225

3.3 Audio Preprocessing226

The preprocessing steps involved several key oper-227

ations to prepare the audio data for training:228

• Loading Audio Files: Audio files were229

loaded using the librosa library, which pro-230

vides functionality for analyzing and extract-231

ing features from audio signals.232

• Resampling: All audio files were resampled233

to a uniform sample rate to ensure consistency234

across the dataset.235

• Feature Extraction: We used the Wav2Vec2236

(Baevski et al., 2020) feature extractor to con-237

vert raw audio signals into a sequence of fea-238

ture vectors. This involved computing mel-239

frequency cepstral coefficients (MFCCs) and240

other relevant audio features.241

• Normalization: The extracted features were242

normalized to have zero mean and unit vari-243

ance to facilitate faster convergence during244

training.245

• Segmentation: Long audio files were seg-246

mented into shorter, fixed-length clips to cre-247

ate a uniform input size for the model.(Rybach248

et al., 2009)249

4 Results250

In this section, we present the performance met-251

rics of our finetune experiments, including full252

finetuned of Hubert abbreviated as Hubert(FT),253

Parameter-Efficient Fine-Tuning (PEFT) with254

LoRA on (K, Q, V) Projection Layers abbreviated255

as Hubert(QKV) , and Parameter-Efficient Fine-256

Tuning (PEFT) with LoRA on classifier Layers257

abbreviated as Hubert (classifier). The evaluation258

metrics used are F1 score, Equal Error Rate (EER),259

and Accuracy. The results are summarized in Ta-260

ble 3. These results indicate that the fully fine tuned261

Hubert model outperforms the modified versions262

in all evaluated metrics.263

Models / Metrics F1_score EER Accuracy
Hubert (FT) 0.8610 0.0713 86.10
Hubert (QKV) 0.6715 0.164 67.146
Hubert (classifier) 0.4461 0.2870 44.61

Table 3: Performance metrics for different Hubert mod-
els.

Confusion Matrices The confusion matrices 264

provide a detailed breakdown of the model’s perfor- 265

mance across different emotion categories.(Liang, 266

2022) Each matrix shows the percentage of correct 267

and incorrect predictions for each emotion, allow- 268

ing us to analyze the strengths and weaknesses of 269

each model. The confusion matrices for the full 270

fine tuned Hubert Model, PEFT on Hubert (QKV), 271

and PEFT on Hubert (Classifier) models are pre- 272

sented in Tables 4 , 5 , and 6 respectively. These 273

matrices reveal that the full fine tuning of the Hu- 274

bert model yields the highest accuracy across most 275

emotion categories, while the modified versions 276

show varying degrees of misclassification.

label ang cal dis fea hap neu sad sur
ang 96.99 0.00 1.10 1.10 0.55 0.27 0.00 0.00
cal 0.00 89.74 0.00 0.00 0.00 10.26 0.00 0.00
dis 4.77 0.00 82.16 2.51 3.77 2.01 4.52 0.25
fea 2.01 0.00 2.76 76.94 6.52 2.76 8.02 1.00
hap 2.65 0.27 0.53 1.86 90.45 3.71 0.27 0.27
neu 0.31 0.00 0.00 0.00 1.57 98.11 0.00 0.00
sad 0.76 0.00 3.82 9.41 1.53 13.23 71.25 0.00
sur 0.70 0.00 0.00 0.00 2.80 0.00 0.00 96.50

Table 4: Confusion Matrix for Hubert full finetuning (in
percentage)

277

label ang cal dis fea hap neu sad sur
ang 92.88 0.00 1.64 0.27 1.92 1.37 0.00 1.92
cal 0.00 84.62 0.00 0.00 0.00 0.00 15.38 0.00
dis 9.30 1.26 64.57 0.75 2.51 16.33 3.27 2.01
fea 5.01 0.75 2.01 42.86 17.54 15.54 13.78 2.51
hap 11.67 2.92 2.12 2.65 59.42 13.26 1.59 6.37
neu 1.57 7.55 0.00 0.00 0.94 88.99 0.94 0.00
sad 1.02 4.83 3.05 2.54 1.78 35.62 49.87 1.27
sur 1.40 0.70 0.70 0.00 4.90 1.40 0.00 90.91

Table 5: Confusion Matrix for Hubert-PEFT-KQV (in
percentage)

label ang cal dis fea hap neu sad sur
ang 84.38 0.00 3.84 0.82 1.64 8.77 0.27 0.27
cal 0.00 92.31 0.00 0.00 0.00 2.56 5.13 0.00
dis 14.82 2.01 38.44 1.26 0.75 23.87 18.09 0.75
fea 15.29 1.25 1.75 20.05 8.52 24.56 27.82 0.75
hap 29.71 4.77 11.94 3.98 4.51 33.69 6.37 5.04
neu 1.26 7.23 0.31 0.31 0.00 87.11 3.77 0.00
sad 0.51 5.34 2.80 3.31 0.76 46.31 40.97 0.00
sur 24.48 8.39 10.49 2.80 0.70 16.08 0.00 37.06

Table 6: Confusion Matrix for Hubert-PEFT-Classifier
(in percentage)

In conclusion, the fully fine-tuned Hubert model 278

outperforms its PEFT counterparts in all metrics, 279

highlighting the trade-off between computational 280

efficiency and model accuracy in emotion classifi- 281

cation. 282
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5 Limitations283

While our experimental setup has demonstrated the284

efficiency of the HuBERT model and its variations285

in speech emotion recognition tasks through full286

fine-tuning, fine-tuning of QKV layers, and fine-287

tuning of the classifier, there are several limitations288

to consider. First, the dataset composition, though289

diverse, may still not capture the full variability of290

real-world speech emotions, potentially limiting291

the generalizability of our findings. The reliance292

on publicly available datasets may introduce bi-293

ases inherent to these datasets. Additionally, the294

pre-trained models used in this study are initially295

trained on general speech data and might not be296

optimized for emotion-specific nuances, even after297

fine-tuning, which could affect performance. The298

feature extraction and classification processes are299

also computationally intensive, requiring signifi-300

cant processing power and memory, which could301

be a constraint for deployment in resource-limited302

environments. Furthermore, our evaluation focuses303

primarily on accuracy, F1 score, and EER; other304

important metrics like latency and robustness to305

noise were not explored. While we explored differ-306

ent fine-tuning strategies, the potential benefits of307

combining these strategies or exploring alternative308

fine-tuning approaches represent areas for further309

research.310

6 Ethical Considerations311

Some part of sentences were rephrased using chat-312

GPT. Since we used publicly available datasets no313

other considerations were required.314

References315

Junyi Ao, Ziqiang Zhang, Long Zhou, Shujie Liu,316
Haizhou Li, Tom Ko, Lirong Dai, Jinyu Li, Yao Qian,317
and Furu Wei. 2022. Pre-training transformer de-318
coder for end-to-end asr model with unpaired speech319
data. arXiv preprint arXiv:2203.17113.320

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,321
and Michael Auli. 2020. wav2vec 2.0: A framework322
for self-supervised learning of speech representations.323
Advances in neural information processing systems,324
33:12449–12460.325

Carlos Busso, Zhigang Deng, Serdar Yildirim, Mur-326
taza Bulut, Chul Min Lee, Abe Kazemzadeh, Sung-327
bok Lee, Ulrich Neumann, and Shrikanth Narayanan.328
2004. Analysis of emotion recognition using facial329
expressions, speech and multimodal information. In330
Proceedings of the 6th international conference on331
Multimodal interfaces, pages 205–211.332

Houwei Cao, David G Cooper, Michael K Keutmann, 333
Ruben C Gur, Ani Nenkova, and Ragini Verma. 2014. 334
Crema-d: Crowd-sourced emotional multimodal ac- 335
tors dataset. IEEE transactions on affective comput- 336
ing, 5(4):377–390. 337

Adil CHAKHTOUNA, Sara SEKKATE, and ADIB 338
Abdellah. 2024. Unveiling embedded features in 339
wav2vec2 and hubert msodels for speech emotion 340
recognition. Procedia Computer Science, 232:2560– 341
2569. 342

Li-Wei Chen and Alexander Rudnicky. 2023. Explor- 343
ing wav2vec 2.0 fine tuning for improved speech 344
emotion recognition. In ICASSP 2023-2023 IEEE 345
International Conference on Acoustics, Speech and 346
Signal Processing (ICASSP), pages 1–5. IEEE. 347

Karine Durand, Mathieu Gallay, Alix Seigneuric, Fab- 348
rice Robichon, and Jean-Yves Baudouin. 2007. The 349
development of facial emotion recognition: The role 350
of configural information. Journal of experimental 351
child psychology, 97(1):14–27. 352

Tiantian Feng and Shrikanth Narayanan. 2023. Peft-ser: 353
On the use of parameter efficient transfer learning 354
approaches for speech emotion recognition using pre- 355
trained speech models. In 2023 11th International 356
Conference on Affective Computing and Intelligent 357
Interaction (ACII), pages 1–8. IEEE. 358

Yuan Gao, Chenhui Chu, and Tatsuya Kawahara. 2023. 359
Two-stage finetuning of wav2vec 2.0 for speech emo- 360
tion recognition with asr and gender pretraining. In 361
Proc. Interspeech. 362

Yuan Gao, Hao Shi, Chenhui Chu, and Tatsuya 363
Kawahara. 2024. Enhancing two-stage finetun- 364
ing for speech emotion recognition using adapters. 365
In ICASSP 2024-2024 IEEE International Confer- 366
ence on Acoustics, Speech and Signal Processing 367
(ICASSP), pages 11316–11320. IEEE. 368

Ioulia Grichkovtsova, Michel Morel, and Anne Lacheret. 369
2012. The role of voice quality and prosodic contour 370
in affective speech perception. Speech Communica- 371
tion, 54(3):414–429. 372

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, 373
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel- 374
rahman Mohamed. 2021. Hubert: Self-supervised 375
speech representation learning by masked prediction 376
of hidden units. IEEE/ACM Transactions on Audio, 377
Speech, and Language Processing, 29:3451–3460. 378

Nineli Lashkarashvili, Wen Wu, Guangzhi Sun, and 379
Philip Woodland. 2024. Parameter efficient finetun- 380
ing for speech emotion recognition and domain adap- 381
tation. pages 10986–10990. 382

Yingting Li, Ambuj Mehrish, Rishabh Bhardwaj, 383
Navonil Majumder, Bo Cheng, Shuai Zhao, Amir 384
Zadeh, Rada Mihalcea, and Soujanya Poria. 2023. 385

5

https://doi.org/10.1109/ICASSP48485.2024.10446272
https://doi.org/10.1109/ICASSP48485.2024.10446272
https://doi.org/10.1109/ICASSP48485.2024.10446272
https://doi.org/10.1109/ICASSP48485.2024.10446272
https://doi.org/10.1109/ICASSP48485.2024.10446272


Evaluating parameter-efficient transfer learning ap-386
proaches on sure benchmark for speech understand-387
ing. In ICASSP 2023-2023 IEEE International Con-388
ference on Acoustics, Speech and Signal Processing389
(ICASSP), pages 1–5. IEEE.390

Jingsai Liang. 2022. Confusion matrix: Machine learn-391
ing. POGIL Activity Clearinghouse, 3(4).392

Steven R Livingstone and Frank A Russo. 2018. The393
ryerson audio-visual database of emotional speech394
and song (ravdess): A dynamic, multimodal set of fa-395
cial and vocal expressions in north american english.396
PloS one, 13(5):e0196391.397

Leonardo Pepino, Pablo Riera, and Luciana Ferrer. 2021.398
Emotion recognition from speech using wav2vec 2.0399
embeddings. arXiv preprint arXiv:2104.03502.400

M. Kathleen Pichora-Fuller and Kate Dupuis. 2020.401
Toronto emotional speech set (TESS).402

Srinivasan Ramakrishnan and Ibrahiem MM El Emary.403
2013. Speech emotion recognition approaches in404
human computer interaction. Telecommunication405
Systems, 52:1467–1478.406

David Rybach, Christian Gollan, Ralf Schluter, and407
Hermann Ney. 2009. Audio segmentation for speech408
recognition using segment features. In 2009 IEEE409
International Conference on Acoustics, Speech and410
Signal Processing, pages 4197–4200. IEEE.411

Shamane Siriwardhana, Andrew Reis, Rivindu412
Weerasekera, and Suranga Nanayakkara. 2020.413
Jointly fine-tuning" bert-like" self supervised models414
to improve multimodal speech emotion recognition.415
arXiv preprint arXiv:2008.06682.416

Wenxuan Wu, Xueyuan Chen, Xixin Wu, Haizhou Li,417
and Helen Meng. 2024. Target speech extraction with418
pre-trained av-hubert and mask-and-recover strategy.419
arXiv preprint arXiv:2403.16078.420

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang,421
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin,422
Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-423
Ting Lin, et al. 2021. Superb: Speech processing424
universal performance benchmark. arXiv preprint425
arXiv:2105.01051.426

6

https://doi.org/10.5683/SP2/E8H2MF

	Introduction
	Methodology
	HubertModel
	Fine Tuning
	Full Fine-Tuning
	Parameter-Efficient Fine-Tuning (PEFT) with LoRA on K, Q, V Projection Layers
	Parameter-Efficient Fine-Tuning (PEFT) with LoRA on Classifier Layer


	Experiment
	Datasets
	Pretrained Model
	Audio Preprocessing

	Results
	Limitations
	Ethical Considerations

