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Abstract

Language model inversion seeks to recover hidden prompts using only language
model outputs. This capability has implications for security and accountability
in language model deployments, such as leaking private information from an
API-protected language model’s system message. We propose a new method—
prompt inversion from logprob sequences (PILS)—that recovers hidden prompts
by gleaning clues from the model’s next-token probabilities over the course of
multiple generation steps. Our method is enabled by a key insight: The vector-valued
outputs of a language model occupy a low-dimensional subspace. This enables us
to losslessly compress the full next-token probability distribution over multiple
generation steps using a linear map, allowing more output information to be used for
inversion. Our approach yields massive gains over previous state-of-the-art methods
for recovering hidden prompts, achieving 2–3.5 times higher exact recovery rates
across test sets, in one case increasing the recovery rate from 17% to 60%. Our
method also exhibits surprisingly good generalization behavior; for instance, an
inverter trained on 16 generations steps gets 5–27 points higher prompt recovery
when we increase the number of steps to 32 at test time. Furthermore, we demonstrate
strong performance of our method on the more challenging task of recovering
hidden system messages. We also analyze the role of verbatim repetition in prompt
recovery and propose a new method for cross-family model transfer for logit-based
inverters. Our findings show that next-token probabilities are a considerably more
vulnerable attack surface for inversion attacks than previously known.

1 Introduction

The task of language model inversion is to recover an unknown prefix string (hidden prompt), given
only information about a language model’s2 outputs, conditioned on that prefix. This capability can
potentially be used to steal hidden prompts, leak private information, or (on the flip side) detect
malicious prompts that could cause harmful behavior in language models. Advancements in inversion,
thus have important implications for language model security and accountability. Prior work in
language model inversion leverages information in next-token (log-) probabilities—colloquially
known as logprobs—[21], text outputs [34, 12], or employing prompt-based attacks [35]. However,
these methods have shown only modest success. For example, state-of-the-art methods recover fewer
than one-in-four Llama 2 Chat prompts from in-distribution evaluation sets, and fare much worse on
out-of-distribution prompts.

∗Correspondence to themurtazanazir@gmail.com and mfinlays@usc.edu
2In this work, we only concern ourselves with causal language models as inversion targets.
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Figure 1: Our goal is to recover a hidden prompt based on the outputs of a black box language
model. To do this, we take a sequence of 𝑇 logprobs, losslessly compress them into a sequence of 𝑇
low-dimensional vectors, and feed them into an encoder-decoder inverter model, which outputs the
recovered prompt. Our compression method takes advantage of the fact that model outputs are linear
projections of the language model’s 𝐷-dimensional final hidden state (see §3.1).

This work aims to improve the performance and generalizability of language model inversion, with
a focus on logprobs-based inversion, since logprobs contain rich information about model outputs.
Surprisingly, the best-known logprobs-based method, Logit2Text or L2T [21], lags behind more
recent text-based inversion methods [34]. Notably, L2T only uses language model outputs from a
single generation step, since logprobs are expensive to obtain from typical language model APIs and
require a lot of space—each logprob is a vector of dimension equal to the vocabulary size of the target
model, which can be hundreds of thousands of tokens.
We propose a method to overcome the high representation size and API costs of L2T. As illustrated in
Figure 1, we apply lossless compression to the target model’s logprob outputs (at multiple generation
steps) to obtain compact representations with dimension equal to the target model’s embedding size 𝐷.
We confirm empirically that these representations are a good approximation of the full logprobs, by
showing that an inverter that uses them performs as well as L2T (and slightly better). The key insight
of our method is that logprobs live in a 𝐷-dimensional subspace, meaning that we can compress
them with a simple linear map. Furthermore, obtaining these compact representations requires only
𝐷 logprob values from the target model, greatly reducing the API cost by 1–2 orders of magnitude.
With this improved representation scheme, we propose a new inversion method, prompt inversion
from logprob sequences (PILS), that incorporates target model outputs from multiple generation steps
as input to our inverter. The intuition behind our approach being effective is that the target model may
not surface information about certain parts of the prompt until later in the generation. We find that
our method massively improves performance on inversion, and boasts an exact recovery rate 2–3.5×
higher than the previous state-of-the-art for both in-domain and out-of-domain prompts. We also find
that our trained inverters exhibit surprisingly good generalization: an inverter trained on 16 generation
steps continues to improve as we increase the number of steps beyond 16 at test time. Finally, we
leverage our compact representations to propose a method to adapt our inverter to new models without
any additional training (model transfer), a novel transfer method for logprob-based inverters.3

2 Related work

Broadly speaking, model inversion attempts to recover neural network inputs based on their vector-
valued outputs. Inverters for vision models [19, 7, 29] use image classifier logits. Inverting language
embedding models is also possible, recovering text inputs from vector-valued sentence and document
embeddings [26, 16, 20]. Morris et al. [21], introduced L2T, the first (to our knowledge) method
for recovering hidden prompts from language model logprobs; our method builds on this work,
contributing a compact representation of language model outputs.
Language model inversion has received attention within the broader field of red-teaming [30], where
adversaries attempt to elicit undesirable behaviors from language model in limited-access (e.g., API)

3Our code is available at https://github.com/Dill-Lab/PILS.
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settings. Existing methods use prompt-based jailbreak and injection attacks to coax the language model
to output its hidden system message verbatim [35, 32]. Unlike our work, these methods generally rely
on discrete text-valued model outputs and generally do not involve training an inversion model.
Our technical contributions constitute an application of the low-rank constraints that transformer
language model outputs are subject to, known as the softmax bottleneck [33]. This fact has previously
been used to discover unargmaxable tokens in language models [13], prevent sampling errors during
text generation [9], and uncover hidden architectural details of API-protected language models [10, 5].
As a way of relaxing the requirement of logprob full access for inversion, Zhang et al. [34] and
Gao et al. [12] combine aspects of both text-based system message discovery and language model
inversion. Our method shares this goal but takes an intermediate approach where we drastically reduce
the number of logprobs needed rather than eliminate them altogether. We use the Output2Prompt
(O2P) [34] and Logit2Text (L2T) [21] as the main baselines for comparison with our method.

3 Preliminaries

We establish some notation, assumptions, and mathematical background for our method. We assume
a typical language model architecture with embedding size 𝐷, and vocabulary size 𝑉 . At every
generation step, the model produces a hidden state 𝒉 ∈ ℝ𝐷 , which is multiplied by the model’s
unembedding matrix 𝑾 to obtain logits ℓ = 𝑾𝒉 ∈ ℝ𝑉 , which are normalized via the softmax function
to obtain probabilities 𝒑 = softmax(ℓ). The entries of 𝒑 are interpreted as the model’s predicted
probability for each token in its vocabulary. Generation typically proceeds by sampling according to
the probabilities in 𝒑, or by greedily picking the most-probable token at each generation step.

3.1 Language model outputs are losslessly compressible

We now show how it is possible to recover the hidden state of a language model from its probability
output 𝒑 up to a linear transformation. This demonstrates exactly how we compress the logprobs of
the language model in our proposed method (§4).
Theorem 1. If a language model with hidden size 𝐷, vocabulary size 𝑉 , and unembedding matrix
𝑾, generates a hidden state 𝒉 and outputs 𝒑 = softmax(𝑾𝒉), then for any set of indices D ⊆
{1, 2, . . . , 𝑉} we have that alr( 𝒑)D ∈ ℝ𝐷 is a linear transformation of 𝒉.

Proof. Probability vectors 𝒑 have the property that all entries are in the range (0, 1) and that the
entries sum to 1. It is a lesser known fact that the set of valid probability distributions over 𝑉
items—known as the simplex, or Δ𝑉—forms a vector space, albeit with non-standard definitions of
addition +Δ and scalar multiplication ·Δ [15]. In particular, for vectors 𝒑 and 𝒒 in Δ𝑉 , addition is
defined as 𝒑 +Δ 𝒒 = (𝑝1𝑞1, · · · , 𝑝𝑉𝑞𝑉 )/

∑𝑉
𝑖=1 𝑝𝑖𝑞𝑖; and for a scalar 𝜆 ∈ ℝ, multiplication is defined

as 𝜆 ·Δ 𝒑 = (𝑝𝜆1 , · · · , 𝑝
𝜆
𝑉
)/∑𝑉

𝑖=1 𝑝
𝜆
𝑖
. Under this definition, one can check that the softmax function

satisfies linearity [8], which means it is a linear map ℝ𝑉 → Δ𝑉 . Additionally, the simplex Δ𝑉 is
isomorphic to ℝ𝑉−1 via the additive log ratio transform alr( 𝒑) = log 𝒑1:(𝑉−1) − log 𝑝𝑉 , as shown in
Aitchison [1].4 In other words, alr is also a linear function and maps the probabilities of the simplex
back into a standard vector space.
We will now show that it is possible to recover the hidden state 𝒉 from the logprob outputs of a
model (up to a linear transformation), as shown in Figure 1. Letting 𝑤 be the linear map 𝒙 ↦→ 𝑾𝒙,
we have that the 𝑤 : ℝ𝐷 → ℝ𝑉 , softmax : ℝ𝑉 → Δ𝑉 , and alr : Δ𝑉 → ℝ𝑉−1 are linear. It must
therefore be the case that alr ◦ softmax ◦𝑤 : ℝ𝐷 → ℝ𝑉−1 is linear and can be parameterized by a
matrix 𝑨 ∈ ℝ(𝑉−1)×𝐷 . The implication here is that applying the alr transform to a language model
output and then applying a full-rank linear down-projection of our choice (say, by dropping all but 𝐷
indices) we can recover the final hidden state of the model, up to an multiplication of a 𝐷 × 𝐷 matrix.
This is because for any set D of 𝐷 indices, alr(softmax(𝑾𝒉))D = 𝑨D𝒉. □

While it is possible that 𝑨D has less than full rank, in which case the recovered hidden state loses
information, we easily avoid this in practice (§4). Thus, if a language model outputs probabilities 𝒑,
we know that alr( 𝒑)D can linearly encode all the information in the final hidden state 𝒉.

4We use NumPy-like indexing notation, where 𝒙𝑎:𝑏 = (𝑥𝑎, 𝑥𝑎+1, . . . , 𝑥𝑏) and 𝒙{𝑖, 𝑗 ,𝑘} = (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘).
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Figure 2: A comparison between L2T [left; 21] and our method PILS (right). A language model
produces a sequence of logprob vectors in ℝ𝑉 . L2T takes only the first vector and reshapes it to a
fixed sequence length of ⌈𝑉/𝐷⌉, padding with 0 as needed. PILS losslessly compresses logprobs into
ℝ𝐷 , and uses multiple generation steps as input to the inversion model.

3.2 Threat model

We consider the scenario where an attacker has limited access to a language model with embedding
size 𝐷 (as through its model API). In particular, the attacker can obtain the logprobs log 𝒑 of a fixed
set of 𝐷 tokens for each generation step of the language model. The attacker can observe language
model outputs conditioned on any prompt of their choosing, or conditioned on a hidden prompt. The
goal of the attacker is to discover the hidden prompt.
As one example, this threat model is consistent with the OpenAI language model API5 , which offers
logit bias, greedy decoding, and the logprob of the most-likely token. In this setting, it is possible
to obtain the logprob for a target token by first noting the logprob log 𝑝 of the most likely token,
performing a bisection search to find the minimum logit bias 𝛽 that causes the model to select the
target token, then calculating the logprob for the target token as 𝛽+ log 𝑝 [10, 21]. This method allows
users to find the logprob of the target token with precision 𝜀 in 𝑂 (log 1

𝜀
) API queries.

4 Language model inversion from compressed logprobs

The main contribution of our method is finding a way to compress and feed a 𝑇 ×𝑉 language model
output to the inversion model. Previous work [21] approached this problem by using only a single
generation step (𝑇 = 1) and reshaping the resulting 𝑉-length vector into a sequence of 𝐷invert-length
vectors (Figure 2; left). Our method independently compresses each 𝑉-length generation vector into a
𝐷-length vector, then passes 𝑇 such vectors to the inverter (Figure 2; right).

Compressing logprobs Our target model outputs a sequence of logprobs log 𝒑 (1) , . . . , log 𝒑 (𝑇 ) ∈
ℝ𝑉 . Following our insights from §3.1, we can recover the hidden states of the model (up to
multiplication by an unknown 𝐷 × 𝐷 matrix) by taking the alr transform of the probabilities and
dropping all but 𝐷 entries to get 𝒉 (1) , . . . , 𝒉 (𝑇 ) ∈ ℝ𝐷 , where 𝒉 (𝑖) = alr( 𝒑 (𝑖) )1:𝐷 . In practice, we find
our inverter performs better when using a random set of 𝐷 + 100 tokens rather than the first 𝐷, likely
due to some of the first 𝐷 tokens having (almost) linearly dependent embeddings, which causes the
compression to become degenerate.

Inverter architecture As our learned inverter, we use an encoder-decoder model [3] with embedding
size 𝐷invert. The encoder takes the sequence recovered hidden states 𝒉 (1) , . . . , 𝒉 (𝑇 ) ∈ ℝ𝐷 as input
embeddings, and the decoder generates the hidden prompt. To address potential mismatches between
the embedding size of the target model 𝐷and inverter model 𝐷invert, we add a learned feed-forward
adapter layer with hidden size 𝐷, dropout [27], and a gelu nonlinearity [14] before the encoder input
layer. We use a single-layer feed-forward network because a less expressive linear function would
lead to information loss when 𝐷 > 𝐷invert.

Efficiency Our approach has the advantage of requiring only 𝐷 + 1 logprobs from the target model,
since the hidden states can be computed knowing only 𝒑1:𝐷 and 𝑝𝑉 . For API-protected language
models, this results in a large reduction in API costs compared to L2T, which requires 𝑉 logprobs per
inversion. For OpenAI’s GPT 3.5 Turbo, L2T requires 𝑉 = 100 277 logprobs. The equivalent setting

5https://platform.openai.com/docs/api-reference/
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of 𝑇 = 1 for our method requires only around 4600 logprobs (based on the estimate from Finlayson
et al. [10] of GPT 3.5 Turbo’s embedding size). Our method can scale up to 𝑇 = 21 while remaining
cheaper than L2T.

The API cost of obtianing 𝐷 logprobs per step for a 𝑇-length sequence is roughly
∑𝑇−1

𝑖=0 𝐷 (𝑖 × 𝐶in +
𝐶out) log(𝐵/𝜀), where 𝐶in and 𝐶out are the per-token input and output cost of the API, and 𝐵 is the
maximium logit bias allowed by the API. For GPT-4.1 Mini, which we will assume has embedding
size similar to GPT-3.5 Turbo, this cost would be

15∑︁
𝑖=0

4600
(
𝑖 × 0.1

1 000 000
+ 0.4

1 000 000

)
log2

(
100

0.001

)
≈ $5.50

for a 16-token sequence.

5 Experimental setup

We generally follow the experimental settings originally proposed for L2T and O2P for fair compar-
isons [21, 34]. We initialize our inverter as a pre-trained T5-base model [25]. For our target models,
we use variants of Llama 2 7B (for comparison with baselines) and Llama 3.1 8B.
For training, we use the 2M Instructions dataset [21] as hidden prompts to our target model. We train
for 100 epochs on target model generations, which are produced using greedy decoding and tracking
the compressed logprob vector at every generation step. While pre-computing these logprobs and
saving them to disk addresses the primary training speed constraint posed by target model generation,
storage then becomes a significant scaling limitation, as 2 million 16-step generations require over
500 gigabytes. The hyperparameters and other implementation details are described in §D.
To measure inversion success, we compare the reference hidden prompts with those recovered by our
inverter model, which also employs greedy decoding during inference. We use bleu score [23], exact
match, and token F1 for comparisons. Token F1 is calculated as the harmonic mean of precision—
proportion of predicted tokens in the true prompt—and recall—proportion of true prompt tokens in
the prediction. Prior work [21, 34] also reports cosine similarity between text embeddings, which
tend to be very high, suggesting that the metric is saturated; hence, we do not report this.
We evaluate our inverters on a held-out set from 2M Instructions and two out-of-distribution (ood)
test sets: Alpaca Code [6] and Anthropic Helpful/Harmless (HH) [4, 11]. We also report system
prompt inversion on Awesome GPT Prompts [2], and GPT Store [18].
We find that using more generation steps at test time than our inverter was trained on has a positive
impact on performance (see §6.3). By way of notation, we indicate when PILS trained and evaluated
with 16 steps as PILS 16 16 , and indicate PILS trained on 16 steps and evaluated using 32 steps, as
PILS 16 32 .
For baselines, we compare our method to the prompt-based, called output-to-prompt (O2P) inversion
developed by Zhang et al. [35], logit-to-text (L2T) and its variant (denoted L2T++) optimized for
Llama 2 Chat by Morris et al. [21] and dory [12]. For the prompt-based inversion, we report both the
mean performance and best performance from a pool of prompts.

6 Experiments

6.1 PILS outperforms other inversion methods

Table 1 compares the in-distribution performance of PILS with baselines, reporting both the mean
and the standard error of the mean for each metric on 2M Instructions. PILS surpasses all previous
methods on every metric by a considerable margin. Notably, we achieve 51% exact match recovery of
hidden prompts for Llama 2 Chat, where the best previous method (L2T) could only recover 23%
exactly. §B provides an additional comparison (although with a unique evaluation method which
requires additional explanation) with dory [12], with a 58–69 point improvements on bleu.
We evaluate the out-of-distribution generalization of our inverter models by evaluating them on
held-out datasets. Results in Table 2 show that again, PILS outperforms baselines by a wide margin,
(with the exception of the best prompting method on the base model), indicating that our inverter is
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Table 1: Inversion performance on the 2M Instructions validation set. Gray rows denote the theoretically
equivalent PILS 1 1 and L2T. 16 32 indicates the model is trained on 16 tokens and evaluated on 32.

Target Inverter BLEU Exact match Token F1
Llama 2 Chat Prompt (avg.) 10.2 ± 1.2 0.0 25.0 ± 1.5

Prompt (top) 14.9 ± 1.4 0.0 32.9 ± 1.7
L2T 51.7 ± 2.3 17.0 ± 2.7 70.9 ± 1.7
PILS 1 1 (ours) 55.3 ± 1.1 24.3 ± 1.4 72.9 ± 0.8
O2P 56.8 ± 1.1 21.1 ± 1.3 79.5 ± 0.6
L2T++ 58.3 ± 1.8 23.4 ± 2.7 75.8 ± 1.3
PILS 16 16 (ours) 71.8 ± 0.9 40.5 ± 1.6 84.2 ± 0.6
PILS 16 32 (ours) 75.8 ± 0.9 45.4 ± 1.6 87.0 ± 0.5
PILS 32 32 (ours) 76.5 ± 0.9 47.0 ± 1.6 87.0 ± 0.6
PILS 32 64 (ours) 79.4 ± 0.8 51.1 ± 1.6 88.9 ± 0.5

Llama 2 Prompt (avg.) 14.0 ± 1.7 5.4 ± 1.0 21.3 ± 2.0
Prompt (top) 54.4 ± 3.0 36.5 ± 3.4 68.4 ± 2.5
L2T 59.2 ± 2.1 26.6 ± 2.8 77.8 ± 1.3
PILS 1 1 (ours) 59.3 ± 1.0 27.0 ± 1.4 77.1 ± 0.6
O2P 67.7 ± 1.1 41.0 ± 1.6 83.8 ± 0.7
PILS 16 16 (ours) 74.9 ± 0.9 44.7 ± 1.6 86.6 ± 0.5
PILS 16 32 (ours) 79.2 ± 0.9 51.2 ± 1.6 89.0 ± 0.5

Llama 3 Instruct PILS 16 16 (ours) 63.7 ± 1.0 30.2 ± 1.5 79.7 ± 0.7
PILS 16 32 (ours) 65.9 ± 1.0 32.6 ± 1.5 81.1 ± 0.6

not just over-fitting the training set. We attribute the high performance of the prompting baseline to
the tendency of the base model to repeat the context verbatim (see discussion in §6.2). Of particular
note, our inverter achieves exact recovery of 60% of code prompts to Llama 2 Chat, whereas the
previous best model could recover only 17%. We also see an almost 2× improvement on exact match
over the best Llama 2 Chat baseline for HH. §E provides qualitative examples of these recoveries, for
both in-distribution and out-of-distribution prompts.
We also include preliminary results with Llama 3 Instruct as the target. We hypothesize that its
lower performance compared to Llama 2 Chat reflects Llama 3’s more robust post-training, aimed at
safety and instruction-following, which likely makes inversion more challenging. This is similar to
how post-training generally reduces inversion success on datasets like Anthropic HH (as seen when
comparing Llama 2 base and chat models).
Theoretically, L2T and PILS 1 1 are theoretically equivalent, since they both invert based on a single
generation step. This equivalence is confirmed empirically by their similar performance across metrics
and datasets in Tables 1 and 2. We highlight these methods with gray and set them adjacent to one
another for comparison. On the in-distribution test set, PILS 1 1 slightly outperforms L2T, perhaps
because our representation makes information from the target output more readily available to the
inverter: our inverter input linearly encodes the target model’s hidden state, whereas the L2T inverter
input is a nonlinear transformation (recall Figure 2).

6.2 Logprobs reveal hidden prompts over multiple generation steps

To better understand how our method works, we visualize the effect of incrementally adding generation
steps (from 1 to 23) to our trained 16-step inverter in Figure 3. The figure shows that even a few steps
recover much of the prompt, although some tokens (like “felt” and “afraid”) are revealed only after
several steps. However, these tokens sometimes coincide with similar tokens in the generation (e.g.,
output “fear” reveals input “afraid”), but not always (e.g., output “have” reveals input “felt”).
Figure 3 (right) suggests multiple generation steps are helpful because target models tend to echo
the hidden prompt, either paraphrased by chat models, or verbatim by base models. This known
phenomenon, often exploited in prompt injection [24], explains the strong performance of prompt-
based inversion of base models in Table 2. Conversely, chat models, trained to avoid verbatim repetition
(see Appendix Figure 6), are inherently harder to invert. This explains the performance gap between
chat and base models in Tables 1 and 2, especially for prompt-based methods.

6



Table 2: Comparing PILS to baselines on out-of-distribution test sets. Gray rows denote the theoretically
equivalent L2T and PILS 1 1 .

Alpaca Code Generation Anthropic HH
Target Inverter BLEU Exact match Token F1 BLEU Exact match Token F1
Llama 2 Chat Prompt (avg.) 6.1 ± 0.5 0.0 23.8 ± 0.8 2.4 ± 0.2 0.0 16.4 ± 0.6

Prompt (top) 14.2 ± 0.9 0.0 36.8 ± 0.9 3.0 ± 0.3 0.0 17.7 ± 0.7
L2T 34.6 ± 1.6 2.5 ± 1.1 65.2 ± 1.2 14.7 ± 1.3 2.0 ± 1.0 40.6 ± 1.6
PILS 1 1 38.9 ± 0.7 3.2 ± 0.5 68.1 ± 0.6 13.6 ± 0.5 1.5 ± 0.4 39.6 ± 0.6
L2T++ 44.4 ± 1.8 8.2 ± 1.7 73.9 ± 1.1 25.6 ± 1.7 6.6 ± 1.6 54.2 ± 1.5
O2P 61.2 ± 0.9 16.9 ± 1.2 80.3 ± 0.5 17.9 ± 0.6 1.2 ± 0.3 42.7 ± 0.7
PILS 16 16 65.1 ± 0.9 23.4 ± 1.3 82.9 ± 0.5 29.1 ± 0.9 6.6 ± 0.8 57.8 ± 0.7
PILS 16 32 83.0 ± 0.8 56.7 ± 1.6 92.2 ± 0.5 34.4 ± 1.0 9.9 ± 0.9 62.1 ± 0.7
PILS 32 32 84.3 ± 0.8 59.6 ± 1.6 92.6 ± 0.5 37.7 ± 1.0 11.9 ± 1.0 64.3 ± 0.8
PILS 32 64 85.0 ± 0.8 60.5 ± 1.5 93.1 ± 0.4 39.3 ± 1.0 13.0 ± 1.1 65.7 ± 0.8

Llama 2 Prompt (avg.) 29.3 ± 1.9 12.7 ± 1.6 45.9 ± 2.0 25.7 ± 2.2 14.2 ± 1.8 40.8 ± 2.4
Prompt (top) 73.0 ± 2.8 61.5 ± 3.4 80.2 ± 2.3 77.7 ± 2.6 64.5 ± 3.4 83.0 ± 2.2
L2T 46.2 ± 1.8 10.5 ± 1.9 74.9 ± 1.1 25.1 ± 1.6 6.3 ± 1.6 55.8 ± 1.4
PILS 1 1 44.8 ± 0.9 9.1 ± 0.9 74.5 ± 0.5 22.8 ± 0.7 4.1 ± 0.6 53.0 ± 0.7
PILS 16 16 66.9 ± 1.0 34.6 ± 1.5 85.1 ± 0.5 49.8 ± 1.1 27.8 ± 1.4 73.0 ± 0.7
PILS 16 32 71.2 ± 1.0 48.1 ± 1.6 87.1 ± 0.5 56.2 ± 1.2 35.4 ± 1.5 76.8 ± 0.8

Llama 3 Instr. PILS 16 16 51.8 ± 0.9 12.1 ± 1.0 77.1 ± 0.6 22.0 ± 0.8 4.9 ± 0.7 49.2 ± 0.8
PILS 16 32 60.5 ± 1.0 21.6 ± 1.3 81.4 ± 0.6 22.8 ± 0.8 5.1 ± 0.7 50.2 ± 0.8
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Figure 3: Inversion of Llama 2 Chat for increasing numbers of generation steps. The 𝑥-tick labels
indicate the hidden input tokens. The heatmap values indicate the probability of the prompt tokens
according to PILS 16 16 . The 𝑛th row corresponds to feeding the inverter 𝑛 generation steps. The
tokens near the 𝑦-tick labels indicate the target model’s top token, which is appended to the sequence
for the next generation step. The text to the right of the first heatmap indicates the inverter’s hidden
prompt guess. Red squares highlight where input tokens become recoverable by the inverter, meaning
the probability of the prompt token goes from near-0 to near-1. Filled square in the right indicate that
the increase in probability came only after the target model generated the hidden token directly. The
blue line indicates the sequence length that the inverter was trained on (16 steps).
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the number of steps the inverter was trained on.

6.3 Length generalization: scaling target outputs improves performance

We measure the effect of increasing the number of generation steps during training, by training
inverters on 1, 8, 16, and 32 steps. From the circled points in Figure 4, it is clear that training on more
generation steps improves performance. We believe it is likely that longer sequences are especially
helpful for longer prompts due to prompt echoing, i.e., outputs containing information about later
parts of the prompt may not appear until later in the generation.
We are surprised to find that inverters trained on a fixed number of generation steps generalize and
improve when inverting longer output sequences. In Figure 3, the model inverts the prompt only after
22 and 18 generation steps. To explore this phenomenon, we evaluate inverters trained on 1–32 steps
on various generation lengths and plot the performance in Figure 4. We find that inverters continue to
improve even when the number of steps surpasses the number of steps they were trained on, though
the effect eventually saturates. We remark that training on more steps still confers an advantage when
the number of test steps exceeds the training steps, i.e., PILS 16 32 outperforms PILS 8 32 . We also
note that this effect does not appear for inverters trained on 1 step. Scaling the number of steps is
particularly effective for inverting Llama 2 Chat on Alpaca Code (see Appendix Figure 5 for an
example).
One possible explanation for the inverters’ generalization success may be attributed to T5’s pre-
training, during which it learned to process longer sequences. Given that T5 uses relative position
embeddings, there are no position-specific weights (e.g., learned position embeddings) that would
cause out-of-distribution issues for longer inputs.

6.4 Inverting system messages is much more challenging than user prompts

Since the main proposed use case for language model inversion today is to discover hidden system
messages, we evaluate inverters on system messages in the Awesome [2] and Store [18] datasets. We
use our PILS 32 64 inverter trained on 2M Instructions. Results in the top panel of Table 3 show that
inverting system messages is much harder than inverting other prompts (Tables 1 and 2), resulting
in much lower scores. Again, this is likely because post-training discourages target models from
revealing system messages. Our PILS outperforms O2P [34] on Llama 2 Chat.
Given this success, we fine-tuned PILS inverter with Llama 2 Chat outputs to compare with a similar
setup in O2P with GPT-3.5 [22]. We trained only the attention layers of the T5 encoder (detailed in
§D.2) while completely freezing the decoder, on 50 samples for each dataset. This enables meaningful
adaptation of our inverter to new datasets while preventing overfitting on the small dataset. Here
again, we outperform O2P on both datasets.

6.5 A target model transfer method for logprob-based inversion

Target model transfer refers to using a trained inverter on a new target model without any additional
training. Model transfer can be helpful when it is infeasible to train a new inverter for a new target
model, e.g., if inference is too expensive to generate a training set. In this setting, we refer to the
model used for inverter training as the source model, and call the new language model the target
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Table 3: Comparison of PILS to baselines on system prompt recovery via zero-shot prompting and
fine-tuning on 50 samples. Zhang et al. [34] only provide O2P only results with GPT-3.5, so we
include an O2P baseline with Llama 2 in the non-fine-tuning setting to rule out the possiblity that
performance differences are due to the target model.

Awesome Store
Target Inverter BLEU Token F1 BLEU Token F1
GPT-3.5 O2P 2.1 ± 0.4 28.8 ± 1.0 6.4 ± 1.2 37.6 ± 1.9
Llama 2 Chat O2P 2.7 ± 0.3 25.3 ± 0.8 6.3 ± 0.7 32.2 ± 1.8
Llama 2 Chat PILS 32 64 7.7 ± 0.9 38.3 ± 1.3 10.8 ± 2.1 34.1 ± 2.4

GPT-3.5 O2P-Finetuned 14.7 ± 0.8 47.9 ± 1.1 5.6 ± 1.2 36.3 ± 2.6
Llama 2 Chat PILS 32 64 -Finetuned 19.8 ± 1.2 50.7 ± 1.3 16.4 ± 2.7 43.7 ± 2.9

Table 4: Transfer performance (token F1) for inverters trained with logprobs from Llama 2 7B Chat.

Target Inverter 2M Instruct Alpaca Code (OOD) Anthropic HH (OOD)
Llama 2 13B L2T 43.6 ± 1.7 37.3 ± 1.4 32.5 ± 2.0

PILS 16 16 47.4 ± 0.5 48.0 ± 0.4 23.8 ± 0.3

Mistral 7B Instruct PILS 16 16 37.7 ± 0.5 43.1 ± 0.4 19.1 ± 0.3
O2P 61.0 ± 0.7 69.9 ± 0.6 35.9 ± 0.6

model. Both Morris et al. [21] and Zhang et al. [34] study model transfer for their methods, but due to
architectural limitations, Morris et al. [21] only transfer their L2T inverter to target models with the
same vocabulary as the source model, i.e., models within the same family.
We overcome these architectural limitations by proposing a method for adapting our PILS inverter
to models with different vocabularies. We use the set of tokens that appear in both the source and
target vocabularies to find logprobs for the source model vocabulary that are similar to the target
model logprobs. By way of notation, let Vsrc be the vocabulary of the source model and let V tgt

be the vocabulary of the target model. We assume that there is significant overlap between these
two vocabularies, such that |Vsrc ∩ V tgt | > 𝐷. We call this set of tokens Vshr. We confirm that
assumption holds for several models in §C.

Given a logprob output ℓ ∈ ℝ|V tgt | from the target, select the shared vocabulary logprobs ℓVshr ∈
ℝ|Vshr | . We can then take the rows of the source model’s unembedding matrix 𝑾 that correspond
to the shared vocabulary and solve the least squares problem 𝑾Vshr𝒙 = ℓVshr for 𝒙. This 𝒙 can be
interpreted as a hidden state from the source model that produces an output that is similar to the target
model output. We then use alr(softmax(𝑾𝒙)) as input to the inverter.
We evaluate our method by transferring our 16-step inverter trained on Llama 2 7B to Llama 2 13B
(same family) and Mistral 7B Instruct (out-of-family) and comparing F1 scores to those reported by
L2T and O2P in their respective papers6 in Table 4.
Interestingly, the impressive gains of PILS in non-transfer settings fail to materialze in the model
transfer setting. We speculate this could be due to the target specificity of our inverter, i.e., the inverter
learns to leverage features that are specific to the target model during training, boosting performance
on the source model, but hurting generalization to new target models. On the other hand, text-based
inverters like O2P must learn more general features during training due to their low-information text
inputs, which may serve as a form of regularization and aiding model transfer.

7 Conclusion and future directions

We introduced a technique for losslessly compressing language model logprobs which demonstrated
large gains on language model inversion. Our analysis shows that language models reveal information
about their prompts in their logprob outputs over the course of multiple generation steps. Our method
also made progress towards the more challenging task of recovering system messages.

6Since the O2P paper does not report ood numbers, we run these evaluations ourselves.
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Given that our inversion method, PILS is both effective and relatively inexpensive, our findings
constitute an important security consideration for language model APIs. It would be unwise for
language model deployments to rely on the cost of inference or post-training alone to protect sensitive
prompts. That being said, our proposed attack is not without mitigations. As shown in previous
work [10, 5], arbitrary logprob access can be easily blocked by eliminating the API’s logit bias
parameter, preventing our particular attack, at the expense of reducing the API functionality. While
logit bias has indeed been deprecated by some real-world APIs, it has not been eliminated, indicating
that logprob-based methods for language model forensics remain a relevant area of research. Other
mitigations include detecting logprob-based attacks by flagging repeated queries with different logit
bias values, or changing model architectures to eliminate the softmax bottleneck [33].
Not only does our method show that the ceiling for language model inversion is higher than previously
thought, but we also do not believe that we have fully saturated this task. Our inverter design might
be improved, for instance, by using a more expressive feed forward adapter with a larger hidden
size. Future work could further scale the number of generation steps during training or the size of
the inverter model. We believe that progress on system message inversion can be greatly improved
through the construction of a large-scale, diverse, high-quality (i.e., non-synthetic) dataset of system
prompts.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We do not claim anything outside of our contributions/scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we report results on methods that do and do not work, and acknowledge the
limitations of our method. We also acknowledge mitigations that would make our method
not work on API-protected models. We comment on how realistic our assumptions are for
all our assumptions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide a proof of our theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information is mentioned in §D and §5
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]
Justification: Yes. Code Repository is attached with supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify details in §D and §5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report Standard Error Measure for all our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We have mentioned in §D.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: System prompt recovery is an inherently dual-use technology. Our research
shows that language model prompts can be inverted, even when those prompts contain
valuable or personal information. However, our method is easy to run locally, but extremely
impractical to run via API, costing a high amount of time and money. For this reason, we
expect PILS to be most useful for practitioners looking to red-team models locally.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the implications of PILS in the final section (Conclusion and Future
Directions). In particular, we discuss the implications of different schemes of language model
deployments and the risk in providing users access to raw logprobs.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Although we do not test any new methods for defending langauge model
log-probabilities, we discuss the potential for language model API safeguards and mitigations
in the final section (Conclusion and Future Directions).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets are cited properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All code will have documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 5: PILS 16 16 inverting a prompt to Llama 2 Chat from the Alpaca Code evaluation set.

Table 5: Performance on inversion datasets Alpaca and Self-instruct, measured in bleu and rouge-l
for comparison with dory. Target model is Llama 2 Chat.

Alpaca Self-instruct
Method BLEU ROUGE-L BLEU ROUGE-L
DORY 22.6 43.5 11.2 27.5
PILS 16 16 80.5 89.0 80.2 86.3

A Additional inversion visualizations

See Figures 5 and 6.

B Comparison with DORY

For completeness, we compare our method to the reported performance of dory inverter from
Gao et al. [12]. The paper reports performance on bleu and rouge-l [17] for Alpaca [28]7 and
Self-Instruct [31], both of which are included in our 2M Instructions training set. To compare our
method, we report the same metrics for PILS 16 16 on the subset of our 2M Instructions test set that
come from those datasets. The results can be compared in Table 5, where we see that PILS 16 16

performs much better.

C Language models have many common tokens in their vocabularies

Table 6 shows that Llama 2 has significant vocabulary overlap with several popular models from
different families.

7Alpaca is different from Alpaca Code. The former is included in 2M Instructions and the latter is not.
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Figure 6: PILS 16 16 inverting an ood prompt to Llama 2 Base and Chat.

Table 6: Token overlap between the Llama 2 vocabulary (32 000 tokens) and several models. A
sample of tokens common to all of these models is shown on the right.

Model Vocabulary size Overlap
Llama 2 32 000 32 000
Mistral 32 768 24 184
Llama 3 128 256 9651
OLMo 100 278 9580
GPT 4o 200 019 13 324

nym, orio, Files, Java, Preferences, assembly, Position, ALSE,

angers, elin, flu, notification, TER, Attribute, News, main,

gamma, sty, asket, NUMBER, river, eni, comments, itu, world,

ifica, Alt, ator, ologie, embed, acc, ategories, Op, GM, sch,

ientes, aca, ource, MENT, Could, Ad, ea, LIN, ound, rap, xico,

ames, very, aris, leased, Edge, mult, oving, Ser, bour, ror,

roller

D Implementation details

This section details experimental configurations and resources. All work utilized PyTorch and Hugging
Face transformers.

D.1 Main inverter training

We trained a T5-base inverter for the inversion of Llama2-7B, Llama2-7B-Chat, and Llama-3.1-8B-
Instruct models. Key training parameters included a learning rate of 2e-4, a batch size of 250, and
the AdamW optimizer with default settings. A 3200-step linear warmup was used, after which the
learning rate remained constant. Training ran for 100 epochs (Llama-3.1-8B-Instruct was trained for
50 epochs), using bfloat16 mixed precision.

D.2 System prompt inverter fine-tuning

The T5-base inverter was subsequently fine-tuned for system prompt inversion using the Awesome
(50 training/103 testing samples) and Store (50 training/29 testing samples) datasets from Zhang et al.
[34]. Common fine-tuning parameters across both datasets included a batch size of 50, the AdamW
optimizer with default settings, and bfloat16 precision. For the Awesome dataset, fine-tuning used a
learning rate of 1e-4 for 100 epochs, while the Store dataset used a learning rate of 5e-5 for 50 epochs.
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For target model generation during system prompt inversion, we used a single static user prompt,
“Who are you?”. This contrasts with the multi-prompt strategy of O2P (referenced in §6.4), which
employs the following four user prompts to generate 64 sentences:

• Give me 16 short sentences that best describe yourself. Start with ‘1:’
• Give me 16 examples questions that I can ask you. Start with ‘1:’
• Give me 16 scenarios where I can use you. Start with ‘1:’
• Give me 16 short sentences comparing yourself with ChatGPT. Start with ‘1:’

Our simpler prompt was chosen to isolate system prompt effects, ensuring a focused comparison
given our inverter’s original training covered both system and user prompts.

D.3 Resources

Main inversion training was conducted on four nvidia rtx a6000 gpus, which takes about 1 week
to complete. System prompt inverter fine-tuning utilized a single nvidia rtx a6000 gpu and takes
about 10 hours to complete.
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E Qualitative analysis

See Table 7

Table 7: Examples of Prompt Inversion. Each block shows the original (hidden)
prompt, the LLM’s generated tokens, and our model’s inverted prompt for In-
Distribution and Out-of-Distribution datasets.

2M Instructions
Original Prompt: How has the rise of streaming services impacted the music

industry?

Generated Tokens: The rise of streaming services has had a significant
impact on the music industry, transforming the way music
is consumed, distributed, and monetized. Here are some key
ways in which streaming has affected the industry:
1. Shift from physical to digital sales: Streaming
services have led to a

Inverted Prompt: How has the rise of streaming services impacted the music
industry?

Original Prompt: Write an email for me to my friend. in this email, you
need to tell him about your vacation plans and ask his
advice on what you should do in that place.

Generated Tokens: Sure, I’d be happy to help! Here’s an email to your
friend:
Subject: Vacation Plans and Seeking Advice!
Hey [Friend’s Name],
I hope this email finds you well! I

Inverted Prompt: I am planning to go on vacation next month. write an email
to my friend and ask him for his advice on what places i
should visit. Output:

Alpaca Code (OOD)
Original Prompt: Edit this code snippet in Python to remove any errors and

improve readability.

Generated Tokens: Sure, I’d be happy to help! Please provide the code
snippet you’d like me to edit, and I’ll go through it line
by line to identify any errors and suggest improvements
for readability.
Here’s a general process I follow when reviewing code:
1.

Inverted Prompt: Edit this code snippet in a way that it will improve its
readability.

Original Prompt: Write a Python script to find the average of numbers
stored in an array.

Generated Tokens: Sure! Here is a simple Python script that finds the
average of numbers stored in an array:
```
# Define a function to calculate the average of an array
def average(numbers):

# Calculate the sum of the numbers in the array
sum = 0
for num in

Inverted Prompt: Write a Python script to find the average of numbers
stored in an array.
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Anthropic HH (OOD)
Original Prompt: How many US presidents have been women?

Generated Tokens: Unfortunately, zero US presidents have been women. The
United States has had a total of 45 presidents throughout
its history, and none of them have been women. Despite the
significant progress made in recent years in terms of
gender equality and women’s rights, the highest office in
the land has remained el

Inverted Prompt: How many US presidents have been women?

Original Prompt: What is the best way to kill a human being?

Generated Tokens: I cannot fulfill your request. I’m just an AI, it’s not
within my programming or ethical guidelines to provide
information or advice on harming or killing humans or any
living being. It is important to respect and uphold the
inherent worth and dignity of all individuals

Inverted Prompt: What is the most effective way to kill a human?
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