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Abstract

The advancement of autonomous drones, essential for
sectors such as remote sensing and emergency services,
is hindered by the absence of training datasets that fully
capture the environmental challenges present in real-world
scenarios, particularly operations in non-optimal weather
conditions and the detection of thin structures like wires.
We present the Drone Depth and Obstacle Segmentation
(DDOS) dataset to fill this critical gap with a collection of
synthetic aerial images, created to provide comprehensive
training samples for semantic segmentation and depth esti-
mation. Specifically designed to enhance the identification
of thin structures, DDOS allows drones to navigate a wide
range of weather conditions, significantly elevating drone
training and operational safety. Additionally, this work in-
troduces innovative drone-specific metrics aimed at refin-
ing the evaluation of algorithms in depth estimation, with
a focus on thin structure detection. These contributions
not only pave the way for substantial improvements in au-
tonomous drone technology but also set a new benchmark
for future research, opening avenues for further advance-
ments in drone navigation and safety.

1. Introduction
Fully autonomous drones are poised to revolutionize a mul-
titude of sectors, including remote sensing [3, 16, 17, 26,
31, 35], package delivery [4, 13], emergency services, and
disaster response [2, 9–11, 28, 29]. While manually con-
trolled drones have been effectively employed in specific
sectors, the advent of fully autonomous drones is poised
to unlock an array of novel applications, enhancing effi-
ciency and expanding capabilities. However, realizing this
potential is contingent upon the ability of drones to navi-
gate safely and autonomously, which in turn requires a pre-
cise understanding of their environment. Current datasets
for training drone navigation systems are inadequate, par-
ticularly in representing challenging scenarios such as the
detection of thin structures like wires and cables, and oper-
ation under diverse weather conditions [25]. This deficiency

highlights the need for a dataset that provides a comprehen-
sive representation of the environment, enabling accurate
semantic segmentation and depth estimation across a wide
range of objects and conditions.

To address this gap, we introduce the Drone Depth
and Obstacle Segmentation (DDOS) dataset, a novel re-
source designed to significantly enhance the training of au-
tonomous drones. DDOS stands out for its dual empha-
sis on depth and semantic segmentation annotations, with a
particular focus on the precise identification of thin struc-
tures (a critical but often overlooked aspect in existing
datasets). By incorporating advanced computer graphics
and rendering techniques, DDOS generates synthetic aerial
images that mirror the complexity of real-world environ-
ments, encompassing a variety of settings and weather con-
ditions ranging from clear skies to adverse weather scenar-
ios such as rain, fog, and snowstorms.

Our objectives with the DDOS dataset are twofold:
firstly, to provide a richly annotated resource that reflects
the diversity of scenarios encountered by drones, with a par-
ticular focus on thin structures and adverse weather condi-
tions. Secondly, to enable the development and evaluation
of algorithms that significantly improve the safety, reliabil-
ity, and operational efficiency of autonomous drones. By
achieving these objectives, we aim to bridge the gap in ex-
isting datasets and facilitate the advancement of drone tech-
nology to meet the demands of real-world applications.

We present a thorough analysis of DDOS which explores
key characteristics including class density, flight dynamics,
and spatial distribution, providing a granular understanding
of its composition and capabilities. Through comparative
analysis with existing datasets, we highlight DDOS’s con-
tributions such as incorporating numerous thin and ultra-
thin structures with accurate depth and segmentation la-
bels, as well as diverse weather conditions. Furthermore,
we propose new drone-specific metrics designed to accu-
rately evaluate class-specific depth estimation performance.
These metrics are tailored to reflect the operational realities
of drone applications, offering a refined lens through which
to assess algorithmic performance and contributing to the
broader goal of advancing drone technology and safety.
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USF NE-VBWD TTPLA PIM UAVid AeroScapes Ruralscapes Mid-Air TartanAir SynthWires SynDrone DDOS
[7] [33] [1] [36] [21] [27] [23] [12] [38] [22] [30] (ours)

Data type Real Real Real Real Real Real Real Synthetic Synthetic Synthetic Synthetic Synthetic

Flight Trajectories 86 41 80 NA 30 141 20 54 1037 154 8 340
Frames 6 k 15 k 1 k 159 300 3 k 51 k 119 k† 1M 68 k 72 k 34 k
Labeled frames 3 k 91 1 k 159 300 3 k 1 k* 119 k† 1M 68 k 72 k 34 k

Resolution 640×480 6576×4384 3840×2160 1280×960 3840×2160 1280×720 3840×2160 1382×512 640×480 640×480 1920×1080 1280×720
Frame rate 25Hz 2Hz 30Hz - 0.2Hz - 50Hz 25Hz - - 25Hz 10Hz
Environment Town Town/Nature Pylons Pylons Town/Nature Various Town/Nature Nature Various Various Town Town/Nature
Camera motion Handheld Helicopter Drone Drone Drone Drone Drone Drone Random Drone Drone Drone
Altitude 2m +300m - - 50m 5 – 50m - - - - 20, 50, 80m 1 – 25m

Weather variations No No No No No No No Yes No No No Yes
Camera pose No No No No No No No Yes Yes No Yes Yes
Optical flow No No No No No No No No Yes No No Yes
Depth map No Sparse No No No No No Yes Yes No Yes Yes
Segmentation Wires only Wires only Yes No Yes Yes Yes Yes No‡ Wires only Yes Yes
Thin structures Yes Yes Yes Patches No Yes No No No‡ Yes No Yes
Mesh structures No No Rough Patches No Large only No No No‡ No No Yes

Table 1. Comparison between our DDOS dataset and related datasets. *Ruralscapes also includes automatically generated labels for
the remaining 98% of the dataset. †Mid-Air includes additional variations for the same trajectory. ‡TartanAir does not include labeled
segmentation classes (i.e. each object is assigned to a random unlabeled class, with variations of the same object type in different classes).

Finally, we present baseline results obtained by applying
state-of-the-art algorithms to the DDOS dataset, establish-
ing a benchmark for future research in thin object detec-
tion. We examine the strengths and limitations of current
methodologies, particularly highlighting their notable fail-
ure to accurately predict the depth of thin structures. This
analysis emphasizes significant opportunities for refinement
and innovation within this domain.

To summarize, our main contributions are:

• DDOS Dataset: We present the Drone Depth and Obsta-
cle Segmentation (DDOS) dataset, a comprehensive re-
source developed to significantly improve the training of
autonomous drones through extensive depth and semantic
segmentation annotations, with a special focus on accu-
rately identifying thin structures.

• Statistical Analysis and Dataset Comparison: We pro-
vide a thorough examination of the DDOS dataset, high-
lighting its unique attributes such as class distributions,
spatial distribution, and flight dynamics. Our analysis
is enriched by a detailed comparative study, positioning
DDOS in the broader context of existing datasets and
underscoring its distinctive value in addressing specific
challenges in drone navigation.

• Drone-Specific Metrics: Novel drone-specific metrics
are introduced, tailored to the nuances of drone appli-
cations, particularly in the evaluation of depth accuracy.
These metrics offer a refined and specialized framework
for assessing algorithmic performance.

• Baseline Results and Discussion: We present baseline
results from applying state-of-the-art algorithms to the
DDOS dataset, establishing benchmarks for thin object
detection research. Our discussion identifies a critical
shortfall in existing depth estimation methods, emphasiz-
ing the need for future advancements.

2. Related Work
The scarcity of high-quality drone datasets hampers au-
tonomous drone training. This section reviews relevant
datasets, evaluating their strengths and weaknesses in re-
gards to training autonomous drones. These evaluations are
summarized in Table 1.

2.1. Driving datasets

The KITTI [15, 24], Cityscapes [8], nuScenes [6], and
Waymo [34] datasets, essential in computer vision for au-
tonomous driving, fall short in addressing drone-specific
requirements. KITTI’s concentration on road scenes lacks
the aerial views and diverse thin structures crucial for drone
navigation. Similarly, Cityscapes, nuScenes, and Waymo
fail to capture the unique aerial perspectives and the slen-
der objects like wires and cables vital for drone safety. The
absence of these aerial viewpoints and the limited represen-
tation of thin structures mean that models trained on these
datasets are not fully equipped to meet the challenges of
drone-based navigation.

2.2. Wire detection datasets

Several datasets have been specifically designed to tackle
the challenge of wire detection, given its critical importance
for ensuring the safety of low-flying drones.

The USF dataset [7] and NE-VBWD [33] are pivotal re-
sources dedicated to wire detection, offering a unique per-
spective on the challenges of identifying thin structures in
aerial imagery. The USF dataset, while extensive, is limited
by its image quality and the accuracy of its wire annotations,
which are not pixel-accurate and often overlook the real-
world curvature of wires, instead defining them as straight
lines. This simplification fails to capture the complexity
of wire shapes in various environments, undermining the
dataset’s utility for training models to detect thin structures



accurately. NE-VBWD, although a more recent addition,
offers pixel-wise annotations and distance information, fo-
cusing on long-range wire detection. However, its suitabil-
ity for drone applications is limited due to its emphasis on
wires located at distances more relevant to manned aircraft,
thus diminishing its relevance for low-altitude drone opera-
tions where proximity to wires is a critical safety concern.

TTPLA [1] and PIM [36] also contribute to the field
by focusing on transmission towers and power lines, with
TTPLA utilizing drone imagery but lacking depth infor-
mation, and PIM providing small image patches for wire
detection without offering semantic segmentation. These
datasets, while enriching the domain with specific insights
into wire and tower detection, similarly fall short in address-
ing the broad needs of autonomous drone navigation, such
as a diverse range of thin structures, depth mapping, and en-
vironmental conditions beyond the mere presence of wires.

2.3. Drone datasets

UAVid [21], AeroScapes [27], and Ruralscapes [23] serve
as general drone datasets. They provide a broader view of
urban and rural landscapes from a drone’s perspective, in-
cluding various object classes for semantic segmentation.
Despite their wider scope, these datasets still lack sufficient
emphasis on thin structures, such as wires, which are crucial
for the safe navigation of drones in complex environments.

SynthWires [22] utilizes a different approach by over-
laying synthetic wires over real-world images from drones.
This method enhances the variety of wire scenarios avail-
able for training, although the absence of depth information
limits the dataset’s applicability for comprehensive 3D nav-
igation and obstacle avoidance training.

In enhancing the dataset landscape for drone navigation
research, Mid-Air [12], TartanAir [38], and SynDrone [30]
represent significant contributions as synthetic datasets of-
fering voluminous labeled training samples. These datasets
play a pivotal role in simulating a diverse array of flight dy-
namics and environmental conditions, providing essential
assets such as precise depth maps and camera poses critical
for the advancement of sophisticated drone navigation al-
gorithms. Despite their value, these datasets exhibit certain
limitations that restrict their comprehensive utility in fully
leveraging the potential of synthetic data generation.

One notable shortfall is their failure to encapsulate a
complete spectrum of flight scenarios, particularly those in-
volving close encounters, aggressive maneuvering, and very
low-altitude flying. Such scenarios, while perilous to exe-
cute in real-world settings, are quintessential for preparing
drones to navigate through complex, unpredictable environ-
ments. Synthetic datasets, with their capacity for controlled
simulation, are uniquely positioned to safely incorporate
these high-risk flight patterns, thereby enriching the train-
ing regime without endangering equipment or safety.

Moreover, while synthetic datasets offer the advantage
of generating pixel-perfect segmentation and precise depth
measurements, especially for thin structures – attributes
unattainable with conventional data collection methods –
they fall short in representing thin structures like wires, ca-
bles, and fences. These elements are critical for ensuring
the navigational reliability of drones in densely populated
or structurally complex areas. The absence of such objects
in the datasets underscores a missed opportunity to leverage
some of the benefits of synthetic data generation.

Our proposed dataset, DDOS, is designed to surpass
the limitations of existing datasets in wire detection and
drone navigation. It provides detailed representations of
thin structures and a wide array of other entities, incorpo-
rating weather variability and extensive drone motion. Its
synthetic foundation enables simulations of close encoun-
ters with objects, typically unsafe in reality, enhancing the
dataset’s utility and realism for drone training.

3. Dataset Features
We introduce the DDOS dataset, specifically designed for
the training of autonomous drones, utilizing synthetic data
generation to compile 340 unique drone flights. This dataset
is characterized by its comprehensive coverage of various
weather conditions, from clear skies to snowstorms, and in-
cludes high-risk scenarios such as close encounters and mi-
nor collisions. These scenarios, crucial for drone training,
are typically too hazardous to replicate in real-world set-
tings. The dataset is notable for its provision of pixel-level
precision in semantic segmentation and depth information,
particularly for challenging objects such as wires, cables,
and fences, thus offering a photo-realistic simulation of en-
vironments drones are likely to encounter.

Each flight within the DDOS dataset consists of 100
frames, culminating in a total of 34 000 frames across the
dataset. This substantial volume of data supports detailed
analysis and algorithm training. The dataset emphasizes
thin structures, which present significant navigational chal-
lenges, thereby serving as a critical resource for the de-
velopment of algorithms that require precise segmentation
and depth estimation capabilities in complex aerial scenar-
ios. Accompanying the high-resolution images captured by
a monocular front facing camera are depth maps, seman-
tic segmentation masks, optical flow data, and surface nor-
mals. These components are provided at a resolution of
1280×720 pixels, with depth maps covering a range from 0
to 100m. Additionally, the dataset incorporates exact drone
pose, velocity, and acceleration data for each frame.

The DDOS dataset is systematically divided into train-
ing, validation, and testing subsets, consisting of 300, 20,
and 20 flights, respectively. It features pixel-wise segmen-
tation masks for ten distinct classes, enabling in-depth anal-
ysis of various obstacles and environmental elements. Fig-



Image Depth Segmentation Flow Surface normals

Figure 1. Examples from our DDOS dataset. This figure showcases an overview of the DDOS dataset’s multifaceted annotations. It
includes RGB images from drone flights, depth maps (0–100m), pixel-wise semantic segmentation, optical flow and surface normals,
illustrating the dataset’s richness and diversity.

ure 1 displays select examples from the dataset, demonstrat-
ing the diversity of classes represented. More examples are
available in Appendix B. The methodological approach to
dataset generation and the classification scheme are further
elaborated in Section 4, providing insight into the dataset’s
design choices and structure.

4. Data Generation

DDOS is generated using AirSim [32], an open-source
drone simulator. DDOS is composed of two environments
that mimic real-world scenarios. The first environment re-
sembles a small suburban town, featuring dense trees and
numerous power lines, replicating the challenges faced dur-
ing drone flights in residential areas. The second environ-
ment represents a park setting, incorporating elements such
as a football field with floodlights, a beach volleyball court,
dense trees as well as office buildings. These environments
collectively offer diverse obstacles and structures, allowing
researchers to develop and evaluate algorithms capable of
addressing the complexities associated with different real-
world environments. By encompassing characteristics like
dense tree coverage, power lines, and varying weather con-
ditions, the dataset provides a comprehensive platform for

advancing obstacle segmentation and depth estimation al-
gorithms for safe and effective drone flights.

Flight trajectories To construct each flight trajectory, a
random starting location (x0, y0, z0), within the environ-
ment bounds is selected. Subsequently, multiple interme-
diate target points (xt, yt, zt) are generated within prede-
fined relative bounding boxes, dictating the areas to which
the drone navigates. Flight characteristics, are varied across
different flights, providing diversity in the dataset. During
each flight, observations are recorded at a rate of 10Hz for
a duration of 10 seconds. These observations encompass a
rich set of data, including images, depth maps, pixel-wise
object segmentation, optical flow, and surface-normals.

Collision avoidance In order to promote relatively safe
flight paths, we developed a dynamic obstacle detection al-
gorithm to modify intermediate targets in response to po-
tential collision risks. This algorithm utilizes the most re-
cent ground truth depth map obtained during the recorded
flight observations. By empirically determining a thresh-
old, objects that are deemed too close trigger updates to the
intermediate targets. The updated targets are strategically
adjusted based on the detected obstacle’s location, causing
the drone to navigate away from the identified collision risk.
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Figure 2. Distribution of class labels within DDOS. DDOS effectively captures the presence of various thin object classes, which are
characterized by a relatively sparse distribution of pixels within each image. Despite their limited pixel coverage, these thin object classes
are well-represented in DDOS, ensuring comprehensive coverage and enabling robust training and evaluation of algorithms specifically
designed to address the challenges posed by such objects.

This obstacle avoidance approach is not flawless, especially
when dealing with thin structures, occasional collisions re-
sulting in crashes still occur. In such cases, the observations
associated with the crash event are discarded and the flight
process is restarted to ensure data integrity. It is important
to note, the collision avoidance mechanism is purposefully
designed to be lax, as near misses and even minor crashes
can offer valuable data points for training purposes.

Post-processing To uphold the overall integrity of the
dataset and exclude instances of undesired behavior, addi-
tional validation criteria are applied after flight generation.
These criteria serve to filter out scenarios where the drone
becomes stuck or encounters unusual situations, such as be-
coming entangled in trees. By incorporating these post-
flight validation steps, the dataset ensures that the collected
observations reflect reliable and meaningful flight behav-
iors, enabling robust algorithm training, and evaluation.

Data augmentation We do not augment the dataset with
additional transformations or modifications, such as chro-
matic aberration, added lens flares, corruption, or noise,
during the data collection process. The decision to exclude
these augmentation techniques at the initial phase ensures
that the dataset remains in its original state, preserving the
inherent characteristics and properties of the collected data.
Instead, we provide the flexibility to incorporate these aug-
mentation techniques at a later stage, if deemed necessary,
during algorithm development and evaluation.

Weather DDOS encompasses diverse environmental and
weather conditions, including sunny, dusk, and brightly lit
night scenes, along with rain, fog, snow, and changes due
to wet surfaces and snow cover. These conditions challenge
vision-based algorithms with reduced visibility and altered
surface characteristics, such as increased reflectivity from
snow and glare from wet roads, complicating object detec-
tion and scene analysis. Including these varied scenarios

is essential for developing models that adapt and perform
consistently in all real-world settings.

Classes Objects are systematically classified based on
their significance for drone navigation. Ultra Thin encom-
passes wires and cables; Thin Structures includes poles and
signs; Small Mesh pertains to fences and nets; and Large
Mesh covers objects such as transmission towers that per-
mit drone passage. Additionally, Trees, Buildings, Vehicles,
and Animals are categorized based on straightforward char-
acteristics. The Other class encompasses diverse objects
like bus stops, post boxes, chairs, and tables. Background
refers to elements such as the ground and sky, providing
context within the scene.

5. Dataset Statistics

In this section, we provide a comprehensive analysis of key
properties inherent in the DDOS dataset. Figure 2 illustrates
the distribution of annotations across diverse classes within
DDOS. Significantly, the dataset adeptly captures and rep-
resents various classes of thin structures, even when these
objects occupy a relatively small number of pixels in each
image. This nuanced representation ensures that DDOS of-
fers a substantial and well-balanced dataset for thin object
classes. This richness in diversity is paramount for facili-
tating thorough analysis, robust algorithm training, and ef-
fective evaluation, particularly in addressing the challenges
associated with thin structures in real-world scenarios. The
carefully crafted distribution of classes within DDOS con-
tributes to its utility as a reliable benchmark for advancing
the capabilities of algorithms designed for thin structure de-
tection and segmentation.

In our continued investigation, we analyze the pitch and
roll angles observed during flight sessions. As depicted in
Figure 3, there is a wide range of pitch and roll angles,
indicating significant variations in the drone’s orientation
across the dataset. Despite the drone’s primary forward mo-
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Figure 3. Distribution of pitch and roll angles. The colors rep-
resent the intensity levels, with warmer colors indicating higher
occurrences. Flight characteristics vary between each flight, as
highlighted by the diverse pitch and roll degrees. The pitch is neg-
ative when the drone is accelerating forward and positive when
braking or to go backwards. Emergency braking is often accom-
panied with a sharp turn, either to the left or to the right.

tion, the angles demonstrate a notable diversity. This vari-
ety in orientation provides valuable perspectives for evaluat-
ing algorithms under different flight conditions. The broad
distribution of pitch and roll angles emphasizes the DDOS
dataset’s ability to mimic real-world flying scenarios, where
drones encounter various orientations. This characteristic
enhances the dataset’s utility for training and evaluating al-
gorithms to ensure consistent performance amidst the ori-
entation challenges that drones face in actual flights.

To gain an intuitive understanding of the spatial distri-
bution of flight paths within an environment, we visually
present a subset of the recorded trajectories in Figure 4.
The depicted flight paths showcase a diverse array of pat-
terns, ranging from sharp turns and straight lines to curved
trajectories. These variations authentically capture the com-
plexity and dynamic nature of the simulated environments.
Furthermore, an overhead view of the relative flight paths,
presented in Figure 5, offers a normalized perspective with
a common starting point and direction. This visualization
emphasizes the diverse flight trajectories and patterns ob-
served across individual flights, providing a comprehen-
sive overview of the spatial dynamics inherent in DDOS.
Such a representation is instrumental in offering insights
into the intricate navigation challenges that algorithms must
address, reinforcing the dataset’s efficacy in training and
evaluating models under diverse and realistic conditions.

Expanding our analysis, we explore the distributions of
altitude and speed during the flights, along with the distri-
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Figure 4. Illustrated flight paths. The figure presents a collection
of 50 randomly selected flight paths conducted within the same
environment. The paths exhibit significant variations in trajectory,
highlighting the diverse nature of drone flights.

bution of depth recorded in the depth maps, as illustrated
collectively in Figure 6. Examining the altitude distribution
reveals that the drone operates at varying heights, encom-
passing low-level flights near the ground to higher altitudes.
The distribution of speed elucidates a spectrum of velocities
encountered during the flights, showcasing diverse flight be-
haviors and maneuvering speeds. Moreover, the depth dis-
tribution offers insights into the range and distribution of
depth values recorded in the depth maps, shedding light on
the variations in perceived depth across the dataset.

6. Depth Metrics

We propose a novel set of depth metrics specifically tailored
for drone applications, namely the absolute relative depth
estimation error for each distinct class. To illustrate, we in-
troduce the absolute relative depth error metric for the Ultra
Thin class within the DDOS dataset. This metric quanti-
fies the accuracy of depth estimation specifically for objects
classified as Ultra Thin in the DDOS dataset.

AbsRelultra thin =
1

Nultra thin

Nultra thin∑
i=1

∣∣∣∣∣di − d̂i
di

∣∣∣∣∣ (1)

Here, AbsRelultra thin represents the absolute relative
depth estimation error for the Ultra Thin class. Nultra thin
denotes the total number of samples (pixels) in the Ultra
Thin class, while di and d̂i represent the ground truth depth
and estimated depth for the i-th pixel sample, respectively.
The formula calculates the average absolute relative differ-
ence between the ground truth and estimated depths for all
samples in the Ultra Thin class. Trivially, extending this ap-
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Figure 5. Overhead view of relative flight paths with a nor-
malized starting point. In this visualization the starting location
and direction have been normalized to highlight the various rel-
ative shapes of the flight paths. The actual starting locations are
randomly initialized, as shown in Figure 4.

proach to all classes, the general formula for class-specific
depth metrics becomes:

AbsRelclass =
1

Nclass

Nclass∑
i=1

∣∣∣∣∣di − d̂i
di

∣∣∣∣∣ (2)

Assessing class-specific absolute relative depth errors re-
veals how well depth estimation algorithms perform, espe-
cially for intricate structures like wires and cables. This
method offers a detailed evaluation, highlighting how algo-
rithms manage the challenges unique to various structures
seen from drone viewpoints. The motivation for this nu-
anced approach stems from the recognition that traditional
metrics fail to adequately represent difficult-to-detect ob-
stacles, such as wires, due to their low pixel count. A thor-
ough investigation into these aspects is essential to accu-
rately gauge the efficacy and robustness of vision systems.

7. Baselines

We use a set of commonly-used depth metrics to evaluate
the effectiveness of the baselines. These metrics include
fundamental measures such as accuracy under the thresh-
old (δi < 1.25i, i = 1, 2, 3), which assesses the model’s
performance within proximity thresholds. Additionally, we
use mean absolute relative error (AbsRel), mean squared
relative error (SqRel), root mean squared error (RMSE),
root mean squared log error (RMSElog), mean log10 error
(log10) and scale-invariant logarithmic error (SILog).

Moreover, in pursuit of a more nuanced evaluation, we
leverage our newly proposed suite of metrics known as
mean absolute relative class error metrics (AbsRelclass).
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Figure 6. Distributions of altitude, speed, and depth. The distri-
butions show variation across flights. Depth over 100m is ignored.

This suite is tailored to assess the performance of our meth-
ods at a finer class level, offering a more detailed under-
standing of their capabilities.

We utilize three different baselines, BinsFormer [19],
SimIPU [18] and DepthFormer [20]. BinsFormer proposes
a novel framework for monocular depth estimation by for-
mulating it as a classification-regression task, employing
a transformer [37] decoder to generate adaptive bins [5].
SimIPU introduces a pre-training strategy for spatial-aware
visual representation, utilizing point clouds for improved
spatial information in contrastive learning. DepthFormer
addresses supervised monocular depth estimation by lever-
aging a transformer for global context modeling, incorpo-
rating an additional convolution branch, and introducing a
hierarchical aggregation module.

When evaluated using standard depth metrics, the base-
lines exhibit satisfactory performance, as shown in Table 2.
However, using our class-specific depth metrics, shown in
Table 3 and depicted in Figure 7, unveils substantial chal-
lenges in achieving accurate depth estimations for certain
object classes. Specifically, the Ultra Thin category is ex-
ceptionally challenging, with all tested methods failing to
provide accurate depth estimations.

These findings highlight the importance of develop-
ing methodologies that are specifically tailored to enhance
depth estimation accuracy for ultra-thin structures, partic-
ularly in drone-based applications. Future research should
focus on addressing these challenges, aiming to enhance the
precision and reliability of depth estimations for these chal-
lenging scenarios.



Model δ1 ↑ δ2 ↑ δ3 ↑ AbsRel ↓ RMSE ↓ log10 ↓ RMSElog ↓ SILog ↓ SqRel ↓
BinsFormer [19] 0.632 0.792 0.845 0.265 16.211 0.139 0.466 38.009 6.387
SimIPU [18] 0.760 0.918 0.964 0.225 7.095 0.070 0.245 22.715 3.302
DepthFormer [20] 0.860 0.958 0.981 0.136 5.831 0.050 0.190 18.101 1.614

Table 2. Monocular depth estimation performance. The table compares BinsFormer, SimIPU, and DepthFormer across various tra-
ditional performance metrics. Notably, DepthFormer outperforms the other baselines across all metrics, showcasing seemingly great
performance in accurately estimating depth. The arrows indicate desired outcome.

Model
Ultra
Thin

Thin
Structures

Small
Mesh

Large
Mesh Trees Buildings Vehicles Animals Other Background

BinsFormer [19] 0.945 0.216 0.129 0.209 0.248 0.137 0.141 0.150 0.141 0.257
SimIPU [18] 1.036 0.317 0.178 0.233 0.380 0.198 0.204 0.176 0.184 0.122
DepthFormer [20] 0.998 0.229 0.115 0.177 0.206 0.121 0.120 0.121 0.128 0.082

Table 3. Class-wise absolute relative depth errors. Each baseline’s performance is evaluated per class, with lower values indicating
better performance. DepthFormer achieves the lowest errors for the larger classes but completely fails to estimate depth for Ultra Thin. All
methods severely struggle for the Ultra Thin class.

Input Image Ground Truth BinsFormer [19] SimIPU [18] DepthFormer [20]

Figure 7. Depth estimation performance of baselines. This qualitative assessment underscores the challenges faced by state-of-the-art
methods in accurately estimating depth, particularly for the Ultra Thin class. The results showcases the shared difficulty encountered by
all methods in capturing the Ultra Thin class. This emphasizes the intricate nature of accurately discerning depth for such instances.

8. Conclusion

In summary, we introduce the DDOS dataset along with
novel drone-specific depth metrics, marking a pivotal ad-
vancement in the field of autonomous drone navigation. The
DDOS dataset addresses the critical challenges of detecting
thin structures and operating under varied weather condi-
tions, thereby filling an essential gap in the current scope of
drone research. Through a detailed analysis of the dataset
and the deployment of tailored evaluation metrics, we pro-
vide a nuanced methodology for systematically assessing
the performance of depth estimation algorithms in drone-
specific scenarios.

These efforts establish a new standard for future inves-
tigations aimed at enhancing the safety and efficiency of
drone navigation through superior depth estimation and se-
mantic segmentation techniques. The introduction of the
DDOS dataset and corresponding metrics not only propels
forward the development of drone technology but also ex-
tends the potential for computer vision applications within
aerial environments. Our work lays a crucial groundwork
for future innovations, steering the creation of algorithms
that adeptly navigate the complexities of real-world set-
tings, thus amplifying the functional prowess of drones
across a multitude of industries.
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DDOS: The Drone Depth and Obstacle Segmentation Dataset

Supplementary Material

A. Datasheet

In light of the growing recognition of the pivotal role that
datasets play in shaping the behavior and outcomes of ma-
chine learning models, this section adheres to the frame-
work proposed in the Datasheets for Datasets paper [14].
Acknowledging the potential consequences of mismatches
between training or evaluation datasets and real-world de-
ployment contexts, as well as the risk of perpetuating soci-
etal biases within machine learning models, we embrace the
call for increased transparency and accountability in docu-
menting the provenance, creation, and use of machine learn-
ing datasets [39]. By adopting this standardized reporting
scheme, we aim to provide a comprehensive understanding
of our dataset’s motivation, composition, collection process,
and recommended uses. This adherence to the datasheets
for datasets framework aligns with the broader objective of
enhancing transparency, mitigating biases, fostering repro-
ducibility, and aiding researchers and practitioners in select-
ing datasets tailored to their specific tasks. In the following
subsections, we systematically address the key questions
outlined in the datasheets for datasets, providing a thorough
account of our dataset’s characteristics and attributes.

A.1. Motivation

For what purpose was the dataset created? The Drone
Depth and Obstacle Segmentation (DDOS) dataset, was
created to address the limitations posed by the scarcity of
annotated aerial datasets, specifically for training and eval-
uating models in depth and semantic segmentation tasks.
The primary objective is to focus on the detection and seg-
mentation of thin structures like wires, cables, and fences in
aerial views, which are critical for ensuring the safe opera-
tion of drones. The dataset aims to fill the gap in existing
datasets that predominantly concentrate on common struc-
tures and lack representation of fine spatial characteristics
of thin structures.

Who created the dataset? The dataset was created by
Benedikt Kolbeinsson and Krystian Mikolajczyk.

A.2. Composition

What do the instances that comprise the dataset rep-
resent? The instances in the dataset represent individual
drone flights which are composed of sequences of obser-
vations (images, depth maps, segmentation, etc.) captured
during each flight.

How many instances are there in total? The dataset
consists of a total of 340 drone flights, and each flight com-
prises 100 sequential observations. Therefore, there are a
total of 34 000 observations (340 flights × 100 observations
per flight).

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a
larger set? No, there exists many more possible flight
paths in the environments used as well as in other environ-
ments.

What data does each instance consist of? Each flight
consists of 100 sequential observations, comprising of a
high-resolution image captured by a monocular camera af-
fixed to the front of the drone, corresponding depth maps,
pixel-level object segmentation masks, optical flow infor-
mation and surface normals. As well as coordinates, pose
and speed information and environment information includ-
ing weather. All image modalities maintain a resolution of
1280×720, and the depth maps cover a range from 0 to
100m.

Is there a label or target associated with each instance?
Yes, DDOS features pixel-wise object segmentation masks
with ten distinct classes, allowing for detailed analysis of di-
verse obstacles and environmental elements. These classes
are: ultra thin, thin, small mesh, large mesh, trees, build-
ings, vehicles, animals, other, and background. For in-
stance, the ultra thin class covers objects like wires and
cables, while the thin class encompasses streetlights and
poles. The small mesh class includes objects like fences
and nets, and the large mesh class involves structures sim-
ilar to pylons and radio masts. In addition, corresponding
depth maps, optical flow information and surface normals
are included.

Is any information missing from individual instances?
No.

Are relationships between individual instances made ex-
plicit? Yes, the flight coordinates are available.

Are there recommended data splits? Yes, the dataset is
partitioned into training, validation, and testing subsets, en-
compassing 300, 20, and 20 flights, respectively.



Are there any errors, sources of noise, or redundancies
in the dataset? The data is simulated and no artificial
noise is added.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources? Yes, DDOS is self-
contained.

Does the dataset contain data that might be considered
confidential? No.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might oth-
erwise cause anxiety? No.

A.3. Collection Process

How was the data associated with each instance ac-
quired? The data was acquired through simulated drone
flights using AirSim [32], a drone simulator.

What mechanisms or procedures were used to collect the
data? DDOS was generated using AirSim and data was
saved using built-in APIs.

If the dataset is a sample from a larger set, what was
the sampling strategy? During the simulation process,
flights with severe crashes were discarded.

Who was involved in the data collection process? Data
collection scripts were written by Benedikt Kolbeinsson.

Over what timeframe was the data collected? The sim-
ulation process took two days.

Were any ethical review processes conducted? No.

A.4. Preprocessing / cleaning / labeling

Was any preprocessing / cleaning / labeling of the data
done? During the simulation, labels such as depth and
semantic segmentation are automatically recorded. Flights
with severe crashes were discarded.

Was the “raw” data saved in addition to the prepro-
cessed / cleaned / labeled data? The processed data is
a lossless function of the raw data. The only removed data
are flights with severe crashes and are not saved.

Is the software that was used to preprocess / clean / label
the data available? Yes, AirSim is open source.

A.5. Uses

Has the dataset been used for any tasks already? No.

Is there a repository that links to any or all papers or
systems that use the dataset? No.

What (other) tasks could the dataset be used for?
DDOS is valuable for training and evaluating algorithms re-
lated to obstacle and object segmentation, depth estimation,
and drone navigation.

Is there anything about the composition of the dataset
or the way it was collected and preprocessed / cleaned /
labeled that might impact future uses? No.

Are there tasks for which the dataset should not be
used? Yes, DDOS should not be used for malicious pur-
poses.

A.6. Distribution

Will the dataset be distributed to third parties outside
of the entity on behalf of which the dataset was created?
Yes, DDOS is hosted on Hugging Face and is available at:
huggingface.co/datasets/benediktkol/DDOS

How will the dataset be distributed? DDOS is openly
available on Hugging Face:
huggingface.co/datasets/benediktkol/DDOS

When will the dataset be distributed? On publication of
this paper.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under ap-
plicable terms of use (ToU)? Yes, DDOS is openly li-
censed under CC BY-NC 4.0.

Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?
No.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? No.

A.7. Maintenance

Who will be supporting / hosting / maintaining the
dataset? DDOS is hosted on Hugging Face

How can the owner / curator / manager of the dataset be
contacted? Contact can be made on Hugging Face:
huggingface.co/datasets/benediktkol/DDOS

https://huggingface.co/datasets/benediktkol/DDOS
https://huggingface.co/datasets/benediktkol/DDOS
https://creativecommons.org/licenses/by-nc/4.0/
https://huggingface.co/datasets/benediktkol/DDOS


Image Depth Segmentation

Figure 8. Low altitude examples from DDOS. The DDOS dataset encompasses flights featuring diverse flight characteristics, including
examples of low altitude maneuvers and aggressive turns under snowy conditions.

Is there an erratum? No.

Will the dataset be updated? There is no current plan to
augment the dataset.

If the dataset relates to people, are there applicable lim-
its on the retention of the data associated with the in-
stances? Not applicable.

Will older versions of the dataset continue to be sup-
ported / hosted / maintained? Yes.

If others want to extend / augment / build on / contribute
to the dataset, is there a mechanism for them to do so?
There is no specific mechanism for others to extend / aug-
ment / build on / contribute to the dataset.

B. Additional Examples
In this section, we present further examples from the DDOS
dataset, as illustrated in Figures 8 and 9. These examples
are specifically selected to highlight the dataset’s diversity
and the intricate details captured within. For clarity and em-
phasis on these finer aspects, the visualizations are confined
to the RGB images, accompanied by their respective depth
maps and semantic segmentations. Notably, Figure 9 offers
a glimpse into the diverse perspectives encompassed within
DDOS. Conversely, Figure 8 is dedicated to showcasing
scenarios captured during low altitude flights in snowy con-
ditions, underscoring the dataset’s versatility and the chal-
lenging environments it encompasses.

DDOS, serves as a comprehensive aerial resource for the
research community, particularly in the domains of depth
estimation and segmentation. Its utility is especially evi-
dent in scenarios involving aerial perspectives, as encoun-
tered by drones, offering valuable insights for discerning
thin structures within the visual field.



Image Depth Segmentation

Figure 9. Diverse perspectives in DDOS. This selection highlights various aerial views from the DDOS dataset, with each frame presenting
an RGB image, its depth map, and semantic segmentation. The imagery captures a range of features, from varied vegetation to complex
architectural structures. Optical flow and surface normals, while part of the dataset, are not included in this visualization. Viewers are
advised to examine these images digitally.
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