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Abstract

Text games present opportunities for natural
language understanding (NLU) methods to
tackle reinforcement learning (RL) challenges.
However, recent work has questioned the ne-
cessity of NLU by showing random text hashes
could perform decently. In this paper, we pur-
sue a fine-grained investigation into the roles of
text in the face of different RL challenges, and
reconcile that semantic and non-semantic lan-
guage representations could be complementary
rather than contrasting. Concretely, we propose
a simple scheme to extract relevant contextual
information into an approximate state hash as
extra input for an RNN-based text agent. Such
a lightweight plug-in achieves competitive per-
formance with state-of-the-art text agents using
advanced NLU techniques such as knowledge
graph and passage retrieval, suggesting non-
NLU methods might suffice to tackle the chal-
lenge of partial observability. However, if we
remove RNN encoders and use approximate or
even ground-truth state hash alone, the model
performs miserably, which confirms the impor-
tance of semantic function approximation to
tackle the challenge of combinatorially large
observation and action spaces. Our findings
and analysis provide new insights for designing
better text game task setups and agents.

1 Introduction

In text-based games (Hausknecht et al., 2019; C6té
et al., 2018), players command text actions to in-
teract with a simulated world and gain rewards as
they progress through the story (Figure 1). They
can thus be seen as special partially observable
Markov decision processes (POMDP), where ob-
servations and actions carry language semantics.
Such a viewpoint motivates recent work to incorpo-
rate reinforcement learning (RL) agents with natu-
ral language understanding (NLU) capabilities for
better performance. For example, pre-trained lan-
guage models support generation in the combinato-
rial action space (Yao et al., 2020); commonsense

Observation: Kitchen. You are in the kitchen of the white
house... There is a brass lantern (battery-powered) here...
Look: <Same as Observation>

Inventory: A glass bottle containing water.

Action: Go west

Several steps later ...

Observation: Living Room. Above the trophy case hangs an
elvish sword of great antiquity.

Look: Living Room. There is a doorway to the east, ..., and a
rug lying beside an open trap door.

Inventory: A glass bottle containing water. A brown sack.

+25 reward

Action: Go down

Observation: You have moved into a dark place.

The trap door crashes shut, and you hear someone barring it.
It is pitch black. You are likely to be eaten by a grue.

Look: 1t is pitch black. You are likely to be eaten by a grue.
Inventory: A glass bottle containing water. A brown sack.

Action: North

Observation: Oh, no! A lurking grue slithered into the room
and devoured you!
*#%% You have died ****

-10 reward

Figure 1: A game trajectory from Zork L.

reasoning (Murugesan et al., 2021), information
extraction (Ammanabrolu and Hausknecht, 2020),
and reading comprehension (Guo et al., 2020) sys-
tems provide priors for exploration with sparse re-
ward and long horizon; and knowledge graph (Am-
manabrolu and Hausknecht, 2020) and passage re-
trieval (Guo et al., 2020) techniques help alleviate
partial observability.

Nevertheless, Yao et al. (2021) doubts the need
of NLU for RL agents trained and evaluated on the
same game. They found that a text game agent,
DRRN (He et al., 2016), performs even slightly
better when RNN-based language representations
are replaced with non-semantic hash codes. Intu-
itively, hash serves to memorize state-action pairs
and ignore text similarities, which is sometimes
useful — consider the second-to-last observation
in Figure 1 and a counterfactual observation where
"A lantern" is added into “Inventory”, RNNs might
encode them very similarly though they lead to
antipodal consequences (die or explore the under-
ground). How do we reconcile this with recent
NLU-augmented text agents with improved per-
formances? Where are semantic representations
useful, and where would a hash approach suffice?



In this paper, we present initial findings that se-
mantic and non-semantic language representations
could work hand-in-hand better than each alone by
targeting different RL challenges. Concretely, we
show the hash idea could help DRRN tackle partial
observability — returning to the Figure 1 example,
to get lantern to avoid death, it is vital to know
where the lantern is, which is revealed in a previ-
ous instead of current observation. Based on such
intuition, we propose a simple algorithm that tracks
the current location and the up-to-date descriptions
of all locations, then encode them into a single ap-
proximate state hash vector as extra DRRN input.
Though lightweight and easy-to-implement, such a
representation plug-in improves DRRN scores by
29% across games, with competitive performances
against state-of-the-art text agents using advanced
NLU techniques and pre-trained Transformer mod-
els. The effectiveness is further confirmed by com-
paring to models that plug in groundtruth state or lo-
cation hash codes, where we find our performance
and these upper bounds with very little gaps. These
results suggest that the current partial observabil-
ity bottlenecks might not require advanced NLU
models or semantic representations to conquer.

However, such a message is gauged by the ab-
lations that show the approximate state hash alone
only achieves 58% of the full performance, as it
fails to handle other RL challenges such as the
combinatorial state and action spaces. In con-
clusion, we find the role of NLU in text games
is not black-or-white as indicated by prior work,
but rather differs for different RL challenges, and
agents could benefit from combining semantic and
non-semantic language representations that target
different functionalities. Our results and insights
contribute to future research in designing better
tasks and models toward autonomous agents with
grounded language abilities.

2 Preliminaries

2.1 Problem Formulation

A text game can be formulated as a partially
observable Markov decision process (POMDP)
(S,A,T,0,9Q, R,~), where at the t-th turn the
agent reads a textual observation o; = (s;) € O
as a partial reflection of underlying world state
sy € S, issues a textual command a; € A in re-
sponse, and receives a sparse scalar reward r; =
R(st, ay) in light of game progress. The state tran-
sition s;+1 = T'(s¢, at) is hidden to the agent. The

goal is to maximize the expected cumulative dis-
counted rewards E[>_, v'r].

Observations and States Following prior prac-
tice in the Jericho benchmark (Hausknecht et al.,
2019), we augment the direct observation o; with
inventory ¢; and location description /; obtained by
issuing actions “inventory” and “look” respectively.
But even this may not reveal the complete s; (Sec-
tion 1), which is Jericho includes an object tree
and a large simulator RAM array hidden to players.
As s, is large and lacks interpretability, more often
used is the state hash h(s;), where h : S — N
maps each state to an integer that can be used to
probe if states are identical, but cannot provide se-
mantic information about state differences. Access
to s; or h(s;) is a handicap in Jericho.

2.2 The DRRN Baseline and its Hash Variant

Denote ¢; = (01, a1, -+ ,0¢) as the game context
up to o, and for convenience we omit the subscript
t when no confusion is caused. Our baseline RL
model, Deep Reinforcement Relevance Network
(DRRN) (He et al., 2016), learns a Q-network

Q(ct,ap) = MLP(sr, ar) (1)

where the state and action representations

STdrrn = [GRU1(0t>, GRUQ(it), GRU3(lt)} (2)
ardgrn = GRU4(at)

are encoded by gated recurrent units (GRU) (Cho
et al., 2014). The temporal difference (TD) loss
and Boltzmann exploration are used for RL.

In Yao et al. (2021), (2) is replaced by random,
fixed, non-semantic hash representations

SThash = [H (01), H (it), H (I1)]

3
aThash = H(ay) )

where a hash vector function H = vecoh first maps
inputs to integers (via Python built-in hash) then to
random normal vectors (by using the integer as the
generator seed). However, neither of the models
addresses partial observability by using the context
¢; beyond the current observation oy.

3 Method

The key to handle partial observability is to ex-
tract the appropriate state-distinguishing informa-
tion from the context ¢; — while under-extraction
leads to different states with same representations,



Game DRRN and Variants Agents with advanced NLU Max
DRRN ObsHash +Inv-Dy LoG (ours) MPRC-DQN KG-A2C

zorkl 39.4/53 35.5/50 43.1/87 51.2/107 38.3/- 33.6/35 350
zork3 0.4/4.5 0.4/4 0.4/4 1.33/5 3.0/5.0 0.1/- 7
pentari 26.5/45 51.9/60 37.2/50 44.4/60 44 .4/- 48.2/56 70
detective | 290/337 290/317 290/323  288.8/313.3 317.7/- 246.1/274 360
ludicorp 12.7/23 14.8/23 13.5/23 16.7/23 10.9/40.7 17.6/19 150
inhumane | 21.1/45 21.9/45 19.6/45 25.7/56.7 29.8/53.3 3/- 90
avgnorm | .28/.52 .34/.52 .30/.51 36159 | Al/- 271- [

Table 1: Final episodic/maximum explored scores for different games. MPRC-DQN numbers with max scores
correspond to version change of games, so we re-run their model and report the new results. Average normalized
score (avg norm) is model score divided by maximum game score, averaged across games.

over-extraction leads to diverging representations
for the same state with different history paths. So
to approximate the state hash, we first obtain and
maintain a location map by exploration with lim-
ited depth d, collecting names of adjacent rooms:

por = {(p,loc(c,p) |[p C A"} (4)
where p is a sequence of navigation actions, and
loc is the location after following p from ¢;. Essen-
tially, poi (c;) serves to distinguish different loca-
tions with same names (e.g. “maze” rooms with
the same observation).

Secondly, we collect the most-recent location
descriptions for all locations, so that we may know,
for example, the whereabouts of the lantern when
needed (Section 1).

poa = {(loc, LastLook(loc)) | loc € Map} (5)
Together, our model DRRN-WorldHash (WH)
takes state representation

srwH = [sTdm, H (po1)), H(po2)]  (6)

The algorithm details are in Appendix A.

4 [Experiments

Implementation Details We adopt DRRN hy-
perparameters from Yao et al. (2021) to train our
model. Following previous work, we implement
the BiDAF (Seo et al., 2016) attention mecha-
nism and the inverse dynamics auxiliary objec-
tive (Yao et al., 2021) for better text encoding. The
episodic limit is 100 steps and the training has
1,000 episodes from 8 parallel game environments.
For po1, weuse d = 1 as depth limit. We train three
independent runs for each game. More details are
in Appendix B.

Baselines Our approach builds on the backbone
DRRN agent, thus we provide apple-to-apple com-
parisons to the original DRRN and its hash and

inverse dynamics variants from Yao et al. (2021).
We also compare with more complex state-of-the-
art agents that are designed to deal with the partial
observability via NLU:

e MPRC-DQN (Guo et al., 2020), which retrieves
the relevant history to enhance the current obser-
vation, and formulates the action prediction as a
multi-passage reading comprehension problem.

¢ KG-A2C (Ammanabrolu and Hausknecht, 2020;
Ammanabrolu et al., 2020), which extracts an
object graph with OpenlE (Angeli et al., 2015)
or a BERT-based QA model (Devlin et al., 2019),
and embeds the graph to a single vector as the
state representation. We compare with the better
result from the two papers for each game.

Evaluating Games We select 6 games from Jeri-
cho (Hausknecht et al., 2019) where MPRC-DQN
or KG-A2C exhibits performance boosts, thus are
more likely to suffer from partial observability.

4.1 Game Results

Table 1 shows game scores for all models. Among
DRRN and it variants, DRRN-WH performs best
on 4 of the 6 games. More impressively, our agent
is competitive against MPRC-DQN (better or same
score on 3/6 games) and KG-A2C (better scores
on 4/6 games) in terms of winning rates. Over-
all, our DRRN-WH achieves the second best aver-
age normalized score of 36%, only behind 41% of
MPRC-DQN (which is largely attributed to Zork
III). Considering the fact that we explicitly choose
the six games in favor of these two state-of-the-
art baselines, such a result indicates that advanced
NLU techniques might not be a must to solve par-
tial observability — at least in the scoring ranges of
current text game agents (i.e. average normalized
score less then 50%).
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Figure 2: Ablation results on Zork I.
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4.2 Upper Bound Analysis with Oracle States

Next, we aim to upper bound our model by replac-
ing the approximate state hash with the groundtruth
state hash (GT-State) from Jericho, which could
perfectly distinguish different states apart, where
srgt = (8Tdrm, H(8)).

As shown in Table 2, the scores of DRRN-WH
and the GT-State are very close across different
games, meaning our approximation has been close-
to-perfect within the state hashing scheme. Notably,
even GT-State fails to totally surpass MPRC-DQN
or KG-A2C, suggesting NLU techniques might
help these agents with RL challenges other than
partial observability. Finally, we also show in Ap-
pendix C the performance of replacing our state
approximation with the groundtruth room IDs (GT-
Room), where our agent achieves on-par or better
results on all the games. This confirms that our
state approximation not only effectively identifies
player locations by (4), but also brings richer state
information thanks to (5).

4.3 Ablation Studies

Does the good performance of DRRN-WH indicate
that distinguishing states and memorizing trajec-
tories are all it takes to solve one text game? To
answer this question, we conduct ablation experi-
ments to remove the text encoder (i.e. all GRUs) in
our agent as well as the GT-State version (- Text
Enc). Intuitively, this renders the text game into
a large, deterministic MDP (instead of POMDP),
where even very close states (e.g. same except a
window is ajar or open) have completely different
representations.

The result in shown in Table 2, which witnesses
a huge performance drop for DRRN-WH and its
GT-State version with text encoders removed —
in other words, learning the text game as a tabu-
lar MDP without language semantics could lead
to a much deteriorated sample complexity, even

Game Ours Ours w/ GT-State
Full Model - Text Enc. \ Full Model - Text Enc.

zork1 51.2/107 4.13/36.3 53.6/111 6.25/39.3
zork3 1.33/5 0.85/3 1.50/4.7 1.02/4
pentari 44.4/60 20.3/45 46.1/60 20/45
detective 288.8/313.3  281.3/313.3 289.9/310 280/290
ludicorp 16.7/23 10.15/22 15.9/23 9.5/21
inhumane 25.7/56.7 1.9/23 24.1/60 1.1/20
Avg. Norm .36/.59 .21/.40 \ .371.59 .22/.42

Table 2: The results of replacing our state representa-
tions with groundtruth state IDs (GT-State Full Model),
as well as removing the text encoder (- Text Enc).

when partial observability is solved. To explain
why DRRN with GT-State hash is much worse
than DRRN with observation hash proposed in Yao
et al. (2021), note that (3) still leverages the compo-
sitional structure of (o, it,l;), €.g. two states with
the same i, still share part of the state representa-
tion. Such a result helps confirm the importance
of language for the RL challenge of large obser-
vation and actions spaces: semantics-preserving
function approximation (e.g. RNN instead of hash)
could be key to interpolation (smooth value esti-
mation for similar states) as well as extrapolation
(efficient exploration based on language and com-
monsense priors).

Finally, we ablate individual components of
DRRN-WH on Zork I. Figure 2 shows that re-
moving the language-learning auxiliary task of in-
verse dynamics (w/o invdy) or the language atten-
tion (w/o att) leads to worse scores, reconfirming
that semantic language representations are vital for
DRRN-WH’s success. On the other hand, remov-
ing the current whereabouts (w/o cur_room) leads
to much worse performance than removing location
descriptions across the map (w/o last_look), sug-
gesting location identification (4) might be more
important for solving partial observability.

5 Discussion

We propose a simple approach to deal with par-
tial observability in text games, which could serve
as a competitive baseline for future research, and
also inspire similar investigations for other RL chal-
lenges to test the limits of memorization and neces-
sity of NLU in different dimensions, which would
in turn help identify flaws of current setups and
propose better ones. We also hope our idea of
best combing semantic and non-semantic language
representations could be useful for building next-
generation text game agents, as well as for other
language applications with memorization needs
like closed-domain QA or goal-oriented dialog.
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A Algorithm of Our Approximated State
Representation Construction

Algorithm 1 Infer the current location with nearby
room names using depth-first search with limited
depth. This can help distinguish different rooms
with the same name in most cases. We use depth =
1 in our runs.

1: function LOCATE(env, depth)

2: state < current state of env

3 room <— current room name in env

4 nearby < ||

5 for all direction do

6: step env with action direction

7 if env changed in last action then

8 if depth > 1 then

9: d < LOCATE(env, depth — 1)
10: else

11: d < current room name in env
12: append (direction, d) to nearby
13: set env with state

14: return nearby

Algorithm 2 Maintain the state approximation with

the descriptions the last time we visit each room.

The result is then hashed to serve as the state hash
in our model. For runs provided with grounded
room ID, we replace line 3 with the ground truth.

1: state < {}

2: function UPDATEANDGETSTATE(env)

3 room < LOCATE(env, depth)

4: look < look of the current state in env
5

6

state[room| «+ look
return state

B More Details of Our Model and
Implementation

We follow the hyperparameters from Yao et al.

(2021). For the state approximation part, we use
the builtin HASH function in Python. We train our
model for 10° steps, which takes about 40 hours
on a TITAN X or Geforce GTX 1080.

We use the latest Jericho version 3.1.0. Due to
a bug in Zork I, we add a timeout in the library
to filter out valid actions causing the emulator to
hang.

Game Ours Ours w/ GT-State Ours w/
Full Model - Text Enc. ‘ Full Model - Text Enc. ‘ GT-Room
zorkl 51.2/107 4.13/36.3 53.6/111 6.25/39.3 52.0/110
zork3 1.33/5 0.85/3 1.50/4.7 1.02/4 1.31/5
pentari 44.4/60 20.3/45 46.1/60 20/45 44.8/58
detective 288.8/313.3  281.3/313.3 | 289.9/310 280/290 289.6/300
ludicorp 16.7/23 10.15/22 15.9/23 9.5/21 16.9/23
inhumane 25.7/56.7 1.9/23 24.1/60 1.1/20 25.7/56.7
Avg. Norm .36/.59 21740 | 37159 22142 | .36/.58

Table 3: The results of replacing our state representa-
tions with groundtruth state IDs (GT-State Full Model),
as well as removing the text encoder (- Text Enc).

B.1 Details of Our BiDAF Observation
Encoder

In DRRN, the GRU takes the responsibility of both
memorizing the high-scoring trajectories, and gen-
eralizing to unseen observations. In our method,
the memorization power can be provided with our
hash codes of local graphs, with stronger ability
to distinguish states. We thus hope to encourage
the generalization strength of neural network; and
propose the attentive extension of observation em-
bedding.

Our key idea bases on the insight that the Q-
value in DRRN is computed by matching the tex-
tual observations to a textual action. Since the
observations are usually significantly longer than
the actions, the effect of an action can usually be
determined by its interaction with a local context
in the observation. This can be naturally modeled
with the attention mechanism. Specifically, we ap-
ply the BiDAF (Seo et al., 2016) to match each
observation component to the action.

The BiDAF takes the observation and action
embeddings; and outputs an action-attended ob-
servation embedding. We denote the GRU em-
beddings for observation word ¢ and action word
J as o; and a;. The attention score from
an observation word to an action word is thus
Q= exp(aij)/ Zj exp(aij), where aij:oiTaj.
We then compute the “action-to-observation” sum-
mary vector for the ¢-th observation word as
ci=)_;aija;. We concatenate and project the
output vectors as [oi, ci,0; ® ¢4, |0 — ciH, fol-
lowed by a linear layer with leaky ReLLU activation
units. We apply the aforementioned steps to the
inventory ¢ and location appearance [, too. Finally,
we have

srLoc = [BiDAF(o, a), BiDAF(4, a), BIDAF(L, a),

H(pox (c))), H(poa(pos (c)) @



C Additional Experiments with Oracle
State Information

We investigate of performance of replacing our
state approximation with the groundtruth room
IDs (GT-Room). The results show that our agent
achieves on-par or better results on all the games.
This confirms that our state approximation not only
identifies the true location of the player, but also
brings richer state information.



