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Abstract

Text games present opportunities for natural001
language understanding (NLU) methods to002
tackle reinforcement learning (RL) challenges.003
However, recent work has questioned the ne-004
cessity of NLU by showing random text hashes005
could perform decently. In this paper, we pur-006
sue a fine-grained investigation into the roles of007
text in the face of different RL challenges, and008
reconcile that semantic and non-semantic lan-009
guage representations could be complementary010
rather than contrasting. Concretely, we propose011
a simple scheme to extract relevant contextual012
information into an approximate state hash as013
extra input for an RNN-based text agent. Such014
a lightweight plug-in achieves competitive per-015
formance with state-of-the-art text agents using016
advanced NLU techniques such as knowledge017
graph and passage retrieval, suggesting non-018
NLU methods might suffice to tackle the chal-019
lenge of partial observability. However, if we020
remove RNN encoders and use approximate or021
even ground-truth state hash alone, the model022
performs miserably, which confirms the impor-023
tance of semantic function approximation to024
tackle the challenge of combinatorially large025
observation and action spaces. Our findings026
and analysis provide new insights for designing027
better text game task setups and agents.028

1 Introduction029

In text-based games (Hausknecht et al., 2019; Côté030

et al., 2018), players command text actions to in-031

teract with a simulated world and gain rewards as032

they progress through the story (Figure 1). They033

can thus be seen as special partially observable034

Markov decision processes (POMDP), where ob-035

servations and actions carry language semantics.036

Such a viewpoint motivates recent work to incorpo-037

rate reinforcement learning (RL) agents with natu-038

ral language understanding (NLU) capabilities for039

better performance. For example, pre-trained lan-040

guage models support generation in the combinato-041

rial action space (Yao et al., 2020); commonsense042

Observation: Kitchen. You are in the kitchen of the white
house… There is a brass lantern (battery-powered) here…
Look: <Same as Observation>
Inventory: A glass bottle containing water.

Observation: You have moved into a dark place.
The trap door crashes shut, and you hear someone barring it.
It is pitch black. You are likely to be eaten by a grue.
Look: It is pitch black. You are likely to be eaten by a grue.
Inventory: A glass bottle containing water. A brown sack.

Observation: Living Room. Above the trophy case hangs an
elvish sword of great antiquity.
Look: Living Room. There is a doorway to the east, …, and a
rug lying beside an open trap door.
Inventory: A glass bottle containing water. A brown sack.

Action: Go west

Action: Go down

Action: North

Observation: Oh, no! A lurking grue slithered into the room
and devoured you!
**** You have died ****

-10 reward

+25 reward

Several steps later …

Figure 1: A game trajectory from Zork I.

reasoning (Murugesan et al., 2021), information 043

extraction (Ammanabrolu and Hausknecht, 2020), 044

and reading comprehension (Guo et al., 2020) sys- 045

tems provide priors for exploration with sparse re- 046

ward and long horizon; and knowledge graph (Am- 047

manabrolu and Hausknecht, 2020) and passage re- 048

trieval (Guo et al., 2020) techniques help alleviate 049

partial observability. 050

Nevertheless, Yao et al. (2021) doubts the need 051

of NLU for RL agents trained and evaluated on the 052

same game. They found that a text game agent, 053

DRRN (He et al., 2016), performs even slightly 054

better when RNN-based language representations 055

are replaced with non-semantic hash codes. Intu- 056

itively, hash serves to memorize state-action pairs 057

and ignore text similarities, which is sometimes 058

useful — consider the second-to-last observation 059

in Figure 1 and a counterfactual observation where 060

"A lantern" is added into “Inventory”, RNNs might 061

encode them very similarly though they lead to 062

antipodal consequences (die or explore the under- 063

ground). How do we reconcile this with recent 064

NLU-augmented text agents with improved per- 065

formances? Where are semantic representations 066

useful, and where would a hash approach suffice? 067
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In this paper, we present initial findings that se-068

mantic and non-semantic language representations069

could work hand-in-hand better than each alone by070

targeting different RL challenges. Concretely, we071

show the hash idea could help DRRN tackle partial072

observability – returning to the Figure 1 example,073

to get lantern to avoid death, it is vital to know074

where the lantern is, which is revealed in a previ-075

ous instead of current observation. Based on such076

intuition, we propose a simple algorithm that tracks077

the current location and the up-to-date descriptions078

of all locations, then encode them into a single ap-079

proximate state hash vector as extra DRRN input.080

Though lightweight and easy-to-implement, such a081

representation plug-in improves DRRN scores by082

29% across games, with competitive performances083

against state-of-the-art text agents using advanced084

NLU techniques and pre-trained Transformer mod-085

els. The effectiveness is further confirmed by com-086

paring to models that plug in groundtruth state or lo-087

cation hash codes, where we find our performance088

and these upper bounds with very little gaps. These089

results suggest that the current partial observabil-090

ity bottlenecks might not require advanced NLU091

models or semantic representations to conquer.092

However, such a message is gauged by the ab-093

lations that show the approximate state hash alone094

only achieves 58% of the full performance, as it095

fails to handle other RL challenges such as the096

combinatorial state and action spaces. In con-097

clusion, we find the role of NLU in text games098

is not black-or-white as indicated by prior work,099

but rather differs for different RL challenges, and100

agents could benefit from combining semantic and101

non-semantic language representations that target102

different functionalities. Our results and insights103

contribute to future research in designing better104

tasks and models toward autonomous agents with105

grounded language abilities.106

2 Preliminaries107

2.1 Problem Formulation108

A text game can be formulated as a partially109

observable Markov decision process (POMDP)110

⟨S,A, T,O,Ω, R, γ⟩, where at the t-th turn the111

agent reads a textual observation ot = Ω(st) ∈ O112

as a partial reflection of underlying world state113

st ∈ S, issues a textual command at ∈ A in re-114

sponse, and receives a sparse scalar reward rt =115

R(st, at) in light of game progress. The state tran-116

sition st+1 = T (st, at) is hidden to the agent. The117

goal is to maximize the expected cumulative dis- 118

counted rewards E[
∑

t γ
trt]. 119

Observations and States Following prior prac- 120

tice in the Jericho benchmark (Hausknecht et al., 121

2019), we augment the direct observation ot with 122

inventory it and location description lt obtained by 123

issuing actions “inventory” and “look” respectively. 124

But even this may not reveal the complete st (Sec- 125

tion 1), which is Jericho includes an object tree 126

and a large simulator RAM array hidden to players. 127

As st is large and lacks interpretability, more often 128

used is the state hash h(st), where h : S → N 129

maps each state to an integer that can be used to 130

probe if states are identical, but cannot provide se- 131

mantic information about state differences. Access 132

to st or h(st) is a handicap in Jericho. 133

2.2 The DRRN Baseline and its Hash Variant 134

Denote ct = (o1, a1, · · · , ot) as the game context 135

up to ot, and for convenience we omit the subscript 136

t when no confusion is caused. Our baseline RL 137

model, Deep Reinforcement Relevance Network 138

(DRRN) (He et al., 2016), learns a Q-network 139

Q(ct, at) = MLP(sr, ar) (1) 140

where the state and action representations 141

srdrrn = [GRU1(ot),GRU2(it),GRU3(lt)]

ardrrn = GRU4(at)
(2) 142

are encoded by gated recurrent units (GRU) (Cho 143

et al., 2014). The temporal difference (TD) loss 144

and Boltzmann exploration are used for RL. 145

In Yao et al. (2021), (2) is replaced by random, 146

fixed, non-semantic hash representations 147

srhash = [H(ot), H(it), H(lt)]

arhash = H(at)
(3) 148

where a hash vector function H = vec◦h first maps 149

inputs to integers (via Python built-in hash) then to 150

random normal vectors (by using the integer as the 151

generator seed). However, neither of the models 152

addresses partial observability by using the context 153

ct beyond the current observation ot. 154

3 Method 155

The key to handle partial observability is to ex- 156

tract the appropriate state-distinguishing informa- 157

tion from the context ct — while under-extraction 158

leads to different states with same representations, 159
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Game DRRN and Variants Agents with advanced NLU MaxDRRN Obs Hash + Inv-Dy LoG (ours) MPRC-DQN KG-A2C

zork1 39.4/53 35.5/50 43.1/87 51.2/107 38.3/– 33.6/35 350
zork3 0.4/4.5 0.4/4 0.4/4 1.33/5 3.0/5.0 0.1/– 7
pentari 26.5/45 51.9/60 37.2/50 44.4/60 44.4/– 48.2/56 70
detective 290/337 290/317 290/323 288.8/313.3 317.7/– 246.1/274 360
ludicorp 12.7/23 14.8/23 13.5/23 16.7/23 10.9/40.7 17.6/19 150
inhumane 21.1/45 21.9/45 19.6/45 25.7/56.7 29.8/53.3 3/– 90

avg norm .28/.52 .34/.52 .30/.51 .36/.59 .41/- .27/-

Table 1: Final episodic/maximum explored scores for different games. MPRC-DQN numbers with max scores
correspond to version change of games, so we re-run their model and report the new results. Average normalized
score (avg norm) is model score divided by maximum game score, averaged across games.

over-extraction leads to diverging representations160

for the same state with different history paths. So161

to approximate the state hash, we first obtain and162

maintain a location map by exploration with lim-163

ited depth d, collecting names of adjacent rooms:164

165

po1 = {(p, loc(ct, p) | p ⊂ Ad} (4)166

where p is a sequence of navigation actions, and167

loc is the location after following p from ct. Essen-168

tially, po1(ct) serves to distinguish different loca-169

tions with same names (e.g. “maze” rooms with170

the same observation).171

Secondly, we collect the most-recent location172

descriptions for all locations, so that we may know,173

for example, the whereabouts of the lantern when174

needed (Section 1).175

po2 = {(loc,LastLook(loc)) | loc ∈ Map} (5)176

Together, our model DRRN-WorldHash (WH)177

takes state representation178

srWH = [srdrrn, H(po1)), H(po2)] (6)179

The algorithm details are in Appendix A.180

4 Experiments181

Implementation Details We adopt DRRN hy-182

perparameters from Yao et al. (2021) to train our183

model. Following previous work, we implement184

the BiDAF (Seo et al., 2016) attention mecha-185

nism and the inverse dynamics auxiliary objec-186

tive (Yao et al., 2021) for better text encoding. The187

episodic limit is 100 steps and the training has188

1,000 episodes from 8 parallel game environments.189

For po1, we use d = 1 as depth limit. We train three190

independent runs for each game. More details are191

in Appendix B.192

Baselines Our approach builds on the backbone193

DRRN agent, thus we provide apple-to-apple com-194

parisons to the original DRRN and its hash and195

inverse dynamics variants from Yao et al. (2021). 196

We also compare with more complex state-of-the- 197

art agents that are designed to deal with the partial 198

observability via NLU: 199

• MPRC-DQN (Guo et al., 2020), which retrieves 200

the relevant history to enhance the current obser- 201

vation, and formulates the action prediction as a 202

multi-passage reading comprehension problem. 203

• KG-A2C (Ammanabrolu and Hausknecht, 2020; 204

Ammanabrolu et al., 2020), which extracts an 205

object graph with OpenIE (Angeli et al., 2015) 206

or a BERT-based QA model (Devlin et al., 2019), 207

and embeds the graph to a single vector as the 208

state representation. We compare with the better 209

result from the two papers for each game. 210

Evaluating Games We select 6 games from Jeri- 211

cho (Hausknecht et al., 2019) where MPRC-DQN 212

or KG-A2C exhibits performance boosts, thus are 213

more likely to suffer from partial observability. 214

4.1 Game Results 215

Table 1 shows game scores for all models. Among 216

DRRN and it variants, DRRN-WH performs best 217

on 4 of the 6 games. More impressively, our agent 218

is competitive against MPRC-DQN (better or same 219

score on 3/6 games) and KG-A2C (better scores 220

on 4/6 games) in terms of winning rates. Over- 221

all, our DRRN-WH achieves the second best aver- 222

age normalized score of 36%, only behind 41% of 223

MPRC-DQN (which is largely attributed to Zork 224

III). Considering the fact that we explicitly choose 225

the six games in favor of these two state-of-the- 226

art baselines, such a result indicates that advanced 227

NLU techniques might not be a must to solve par- 228

tial observability — at least in the scoring ranges of 229

current text game agents (i.e. average normalized 230

score less then 50%). 231
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Figure 2: Ablation results on Zork I.

4.2 Upper Bound Analysis with Oracle States232

Next, we aim to upper bound our model by replac-233

ing the approximate state hash with the groundtruth234

state hash (GT-State) from Jericho, which could235

perfectly distinguish different states apart, where236

srgt = (srdrrn, H(s)).237

As shown in Table 2, the scores of DRRN-WH238

and the GT-State are very close across different239

games, meaning our approximation has been close-240

to-perfect within the state hashing scheme. Notably,241

even GT-State fails to totally surpass MPRC-DQN242

or KG-A2C, suggesting NLU techniques might243

help these agents with RL challenges other than244

partial observability. Finally, we also show in Ap-245

pendix C the performance of replacing our state246

approximation with the groundtruth room IDs (GT-247

Room), where our agent achieves on-par or better248

results on all the games. This confirms that our249

state approximation not only effectively identifies250

player locations by (4), but also brings richer state251

information thanks to (5).252

4.3 Ablation Studies253

Does the good performance of DRRN-WH indicate254

that distinguishing states and memorizing trajec-255

tories are all it takes to solve one text game? To256

answer this question, we conduct ablation experi-257

ments to remove the text encoder (i.e. all GRUs) in258

our agent as well as the GT-State version (- Text259

Enc). Intuitively, this renders the text game into260

a large, deterministic MDP (instead of POMDP),261

where even very close states (e.g. same except a262

window is ajar or open) have completely different263

representations.264

The result in shown in Table 2, which witnesses265

a huge performance drop for DRRN-WH and its266

GT-State version with text encoders removed —267

in other words, learning the text game as a tabu-268

lar MDP without language semantics could lead269

to a much deteriorated sample complexity, even270

Game Ours Ours w/ GT-State
Full Model - Text Enc. Full Model - Text Enc.

zork1 51.2/107 4.13/36.3 53.6/111 6.25/39.3
zork3 1.33/5 0.85/3 1.50/4.7 1.02/4
pentari 44.4/60 20.3/45 46.1/60 20/45
detective 288.8/313.3 281.3/313.3 289.9/310 280/290
ludicorp 16.7/23 10.15/22 15.9/23 9.5/21
inhumane 25.7/56.7 1.9/23 24.1/60 1.1/20

Avg. Norm .36/.59 .21/.40 .37/.59 .22/.42

Table 2: The results of replacing our state representa-
tions with groundtruth state IDs (GT-State Full Model),
as well as removing the text encoder (- Text Enc).

when partial observability is solved. To explain 271

why DRRN with GT-State hash is much worse 272

than DRRN with observation hash proposed in Yao 273

et al. (2021), note that (3) still leverages the compo- 274

sitional structure of (ot, it, lt), e.g. two states with 275

the same it still share part of the state representa- 276

tion. Such a result helps confirm the importance 277

of language for the RL challenge of large obser- 278

vation and actions spaces: semantics-preserving 279

function approximation (e.g. RNN instead of hash) 280

could be key to interpolation (smooth value esti- 281

mation for similar states) as well as extrapolation 282

(efficient exploration based on language and com- 283

monsense priors). 284

Finally, we ablate individual components of 285

DRRN-WH on Zork I. Figure 2 shows that re- 286

moving the language-learning auxiliary task of in- 287

verse dynamics (w/o invdy) or the language atten- 288

tion (w/o att) leads to worse scores, reconfirming 289

that semantic language representations are vital for 290

DRRN-WH’s success. On the other hand, remov- 291

ing the current whereabouts (w/o cur_room) leads 292

to much worse performance than removing location 293

descriptions across the map (w/o last_look), sug- 294

gesting location identification (4) might be more 295

important for solving partial observability. 296

5 Discussion 297

We propose a simple approach to deal with par- 298

tial observability in text games, which could serve 299

as a competitive baseline for future research, and 300

also inspire similar investigations for other RL chal- 301

lenges to test the limits of memorization and neces- 302

sity of NLU in different dimensions, which would 303

in turn help identify flaws of current setups and 304

propose better ones. We also hope our idea of 305

best combing semantic and non-semantic language 306

representations could be useful for building next- 307

generation text game agents, as well as for other 308

language applications with memorization needs 309

like closed-domain QA or goal-oriented dialog. 310
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A Algorithm of Our Approximated State384

Representation Construction385

Algorithm 1 Infer the current location with nearby
room names using depth-first search with limited
depth. This can help distinguish different rooms
with the same name in most cases. We use depth =
1 in our runs.

1: function LOCATE(env, depth)
2: state← current state of env
3: room← current room name in env
4: nearby ← []
5: for all direction do
6: step env with action direction
7: if env changed in last action then
8: if depth > 1 then
9: d← LOCATE(env, depth− 1)

10: else
11: d← current room name in env

12: append (direction, d) to nearby
13: set env with state

14: return nearby

Algorithm 2 Maintain the state approximation with
the descriptions the last time we visit each room.
The result is then hashed to serve as the state hash
in our model. For runs provided with grounded
room ID, we replace line 3 with the ground truth.

1: state← {}
2: function UPDATEANDGETSTATE(env)
3: room← LOCATE(env, depth)
4: look ← look of the current state in env
5: state[room]← look
6: return state

B More Details of Our Model and386

Implementation387

We follow the hyperparameters from Yao et al.388

(2021). For the state approximation part, we use389

the builtin HASH function in Python. We train our390

model for 105 steps, which takes about 40 hours391

on a TITAN X or Geforce GTX 1080.392

We use the latest Jericho version 3.1.0. Due to393

a bug in Zork I, we add a timeout in the library394

to filter out valid actions causing the emulator to395

hang.396

Game Ours Ours w/ GT-State Ours w/
Full Model - Text Enc. Full Model - Text Enc. GT-Room

zork1 51.2/107 4.13/36.3 53.6/111 6.25/39.3 52.0/110
zork3 1.33/5 0.85/3 1.50/4.7 1.02/4 1.31/5
pentari 44.4/60 20.3/45 46.1/60 20/45 44.8/58
detective 288.8/313.3 281.3/313.3 289.9/310 280/290 289.6/300
ludicorp 16.7/23 10.15/22 15.9/23 9.5/21 16.9/23
inhumane 25.7/56.7 1.9/23 24.1/60 1.1/20 25.7/56.7

Avg. Norm .36/.59 .21/.40 .37/.59 .22/.42 .36/.58

Table 3: The results of replacing our state representa-
tions with groundtruth state IDs (GT-State Full Model),
as well as removing the text encoder (- Text Enc).

B.1 Details of Our BiDAF Observation 397

Encoder 398

In DRRN, the GRU takes the responsibility of both 399

memorizing the high-scoring trajectories, and gen- 400

eralizing to unseen observations. In our method, 401

the memorization power can be provided with our 402

hash codes of local graphs, with stronger ability 403

to distinguish states. We thus hope to encourage 404

the generalization strength of neural network; and 405

propose the attentive extension of observation em- 406

bedding. 407

Our key idea bases on the insight that the Q- 408

value in DRRN is computed by matching the tex- 409

tual observations to a textual action. Since the 410

observations are usually significantly longer than 411

the actions, the effect of an action can usually be 412

determined by its interaction with a local context 413

in the observation. This can be naturally modeled 414

with the attention mechanism. Specifically, we ap- 415

ply the BiDAF (Seo et al., 2016) to match each 416

observation component to the action. 417

The BiDAF takes the observation and action 418

embeddings; and outputs an action-attended ob- 419

servation embedding. We denote the GRU em- 420

beddings for observation word i and action word 421

j as oi and aj . The attention score from 422

an observation word to an action word is thus 423

αij=exp(aij)/
∑

j exp(aij), where aij=oT
i aj . 424

We then compute the “action-to-observation” sum- 425

mary vector for the i-th observation word as 426

ci=
∑

j αijaj . We concatenate and project the 427

output vectors as
[
oi, ci,oi ⊙ ci, |oi − ci|

]
, fol- 428

lowed by a linear layer with leaky ReLU activation 429

units. We apply the aforementioned steps to the 430

inventory i and location appearance l, too. Finally, 431

we have 432

srLoG = [BiDAF(o,a),BiDAF(i,a),BiDAF(l,a),
H(po1(c))),H(po2(po1(c))]

(7) 433
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C Additional Experiments with Oracle434

State Information435

We investigate of performance of replacing our436

state approximation with the groundtruth room437

IDs (GT-Room). The results show that our agent438

achieves on-par or better results on all the games.439

This confirms that our state approximation not only440

identifies the true location of the player, but also441

brings richer state information.442
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